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Storing and recalling spiking sequences is a general problem the brain needs to solve. It is, however, unclear what type of biologically
plausible learning rule is suited to learn a wide class of spatiotemporal activity patterns in a robust way. Here we consider a recurrent
network of stochastic spiking neurons composed of both visible and hidden neurons. We derive a generic learning rule that is matched to
the neural dynamics by minimizing an upper bound on the Kullback-Leibler divergence from the target distribution to the model
distribution. The derived learning rule is consistent with spike-timing dependent plasticity in that a presynaptic spike preceding a
postsynaptic spike elicits potentiation while otherwise depression emerges. Furthermore, the learning rule for synapses that target visible
neurons can be matched to the recently proposed voltage-triplet rule. The learning rule for synapses that target hidden neurons is
modulated by a global factor, which shares properties with astrocytes and gives rise to testable predictions.

Introduction

Increasing experimental evidence in different brain areas shows
that precise spike timing can be learned and reliably reproduced
over trials. For example, in adult songbirds who learned to repeat
the same song, HVC neurons, which are targeting the premotor
area RA, reproduce precise spiking patterns during the song pro-
duction (Hahnloser et al., 2002). In the rat, repeated presentation
of a moving spot imprints a stereotypical spiking activity in the
visual cortex that can be retrieved after learning (Xu et al., 2012).
However, it remains unclear how those spiking patterns can be
efficiently learned through synaptic plasticity.

Learning to autonomously reproduce a given spatiotemporal
activity pattern is a fundamental challenge approached by the
earliest models of recurrent neural networks (Amari, 1972; Hop-
field, 1982; Herz et al., 1988; Gerstner et al., 1993; Horn et al.,
2000). However, the proposed simple temporal Hebbian rule
could be problematic because of its lack of robustness during
recall (Hopfield, 1982). Since then, heuristic models for super-
vised sequence learning in recurrent networks have also been
developed for spiking neurons (Ponulak and Kasinski, 2010). All
these studies suffer from the same fundamental problem: the
synaptic learning rule (storage) is not matched to the neural dynam-
ics (recall) in the sense that the plasticity rule is not derived from first
principles that are formulated in terms of neural dynamics.

Another limitation of existing models for sequence learning
with spiking neurons (Barber and Agakov, 2002) is the restricted
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class of spiking patterns that can be produced with only visible
neurons, i.e., neurons that receive the supervising signal. One
possible solution is to include a reservoir of hidden neurons,
which do not receive a supervised teaching signal, but the synap-
tic weights between those neurons are usually fixed (Maass and
Markram, 2002). Other approaches, such as the Boltzmann ma-
chine (Ackley et al., 1985), Helmholtz machine (Dayan et al.,
1995), or their extensions to the temporal domain (Hinton et al.,
1995; Sutskever et al., 2009) consider learning rules for the
weights toward hidden neurons, but the biological plausibility of
those rules is open to discussion.

Here we study a general framework with both visible and hid-
den neurons. In a local neural circuit, neurons that may receive
strong input (teaching signal) from outside the circuit are con-
sidered to be visible, and neurons that receive only input from
neurons inside the circuit are considered to be hidden. We pro-
pose a generic synaptic learning rule that is matched to the neural
dynamics and that can be adapted to a wide range of neuron
models. The learning rule minimizes an upper bound on the
Kullback-Leibler (KL) divergence from the target spiking distri-
bution to the distribution produced by the network. This learn-
ing rule is consistent with spike-timing dependent plasticity
(STDP; Bi and Poo, 1998). The match of recall and storage ap-
pears as an explicit link between the time constants in the learning
window and the neural time constants. Furthermore, the plastic-
ity rule for synapses that target visible neurons is consistent with
the voltage-triplet rule (Clopath et al., 2010). Finally, beside the
presynaptic and postsynaptic components, the learning rule for
synapses that target hidden neurons is modulated by a global
factor. Interestingly, this global factor shares common properties
with astrocytes.

Materials and Methods

Neuron model. We consider a recurrent network of N spiking neurons
over a duration of T time bins. Spiking of neuron i is characterized by the
spike train x;, with x;(t) = 1 ifa spike is emitted at time step £, and x;() = 0
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otherwise. The membrane potential of neuron i is described as in the
spike-response model (Gerstner and Kistler, 2002):

u(t) = uy + E Wijxf(t) + x(1), (1)

j=1

where w;; is the synaptic strength from neuron j to neuron i, x¢(f) =
37, als)x(t — s)represents the convolution of spike train x, with kernel
a and u,, is the resting potential. The postsynaptic kernel is characterized
by &(s) = &, , for the one time step response kernel scenarios of Figures 2
and 3, whereas in Figure 4 it is given by &(s) = (exp(—s/T;) — exp(—s/
7,))/(T, — 7,) for s = 0 and the adaptation kernel is characterized by
K(s) = cexp(—s/t,) for s = 0, with both kernels vanishing for s < 0. For
the clarity of the exposition, we chose such a simple neural model descrip-
tion. Note, however, that almost any neural model could be considered (e.g.,
conductance-based models). The only constraint is that the dynamical
model should be linear in the weights, i.e., any dynamical model of the form
= flu) + 3, wgi(u;, x) is suitable.

Consistently with the stochastic spike-response model or equivalently
the generalized linear model (GLM; Pillow and Latham, 2008), noise is
modeled by stochastic spiking given the (noise-free) membrane potential
uin Equation 1, i.e., the probability that neuron i emits a spike in time bin
tis a function of its membrane potential: P(x,(t) = 1| u;(t)) = p(u;(t)).
We stress the fact that given its own membrane potential, the spiking
process is conditionally independent of the spiking of all the other neu-
rons at this time. Due to this conditional independence, the probability
that the network with (recurrent) weight matrix w is generating the spike
trains x = (x,, ..., X5) can be calculated explicitly as the product of the
probabilities for each individual spike train, hence a product of factors
p(u,(t)) and (1 — p(u,(t)), depending on whether neuron i did or did not
fire at time t, respectively. Abbreviating p,(t) = p(u;(t)), this amounts for
the log-likelihood (Pfister et al. (2006)) as follows:

logP,(x) = > > x(flogpH) + (1 — x(t)log(1 — pi(1)).

(2)

Unless mentioned otherwise, the firing probability will be assumed to be
asigmoidal p(u) = 1/(1 + exp(— Bu)), with parameter 3 controlling the
level of stochasticity. We introduced this parameter for convenience: for
given weights w, the stochasticity of the network can be varied by chang-
ing the parameter (3, which multiplies the weights. In the limit 8 — %
each neuron acts like a threshold unit and therefore makes the network
deterministic.

Learning task. We separate our N neurons into disjoint classes of N,
visible and Ny, hidden neurons. Correspondingly, the spike trains x are
separated into those generated by the visible and hidden neurons, x = (v, h).
We assume that learning in the recurrent network consists of adapting all
the synaptic weights w;; between and among the two types of neurons
such that the KL divergence

P*(v)> 3)

ID(P*(V) H PW(V)) = <10g P (V)

P*(v)

from the target distribution P*(v) to the model distribution P, (v) of the
spike trains of visible neurons becomes as small as possible (Fig. 1).
Gradient descent would amount to change the synaptic strength propor-
tionally to the gradient of the negative KL divergence in Equation 3,

J
Aw;; = <rwu logP,,(v, h)> s (4)

Py(h|v) P*(v)

using the fact that 9/dw;; log P, (v) = X,P,(h | v) d/dw;; log P, (v;h).
Unfortunately, sampling the sequences of hidden states given a sequence
of visible states as suggested by Equation 4, i ~ P, (h | v), is tricky, since
a certain hidden state at time t should be consistent with all visible states,
in particular those at later points in time. How to select such hidden states

Breaetal. » Sequence Learning

without violating causality is unclear. To circumvent this problem, we
suggest minimizing instead an upper bound of the KL divergence. In an
alternative approach, using a Monte Carlo Markov Chain to sample from
P, (h|v), Mishchenko and Paninski (2011) propose sampling by for-
ward-—backward algorithm from the conditional distribution of one hid-
den neuron spike train given all the other spike trains. It is, however,
unclear how this can be implemented in biologically plausible neural
networks.

Learning by minimizing an upper bound on the KL divergence. To define
a biologically plausible sampling procedure we make use of the fact that
the firing of each neuron is independent of the activity in the other neurons
given the past (cf., Eq. 2). This allows us to factorize the probability for visible
and hidden spike sequences into P, (v, h) = R,,(v| h)Q,,(h | v), where

T

[ 1P| x(t = 1), x(t — 2),...) and

1 t=1

R,(v|h)

I
o

i

Ny T

Quh|v) = []T] Phie) | x(t — 1), x(t = 2),...).

(5)

The factor Q,, (h | v) describes the probability of a hidden activity pat-
tern, when only considering the past hidden and visible activity in each
time step. Note thatin general Q,, (h | v) # P,, (h | v) = P, (v, h)/%,;, P,, (v, h),
since in P,, (1 | v) the whole visible activity pattern (past and future) is
considered in each time step. Similarly, R, (v | h) describes the probabil-
ity of a visible activity pattern when considering only the past. To obtain
samples h ~ Q,, (1| v), one runs the natural dynamics for the hidden
neurons (Eq. 1 including stochastic spiking) while the visible neurons are
clamped to v ~ P*(v). Based on this sampling procedure we introduce
the upper bound F of the KL divergence,

F(P) [ P,(v)

= <log %>

To prove the inequality we note that P,, (k| v) = R,,(v| h)Q, (k| v)/P, ().
Using the definition and positiveness of the KL divergence we find that
0= D(Q,(h|V|IP,(h|v)) = logP,(v) — (logR,(v| 1)q, 1 ) and con-
clude that —(log R,,(v| h))q 1 vy = —logP,(v). Averaging this last in-
equality across P*(v) and subtracting the target entropy H* = —(log
P*(v))p+(,)» We obtain Equation 6.

Note that due to the KL properties this bound is tight if and only if
Q,, (h|v) = P,(h|v). This is the case if either the activity in the hidden
neurons has no effect on the visible activity, i.e., R, (v | h) = P, (v) and
hence P, (h | v) = P,(v, h)/P,(v) = R, (v| )Q,,(h | v)/P,(v) = Q,, (h | v),or
if the dynamics in the hidden neurons is deterministic, i.e.,
P, (h|v) = Q,(h|v) = 8, for some function h(v). Note that with
N, = (k — 1)N,, any factorizable Markov chain ILP,(v(®) |v(t — 1),...,
v(t — k)) of order k, which can be parameterized by P, (v,(t) | v(t —1), ...,
v(t — k)) (cf., Egs. 1 and 2) is implementable with deterministic dynamics in
the hidden neurons: the first group of N, hidden neurons are driven
by the visible neurons such that their activity is the same as the visible
activity one time step in the past, the second group of N, hidden
neurons is driven by the first hidden group such that their activity is
the same as the visible activity two time steps in the past and so forth,
e hi—yynv+i(t) = vi(t — k) (see Fig. 3B).

Deriving the batch learning rule. The negative gradient of the upper
bound F in Equation. 6 is evaluated to the following:

aF < 9 log Ro( |h)>
- = (—IlogR,(v
Iw;; Iwy; & Quli | v) P*(v)

= D(P*W) | P,,(v)). (6)
Qulh | 1) P(v)

)
+ <<logRW<v ) =5 logQ, (i v>> )

Qu(h | v) P*(v)
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d
where 7 can be any arbitrary constant since <7 log Q,(h | v)> =
W Qulk ]
QLY 2 s 0. Taking ad
th(h|V) awlj W( |V) - 6W,~- th( ‘V) - aW,]l - Y ng ad-

vantage of this arbitrariness, the constant 7 can be chosen to minimize the vari-
ance of the second term in Equation 7. Practically, this will be approximated by
7 =~ (logR,(v| 1))q, i P~ To justify this choice we note that the optimal

value for 7 can be found as follows: let e = % log Q,(h|v), {e) =
0, Var((r — Do) = (P& —2rd + 7€) . (rep — (&))=>
(%Va.r((r —7e) = —2ré) + /&) = 0=>7 = (<r7ez>> If (re?) ~ (e*) one
can approximate 7 ~ (r). Note that in contrast to Equation 4, the hidden
spike sequences in Equation 7 can now be naturally sampled.

To deduce from Equation 7 a learning rule of the form Aw;; & — . F/dw;;
we first have to distinguish between weights w;; projecting onto visible
neurons (i = 1, ..., N,), which we call visible weights and weights pro-
jecting onto hidden neurons (i = N, + 1, ..., N) — the hidden weights.
Due to the conditioning, R, (v|h) does not depend on the hidden
weights and Q,,(h | v) does not depend on the visible weights (see Eq. 5).
Hence, if the postsynaptic neuron i is visible, the second term in Equation
7 vanishes, and if it is hidden, the first term vanishes. Given the explicit
form of the log-likelihoods log R,,(v | h) and log Q,,(h | v) as in Equation
2 we can directly take the derivatives in Equation 7 and obtain the batch
learning rule as follows:

AWBMCh — 772 gi(t)(x,'(t) — pi(t))xje(t)

t=1

if i visible

1
: { (logR,(v| k) = 7) ifihidden > (&)

. . pi(t) ,
where m is the learning rate and g(t) o (0 — pi0) with
pi(t) = dp(u)ldu| -, For the sigmoidal transfer function p(u) =
1/(1 + exp(—pBu)), which is a reasonable and common choice when
dealing with binary neurons, the prefactor g;(t) equals 3, since dp(u)/
du = Bp(u)(1 — p(u)). In batch learning (Eq. 8) the weights are
adapted only after the presentation of several spike patterns v. The
visible neurons are clamped with spike trains sampled from the dis-
tribution v ~ P*(v), and the hidden neurons follow the neural dy-
namics, h ~ Q,,(h | v). As can be seen in Equation 8, the learning rule
is different for visible synapses and for hidden synapses. This stands in
contrast to our previous work (Brea et al., 2011), where the learning
rule is identical for both types of synapses.

In the absence of hidden neurons the learning rule is identical to the one
proposed in Pfister et al. (2006) for feedforward networks. The generaliza-
tion to recurrent networks with hidden neurons, which we consider here, is
feasible because of the conditional independence of firing (Egs. 2 and 5). It
should be noted that, even though the learning problem was formulated as
“minimize the KL divergence from target to model distribution,” this min-
imization can be implemented with synapses that have only access to local
information (presynaptic: ¢ (#), postsynaptic: g(t)(x;(t) — p;(¢))) and in the
case of hidden synapses one global signal (log R, (v | h) — 7). We will assume
that each synapse has direct access to the postsynaptic spiking information
x,(t) as well as the probability of spiking p;().

On-line learning rule. To obtain an on-line learning rule, which
updates the synaptic weights at each time step, we need to replace the
temporal summations in the batch rule (Eq. 8) by leaky integrators.
For the synapse-specific part in Equation 8 this leads to the synaptic
eligibility trace

ei(t) = (I — yey(t — 1) + vig()(x(1) — pi(1) (1),

9)
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with vy, = 1/T. Similarly, log R,,(v | h) is replaced by

N,

r(r) = (1 — y)r(t — 1) + 5, 2, vi(Dlogpi(r)

+ (1 = v(®))log(l — pi(1). (10)

Note that log R, (v | h) is given by the expression in Equation 2 with the
summation over neurons from 1 to N replaced by a summation over
visible neurons 1 to N,. The identical time constant y, = 1/T of the leaky
integrators in Equation 9 and in Equation 10 reflects the fact that in
Equation 8 the terms g;(#)(x;(t) — p;(1)) x7 (f) are summed overt =1, ...,
T and so are the terms in log R, (v |h) (cf., Eq. 2). Finally, the term
(1og R,,(v| 1)), (| vyp+(v) €an be estimated as follows:

1) = (1 — y)7i(t — 1) + vr(t — 1), (11)

where the time constant v, of this leaky integrator is much larger than vy,
to estimate the average (log R,(v| 1)), (4jv)p+(v)- With those dynamic
quantities, the synaptic learning rule in Equation 8 now becomes an
on-line rule of the form

1 if i visible
dwi(t) = mey(t) - { (r() — 7))  ifihidden °

In Equation 9 the term g;(¢) (x;(t) — p;(t)) corresponds to the postsynap-
tic and x(¢) to the presynaptic contribution to the weight change. The
product of these two terms is low-pass filtered (Eq. 9) to form the eligi-
bility trace, which in the case of hidden neurons is multiplied by the
global factor (r(¢) — 7(¢)) (see Eq. 12). It is interesting to note that the
global factor (r(t) — 7(t)) = (log R,,(v| h) — (log R,(v | h))) can be seen
as an “internal reward signal”, which depends on how much more than
the average a given hidden activity h helps to produce the visible activity
v. We call the signal internal, since it is provided by the visible neurons
and not by an external teacher.

Initial condition of the dynamics. In the derivation of the learning rule
we assumed that p,(t) (see Eq. 2 and surrounding paragraph) is given at
every moment in time #. For times f larger than the neural time constant,
p;(t) is fully determined by the spiking activity of the network. However,
at the beginning of each pattern presentation or recall, p;(¢) would also be
influenced by spikes that occurred earlier, i.e., before time t = 1. In
practice, for patterns with only visible neurons we took the spikes of the
last pattern presentation or recall to initialize the dynamics. In systems
with hidden units the whole system was effectively clamped to a pre-
defined spatiotemporal pattern before each pattern presentation or re-
call, except in Figure 2E, where the system also converged without reset to
the initial state.

Recall. Recall means sampling from the model distribution P, (x)
and in particular that the visible activity patterns are distributed as
P, (v). Therefore, the learning rule minimizes the upper bound
Fe, P, (v) = DP,v)|P,(v)) = 0 during recall. If the bound is
tight, ie., F(P,(W)|P.(v) = DP,W|P,(v)) = 0, the gradient
VP, )|P,,(v) equals zero, because F(P, (v)||P,,(v)) is in a local min-
imum. Therefore the weight change is zero on average, i.e., (Aw) = 0.
However, unless P, (x) is deterministic, the variance Var(Aw) is not zero
and therefore diffusion takes place. If 7(P, (v)||P,,(v)) > D(P,,(v)||P,,(v))
an additional drift is expected to occur. For the simulations in Figure 3 we
compared the time it takes to “forget,” i.e., drift away from the final D
value by 0.1 bits, with the time it takes to “relearn” the target. For Mark-
ovian targets (k = 1) learning was ~100 times faster than forgetting. For
non-Markovian targets (k > 1), where performance heavily depends on
the hidden weights, learning was ~6 times faster than forgetting.

Linear separability and Markovianity of sequences. In the one time step
response kernel scenario of Figure 2 with deterministic target sequences
the notion of linear separability and Markovianity proves helpful for
classification. Suppose the target sequence requires a neuron 7 at time ¢ to
be active x,(t) = 1 (silent x,(#) = 0). This means that during recall, neuron
ishould get a positive (negative) input at time f, L.e., Ej w,jxj( t—1)>0(<0).
This puts a constraint on the weights w;;. If synaptic strengths w; exist
that respect these constraints for all times t and neurons i, the sequence is

(12)
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called linearly separable. There exist many methods to test linear separa-
bility (Elizondo, 2006).

Is the proposed learning rule capable of finding the weights for a
linearly separable sequence? The answer is yes. First, since we know that
w* exists, the smallest possible divergence from target to model distribu-
tion is zero D(P*(x)||P,,-(x)) = 0. Second, it can be shown that this
divergence is convex in the synaptic weights (Barber, 2011). Therefore a
suitable stochastic gradient descent will lead to a perfect solution with
D(P()|P,,(x)) = 0.

We call a deterministic sequence Markovian if any state in the se-
quence depends only on the previous state, i.e., x(t) = flx(t — 1)), for
some function fand hence x(t) = x(t') = x(t + 1) = x(¢' + 1), V, t".
Note that all linearly separable sequences are Markovian: a non-
Markovian sequence contains transitions with the same initial state but
different final states, i.e., for some tand ¢’ it contains the subsequences ...
x(Ox(t+ 1) ...and ... x(t")x(t' + 1) ... with x(t) = x(t') but x(t + 1) #
x(t" + 1), for which there do not exist any synaptic weights that satisfy the
linear separability constraints, since for a neuron i for which, e.g., 1 =
x(t + 1) # x,(t'" + 1) = 0 there are no w;; such that 0 < ijijxj(t) =
2]- W j(t’) < 0; hence there is no non-Markovian sequence that is linearly
separable and therefore any linearly separable sequence is Markovian.

Markovian sequences that are not linearly separable require appropri-
ate activity states in a hidden layer (Rigotti et al., 2010) such that the
whole sequence of visible and hidden states becomes linearly separable.
The minimal number of required hidden neurons depends on the prob-
lem. But N}, = T hidden neurons are always sufficient, since it is always
possible to find N,, linearly separable states in N, dimensions. Required
are synaptic connections from visible to hidden and hidden to visible. In
non-Markovian sequences the visible state at time # does not only depend
on the visible activity in the previous time step t — 1 but depends poten-
tially on earlier activity states, i.e., in time steps ¢ — 2, .... In this case the
activity in the hidden layer can be seen as representing the context in that
it carries some information about past visible activity states. Conse-
quently non-Markovian sequences require connections between hidden
neurons.

Link to the voltage-triplet rule. In the limit of continuous time, the
learning rule for visible synapses can be written as a triplet potentiation
term (2 post, 1 pre) and a depression term (1 post, 1 pre):

wy = g x(6)xi (1) — mp’(6) x5 (1), (13)

where x,(#) denotes the Dirac spike train of neuron i, pi(t) = dp(u)/du,_,,
denotes the derivative of the firing intensity function and the prefactor is

i)
defined by gi(t) = % Note that in continuous time the prefactor has

a slightly different form than in discrete time: to arrive at a continuous
time description we explicitly introduce the time bin size 8¢, set the
probability of spiking in one time bin to p,(t)8t, thereby reinterpreting
p;(t) as a spike density function, and get in the limit of vanishing time bin
PO D e etal. 2006 Brea etal
o051 — p(1)50) = ) (Pfister et al., ; Breaetal.,
2011). Interestingly, formulated in this way, the learning rule closely
resembles the voltage-triplet rule proposed by Clopath et al. (2010),
which is an extension of the pure spike-based triplet rule (Pfister and
Gerstner, 2006). The weight change prescribed by the voltage-triplet rule
of Clopath et al. (2010), which we will compare with our rule (Eq. 13),
can be also written as a post-post-pre potentiation term and a post-pre
depression term:

Wy = As[uf'(t) — 0,1 [u(0) — 02]+le3(t) — Afu}(®) — 0, ]ix,(),  (14)

where the notation [ - ], denotes rectification, i.e., [x], = x, ifx =0,
otherwise [x], = 0. The convolution kernels «, 3, and vy are expo-
nential decay kernels with time constants 7, (resp. 75, T,), €.g., a(s) =
7. exp(—s/7,)0 (s) where O(s) denotes the Heaviside function, i.e.,
B(s) = 1fors = 0and O(s) = 0 otherwise.

The correspondence between our learning rule for visible synapses of
Equation 13 and the voltage-triplet rule (Clopath et al., 2010) in Equa-
tion 14 becomes tighter under the following observations and assump-
tions. First, it should be noted that in the voltage-triplet model, the

size limg,
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threshold is high such that [1;(f) — 6,], is nonzero only at the timing
of the spike. Therefore this term can be replaced by our Dirac spike train
x,;(t). Second, we can easily assume that the response kernel £(s) matches
the y(s) convolution kernel. Indeed in Clopath et al. (2010), the time
constant 7., (between 15 and 30 ms) was fitted to recordings. Third, in the
limit of fast time constants 7,, 7,—>0 (which is reasonable since those
time constants in Clopath et al., 2010 are smaller than 10 ms), the low-pass
filtered versions of the membrane potential can be replaced by their instan-
taneous value: u{'— u;,, (resp. u{—> ;). Finally, if we choose a gain function
given by p(u) = g[u—0],> + vy, the factor p’(u) = 2 g,[u—0], is a recti-
fied linear function consistent with the voltage triplet model and
the factor p'(u)/p(u) = 2 go(u — 0)/( go(u — 6)* + v,)® (u — ) is close to
arectified linear function for u << 6 + \% since it is zero for u < fand
starts linearly (with a slope 2 gy, ') for u > 6. Note that any rectified
polynomial gain function would work as well (with p'/p differentiable at
u = 0 for power of the polynomial p = 2).

Simulation details. In all learning curve plots the measures were nor-
malized by the number of visible neurons and time steps. If for all time
steps and neurons the probability to be active is P(x;(t) = 1) = 0.5, which
is the case for u;(t) = 0 and the sigmoidal spike probability function, the
normalized KL divergence from target to model distribution equals one
bit minus the normalized entropy of the target distribution. In all simu-
lations the initial weights were chosen to be zero, i.e., w, = 0.

In Figure 2A, a deterministic, linearly separable target was learned
with: number of neurons N = N, = 10, initial weights w;; = 0, learn-
ing rate 1 = 50, parameter 3 = 0.2, resting potential u, = 0, learning
phase of 1000 target sequence presentations. In Figure 2B the fraction
of learnable patterns p was estimated as the mean of the posterior
P(u | D(xY), ..., D(x") o« IT'_ P(D(x") | w) with flat prior P(u) =
Uniform([0, 1]), where D(x”) tells whether the sequence x” is learnable
ornot (/= 100). The target distributions are delta distributions P D(x) =
8, ., where each X was sampled from a uniform distribution, i.e.,
x0(¢) ~ P(xj-(i)(t) = 1) = 0.5. Linear separability, which is the criterion for
learnability, was tested with the linear programming method provided by
Mathematica (Elizondo, 2006). For the asymmetric Hebb rule, wy; = 1/T
3,2x(t+1) = 1)(2 xj(t) — 1), we tested, whether these weights lead to
perfect recall of the sequence. Note that this measure is more stringent
than, for example, the average Hamming distance between target and
recalled pattern.

In Figure 2D the same procedure as in Figure 2B was applied to tem-
porally correlated target patterns. We used patterns with N, = 100 neu-
ronsand T = 5 time steps. To generate patterns with correlation length c,
we choose an initial state x(0) with P(x,(0) = 1) = 0.5 and subslequent

states x(t) with probabilities P(x;(1) = x,(t — 1) | x;(t — 1)) = 2 at1. This
is equivalent to the more intuitive interpretation of the correlation length
as the number of time steps needed until the patterns are uncorrelated,
i.e., P(x (@ + 1) = x,(0) | x,(0)) = 0.5. Figure 2E shows the attempt of
learning a non-Markovian target with: number of neurons N = N, = 10,
parameter 3 = 0.2, resting potential 1, = 0, learning rate = 0.1; batch
algorithm: number of neurons N, = 10, N;, = 10, parameter 3 = 0.1,
learning rate = 0.1, estimate of 7 and update of weights every 25 target
pattern presentation; on-line algorithm: number of neurons N, = 10, N,
= 10, learning rate n = 0.5, first low-pass filter time constant y, = 1/12,
second low-pass filter time constant y, = 1/120, the low-pass filter vari-
ables e 1, T were initialized with zeros. During the first 100 pattern
presentations no update of the hidden weights took place to omit tran-
sient effects of the low-pass filter dynamics. In the batch simulation the
state of the hidden neurons was reset to a given state h, (indicated by the
green line) after each target pattern presentation and before each recall.
In the on-line simulation the hidden states were never reset. In all simu-
lations the initial weights were set to zero, i.e., wy; = 0, the learning phase
consisted of 2.5 + 10* target pattern presentations.

Figure 3A shows target distribution P*(v) = P,.(v) with w*; drawn
from a normal distribution with mean zero and SD 5, number of visible
neurons N, = 5, number of hidden neurons N;, = 0 for target and model
with only visible, N}, = 15 for model with hidden neurons, parameter
B = 2/ 4N, learning rate for visible weights n, = 4 - 10 ~*, learning rate
for hidden weights m,, = 10 ~*, resting potential u, = 0, initial model



Brea etal. » Sequence Learning

o9)

frequency

Figure 1.

weights w, = 0, P(x,) = 8, . Training data consisted of 10 7 patterns of
length 20 time steps, which were generated by the target distribution by
running the neural dynamics with target weights w*. The transition fre-
quency data was obtained empirically by generating 10* samples of 20
time steps.

Figure 3B shows the same as in Figure 3A but for a different target. The
construction of the k = 3 Markov target is explained in the second para-
graph after Equation 6 and in the caption of Figure 3B. We excluded
target weights w*, which parameterize a distribution with highly corre-
lated subsequent visible states, i.e., {(2v;(t + 1) — 1)(2v,(t) — 1))t,,~)Pﬁ(x> >
0.8, since such distributions can be accurately approximated with a
Markovian model.

Figure 3C shows the KL divergence after learning for different k. Re-
sults were obtained for 16 different target weight matrices w* and initial
conditions x*. For simulations with static hidden weights the visible to
hidden and hidden to hidden weights were the randomly reordered final
weights from the corresponding simulation with plastic hidden weights,
the initial visible weights were set to zero and trained with the same
target.

In Figures 4 and 5 we identify one simulation time step with 1 ms.
Figure 4A. Number of neurons N = N, = 100, response kernel time
constants 7, = 10 ms, 7, = 2 ms, adaptation time constant 7, = 15 ms,
adaptation kernel amplitude ¢ = —10, parameter 8 = 1/3, learning rate
n = 0.5, resting potential u, = —5, initial model weights zero, target
weights w¥; = 20,ifi € {10(/+ 1) + 1,... 10(/ + 2)} andj € {10/ + 1, ...
10(I + 1)}, w¥; = —5, otherwise. Training data consisted of 10° states
generated by the target distribution by running the neural dynamics with
target weights w*.

Figure 4B shows the number of neurons N = N, = 20, response kernel
time constants 7, = 10 ms, 7, = 2 ms, adaptation time constant 7, = 3 ms,
adaptation kernel amplitude ¢, g, = —200, parameter 8 = 0.1, learning rate
1 = 100, resting potential 1, = —>5, initial model weights zero, delta target
distribution P*(x) = &, .., with x* drawn from a distribution with P(x% (t) =
1) = 0.1, the learning phase consisted of 2+ 10 target pattern presentations.
For recall, the system is always initialized in the same way.

Figure 4C shows the number of neurons N = N, = 10, fast response
kernel kernel time constants 7, = 15 ms, 7, = 7 ms, slow response kernel
time constants 7, = 50 ms, 7, = 30 ms, adaptation kernel k(t) = ¢, =7 +
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7y - _ _ _
after learning ¢, "™ with ¢;= =50, ¢, = =5, 7,=7ms, 7, =

(v, h) ~ Py (v, h) 30 ms, the slow decay with time constant 7, was
added to counteract the influence of the slow

response kernel and thus increase the stability
during recall, parameter 3 = 0.2, learning rate

A

n = 10, u, = —5, and initial model weights

zero. Target spike trains were generated by in-

jecting strong external positive currents in high

P
PN

firing rate phases and negative currents in low

firing rate phases, which we modeled using

target before learnin
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neural dynamics given by u,(¢) = u, + x;(t) +

N Uy Where u = +50(—50) in high (low) fir-

ing rate phases of the neuron and the sigmoidal
spiking firing probability. Each high (low) fir-

ing rate phase had a duration of 50 ms. The
training phase consisted of 3 + 10° samples
Aw drawn from the target distribution.

In Figure 5A the change in synaptic strength
/_\ At

/k
Jk
A
lasticity

e
P rule

Aw after 50 pairings of one presynaptic with one
postsynaptic spike on an interval of 200 ms was

minimize D(P* (v)|| Pw (’U))\
Jjo +—t———
. B ij P*(v) Py (v)
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P “ l/ J L spike trains v J

computed for different adaption kernels k(1) =
ce "' with 7, = 10 ms (black: ¢ = 2, blue: c = 0,

red: ¢ = —10) while keeping the synaptic response

(efr/n _
T

10 ms and 7, = 2 ms. The initial value of the
membrane potential before stimulation was set
to the resting potential #, = —5. Initial weight
was w = 10. In Figure 5B the data were fitted with
amodel given by the probability function p(u) =
glu — 60],% + v, and response kernel a(s)
= 7 'exp(—s/7,)O(s) (see above, Link to the
voltage-triplet rule). The fitted parameters are given by the following: g, =
0.94-10 "2Hz, v, =7.9Hz, 0= —36.2,7,=41.5ms,w, = 1,and n = 0.46.
All simulations were performed with Mathematica on personal com-
puters, except the simulations in Figure 3, which were written in C and

the fit in Figure 5B, which was performed with MATLAB.

Task and model description. A, Left, Stimuli-evoked activity patterns v (ticks) with probabilities given by a target
distribution P*(v) (curves). Middle, In the absence of stimuli the network spontaneously generates activity patterns x = (v, h)
distributed according to a model distribution P,,, (x) with synaptic strength parameters wy,. Right, With learning, the distribution
of spontaneous activity patterns P,,(v) approaches the target distribution. Hidden neurons (in gray) help to support the desired
activity patternsin the visible neurons. B, Neural dynamics define the model distribution P,,(x) trough a spike response kernel ¢, an
adaptation kernel «, and the spike probability p. Minimizing the divergence D(P*(v)||P,,(v)) from the target to the model
distribution leads to a plasticity rule for the synaptic strengths w that is matched to the recall dynamics.

kernel e(f) = e ™), with 7, =

Results

We studied the task of learning to spontaneously produce
spiking activity with a given statistics: stimuli make neurons
fire in a specific order (Fig. 1A, target); in the absence of any
stimulus, neurons spike spontaneously; and before learning,
the spontaneous activity patterns do not resemble the
stimulus-evoked activity patterns (Fig. 1A, before learning).
The goal of learning is to change the network dynamics such that
after learning the spontaneous activity patterns resemble the
stimulus-evoked activity patterns (Fig. 1A, after learning). To
derive plasticity rules that solve this learning task, we chose the
neural dynamics and minimized with respect to synaptic weights
a distance measure between stimulus-evoked and spontaneous
activity (see Materials and Methods; Fig. 1B). In this way, the
learning rule is matched to the neural dynamics.

To study the proposed learning rules we first elaborate on
deterministic target sequences learned with the simplest variant
of our model. Deterministic target sequences are of behavioral
relevance, since spatiotemporal spike pattern distributions are
presumably often sharply peaked in the sense that the typical
spike patterns closely resemble each other.

Deterministic target sequences

In the simplest conceivable form of our model the shape of the
postsynaptic kernel ¢ is a unit rectangular for one delayed time
step and no adaptation takes place. This stochastic McCulloch-
Pitts neuron (McCulloch and Pitts, 1943) is of widespread usage
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in artificial neural networks (Baum and
Wilczek, 1987; Diiring et al., 1998; Barber,
2011).

In Figure 2A, target, we show a se-
quence, which is learnable with only visi-
ble neurons. During learning, the stimuli
activated the neurons repetitively in the
order shown in the figure. After learning,
spontaneous activity reproduced the tar-
get sequence including the transition
from the last to the first spatial activity
pattern. This fact is also reflected in the
learning curve in Figure 2A, which shows
that the model distribution approximated
the target distribution almost perfectly.

Which sequences are learnable with
only visible neurons and which require
hidden neurons? Since at each moment in
time a neuron can be either active or si-
lent, the total number of visible sequences
is 2™, for a given number of visible neu-
rons N, and sequence length T. We can
group these sequences using as criterion
either linear separability or Markovianity
(see Materials and Methods). It turns out
that this grouping helps to formulate min-
imal architectural requirements, as sum-
marized in Figure 2C: linearly separable
sequences can be learned with only visible
neurons and synaptic connections be-
tween them, Markovian sequences re-
quire enough (at most N, = T) hidden
neurons and at least synaptic connections
from visible to hidden and hidden to vis-
ible, and non-Markovian sequences de-
mand additionally connections between
hidden neurons.

The sequence shown in Figure 2A is lin-
early separable and thus can be learned with
onlyvisible neurons. The sequence in Figure
2E is non-Markovian: the state marked
by a blue triangle occurs twice in the
sequence. Furthermore, already the sec-
ond state (red triangle), where all neu-
rons are silent, renders the sequences
not linearly separable. This is a conse-
quence of our choice of coding (1, ac-
tive; 0, silent) and adaptable parameters
(only synaptic weights w;;), which we
used to account for biological con-
straints. This sequence can only be
learned with appropriate recurrent con-
nections of the hidden neurons. We
show that both the batch and the on-line
learning rule find appropriate synaptic
weights by stochastic gradient descent
on the upper bound F of the divergence

D from target to model distribution. This bound becomes
tight, i.e., F = D, toward the end of learning (see Materials
and Methods), which is reflected in the diminishing distance
between the F and D curves in Figure 2E.

What is the typical size of the subset of linearly separable, and
thus learnable, sequences for given N, and T? In Figure 2B we
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Figure 2. Learnability of deterministic target sequences with a network of McCulloch-Pitts neurons. A, Linearly separable

sequence can be learned with only visible neurons. B, The fraction of learnable sequences with only visible neurons for different
relative sequence lengths and number of neurons: in red for a learning rule that finds an optimal solution if the sequence is linearly
separable, in blue for the asymmetric Hebb rule (see Results) (N, = 40, 60, 80, light to dark). The dots indicate the mean, the error
bars indicate the SD of the posterior distribution with flat prior. C, For a given number of visible neurons N, and sequence length T,
the number of possible deterministic target sequences is 2v". These sequences can be classified by either linear separability or
Markovianity (see Materials and Methods). Linearly separable sequences can be learned with only visible neurons; nonlinearly
separable but Markovian sequences require sufficient hidden neurons and appropriate synaptic weights from visible to hidden and
from hidden to visible neurons, and non-Markovian sequences require additionally connections between hidden neurons. D, The
simple asymmetric Hebb rule (blue curve; see Results) does often not find weights that allow perfect recall if the pattern is
temporally correlated. The fraction of learnable patterns (red curve) decreases only slowly with increasing correlation length cv. E,
This target sequence is obviously not linearly separable and even non-Markovian: it contains an activity gap in the second time step
(highlighted with red triangle) and in time steps 5 and 9 (highlighted with blue triangles) the same spatial pattern is followed by
two different patternsin time steps 6 and 10. After training, a network with only visible neurons only recalls the gap faithfully when
initialized with the first time step and only reproduces the states up to the ambiguous transition faithfully when initialized with the
third time step just after the gap. Shown in each case is an overlay of 10 recalls. With the batch algorithm in Equation 8 and
the on-line plasticity rule in Equation 12 the sequence can be learned. The states left of the green line were clamped for recall. With
the on-line rule, the system learned to periodically produce the sequence and no further clamping of initial states was required
during recall.

show the fraction of learnable sequences as a function of the
relative sequence length T/N, for different N,. Below a relative
sequence length of approximately T/N, =~ 1.5 the probability for
the sequence to be linearly separable is very close to 1. The critical
value T/N, = 1.5 is again a consequence of our choice of coding.
For (1, active; —1, silent) coding we expect the critical relative
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consider correlated patterns (Fig. 2D): the

target w” ~ P(v(t), v(t + 1)) T g, IGERTE simple temporal Hebb rule performs well
15 = +10/8 § i z only for uncorrelated patterns whereas
H £ = 05 the probability of linearly separable se-
5 1 : < -10/p ‘E % quences decreases slowly with increasing
only visible with hidden 5_3 [ ; T correlation.
1 1 j &
k - % 51074 Stochastic target
5 20 g-6p, , ) % = Some stimuli might evoke spike patterns
15 1 20 -6 -3 0 . 1097 thatdo not follow a sharply peaked distri-
logio (frequency target) 167;2;1512;?16 bution. Instead, the spike patterns look
quite different each time a sample from
sarget w* P(o(t), v(t + 1)) -~ S the target distribution P*(x) is c.lra.wn.
’ > 16/8 3 or S Even though they do not look similar,
? 2 £ there might be some temporal dependen-
- H < _5/8 E § 05 cies in the sense that the spikipg ac'Fi\fity
1 15 £ ; & S x(t) at time t depends on earlier spiking
only visible with hidden 2 = T activity states x(¢ — k), k > 0. Variability in
1 IE & 5* ®1 the target patterns can arise due to many
- Ay o :"OE_ o & different reasons. First, there is an extrin-
5 20 - 2 L . . Q 001 sic source of variability, as the same
13 L 20 lo—gfo(frequ—e Slcy targgt) learning time 10’ stimulus can be presented with small
[samples] variations. Second, neurons and synapses
are intrinsically noisy, so the neural net-
C - work that provides the teaching signal will
3 04 be subject to noise. Interestingly, in the
= proposed framework the level of noise
% only visible during recall can be matched to the target
& 02 static hidden variability through synaptic plasticity.
& i e dien As we showed in Materials and Methods
% (second paragraph after Eq. 6) it is possible
% 0. i 3 . P to implement a large class of stochastic tar-
A get distributions, namely factorizable
Markov chains product P, (vi(t) | v(t — 1),
Figure3.  Stochastic targets learned with McCulloch-Pitts dynamics. In all the simulations the target distribution was param- - --» v(t — k)) of order k, which can be param-

eterized by target weights w*. 4, Left, For a Markovian target with only visible neurons (k = 1) the weights can be learned with a
model with only visible neurons or a model with visible (1-5) and hidden (6 —20) neurons (upper left submatrix: visible to visible
connections). Middle, Empirical frequency of subsequent activity patterns v(t) and v(t + 1). For dots on the black line the model
frequency matches the target frequency. (black, only visible; red, with hidden) Right, The learning curve is similar for both models.
B, A k = 3 target cannot be accurately learned with only visible neurons but can be learned with a model that includes hidden
neurons. The target was implemented with connectivities such that the first group of hidden neurons (6 —10) receives strong
excitatory input from the visible and the second group of hidden neurons (11—15) receives strong excitatory input from the first
group of hidden neurons. The learned hidden weights do not need to be the same as the target weights. ¢, With increasing
complexity (k = 1to k = 4) amodel with only visible neurons (black) or static hidden weights (blue) is not sufficient to accurately
learn the target. The static hidden weights were obtained by reshuffling the weights learned in a simulation with plastic hidden
weights. A model with 15 plastic hidden neurons (red) performs well up to the capacity limit k = 4. Learning stopped after 107
target samples, even when learning did not converge. Dots indicate the median, error bars indicate the first and third quartile of the

eterized by P, (v,(t) | v(t — 1), ..., v(t — k))
(cf., Egs. 1 and 2). For Markovian targets
(k = 1) and a model without hidden neu-
rons, the solution is unique due to the con-
vexity of the KL divergence. In Figure 3A we
demonstrate in an example that the learning
rule effectively leads to the solution. For
k> 1amodel with only visible neurons fails
to learn the target, whereas a model with
sufficient hidden neurons equipped with

results from 16 simulations with different targets.

sequence length to be at T/N, ~ 2 (Hertz et al,, 1991). As a
reference we compare this to a simple temporal Hebb rule

1
Aw; = fErT:l (2x(r + 1) — D(2x() — 1) as proposed in

Hopfield (1982); Diiring et al. (1998); Grossberg (1969); Herz et
al. (1988); Gerstner et al. (1993); Horn et al. (2000). It is not
surprising that this simple temporal Hebb rule, for which linear
separability is not a sufficient condition for a pattern to be learn-
able, in general does not find synaptic weights to perform perfect
recall: instead of solving an optimization problem (minimizing
the divergence from target to model distribution), which leads to
a learning rule that is matched to the dynamics, it is simply in-
spired by the symmetric Hebb rule used in Hopfield networks
(Hopfield, 1982). Its weakness becomes even clearer when we

our learning rule succeeds (Fig. 3B). Under
the light of the remarkable capabilities of
reservoir computing (Maass and Sontag,
2000; Lukosevicius and Jaeger, 2009; Rigotti
et al., 2010) it is interesting to note that a random choice of static
hidden weights obtained by reshuffling learned weights is not suffi-
cient to learn the target (Fig. 3C).

a-shaped kernels

So far we discussed the plasticity rule for a model with very simple
dynamics. However, the neuron model in Equation 1 allows for
more realistic dynamics. In the examples shown in Figure 4, a
presynaptic spike evokes an a-shaped synaptic response & (Fig.
4B), which is felt by the postsynaptic neuron, and an adaptation
K, which prevents immediate follow-up spikes in the presynaptic
cell. With this dynamics it is possible to learn a “synfire chain”
(Fig. 4A) or a pattern of precise spike times (Fig. 4B). Depending
on the target distribution and the neural dynamics, timing errors
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may propagate and the pattern eventu-
ally becomes unstable (Diesmann et al,,
1999). This fading of precision is less
problematic with a rate code.

In Figure 4C, target, the pattern of Fig-
ure 2A is encoded with periods of high and
low firing rate. The system can reasonably
well learn this target with an a-shaped
synaptic response &, and adaptation ker-
nel k (Fig. 4C, model with only &, blue
learning curve). Fast synaptic responses €,
help to further stabilize the pattern and
increase performance (Fig. 4C, model
with both &, and &,, red learning curve).
The motivation for using synaptic re-
sponses on two different timescales arises
from the idea that fast connections estab-
lish attractors that encode for the different
elements in the sequence and slow re-
sponses push the dynamics from one at-
tractor to the next (Sompolinsky and
Kanter, 1986). Neurons could implement
fast and slow responses to one presynaptic
spike with different types of synapses, e.g.,
fast AMPA synapses and slow NMDA

synapses.

before learning

after learning

neuron

100 200 300

\

10 s

100 200 300

time [ms]

K
10 ms

model

—_
(=]

{

neuron

—
w

100 200 300

C. .

Breaetal. » Sequence Learning

learning curve

1074
0

D(P*(z)|| Pw (x)) [bits]

500 1000

learning time [s]

K

O~—_ I

10 ms

target

10 ms

1 - =
5 [

model with only €;

1 F
LI

model with both €; and e

|
!

20 [ .

1
5" .
0

neuron

Biological plausibility 10 20 30
When learning is formulated with a com-
putational goal in mind, like minimizing
the difference between target and model
distribution, it is far from obvious that the
resulting learning rule is biologically plausi-
ble in the sense that it respects constraints of
biological systems and is consistent with ex-
perimental data. Here we argue that the
proposed learning rule in Equation 12 is
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biologically plausible.

The learning rule in Equation 12 re-
spects causality, is implemented in an on-
line fashion, and depends on presynaptic
and postsynaptic x activity and a modula-
tory factor for hidden synapses. The pre-
post term shares similarities with STDP:
Figure 5A shows the STDP window pre-
dicted by the learning rule (Bi and Poo,
1998; Pfister et al., 2006; Brea et al., 2011).
Note that this learning rule, which mini-
mizes the divergence in Equation 3 from target to model, predicts
that the causal part of the STDP window should be matched to
the dynamics of the synaptic transmission. The acausal part de-
pends on the adaptation properties of the neuron. Interestingly,
the learning rule is closely related to the voltage-triplet rule (Pfis-
ter and Gerstner, 2006; Clopath et al., 2010; see Materials and
Methods) and is compatible with the frequency dependence of
STDP as observed by Sjostrom et al. (2001) (Fig. 5B).

For hidden synapses, the plasticity rule does not depend only
on the presynaptic and postsynaptic activity, but is also modu-
lated by a global factor. This global factor could be implemented
by astrocytes for mainly three reasons. First, it has been shown
that astrocytes, which contact a large number of synapses, can
modulate synaptic plasticity (Henneberger et al., 2010; Min and
Nevian, 2012). Similarly, in our framework, the semi-global

0

Figure4.

the green line.

learning time
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Target distributions learned with cc-shaped response kernels. A, The target distribution P*(x) = P,,(x) has the
same parametrization as the model with excitatory weights from groups of 10 neurons projecting to subsequent groups of
10 neurons and inhibitory weights otherwise. B, Precisely timed spike patterns can be learned. €, The sequence of Figure 24
is encoded with periods of high or low firing rate. The target was generated by applying strong input current square pulses.
Refractoriness sets an upper bound to the maximal firing rate. In recalls the model system was clamped to the target up to

modulating factor (see Eq. 12) affects the plasticity of a large
group of synapses (the hidden synapses). Second, according to
our model, this global factor (see Eq. 12) acts at a slower time
constant than the membrane time constant, which is consistent
with the calcium dynamics of astrocytes (Di Castro et al., 2011).
Finally, a causal pairing (pre-then-post) can lead either to long-
term potentiation or long-term depression depending on the sign
of the global factor (r(f) — 7(¢)). This is in agreement with the
study of Panatier et al. (2006) who showed that when D-serine,
which is an NMDA co-agonist, is released by astrocytes, long-
term depression can be turned into long-term potentiation. Un-
like what is suggested by Panatier et al. (2006), this type of sliding
threshold (7 () in our case) is conceptually different from the one
in the BCM learning rule (Bienenstock et al., 1982) since it is a
global quantity whereas in the BCM learning rule the sliding
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It is interesting to note that the learn-
ing rule for the hidden neurons in Equa-
tion 12 appears formally similar to a
reward-based learning rule (Pfister et al.,
2006), but now the reward is an internally
computed quantity and does not depend
on an external reward. Loosely speaking,
if the hidden units contribute to make the
visible spikes likely, the synapses targeting
those hidden units receive an internal re-
ward signal (r(¢) — 7(¢)) (Eq. 12).
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Figure5.  Thelearning rule shares similarities with STDP. A, The STDP window for different adaptation kernels (on the right in

black, blue, and red): the synaptic weight change Aw of a positive synaptic strength w = 0 after a pairing protocol on an interval
Note that the shape of the curve inthe
causal part At = 0is determined by the response kernel-shape & and in the acausal part At << 0 depends on the adaptation kernel
K. B, Experimental (black) and model (red) weight change induced by the pairing protocol described by Sjostrom et al. (2001).
Every 10, bursts of five pairs of presynaptic and postsynaptic spike with arelative timing of At = ¢, — t,, = 10ms (solid lines)
and At = —10ms (dashed line) areinduced at different pairing repetition frequencies. Fifteen such bursts are elicited (which give
a total of 75 pairs) for all repetition except at 0.1 Hz. At this frequency, only 50 pairs are elicited (Sjostrom et al. (2001), their
Experimental Procedures). It is assumed that at the beginning of the simulation, the weight is set to 1and updated only after the
induction protocol to mimic the time lag between induction and expression in the experiments.

0f 200 ms, in which both neurons spike once with a separating interval of At = £, — b,y

threshold is a local quantity that depends on the history of the
postsynaptic activity. Note that the proposed global factor de-
pends on activity in visible neurons and affects hidden synapses
only. Thus, if astrocytes are responsible for this signaling, they
“need to know” which neurons are visible and which are hidden.
This might be possible due to geometrical arrangement or chem-
ical signaling.

Discussion

Learning a statistical model for temporal sequences with hidden
units is a challenging machine learning task in itself. Here we
considered an even harder problem in that we are interested in a
biologically plausible learning rule that can solve this task. To be
biologically plausible, the learning rule has to be local, causal, and
be consistent with experimental data. We derived a biologically
plausible learning rule that minimizes by stochastic gradient de-
scent an upper bound of the KL divergence from target to model
distribution.

Because the proposed learning rule is minimizing an upper
bound of the KL divergence and not the KL divergence itself and
because the tightness of the bound is not explicitly controlled,
unlike in the Helmholtz framework (Dayan et al., 1995), the max-
ima of the two different objective functions could in principle be
located at different places in the parameter space. It is, however,
interesting to note that after some learning time, the bound becomes
tighter, as can be seen on Figure 2E where the KL divergence between
the proposal distribution Q,,(h | v) and the posterior distribution
P, (h|v) decreases. In fact, we can show that at the beginning of
learning and at the end of learning of deterministic patterns, the
bound is tight. Indeed, at the beginning of the learning all the weights
(and in particular the weights toward visible neurons) are initialized
to zero and therefore, the function R, (v| k) is independent of the
hidden activity and thus D and F are identical. At the end of learn-
ing, for a deterministic pattern, the proposal distribution is a Dirac
delta distribution and therefore D = F.

The formulation of learning as mini-
mizing the KL divergence (or, equiva-
lently, maximizing the log-likelihood) or
an upper bound thereof is common prac-
tice in machine learning. The novelty of
our approach lies in the specific choice of
the upper bound of the KL divergence,
which relies on the assumption of condi-
tional independence for the neural firing,
i.e, given its membrane potential, the
probability of firing of a neuron is condi-
tionally independent of the firing of all
other neurons at the same time. Even
though this assumption is perfectly rea-
sonable and widely used (e.g., in the GLM
framework; Pillow and Latham, 2008), it
is the key assumption that allows the joint
distribution over visible and hidden activ-
ity to be expressed as a product of a distribution from which it is
easy to sample (Q,,(h | v)) and a function which is easy to calcu-
late (R,(v | h)). This stands in contrast to temporal Boltzmann
machines (Sutskever et al., 2009) where this assumption is not
made and sampling usually involves running a Monte Carlo
Markov Chain in each time step, which is hard to justify under the
light of biological plausibility.

Another approach to learn a statistical model of spatiotem-
poral spike pattern with visible and hidden neurons is a gen-
eralization of the expectation-maximization algorithm proposed by
Pillow and Latham (2008). Yet, as a version of the Helmholtz
machine, the distribution, from which the hidden states are sam-
pled, uses a different parameterization for storage (recognition;
wake phase of learning) and recall (generation; sleep phase of
learning) and assumes an acausal kernel, which renders the
model unsuitable for a biologically realistic implementation. To
circumvent the need of sampling the hidden states, i ~ P, (h | v)
(see Eq. 4), Rezende et al. (2011) proposed to calculate explicitly
the expectation under the posterior distribution P, (h |v). To
achieve this, they had to assume a weak coupling between neu-
rons and then approximate the true posterior distribution by a
Gaussian process on the membrane potential. This weak cou-
pling assumption is however difficult to justify at the end of learn-
ing where individual weights can become large.

A drawback of the proposed learning rule for systems in-
cluding hidden neurons is the potentially long learning time.
The plasticity rule relies on stochastic gradient ascent by sam-
pling hidden sequences & ~ Q,,(h | v). As in any gradient de-
scent method, the learning time depends on the learning rate
and the initial condition: the learning time is short if at the
beginning of learning the weights projecting onto hidden neu-
rons are such that the samples 1 ~ Q,,(h | v) help to quickly
reduce the difference measure between target and model dis-
tribution and can be long otherwise. In some cases it is even
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possible to find initial weights that supersede any further
learning of hidden weights. For example, any possible se-
quence as discussed in Figure 2C could be learned with a
(hardwired) delay line of length T with Ny, = T hidden neu-
rons and no learning of the hidden weights. Alternatively, the
delay line could be implemented by a large enough number of
randomly connected hidden neurons (Maass and Sontag,
2000; Lukosevicius and Jaeger, 2009; Rigotti et al., 2010) where
the weights are chosen from a given distribution. The number
of randomly connected hidden neurons needed might be very
large to guarantee good solutions in any case. Since the goal of
this paper was rather to demonstrate that the learning rule is
capable of learning distributions that could not be learned
with only visible neurons, we did not make use of elaborated
choices of the initial conditions and started all simulations
with initial weights w, = 0.

Our paper is not the first one to propose the idea that storage
and recall should be matched. Indeed Sommer and Dayan (1998)
and Lengyel et al. (2005) already proposed that there should be a
tight link between the plasticity rule and the neural dynamics.
Interestingly their approach is complementary to the one pre-
sented here. Indeed, they start from a given plasticity rule and
then derive the optimal (Bayesian) recall dynamics for this given
plasticity rule. Here we are following the opposite path. We start
from the neural dynamics and then derive the plasticity rule.
Given the richness and the accuracy of existing neural models and
given the absence of a canonical model of synaptic plasticity, we
preferred to start from what is well known and derive predictions
on what is largely unknown.

An interesting outcome of our model is that the learning
rule for hidden synapses does not depend only on the presyn-
aptic and postsynaptic activity, but is also modulated by a
global factor. We argued in this paper that this global factor
could be provided by astrocytes. To experimentally test this
hypothesis we note that the global factor is predicted to de-
pend on the voltage of the visible neurons. In particular, inde-
pendently of the precise implementation of the model (be it by
minimizing an upper bound on the KL divergence as pre-
sented here or by directly minimizing KL divergence itself as in
Brea et al., 2011), the global factor crucially depends on the
presynaptic membrane potential at the time of the spike (see
Eq. 10). So the key experimental step would be to show that
astrocytic activity depends on the membrane potential of the
presynaptic neuron at the time of the spike. This prediction
seems plausible since it was found that a depolarization of the
presynaptic membrane potential at the time of the spike causes
a larger postsynaptic potential (Alle and Geiger, 2006; Shu et
al., 2006). We suggest that astrocytes could have a similar
sensitivity to the membrane potential at the time of the
spike.
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