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Hippocampal area CA3 is widely considered to function as an autoassociative memory. However, it is insufficiently understood

how it does so. In particular, the extensive experimental evidence for the importance of carefully regulated spiking times poses

the question as to how spike timing–based dynamics may support memory functions. Here, we develop a normative theory of

autoassociative memory encompassing such network dynamics. Our theory specifies the way that the synaptic plasticity rule of a

memory constrains the form of neuronal interactions that will retrieve memories optimally. If memories are stored by spike timing–

dependent plasticity, neuronal interactions should be formalized in terms of a phase response curve, indicating the effect of

presynaptic spikes on the timing of postsynaptic spikes. We show through simulation that such memories are competent analog

autoassociators and demonstrate directly that the attributes of phase response curves of CA3 pyramidal cells recorded in vitro

qualitatively conform with the theory.

The task of storing memories and recalling them from partial or noisy
cues is fundamental for the brain and has been a particular focus for
empirical1,2 and theoretical work3 on the hippocampus. This naturally
raises the key question as to how the properties of single cells and the
overall hippocampal network support its proposed function. The CA3
region of the hippocampus has the densest recurrent collateral system
in the mammalian cortex4, which is consistent with the central role
accorded to recurrent connections in standard models of autoassocia-
tive memories5. However, with relatively few exceptions (in the
hippocampus and elsewhere6–13), such models typically use a highly
simplified treatment of the resulting collective dynamics of their model
neurons14,15. They thereby fail to capture a salient characteristic of the
activity of hippocampal neurons during memory states: namely, the
central role played by spike timing.

Evidence for the importance of timing in the hippocampus is
widespread. Behaviorally relevant neural oscillations at different fre-
quencies pace the activity of all hippocampal cell types. In addition, the
timing of individual action potentials of principal cells is tightly
regulated16,17, and temporal sequences of the ensemble firing pattern
consistently reappear during both awake behavior18,19 and sleep20–22.
Furthermore, synaptic plasticity is also critically sensitive to the precise
timing of pre- and postsynaptic spikes23,24.

A key idea for understanding networks such as CA3 in which
information may be coded by spike times is the phase response curve
(PRC). PRCs offer a precise characterization of the effect a presynaptic
spike has on the timing of the succeeding postsynaptic spike depending
on its time of arrival25–27. PRCs and related phase reduction and

analysis methods have wide application in everything from the analysis
of cardiac rhythms28 and patterns of oscillatory coordination for motor
pattern generation29 to the relationship between nonlinear and sub-
threshold intrinsic mechanisms within cells and various forms of
synchrony30,31. However, to our knowledge, hitherto they have not
been used to characterize oscillatory autoassociative memories.

Here, we present a theory treating autoassociative recall as optimal
probabilistic inference32,33, inferring the recurrent dynamics within a
memory that are normatively matched to the form of the synaptic
plasticity rule used to store traces. In the case of CA3, this encompasses
memories encoded in spike timings relative to underlying neural
oscillations, and it thus involves inferring the optimal PRC of neurons
from their spike timing–dependent synaptic plasticity (STDP) rule. We
thus make specific predictions about the shape of the PRC of CA3
pyramidal neurons based on the STDP reported in cultured hippo-
campal neurons34. We show that the theoretically derived PRC provides
a good qualitative match to those recorded in hippocampal CA3
pyramidal cells in vitro.

RESULTS

Autoassociative recall as probabilistic inference

The fundamental requirement for an autoassociative memory is to
recall a previously encoded memory trace when cued with a noisy or
partial cue. As synaptic plasticity, the key mechanism for long term
storage in the brain, loses information about the traces, recall poses a
complex problem of probabilistic inference. The optimal solution to
this problem, which amounts to a normative theory of recall, depends
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.

More concretely, consider a network of N neurons (Fig. 1a), fully
connected by N � (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; xmj Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; xmj Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.

Under this account, synaptic interactions between neurons of the
network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.

Here, we study the case of area CA3 in the hippocampus, in which
the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories

The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.

Our theory allows a systematic treatment of this case, if we interpret
neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.

(a) Schematic diagram of a recurrent network of neurons. Neurons are

numbered i ¼ 1 y N and are characterized by their respective activities,

x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through

a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity

(excluding autapses) was assumed for the theoretical derivations, here only

a few synapses are shown for clarity. (b) Memories are stored by a spike

timing-dependent plasticity (STDP) rule derived from experiments on

cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.

Black line is a continuous fit taken to be the synaptic learning rule (O) in

equation (1). (c) Optimal coupling function (H) for retrieving memories stored

by STDP (black line in b), as derived in equation (3). This shows how the

firing phase of the postsynaptic neuron should change as a function of the

phase difference between pre- and postsynaptic firing, if neurons were to

interact continuously. fpre and fpost represent firing phases of pre- and

postsynaptic cells relative to a local field potential oscillation. (d) Optimal

phase response curves (PRCs) derived from the optimal coupling function

(shown in c), showing how neurons should interact through spikes. Different

curves correspond to linearly increasing synaptic weights (in increasing order:

red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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the relative phases translated directly into relative spiking times
assuming a theta-frequency oscillation. This rule prescribes that a
synapse is strengthened if the presynaptic neuron spikes before the
postsynaptic neuron and is weakened if the order of spiking is reversed.
The data around zero time difference between pre- and postsynaptic
firing are variable, so we consider a smooth, differentiable fit (Fig. 1b,
black line) that captures the salient characteristics of hippocampal
STDP. Second, given this firing phase interpretation of storage, the
optimal recall dynamics of equation (3) also acts on firing times,
requiring the phases of the spikes of a postsynaptic cell to be advanced
or delayed relative to the LFPO on the basis of the phases at which the
neuron itself and its presynaptic partners spike.

The STDP rule specifies weight changes based on the difference
between pre- and postsynaptic spike times. Thus, in recall, the inter-
action between neurons should also be a function of this difference,
sometimes called a phase coupling function38. Specifically, equation (3)
tells us that the STDP rule shown in Figure 1b requires the phase
coupling function shown in Figure 1c. However, since influences must
be based on discrete spikes, a correction is necessary (Supplementary
Note). Interactions are then described in terms of a PRC25 (Fig. 1d),
which indicates the extent to which the timing of the next spike of a cell
is advanced or delayed as a function of the timing relative to its most
recent spike of a small perturbation caused, for instance, by an
excitatory postsynaptic potential (EPSP). This relationship between
the PRC of a neuron and the STDP rule employed by its synapses
provides a way of testing our theory.

Since our derivations embody assumptions and approximations, we
tested the recall performance of the network by numerical simulations
(Fig. 2). Memories were stored using an STDP rule derived from the
hippocampus (Fig. 1b, black line), and retrieved by a network using the
optimally matching coupling function (Fig. 1c). During the course of
retrieval of a single memory trace (shown with one whole theta cycle in
Fig. 2a, left), firing phases smoothly changed from an initially noisy
value reflecting the input to the network (Fig. 2a, center, first theta
cycle) to the final, converged form (Fig. 2a, right). The noise-free
version of the cue (Fig. 2a, left) was recovered with high fidelity.
There were no discernible changes in spike times in the last two cycles,

demonstrating that the network had reached an attractor state. Note
that some of the noise was already removed by the second theta cycle.

The network incorporated information from the three sources of
evidence that pertain to recall: the prior distribution, the input and the
synaptic weights (Fig. 2b). We used two purely feed-forward networks
as benchmarks of the optimal recurrent network to dissect the
contribution of interactions through the recurrent synapses. One
network used only information in the prior distribution and thus
always retrieved only 0, the mean of the prior distribution, whereas the
other used only information in the input and thus simply transmitted
its input to its output. Compared with these networks, individual
values recalled by the full network were closer to their ideal values
(Fig. 2b, left). The distributions of errors were symmetrical around zero
(correct retrieval) for all three networks, indicating that all of them were
unbiased (Fig. 2b, middle). However, the complete network was
markedly superior over the other two in terms of variance of the
retrieved firing phases around the correct values; that is, it made smaller
errors on average (Fig. 2b, right). The comparison with using only the
input is especially important, as persistent input is known to improve
recall performance by itself 39. Of course, performance did ultimately
deteriorate as an increasing number of patterns was stored, and
information in synaptic weights became negligible relative to informa-
tion in the noisy input (Fig. 2b, right). This graceful degradation arose
from optimal integration of available information sources (synaptic
weights and input, in this case).

We also tested the robustness of our results in a number of
adversarial settings (Supplementary Fig. 1 online), including storage
noise and limited connectivity. Recall performance was proportional to
the degree of connectivity and inversely proportional to storage noise
(Supplementary Fig. 1). Performance was also proportional to the size
of the network (Supplementary Fig. 1), as is common for such
memories3. Although both the network sizes (50–250 neurons)
and connectivity ratios (100–20%) used in our simulations were
outside the range of realistic values for rat CA3 (300,000 neurons
with 5% connectivity4), these results together imply that the main
determinant of recall performance is the number of synapses per
neuron, and thus we predict that a network with realistic anatomy

Figure 2 Quality of memory retrieval in an

optimally constructed spike timing–based

autoassociative memory model: numerical

simulations. (a) Retrieval of a memory pattern

defined by firing phases. Left: noise-free form of

the cued pattern as originally stored. Each row

shows the firing phase of a cell (color code) and

its notional spike time (white squares) depending
on when the phase of the underlying theta

oscillation (top trace) coincided with the firing

phase of the cell. Cells in all three panels were

ordered according to their firing phases in the

noise-free memory trace. One complete cycle of

theta oscillation (125 ms) is shown. Center: first

two theta cycles during retrieval. Right: two theta

cycles from the end of the retrieval process.

(b) Retrieval performance of the network. Three

networks were compared: a ‘prior only’ network

(red), an ‘input only’ network (blue) and the

complete optimal network (yellow; see text for

further details). Left: retrieved firing phases

(y-axis) as a function of noise-free firing phases

of the associated cued traces (x-axis). Points near the diagonal indicate good retrieval. Center: histogram of errors (circular difference of retrieved and stored

firing phases) for the three networks. Right: root mean squared error over neurons for the ‘input only’ and the complete network as a function of the number

of memories stored. The ‘prior only’ network is omitted from this plot for clarity, because its average error was close to the maximally possible p/2 value.
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(12,000 recurrent synapses per CA3 pyramidal cell4, as opposed to
the maximal 200 synapses used in our simulations) will be a
highly competent spike timing–based autoassociator. Further, perfor-
mance degraded only weakly even if the STDP was asymmetric: for
instance, with the potentiation having larger maximal amplitude
and tighter time frame than depression34 (Supplementary Fig. 1).
Performance was more sensitive to a mismatch between storage rule
and recall dynamics.

Characteristics of the optimal phase response curve

The theoretically optimal PRC (Fig. 1d) for autoassociative memory
recall has five salient characteristics. First, excitatory currents can cause
both delay (positive parts) and advancement (negative parts) of the
next spike. Second, spike delay is predicted for EPSPs that follow
postsynaptic spiking. Third, EPSPs immediately preceding postsynap-
tic spikes should have negligible effect on postsynaptic spikes. Fourth,
EPSPs before this insensitive period or after the interval where delay is
predicted should result in advancement. Fifth, based on equation (3)
and shown as different colored lines in Figure 1d, the effect of
presynaptic spiking on the phase response should scale with the
synaptic weight between the two cells. The optimal scaling of the
PRC is not exactly linear, but its zero crossings (relative spike times for
which no phase shift is predicted) should be unaffected by changing the
synaptic weight. Type II oscillators, such as the Hodgkin-Huxley
model, show spiking behavior that broadly complies with these cri-
teria38, thus suggesting that real neurons may implement similar PRCs.

These features are preserved (Supplementary Fig. 2 online)
for a range of STDP curves that satisfy a few qualitative properties:
potentiation for pre- before postsynaptic firings, depotentiation for

post- before presynaptic firings, pre- and postsynaptic spikes required
to appear within a limited time window for both, and a transitionary
regime between the potentiation and depotentiation at around zero
time difference.

The optimal PRC also seems to be insensitive to inputs arriving in
the middle of the spiking cycle (shown as the two flat flanks of the PRC
in Fig. 1d), unlike most biophysically plausible PRCs26. This insensi-
tivity is predicted because the function used to fit experimental STDP
curves converges to zero and is therefore already flat at 25 ms (Fig. 1b,
black line), whereas for the conversion from spike time to phase, the
length of the theta cycle was assumed to be 125 ms (corresponding to
the widely reported 8 Hz theta frequency35). A shallower fall-off of the
STDP curve (as shown by the original exponential fit of the data;
Fig. 1b, gray line) or a higher theta frequency would diminish this
region, leading to the fusion of the two intervals where advancement is
predicted (Supplementary Fig. 2).

Phase response curves of hippocampal CA3 pyramidal cells

We used somatic whole-cell patch-clamp recordings from CA3 pyr-
amidal neurons in acute hippocampal slices to measure the PRC for
comparison with the theory. Theta oscillation was simulated by a
somatic oscillatory inhibitory conductance, as is also observed in vivo35,
and excitatory synaptic input was delivered by extracellular stimulation
(Fig. 3a,b). We confirmed experimentally that excitatory input could
both delay and advance spikes (Fig. 3c). As predicted by theory, delay
was observed in the next cycle when EPSP followed immediately after a
spike, and advancement was observed when EPSP occurred before the
expected spike or well after the previous spike (Fig. 3d,e; n ¼ 7 cells).

To confirm that both phase advancement and phase delay are due to
the EPSP itself, and not to some other extracellular stimulation-evoked
modulatory or network event, we repeated the experiment using
dynamic clamp to simulate an excitatory input conductance (Fig. 4).
Indeed, the same effects of phase delay and phase advancement were
observed using artificial excitatory postsynaptic conductances (EPSGs,
Fig. 4a,b). Moreover, we also confirmed that the effect on phase
advancement and phase delay increased with synaptic conductance,
with the zero crossings of the PRC remaining relatively unaffected
(Fig. 4c), as predicted by theory (Fig. 1d). Similar results were obtained
in seven other cells. Finally, in order to test the generalizability of our
findings, we recorded PRCs at a higher but still within-theta band
frequency (Supplementary Fig. 3 online) as well as in response
to bursts of EPSGs (Supplementary Fig. 4 online) and found
that PRCs were preserved under these conditions. In sum, individual
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Figure 3 Experimental measurement of the PRC in CA3 hippocampal

neurons. (a) Diagram of a CA3 hippocampal neuron with patch recording

electrode at the soma and extracellular stimulation electrode among recurrent

fibers in the stratum oriens. Sinusoidal inhibitory conductance mimicking

hippocampal theta oscillation (5 Hz) was injected through the patch pipette

using dynamic clamp. An EPSP was evoked using extracellular stimulation.

(b) Average somatic EPSP recorded in response to extracellular stimulation

without oscillation (n ¼ 5). (c) Sample of current-clamp recordings showing
the phase response of a CA3 neuron (gray trace) to the stimulated EPSP

(arrows; times of stimulation) during 5 Hz oscillation (black trace). (d) Plot of

phase delay and advancement of the spike as a function of the phase of the

EPSP. ‘Zero’ phase was defined as the average phase at which spikes

occurred during 5 Hz oscillation without EPSP (vertical dotted lines in c).

The PRC (open circles) was subject to Gaussian smoothing (gray line).

Horizontal dotted lines show ± 2 s.d. of the average spike phase without

EPSP. (e) Smoothed PRCs (gray lines) and raw data points (filled black

circles) normalized for n ¼ 7 cells. Note that there are virtually no data

points in the second quadrant.
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CA3 pyramidal neurons demonstrate intrinsic dynamics that
support optimal retrieval of information by phase coding according
to our theory.

DISCUSSION

We report a normative theory of statistically sound recall in analog
associative memory networks. We have shown that the theory makes a
direct link between the rule governing spike timing–dependent synaptic
plasticity and the neurons’ PRCs, and we have qualitatively confirmed
the precepts of the theory by recording conformant PRCs from
hippocampal CA3 neurons.

Our technique treats analog autoassociative memory from a prob-
abilistic viewpoint32,33, deriving a general relationship between (i) the
nature and representational substrate of the memory traces and the
rules governing neural plasticity, and (ii) the dynamical behavior
during recall that would approximately solve a formally presented
task such as pattern completion or noise removal. Applied to the case of
memory traces represented as phases, and stored by an STDP rule
(derived from data from cultured hippocampal neurons34), the result-
ing dynamics specified a form of PRC. Not only were the general
characteristics of this PRC consistent with those in the CA3 data (for
instance, the existence of delays and advances), but also the more
detailed predictions were matched, such as the scaling of the PRC with
the input (in the dynamic clamp experiments) and even the form of the
delays and advances relative to the standard firing phase. It is not at all
trivial that the resulting PRC that was expected had a biophysically
reasonable form, let alone that it matched actual PRCs in CA3. Indeed,
in contrast to the type II–like PRCs we recorded here in hippocampal

CA3 pyramidal cells, classical integrate-and-fire dynamics produce
only phase advancement in response to excitatory inputs26, and even
neocortical pyramidal cells show phase response characteristics of Type
I membranes and thus lack a delay component in their PRCs40. It is also
not trivial that the network performed recall competently, as analog
autoassociative memory is hard15.

Our theoretical framework embodied a number of simplifying
assumptions that allowed for an analytical derivation of the optimal
recall dynamics but whose biological plausibility may seem to be
unclear. We explicitly tested the incorporation of storage noise, limited
connectivity and asymmetry in the STDP rule (Supplementary
Fig. 1), showing that none of these had an importantly deleterious
effect on performance. As one might expect from the framework, the
most marked sensitivity is to mismatch between storage and recall
(Supplementary Fig. 1).

One more holistic assumption was that, in line with the traditional
theory of autoassociative memories3,5, we treated memory encoding and
retrieval separately, as distinct modes of operation. Specifically, neural
activities during encoding were clamped to the memory patterns being
stored so that the intrinsic dynamics of the network did not contribute
to this process. Although, in its extreme form, this assumption is
certainly unrealistic, there is suggestive data that changing levels of
acetylcholine neuromodulation may result in the separation of memory
encoding and retrieval in the hippocampus and related structures by
selectively suppressing transmission and plasticity in afferent or internal
synaptic pathways during these two operational modes41.

Another assumption was to have addressed only the simplest form of
oscillatory memory in which all neurons fired once per cycle. This was a
marked abstraction of the hippocampus, whose pyramidal cells often
fire bursts of action potentials in vivo16,18. The induction of synaptic
plasticity is also most effective when bursts rather than single spikes are
used in the stimulation protocol23, and spike timing–dependent
plasticity has been shown to encompass multi-spike interactions42

and to be sensitive to the firing rate of pre- and postsynaptic cells43.
Thus, an extension to a joint rate- and phase-based code for informa-
tion is pressing44–46. We suggest that the choice of the number of spikes
fired in a cycle (including no spikes) could convey orthogonal informa-
tion, characterizing the certainty a neuron has about its phase or,
indeed, its relevance for the given pattern (M.L. and P.D., unpublished
data). Under this account, the consequences of firing potentially
multiple spikes per theta cycle for memory encoding are straightfor-
ward: some memories will be stored and therefore retrieved with
greater efficiency. Retrieval dynamics would also have to take into
account the extra information conveyed by instantaneous firing rates.
Preliminary experimental results (Supplementary Fig. 4) are compa-
tible with the conclusion from the extension of our theory that
interactions between bursting cells should be scaled versions of single
spike-based PRCs.

An intriguing suggestion evident in the single-case figures (Figs. 3c
and 4a) is that, after a stimulation, not only is the phase of the very next
spike altered but also the phases of a few successive spikes change27.
Depending on the assumptions postsynaptic neuronal mechanisms
might embody about a neuron’s presynaptic cousins, the theory can
predict various forms for these multistep PRCs; it would therefore be
interesting to characterize these more fully.

Finally, oscillations in one structure are only a small part of the
overall puzzle of memory. There is increasing evidence for the involve-
ment of multiple structures that undergo oscillations of potentially
different frequencies and intermittencies36 but are nevertheless tightly
and jointly regulated10,47,48. Perhaps a first step will be to generalize and
abstract away from single-neuron PRCs to a form of population PRC,
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recordings showing the response of a CA3 neuron (gray trace) to the EPSG

during 5 Hz oscillation (black trace). The vertical dashed line represents the

average phase at which spikes occurred during 5 Hz oscillation without

EPSG. (b) Plot of phase delay and advancement of spike as a function of the

phase of the EPSG (2 nS). The PRC (open circles) was subject to Gaussian

smoothing (gray line). Horizontal dotted lines show ± 2 s.d. of the average

spike phase without EPSG. (c) Smoothed PRCs produced by EPSGs of

different amplitude in the same cell; 0.5 nS (red), 1 nS (yellow), 1.5 nS

(green) and 2 nS (blue).
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indicating the overall effect of one oscillatory structure on another
to which it has moderately dense connections and with which
it is coordinated.

METHODS
Simulations. Networks of N ¼ 200 neurons were simulated (50 randomly

chosen cells are shown in Fig. 2a). Memories were stored by an additive

learning rule (equations (1) and (2)) that was a circular fit to experimental

STDP curves24, using a Gabor function: O(xi,xj) ¼ A exp (s cosDfij ), with Dfij

¼ (2p / Ty (xi – xj )) and Ty ¼ 125 ms. Best-fitting parameters determined by

minimizing the squared error between –62.5 and 62.5 ms were A ¼ 0.03 and

s ¼ 4 (Fig. 1b). The number of stored memories was M ¼ 10 (Fig. 2a,b, left

and center) or was varied between M ¼ 10 and M ¼ 500 (Fig. 2b, right). Firing

phases in memory patterns were drawn from a von Mises (circular Gaussian)

distribution with mx ¼ 0 mean and kx ¼ 0.5 concentration (the prior

distribution), resulting in a distribution of firing phases that matched those

recorded in vivo for hippocampal pyramidal cell populations49,50.

At retrieval, a randomly selected pattern from the list of stored patterns was

used as the recall cue corrupted with unbiased additive circular Gaussian noise

of k ¼ 10 concentration. Retrieval dynamics of the network was parameterized

accordingly to optimally match the form and parameters of the prior and the

noise distribution, as well as of the synaptic plasticity rule (Supplementary

Note), and involved a phase coupling function H(xi,xj) ¼ 2pwij A / Ty exp

(s cos Dfij ) � (cos Dfij – s sin2 Dfij ) (shown in Fig. 1c). Differential equations

were solved numerically by using an adaptable step-size method, and the states

of neurons were recorded every 5 ms (simulated time; Fig. 2a) or at the end of

the simulation after 20000 ms simulated time (Fig. 2b). For Figure 2b 10

networks with different lists of stored patterns were simulated, 10 retrieval

attempts were made in each network. Data points show results pooled over

networks and retrieval attempts.

Experiments. Somatic whole-cell patch-clamp recordings were made from CA3

pyramidal cells in hippocampal slices prepared from postnatal day 13–19

Wistar rats and maintained at 29–31 1C (for details of extracellular and

intracellular solutions, see Supplementary Methods online). Theta oscillation

was simulated by 5 Hz or 8 Hz oscillatory inhibitory conductance of 1–2 nS

peak amplitude using dynamic clamp. A positive tonic current was super-

imposed on the oscillatory input so that the membrane potential was

depolarized just enough to evoke a single action potential near the peak of

every cycle of the oscillation. EPSP was evoked via extracellular stimulation in

the presence of 1 mM gabazine (SR95531). EPSG of peak amplitude 0.5–4.5 nS

was injected using dynamic clamp at 20 different phases of the inhibitory

oscillation, starting at ‘zero’ phase. Each PRC data point is an average of ten

repetitions with the same stimulation phase. Data were acquired online and

analyzed with custom-made procedures in Igor Pro. In normalizing (Fig. 3e

and Supplementary Figs. 3 and 4), both smoothed PRC and raw data points

were divided by the peak advancement value of the smoothed PRC for each cell.

Note: Supplementary information is available on the Nature Neuroscience website.
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compression of recurring spike sequences in the hippocampus. J. Neurosci. 19,
9497–9507 (1999).

22. Louie, K. & Wilson, M.A. Temporally structured replay of awake hippocampal ensemble
activity during rapid eye movement sleep. Neuron 29, 145–156 (2001).

23. Paulsen, O. & Sejnowski, T.J. Natural patterns of activity and long-term synaptic
plasticity. Curr. Opin. Neurobiol. 10, 172–179 (2000).

24. Bi, G. & Poo, M.M. Synaptic modification by correlated activity: Hebb’s postulate
revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

25. Rinzel, J. & Ermentrout, B. Analysis of neural excitability and oscillations. inMethods in
Neuronal Modeling 2nd edn. (eds. Koch, C. & Segev, I.) 251–291 (MIT Press,
Cambridge, Massachusetts, 1998).

26. Brown, E., Moehlis, J. & Holmes, P. On the phase reduction and response dynamics of
neural oscillator populations. Neural Comput. 16, 673–715 (2004).

27. Gutkin, B.S., Ermentrout, G.B. & Reyes, A. Phase response curves determine the
responses of neurons to transient inputs. J. Neurophysiol. 94, 1623–1635 (2005).

28. Guevara, M.R., Glass, L. & Shrier, A. Phase locking, period-doubling bifurcations, and
irregular dynamics in periodically stimulated cardiac cells. Science 214, 1350–1353
(1981).

29. Ermentrout, B. & Kopell, N. Learning of phase lags in coupled neural oscillators. Neural
Comput. 6, 225–241 (1994).

30. Lampl, I. & Yarom, Y. Subthreshold oscillations of the membrane potential: a functional
synchronizing and timing device. J. Neurophysiol. 70, 2181–2186 (1993).

31. Ermentrout, G.B. & Kopell, N. Fine structure of neural spiking and synchronization in the
presence of conduction delays. Proc. Natl. Acad. Sci. USA 95, 1259–1264 (1998).

32. MacKay, D.J.C. Maximum entropy connections: neural networks. in Maximum Entropy
and Bayesian Methods, Laramie, 1990 (eds. Grandy, Jr, W.T. & Schick, L.H.) 237–244
(Kluwer, Dordrecht, The Netherlands, 1991).

33. Sommer, F.T. & Dayan, P. Bayesian retrieval in associative memories with storage errors.
IEEE Trans. Neural Netw. 9, 705–713 (1998).

34. Bi, G.Q. & Poo, M.M. Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci.
18, 10464–10472 (1998).
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