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Abstract. ‘Invariant regions’ are self-adaptive image patches that automatically deform with changing viewpoint

as to keep on covering identical physical parts of a scene. Such regions can be extracted directly from a single image.

They are then described by a set of invariant features, which makes it relatively easy to match them between views,

even under wide baseline conditions. In this contribution, two methods to extract invariant regions are presented.

The first one starts from corners and uses the nearby edges, while the second one is purely intensity-based. As

a matter of fact, the goal is to build an opportunistic system that exploits several types of invariant regions as it

sees fit. This yields more correspondences and a system that can deal with a wider range of images. To increase

the robustness of the system, two semi-local constraints on combinations of region correspondences are derived

(one geometric, the other photometric). They allow to test the consistency of correspondences and hence to reject

falsely matched regions. Experiments on images of real-world scenes taken from substantially different viewpoints

demonstrate the feasibility of the approach.

Keywords: wide baseline stereo, matching, invariance, local features, correspondence search, epipolar geometry,

semi-local constraints

1. Introduction

Wide baseline stereo, i.e. stereo with the two cameras

far apart or with a large vergence angle, has a number of

important advantages: greater precision, wider applica-

bility, and less effort by the user as fewer images can

suffice. There also are important disadvantages though,

like increased levels of occlusion and a correspondence

search that is far more difficult. Especially the latter

problem has hampered the use of wide baseline stereo

setups.

In this paper, we propose a method to find a rela-

tively sparse set of feature correspondences between

wide baseline images. These initial matches yield the

epipolar geometry and thus greatly facilitate the search

for further correspondences. The initial features need

not only be robust against the geometric distortions

caused by a large change in viewpoint, but also against

serious changes in color and intensity that may exist

between views. Moreover, features should be quite lo-

cal, as the risk of parts getting occluded in the other

view increases with feature size.

As our goal is not dense correspondences but a set

of seed matches, we can afford to restrict features to

areas with characteristics that are benign to the task.

One is that the local surface is almost planar. This sim-

plifies the geometric distortions that are to be expected

between the views. A second assumption is that these

almost planar parts contain anchor points that remain

stable under changing viewpoint. In particular, we will

use corners as well as intensity extrema. It is not cru-

cial that all such points can be retrieved robustly from

different views—it suffices if this is the case for a suf-

ficient number. To these anchor points, small patches

will be attached as our features.

The principal contribution of this work is the con-

struction of the patches as invariant regions: patches

attached to the anchor points that have self-adaptive
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Figure 1. (a) Two images of the same object. (b) Two parallelogram-shaped patches as they are generated by the system: when the viewpoint

changes the shapes of the patches are transformed automatically such that they cover the same physical part of the scene. Each of these local

image patches has been extracted based on a single image.

shapes to cover the same, physical part of the scene in-

dependent of viewpoint (under the assumption of local

planarity). With changing viewpoint, these invariant re-

gions change their shape in the image. It is thanks to

the viewpoint-dependency of their shape in the image

that the regions’ scene content can remain invariant. As

an example, Fig. 1(b) shows two invariant regions for

each of the two views shown in Fig. 1(a). The invariant
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regions do indeed represent the same part of the box.

The crux of the matter is that they were extracted from

each of the views separately, i.e. without any informa-

tion about the other view. This is important from both

a computational and practical point of view, as no pair-

wise comparisons between regions are necessary for

their extraction, and one is not limited to a predefined

set of viewpoints.

Scenes can vary widely. In order to make sure that a

sufficient number of invariant regions can be extracted,

several types have been implemented. It is our intention

to build an ‘opportunistic’ system that exploits several

types of image structure, simply depending on what

is on offer. This should maximize the applicability of

the method and the number of invariant regions found.

Here we propose a construction method based on cor-

ners and one based on intensity extrema. Others are

currently being considered.

To achieve efficient matching of the invariant re-

gions, their color pattern is characterized by a feature

vector of moment invariants. They are invariant un-

der both geometric and photometric changes. Finding

corresponding invariant regions then boils down to the

comparison of these vectors. Additional tests on the

mutual consistency of matches are performed to in-

crease robustness.

Both the regions and their feature vectors are in-

variant under geometric changes, which are modeled

by affine transformations as the regions are small,

i.e.

[

x ′

y′

]

=

[

a b

c d

] [

x

y

]

+

[

e

f

]

They are also both invariant under photometric

changes, modeled by linear transformations with dif-

ferent scalings and offsets for each of the three color

bands.
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Hence, correspondences can be found under a wide

range of viewing conditions. Note that, contrary to

the region description, the region extraction does not

explicitly rely on color information: regions are ex-

tracted based on a single color band. Hence the same

methods can equally well be applied to greyscale

images.

The remainder of the paper is organized as follows.

First, an overview of related work is given in Section 2.

Section 3 describes the selection of anchor points.

The next two sections discuss two different methods

for extracting invariant regions: first a geometry-based

method (Section 4) followed by an intensity-based

method (Section 5). Section 6 describes how the ac-

tual correspondence search, based on affine moment

invariants computed over these regions is carried out.

Consistency checks that can be used to reject false

matches are proposed in Section 7. Section 8 discusses

some experimental results. Section 9 concludes the

paper.

2. Related Work

An important source of inspiration for our approach

has been the work of Schmid et al. (1997). They iden-

tify special ‘points of interest’ (in casu corners) and

extract 2D translation and 2D rotation invariant fea-

tures from the intensity pattern in fixed circular regions

around these points (in casu the local jet as defined by

Koenderink and Van Doorn (1987), based on Gaussian

derivatives of image intensity). Invariance under scal-

ing is handled by including circular regions of several

sizes. Since the level of invariance in their method is

limited, it is not really suited for wide baseline stereo

applications. Nevertheless, they obtained remarkable

results in the context of short baseline stereo, object

recognition and database retrieval—for later versions

of their system even in spite of very large scale changes

(Dufournaud et al., 2000). Similar results have been

reported for color images by Montesinos et al. (2000).

Some extensions towards affine invariant regions have

been reported as well. Lowe (1999) has extended these

ideas to real scale-invariance, using circular regions

that maximize the output of a difference of gaussian

filters in scale space, while Hall et al. (1999) not only

applied automatic scale selection (based on Lindeberg

(1998)), but also retrieved the orientation of the circular

region in an unambiguous way.

Wide Baseline Techniques

To cope with wider baselines, the affine geometric de-

formations in the image should fully be taken into

account during the matching process. One approach

is to deform a patch in the first image in an iter-

ative way, until it more or less fits a patch in the
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second image (Gruen, 1985; Super and Klarquist,

1997). However, the search that is involved reduces the

practicality of this approach. In contrast, our method is

based on the extraction and matching of invariant re-

gions, and hence works on the two images separately,

without searching over the entire image or applying

combinatorics.

This is akin to the approach of Pritchett and

Zisserman (1998) who start their wide baseline stereo

algorithm by extracting quadrangles present in the

image and match these based on normalized cross-

correlation to find local homographies, which are then

exploited in a search for additional correspondences.

However, they use shapes that are explicitly present in

the image, while ours are determined locally based on

the color patterns around anchor points, so we are less

dependent on the presence of specific structures in the

scene. Hence, the applicability of our method is wider.

Tell and Carlsson (2000) also proposed a wide base-

line correspondence method based on affine invariance.

They extract an affine invariant Fourier description of

the intensity profile along lines connecting two corner

points. The non-local character of their method makes

it more robust, but at the same time restricts its use to

unoccluded planar objects, which limits the applicabil-

ity of their method.

In summary, our system differs from other wide

baseline stereo methods in that we do not apply a search

between images but process each image and each local

feature individually (Gruen, 1985; Super and Klarquist,

1997; Schaffalitzky and Zisserman, 2001), in that we

fully take into account the affine deformations caused

by the change in viewpoint (Lowe, 1999; Montesinos

et al., 2000; Schmid and Mohr, 1997; Dufournaud et al.,

2000) and in that we can deal with general 3D ob-

jects without assuming specific structures to be present

in the image (Pritchett and Zisserman, 1998; Tell and

Carlsson, 2000).

Affine Invariant Regions

Other approaches to extracting affine invariant regions

described in literature are mainly situated in the context

of texture analysis. Ballester and Gonzales (1998) have

developed a method to find affine invariant regions in

textured images. Implicitly, they use the fact that the

second moment matrix remains more or less constant

when varying the region parameters, which may be a

reasonable assumption for textures but clearly does not

hold for general image patches.

Lindeberg and Gȧrding (1997) on the other hand

have developed a method to find blob-like regions using

an iterative scheme, in the context of shape from tex-

ture. In the case of weak isotropy, the regions found by

their algorithm correspond to rotationally symmetric

smoothing and rotationally symmetric window func-

tions in the tangent plane to the surface. However, in

general, their method does not necessarily converge,

as there are, in most cases, at least two additional

attraction points.

Similar ideas have recently been used for wide base-

line stereo by Schaffalitzky and Zisserman (2001).

First, they roughly match textured regions in the im-

age. Then, they use texture information (the second

moment matrix) to lift some degrees of freedom, fol-

lowed by an exhaustive search over all Harris corner

points within that specific texture and over all pos-

sible 2D rotations to find point correspondences un-

der wide baseline conditions. By exploiting texture

information, they avoid having to delineate invariant

regions, but at the same time this limits the applica-

bility of their method to images containing stationary

textures.

Baumberg (2000) proposed a wide baseline system

that is based on a simplified version of the regions

of Lindeberg and Gȧrding (1997). However, the re-

gions Baumberg uses are only invariant under rotation,

stretch and skew, while scale changes are dealt with

by applying a scale space approach. The error on the

scale also influences the other components of the trans-

formation, such that the resulting invariant regions are

probably not as accurate as ours.

Nevertheless, we believe that it could be beneficial

to include the above region extraction methods into

our system to further improve the performance of the

system (i.e. more correspondences and a wider range

of applicability).

3. Selection of Anchor Points

The first step in the extraction of affine invariant re-

gions consists of selecting ‘anchor points’, that serve

as seeds for the subsequent region extraction. This

allows to reduce the complexity of the problem and

the needed computation time, since the attention can

be focussed on regions around these points instead

of examining every single pixel in the image. At

the same time, extra assumptions can often be made

concerning the regions based on the type of anchor

point.
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Good anchor points are points that result in stable in-

variant regions, are repeatable and easy-to-detect. With

repeatability, we mean that there is a high probability

that the same point will be found in another view as

well—or at least, a point that would result in the same

region.

Harris corner points (Harris and Stephens, 1983) are

good candidates. Apart from the necessary properties

of good anchor points mentioned above, they typically

contain a large amount of information (Schmid and

Mohr, 1998), resulting in a high distinctive power, and

they are well localized, i.e. the position of the corner

point is accurately defined (even up to sub-pixel accu-

racy) (Shi and Tomasi, 1994).

Instead of using corners, local extrema of image in-

tensity can serve as anchor points as well. To this end,

we first apply some smoothing to the image to reduce

the effect of noise, causing too many unstable local

extrema. Then, the local extrema are extracted with

a non-maximum suppression algorithm. These points

cannot be localized as accurately as corner points, since

the local extrema in intensity are often rather smooth.

However, they can withstand any monotonic intensity

transformation and they are less likely to lie close to

the border of an object resulting in a non-planar region.

This last property is a major drawback when working

with corner points.

Of course, which kind of anchor points perform best

also depends on the method used for the region extrac-

tion, and how good this method deals with the short-

comings of the anchor points. For instance, for the cor-

ner points, the high chance of a non-planar region can

be alleviated by constructing a region that is not cen-

tered around the corner point. Similarly, regions start-

ing from local intensity extrema should not depend too

much on the exact position of the extremum, to over-

come the inaccurate localization of these points.

Other types of anchor points could be used as well.

For instance, Lowe (1999) uses extrema of a difference

of Gaussians filter.

4. Geometry-Based Method

The first method for affine invariant region extraction

starts from Harris corner points (Harris and Stephens,

1983) and the edges that can often be found close to

such a point (extracted using the Canny edge detector

(Canny, 1986)). As this method so strongly relies on

the presence and accurate detection of these geometric

entities, we coined it the geometry-based method. Two

Figure 2. Based on the edges close to the corner point, an affine

invariant region can be constructed.

different cases are considered: one method is developed

for curved edges while a slightly different method is

applied in case of straight edges.

4.1. Case 1: Curved Edges

Let p = (x p, yp)T be a Harris corner point on an edge,

as in Fig. 2. Two points p1 and p2 move away from the

corner in both directions along the edge. Their relative

speed is coupled through the equality of relative affine

invariant parameters l1 and l2:

li =

∫

abs
(∣

∣pi
(1)(si ) p − pi(si )

∣

∣

)

dsi i = 1, 2

with si an arbitrary curve parameter, pi
(1)(si ) the first

derivative of pi(si ) with respect to si , abs() the absolute

value and |..| the determinant. From now on, we simply

use l when referring to l1 = l2. At each position, the two

points p1(l) and p2(l) together with the corner p define

a region � for the point p as a function of l: the paral-

lelogram spanned by the vectors p1(l)−p and p2(l)−p

(see Fig. 2). This gives us a one dimensional family of

parallelogram-shaped regions. The points stop at posi-

tions where some photometric quantities of the texture

covered by the parallelogram go through an extremum.

We typically generate regions for a few extrema, which

introduces a kind of scale concept as now regions of

different sizes coexist for a single corner. Since it is

not guaranteed that a single function will reach an ex-

tremum over the limited l-interval we are looking at,

more than one function is tested. Taking extrema of

several functions into account, we get a better guaran-

tee that a high number of corners will indeed generate

some regions.

Thanks to a good choice of the functions, the whole

process can be made invariant under the aforemen-

tioned geometric and photometric changes. Examples
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Figure 3. Physical interpretation of the functions f2(�) (left) and f3(�) (right).

of such functions are
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with Mn
pq the nth order, (p+q)th degree moment com-

puted over the region �(l), pg the center of gravity

of the region, weighted with intensity I (x, y) (one of

the three color bands R, G or B), and q the corner of

the parallelogram opposite to the corner point p (see

Fig. 2).

The first function, f1(�), represents the average in-

tensity over the region �(l). It is not in itself invari-

ant under the considered photometric transformations,

but reaches its extrema in an invariant way. We do not

use this function in our implementation though, since

the minima of f2(�) and f3(�) tend to be better lo-

calized than the extrema of f1(�), resulting in more

stable regions. Nevertheless f1(�) could be the better

choice if the application needs high speed. f2(�) and

f3(�) consist of two components each: first, a ratio

of two areas, one of which depends on the center of

gravity weighted with intensity and hence on the re-

gion pattern, and second, a factor that compensates for

the dependence of the first component to offsets in the

image intensity.1 Figure 3 illustrates the geometrical

interpretation of the first component for f2(�) (left)

and f3(�) (right) respectively. It is twice the ratio of

the marked area, divided by the total area of the re-

gion. By looking for local minima of these functions

we favor more balanced regions, i.e. regions for which

the center of gravity lies on or close to one of the di-

agonals of the parallelogram. In contrast to f1(�), the

functions f2(�) and f3(�) are invariant. Nevertheless,

we still select the regions where the function reaches a

minimum instead of selecting regions where the func-

tion reaches a specific value, hence avoiding the in-

troduction of another (rather arbitrary) parameter. For

a proof of the geometric and photometric invariance

of the local minima of these functions, we refer to

Appendix A.

Figure 4 shows two invariant parallelogram-shaped

regions found for corresponding points in two widely

separated views of the same object. Although there is

a large image distortion between the two images (ge-

ometrically as well as photometrically), the affine in-

variant regions—which have been found for each im-

age independently—cover similar physical parts of the

scene. For clarity, the curved edges on which the ex-

traction was based are added as well.

Note that the affine invariant regions found are not

centered around the anchor point. A centered alterna-

tive is the parallelogram that has the non-centered par-

allelogram as one quadrant. Nevertheless, we prefer the

non-centered regions, as—and experiments have borne

that out—restricting the region to one quadrant (delin-

eated by the edges) makes the assumption of planarity

much more realistic, due to the fact that the anchor

points we start from are corners, often lying close to a

depth discontinuity (see Section 3).
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Figure 4. Affine invariant regions based on corners and curved edges.

4.2. Case 2: Straight Edges

In the case of straight edges, the method described

above cannot be applied, since l = 0 along the entire

edge. However, since straight edges occur quite often,

we cannot simply neglect this case.

A straightforward extension of the previous tech-

nique would then be to search for local extrema in a

2D search-space spanned by two arbitrary parameters

s1 and s2 for the two edges, instead of a 1D search-

space over l. However, the functions f2(�) and f3(�)

we used for the curved-edges case, do not show clear,

well-defined extrema in the 2D case. Rather, we have

some shallow valleys of low values (corresponding to

cases where the center of gravity lies on or close to one

of the diagonals). Instead of taking the inaccurate local

extrema of one function, we combine the two functions

and take the intersections of the two valleys, as shown

in Fig. 5. The special case where the two valleys (al-

most) coincide must be detected and rejected, since the

intersection is not accurate in that case. The regions

so obtained proved to be much more stable than those

based on a 2D local extremum.

Figure 6 shows some affine invariant regions ex-

tracted for the same images as in Fig. 4, but

now using the method designed for straight edges.
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Figure 5. For the straight edges case, the intersection of the “valleys” of two different functions is used instead of a local extremum.

Figure 6. Affine invariant regions based on corners and straight edges.
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Again, they clearly cover identical parts of the

object.

5. Intensity-Based Method

A drawback of the method described in the previous

section is that the edges it relies on are often a source

of errors. Edges that were found in one image may be

undetected, interrupted or connected in a different way

in the second image. This section presents an alternative

method for extracting invariant regions, that is directly

based on the analysis of image intensity, without an

intermediate step involving the extraction of features

such as edges or corners. It turns out to complement

the previous method very well, in that invariant regions

are typically found at different locations in the image.

Instead of starting from corner points, this method

uses local extrema in intensity as anchor points (cfr.

Section 3). Given such a local extremum, the intensity

function along rays emanating from the extremum is

studied, as shown in Fig. 7. The following function is

evaluated along each ray:

f I (t) =
abs(I (t) − I0)

max

(

∫ t

0
abs(I (t) − I0)dt

t
, d

)

with t the Euclidean arclength along the ray, I (t) the

intensity at position t , I0 the intensity extremum and

d a small number which has been added to prevent

a division by zero. The point for which this function

reaches an extremum is invariant under the aforemen-

tioned affine geometric and linear photometric trans-

formations (given the ray). Typically, a maximum is

Figure 7. The intensity along ‘rays’ emanating from a local ex-

tremum are studied. The point on each ray for which a function f I (t)

reaches a maximum is selected. Linking these points together yields

an affine invariant region, to which an ellipse is fitted using moments.

reached at positions where the intensity suddenly in-

creases or decreases dramatically compared to the in-

tensity changes encountered on the line up to that

point, for instance at the border of a more or less

homogeneous area. f I (t) is in itself already invari-

ant. Nevertheless, we again select the points where

this function reaches an extremum for reasons of

robustness.

Note that in theory, leaving out the denominator in

the expression for f I (t) would yield a simpler function

which still has invariant positions for its local extrema.

In practice, however, this simpler function does not

give as good results since its local extrema are more

shallow, resulting in inaccurate positions along the rays

and hence inaccurate regions. With the denominator

added, on the other hand, the local extrema are in most

cases more accurately localized.

Next, all points corresponding to maxima of f I (t)

along rays originating from the same local extremum

are linked to enclose an (affine invariant) region (see

again Fig. 7). This often irregularly-shaped region is re-

placed by an ellipse having the same shape moments up

to the second order. This ellipse-fitting is again affine

invariant. Finally, we double the size of the ellipses

found. This leads to more distinctive regions, due to a

more diversified texture pattern within the region and

hence facilitates the matching process, at the cost of a

higher risk of non-planarity due to the less local char-

acter of the regions.

Problems may arise when more than one local ex-

tremum can be found along the ray. In such case, in-

stead of choosing the global extremum, we select an

extremum by imposing a continuity constraint: in case

of multiple extrema, we select the extremum closest to

the extrema found along the neighbouring rays.

Figure 8 shows some intensity-based regions

(ellipses) and the linked points on which the region

extraction is based.

Note that the resulting elliptical regions are not cen-

tered around the original anchor point (the intensity ex-

tremum). In fact, the whole procedure is pretty robust to

the inaccurate localization of this point. In most cases

(i.e. if the area enclosed by the linked points is more

or less convex), small changes in its position have only

a limited effect on the resulting region if the intensity

profile is indeed showing a shallow extremum. This

is illustrated in Fig. 9, where we repeated the region

extraction starting from different anchor points lying

close to the intensity extremum and having similar in-

tensity values. Although the elliptical regions found are
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Figure 8. Affine invariant regions found with the intensity-based region extraction method and the linked points used to extract

them.

not identical, they are similar enough to be matched. To

highlight the source of the deviations, we also added the

linked points found along the rays, used in the region

construction.

6. Finding Correspondences

Once local, invariant regions have been extracted, find-

ing correspondences between two views becomes rel-

atively easy. This is performed by means of a near-

est neighbour classification scheme, based on feature

vectors of invariants computed over the affine invari-

ant regions. As in the region extraction step, we con-

sider invariance both under affine geometric changes

and linear photometric changes, with different offsets

and different scale factors for each of the three color

bands.

6.1. Normalization

Although it is very well possible to construct a feature

vector that is in itself invariant to all the geometric and
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Figure 9. Robustness of the region extraction to the inaccurate

localization of the intensity extremum.

photometric transformations we consider (e.g. Mindru

et al., 1999), our experiments show that better results

are obtained if one first compensates for (part of) the

deformations through an extra normalization step, ex-

ploiting extra knowledge about the region.

For the geometry-based case, we first transform the

parallelogram-shaped region to a square reference re-

gion of fixed size. Since we know a specific corner of

the parallelogram (from the original anchor point) and

since it is reasonable to assume that the clockwise or-

der of the corners is preserved (i.e. the image is not

being mirrored), the entire affine deformation can be

compensated for in this way.

For the intensity-based case, the situation is slightly

more complex. We can transform the elliptical region

to a circular reference region of fixed size, but (again

assuming the image is not being mirrored) this still

leaves one degree of freedom to be determined (cor-

responding to a free rotation of the circle around its

center). This last degree of freedom cannot be derived

from purely geometric information gathered during the

region extraction. Instead, we determine it based on a

photometric invariant version of the axes of inertia. The

major and minor axes of inertia are extracted as the lines

passing through the center of the circular region with

orientations θmax, θmin defined by the solutions of:

tan2(θ ) +
m20 − m02

m11

tan θ − 1 = 0

with m pq the p + qth order, first degree moment (see

Section 4.1) centered on the region’s geometric cen-

ter. This equation differs from the usual definition of

the axes of inertia by the use of these moments in-

stead of moments centered on the center of gravity

weighted with image intensity. This makes them in-

variant to linear intensity changes (including offsets).

Based on these axes of inertia, one can apply an ad-

ditional rotation, that brings the major axis of inertia

into a horizontal position, hence fixing the last degree

of freedom.

Instead of computing the axes of inertia to com-

pensate for the last degree of freedom, one could also

extract features that are invariant under rotation. This

would probably give comparable results. However, re-

trieving the complete affine deformation not only al-

lows to treat intensity-based and geometry-based re-

gions in the same way but also allows to further com-

pare the content of two matched regions in a pixelwise

manner, based on normalized cross-correlation, inde-

pendent of the geometric distortions (see Section 6.3).

Also the illumination variations can be compensated

for in an extra normalization step. This is achieved by

replacing each intensity value I (i.e. R, G or B) by

I ′ = aI +b with a and b such that the average intensity

is 128 and with a spread on the intensities of 50.

6.2. Region Description

Each region is then characterized by a feature vector

of moment invariants. The moments we use are Gener-

alized Color Moments, which have been introduced in

Mindru et al. (1999) to better exploit the multi-spectral

nature of the data. They contain powers of the image

coordinates and of the intensities of the different color

channels.

Mabc
pq =

∫∫

�

x p yq [R(x, y)]a[G(x, y)]b[B(x, y)]c dxdy

with order p + q and degree a + b + c. In fact, they

implicitly characterize the shape, the intensity and the

color distribution of the region pattern in a uniform

manner.

More precisely, we use 18 moment invariants, sum-

marized in Table 1. These are invariant functions of mo-

ments up to second order and first degree (i.e. moments

that use up to first order powers of intensities (R, G, B)

and second order powers of (x, y) coordinates). Since

we already normalized the regions with respect to view-

point and illumination variations, any measurement can

actually be used as an invariant measure, as all vari-

ations have been compensated for already. The rea-

son why we still stick to moments is that these are

more robust to noise. inv[1] to inv[3] are related to the
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Table 1. Moment invariants used for comparing the patterns

within regions after normalization against geometric and photomet-

ric deformations.

inv[1] = M110
00 /M000

00 inv[2] = M011
00 /M000

00 inv[3] = M101
00 /M000

00

inv[4] = M100
10 /M100

00 inv[5] = M010
10 /M010

00 inv[6] = M001
10 /M001

00

inv[7] = M100
01 /M100

00 inv[8] = M010
01 /M010

00 inv[9] = M001
01 /M001

00

inv[10] = M100
11 /M100

00 inv[11] = M010
11 /M010

00 inv[12] = M001
11 /M001

00

inv[13] = M100
20 /M100

00 inv[14] = M010
20 /M010

00 inv[15] = M001
20 /M001

00

inv[16] = M100
02 /M100

00 inv[17] = M010
02 /M010

00 inv[18] = M001
02 /M001

00

correlation between two color-bands. inv[4] to inv[6]

and inv[7] to inv[9] are the x- and y-coordinates re-

spectively of the centers of gravity weighted with one

color-band, while inv[10] to inv[18] are combinations

of higher order moments.

As an additional invariant, we use the region type.

This value refers to the method that has been used for

the region extraction. Only if the type of two regions

corresponds, can they be matched.

6.3. Region Matching

Each region in the first image is then matched to the

region in the second image for which the Mahalanobis-

distance between the corresponding feature vectors is

minimal and below a predefined threshold d . Then, all

regions of the second image are matched in a simi-

lar way to the regions extracted from the first image.

Only a mutual match is accepted as a real correspon-

dence between the two views. The covariance matrix

needed to compute the Mahalanobis-distance has been

estimated by tracking representative regions over a set

of images. Due to the different nature of the different

region types, better results are obtained when different

covariance matrices are computed for each region type

separately. The comparison of feature vectors can be

done in an efficient way using indexing-techniques. At

this moment, only indexing based on the region type

has been implemented.

Once corresponding regions have been found, the

normalized cross-correlation between them is com-

puted as a final check before accepting the region cor-

respondence. This cross-correlation check is not per-

formed on the raw image data, but after normaliza-

tion of the two regions to a fixed-size square or cir-

cular reference region (depending on the region type),

as described in Section 6.1. In this way, the effect of

the geometric deformations on the normalized cross-

correlation is annihilated.

7. Robustness—Rejecting Falsely

Matched Regions

Due to the wide range of geometric and photometric

transformations allowed and the local character of the

regions, false correspondences are inevitable. These

can be caused by symmetries in the image, or sim-

ply because the local region’s distinctive power is in-

sufficient. Semi-local or global constraints offer a way

out: by checking the consistency between combinations

of local correspondences (assuming a rigid motion),

false correspondences can be identified and rejected.

The best known constraint is checking for a consistent

epipolar geometry in a robust way, e.g. using RANSAC

(Fischler and Bolles, 1981), and rejecting all correspon-

dences not conform with the epipolar geometry found.

Although this method works fine in many applications,

our experiments have shown that it may have difficul-

ties in a typical wide baseline stereo setup, where false

matches abound and may even outnumber the good

ones while the total number of matches is rather low.

In that case, many of the randomly selected seven-point

samples contain outliers, resulting in large computation

times (each time rejecting the sample and trying out a

new combination), or even erroneous results (a sample

containing outliers coincidentally yielding a reason-

able amount of matches). The latter case happens more

often than expected, since matches are in general not

randomly spread over the image, but tend to clutter on

linear or planar structures in the scene.

Here, two other semi-local constraints are proposed

that may be used to reject outliers. Both work on a com-

bination of two region correspondences only, hence the

amount of combinatorics needed is limited. The first

one tests the geometric consistency, while the second

one is a photometric constraint. Checking these con-

straints first before testing the epipolar geometry with

RANSAC can considerably improve the results under the

hard conditions of wide baseline stereo. This is akin to

the work of Carlsson (2000), who has recently proposed

a view compatibility constraint for five points in two

views based on a scaled orthographic camera model.

7.1. A Geometric Constraint

Each match between two affine invariant regions de-

fines an affine transformation, matching the region

in one image on the corresponding region in the

second image. Such an affine transformation is in

fact an approximation of the homography linking the

projections of all points lying in the same plane.
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Figure 10. Viewpoint invariance of the region extraction and matching: number of correct, symmetric and false matches found as a function

of the rotation angle with respect to the 0 degrees reference view.

Sinclair et al. (1995) proposed a method to test

whether two rigid plane motions are compatible based

on their homographies H1 and H2. Combining them as

H−1
1 H2 yields a planar homology, whose eigenanaly-

sis reveals one fixed point (the epipole) and one line of

fixed points (the common line of the two planes). They

project this common line to the other image using H1,

and once again using H2. If the two planes are indeed

in rigid motion, the two resulting lines in the second

image should coincide, which can easily be checked.

The geometric constraint we use here is a simple al-

gebraic distance. As it only requires the evaluation of

the determinant of a 3×3 matrix, it can be applied quite

fast. This makes it well suited for applications like ours,

where many consistency checks are performed on dif-

ferent combinations of planes (i.e. matches). To check

whether two correspondences found are geometrically

consistent with one another, it suffices to check whether

det







a23 − b23 b13 − a13 a13b23 − b13a23

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23







≤ δg

with δg a predefined threshold, A = [ai j ] and B = [bi j ]

the affine transformations mapping the region in the

first image to the region in the second image, for the

first and second match respectively. For the derivation

of this semi-local constraint, we refer to Appendix B.
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Figure 11. Scale invariance of the region extraction and matching: number of correct, symmetric and false matches found as a function of the

scalefactor with respect to the reference image.

7.2. A Photometric Constraint

Apart from geometric constraints, photometric con-

straints can be derived as well. Although it is not nec-

essarily true that the illumination conditions are con-

stant over the entire image (due to shadows, multiple

light sources, etc.), it is reasonable to assume that at

least some parts of the images have similar illumina-

tion conditions.

First, we compute for each region correspondence

the offsets and scalefactors of the photometric trans-

formation using moments. Then, given a pair of

region corespondences, we check for their photo-

metric consistency by comparing their photometric

transformations. For two region correspondences to

be consistent, only an overall scale factor is allowed,

to compensate for the different orientations of the

regions.
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Figure 12. Illumination invariance of the region extraction and matching: number of correct and symmetric matches found between the images

shown along the horizontal axis and the reference image shown on the right.

7.3. Rejecting False Matches

Suppose we have N correspondences, each linking a

different local region in image I to a similar region

in image I ′ by N different transformations. For each

combination of two such correspondences, the above

consistency constraints can be checked. A specific re-

gion correspondence is considered incorrect if it is con-

sistent with less than n other correspondences (with n

typically 8 for the geometric constraint and 4 for the

photometric constraint). Hence each good correspon-

dence should have at least n other consistent corre-

spondences. This procedure may have to be repeated

a number of times, since rejecting a correspondence

may cause other correspondences to have their num-

ber of consistent correspondences decreased below the

threshold as well.

After having rejected most false matches among the

region correspondences using the geometric and photo-

metric constraints described above, we apply RANSAC

(Fischler and Bolles, 1981) (a robust method based on

random sampling) to find a consistent epipolar geom-

etry and to reject the remaining false correspondences.

Since the number of false matches has already seri-

ously been reduced, this process usually stops after a

limited number of samples. One must note though that

the computation of epipolar geometry is very sensitive

to small misallignments in the data. The region matches

we have found so far give in most cases only one sta-

ble point correspondence (e.g. the harris corner point

in case of the geometry-based method). In theory, two

more linearly independent point correspondences can

be extracted from the invariant region. However, these

additional point correspondences are insufficiently sta-

ble for the epipolar geometry computation, mainly due

to deviations from our model, such as the object sur-

face not being perfectly planar. This problem can be

overcome by mapping one image onto the other us-

ing the affine transformation, and looking for more

accurate point correspondences within the matched

regions using small baseline matching techniques.

RANSAC is then applied to the resulting set of point

correspondences.

8. Experimental Results

8.1. Viewpoint Invariance

To quantitatively check the viewpoint invariance of our

method, we took images of an object starting from head

on and gradually increasing the viewing angle in steps

of 10 degrees. All images were taken with our Sony
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Figure 13. Example 1: Final region correspondences (top) and epipolar geometry (bottom).
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digital camera, with a resolution of 768 × 576 pixels.

The results of this experiment are shown in Fig. 10.

For each image, the affine invariant regions were

extracted and matched to the regions found in the 0

degrees reference image. Next, the regions were fil-

Figure 14. Example 2: Final region correspondences (top) and epipolar geometry (bottom).

tered using the semi-local geometric and photometric

constraints. Finally, we applied the epipolar test using

RANSAC to automatically select the good matches, and

verified these matches visually, subdividing them into

three different categories: correct, symmetric and false.
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Figure 15. Example 3: Final region correspondences (top) and epipolar geometry (bottom).

With symmetric matches, we refer to those matches

that do not link physically identical points, but points

that can not be distinguished on a local scale due to a

symmetry in the image. For instance, the text on the

drink can used in this experiment contains twice the

letter ‘M’. Moreover, these letters are exactly below one

another, so they lie more or less on the same epipolar

line due to the chosen camera movement. As a result,

there is no way for the system to distinguish between

the regions found on these two letters.

From Fig. 10, one can see that the system can deal

with changes in viewpoint up to 50 or 60 degrees. Only

correct and symmetric matches were left. For larger

angles, the geometric consistency test could no longer

be applied, as the number of matches was too low (re-

member that we need at least n = 8 consistent matches

to classify them as geometrically ‘correct’). The hori-

zontal line added to the figure indicates the minimum

number of matches needed for this geometric filter-

ing stage. It is mainly the change in scale due to the

foreshortening of the object that causes problems, in

combination with more and more specular reflection.

8.2. Invariance to Scale Changes

As scale changes seem to be the weakest point in

the viewpoint invariance of the regions, we performed

some extra experiments to specifically test for the in-

variance to scale changes. For the same test object,

images with different scales were taken by zooming

in and out with our digital camera. As can be seen

from Fig. 11, the number of matches found decreases

with increasing scale change. Nevertheless, one can

conclude that the extraction and matching of affine
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Figure 16. Example 4: Final region correspondences (top) and epipolar geometry (bottom).

invariant regions is able to withstand scalefactors rang-

ing from 2/3 to 3/2. If larger scale changes are to be

expected, a scale space approach should be adopted.

8.3. Illumination Invariance

Since changes in the illumination are harder to quantify

than changes in scale or viewpoint, we decided to use

the images provided by Funt et al. (1998) to test the

illumination invariance of our system, as they provide

very detailed information on the different illuminants

used. Using these images, which are readily available

through ftp,2 allows for easy comparison of our re-

sults with other systems. Figure 12 shows the result.

Each of the images shown below the horizontal axis

was compared with the reference image taken under

halogen illumination shown to the right. The left part

of each image shows the white to black row of the Mac-

beth Color Checker, highlighting the large difference in

illumination. Most of the ‘symmetric’ matches found

were actually matches between these reference squares.

For all images, plenty of correspondences were found,

clearly showing the robustness of our region extraction

and matching to changing illumination conditions.

8.4. Wide Baseline Stereo Examples

Figures 13–17 show some views of scenes taken

from substantially different viewpoints. Note the large

changes in scale in some parts of the images (e.g. Ex-

ample 3), the serious occlusions (e.g. Example 4) and

the extreme foreshortening (e.g. Example 5). Never-

theless, in all cases sufficient matches were found for
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Figure 17. Example 5: Final region correspondences (top) and epipolar geometry (bottom).

Figure 18. Negative examples: Image pairs our system was not able to match.
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an accurate determination of the epipolar geometry.

Sometimes the number of matched regions is pretty

low (e.g. Example 4). However, one must not forget

that a single region correspondence yields three point

correspondences. Each time, the upper part of the fig-

ure shows the regions that contributed to the epipolar

geometry, i.e. those that were matched and survived

both the geometric and photometric filtering as well as

RANSAC. Some corresponding epipolar lines are shown

in the lower half of the figures.

Finally, Fig. 18 shows some examples of scenes

our system was not able to process. Although these

scenes do not seem extraordinarily complex or dif-

ficult, the system failed, mainly due to the different

backgrounds (car-example), the lack of texture on the

objects (both examples), a large amount of specular

reflection (car-example) and non-planarity (simpsons-

example). These images clearly show some possible

future research directions.

9. Conclusion

A new approach to the wide baseline stereo correspon-

dence problem has been proposed, that extends the

ideas of Schmid and Mohr on local invariant features

towards more invariance and hence wider baselines.

In each image, local image patches are extracted in

an affine invariant way, such that they cover the same

physical part of the scene (under the assumption of lo-

cal planarity). These patches or ‘invariant regions’ are

matched based on feature vectors of moment invariants

that combine invariance under geometric and photo-

metric changes. The consistency of the matches found

is tested using semi-local constraints, followed by a test

on the epipolar geometry using RANSAC. As shown in

the experimental results, the feasibility of affine invari-

ance even on a local scale has been demonstrated.

Robust matching is quite a generic problem in vi-

sion and several other applications can be consid-

ered. Object recognition is one, where images of an

object can be matched against a small set of refer-

ence images of the same object. The sample set can

be kept small because of the invariance. Moreover,

as the features are local, recognition against variable

backgrounds and under occlusion is supported by this

method. Another application is grouping, where sym-

metries can be found as repeated structures. Image

database retrieval can also benefit from these regions,

where other pictures of the same scene or object can

be found. Here, the viewpoint and illumination invari-

ance gives the system the capacity to generalize to a

great extent from a single query image. Finally, be-

ing able to match a current view against learned views

can allow robots to roam extended spaces, without

the need for a 3D model. Initial results for such ap-

plications can be found in Tuytelaars and Van Gool

(1999), Tuytelaars et al. (1999) and Turina et al.

(2001).

Appendix A: Affine Invariance

of the Function Extrema

Suppose we have the following geometric and photo-

metric deformations between two views:

[

x ′

y′

]

=

[

a b

c d

] [

x

y

]

+

[

e

f

]
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G ′

B ′






=







sR 0 0

0 sG 0

0 0 sB
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tR

tG
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with (R, G, B) and (R′G ′, B ′) the three different color-

bands and (x ′, y′) and (x, y) coordinates of correspond-

ing points. In the sequel, we use I and I ′ to refer to

either of the three color-bands R, G or B.

We now prove that the extrema of the functions

given in Section 4.1 are invariant to the above defor-

mations. In other words, for each region � in image I

for which f (�) reaches an extremum, there must be a

corresponding region �′ in image I ′ for which f ′(�′)

reaches an extremum as well, with f (�) = f1(�),

f2(�) or f3(�).

Affine Invariant Extrema of f1(�)

As mentioned already earlier, the first function repre-

sents the average intensity over the region. The extrema

of this function being invariant to the considered de-

formations, can easily be understood intuitively. Here,

we give a more formal proof.

f1(�) =

∫

�
I (x, y)dxdy
∫

�
dxdy

f ′
1(�′) =

∫

�′ I ′(x ′, y′)dx ′dy′

∫

�′ dx ′dy′



82 Tuytelaars and Van Gool

=

∫

�
(s I (x, y) + t)(ad − bc) dxdy

∫

�
(ad − bc) dxdy

= s

∫

�
I (x, y)dxdy
∫

�
dxdy

+ t = s f1(�) + t

In practice, s is always positive, such that

f1(�1) > f1(�2) ⇔ f ′
1(�′

1) > f ′
1(�′

2)

Hence, extrema of the function f1(�) are preserved

under the considered deformations. Even if s would

have been negative, extrema would still be preserved,

although maxima would be turned into minima and

vice versa.

Effects of the Deformations on the Center of Gravity

For the other functions mentioned in Section 4.1, it

is important to first fully understand the effect of the

deformations on the center of gravity

pg = (xg, yg)

=

(

∫

�
I (x, y)xdxdy

∫

�
I (x, y)dxdy

,

∫

�
I (x, y)ydxdy

∫

�
I (x, y)dxdy

)

First, let us consider only geometric deformations. In

that case, we get for p′
g = (x ′

g, y′
g)

x ′
g =

∫

�′ I ′(x ′, y′)x ′ dx ′dy′

∫

�′ I ′(x ′, y′) dx ′dy′

=

∫

�
I (x, y)(ax + by + e)(ad − bc) dxdy

∫

�′ I (x, y)(ad − bc) dxdy

= a

∫

�
I (x, y)x dxdy

∫

�′ I (x, y) dxdy
+ b

∫

�
I (x, y)y dxdy

∫

�′ I (x, y) dxdy
+ e

= axg + byg + e

y′
g =

∫

�′ I ′(x ′, y′)y′ dx ′dy′

∫

�′ I ′(x ′, y′) dx ′dy′

=

∫

�
I (x, y)(cx + dy + f )(ad − bc) dxdy

∫

�′ I (x, y)(ad − bc) dxdy

= c

∫

�
I (x, y)x dxdy

∫

�′ I (x, y) dxdy
+ d

∫

�
I (x, y)y dxdy

∫

�′ I (x, y) dxdy
+ f

= cxg + dyg + f

Hence, the center of gravity behaves as a normal point

under the affine deformations.

Now, let us consider the effect of photometric de-

formations. Here, we investigate the coordinates of the

center of gravity pg relative to the coordinates of the

region center pc.

pc = (xc, yc) =

(

M0
10

M0
00

,
M0

01

M0
00

)

It can be shown that the effect of the photometric de-

formations on pg is a shift towards pc:

x ′
g − x ′

c =

∫

�′ I ′(x ′, y′)x ′dx ′dy′

∫

�′ I ′(x ′, y′)dx ′dy′
−

∫

�
x ′dx ′dy′

∫

�
dx ′dy′

= . . .

= (xg − xc)

∫

�
I (x, y)dxdy

∫

�
(I (x, y) + t

s
)dxdy

= (xg − xc)
M1

00

M1
00 + t

s
M0

00

y′
g − y′

c =

∫

�′ I ′(x ′, y′)y′dx ′dy′

∫

�′ I ′(x ′, y′)dx ′dy′
−

∫

�
y′dx ′dy′

∫

�
dx ′dy′

= . . .

= (yg − yc)

∫

�
I (x, y)dxdy

∫

�
(I (x, y) + t

s
)dxdy

= (yg − yc)
M1

00

M1
00 + t

s
M0

00

Affine Invariant Extrema of f2(�) and f3(�)

f2(�) and f3(�) are both composed of two factors, a

ratio of two areas, one of which depends on the center

of gravity, and an expression of moments up to the

second order.

f2(�) = abs

(

|p1 − pg p2 − pg|

|p − p1 p − p2|

)

×
M1

00
√

M2
00 M0

00 −
(

M1
00

)2

f3(�) = abs

(

|p − pg q − pg|

|p − p1 p − p2|

)

×
M1

00
√

M2
00 M0

00 −
(

M1
00

)2

with q = p1 + p2 − p

The first factor is a ratio of two areas, defined by the

points p, p1 and p2 fixed to the region and the center of
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gravity pg. As we have seen in the previous section, the

center of gravity behaves as a normal, physical point

under the affine geometric deformations, such that this

first factor clearly is geometrically invariant. Also the

second factor can easily be checked to be invariant to

the geometrical deformations.

Next, we show that the effect of the photometric de-

formations on this first factor is similar to their effect

on the coordinates of the center of gravity relative to the

region center, namely a rescaling with the same scale-

factor. This can be understood by the fact that the region

center pc lies on the diagonals of the parallelogram-

shaped region, i.e. on the line connecting p and q on

one hand and the line connecting p1 and p2 on the other

hand, which also form one side of the areas in the nu-

merator (see Fig. 3). Hence the shift in the position of

the center of gravity causes a proportional rescaling of

the area in the numerator:

|p′
1 − p′

g p′
2 − p′

g|

|p′ − p′
1 p′ − p′

2|
=

|p1 − pg p2 − pg|

|p − p1 p − p2|

M1
00

M1
00 + t

s
M0

00

|p′ − p′
g q′ − p′

g|

|p′ − p′
1 p′ − p′

2|
=

|p − pg q − pg|

|p − p1 p − p2|

M1
00

M1
00 + t

s
M0

00

This extra scale-factor must be compensated for by

the second component in the expressions of f2(�) and

f3(�). And indeed, the second component seems to

have exactly the inverse scale-factor:

M ′1
00

√

M ′2
00 M ′0

00 −
(

M ′1
00

)2

=

∫

�′ I ′(x ′, y′)dx ′dy′

√

∫

�′ I ′2(x ′, y′)dx ′dy′
∫

�′ dx ′dy′ −
∫

�′ I ′(x ′, y′)dx ′dy′
∫

�′ I ′(x ′, y′)dx ′dy′

= · · · =
M1

00
√

M2
00 M0

00 − M1
00 M1

00

M1
00 + t

s
M0

00

M1
00

Appendix B: Derivation of a Geometric

Semi-Local Constraint

Consider two images I and I ′. Points in image I are de-

noted with homogeneous coordinates p = (x, y, z)T ,

while points in image I ′ are denoted with homoge-

neous coordinates p′ = (x ′, y′, z′)T . For the coordi-

nates of real world (3D) points, capital letters are used,

such as P = (X, Y, Z ). A homography Hi belonging to

a plane �i defines the following relation between the

projections in images I and I ′ of 3D points lying on the

plane �i

p′ = Hi p

with Hi a 3 × 3 matrix.

Take an arbitrary point p = (x, y, z)T in image I ,

corresponding to the 3D point P = (X, Y, Z )T and

two homographies H1 and H2, corresponding to two

different planes �1 and �2. Then, both H1p and H2p

lie on the epipolar line corresponding to the point p

in the second image. Hence, the following formula for

the epipolar line corresponding to the point p can be

derived

l = (H1p) × (H2p)

where × denotes the vector product.

All epipolar lines pass through the same point e, the

epipole.

∃e∀p : (H1p × H2p)T e = 0

From this property, we can derive a constraint on H1

and H2.

If Hij denotes the j-th column of matrix Hi , this can

be worked out as follows:

∃e∀(x, y, z) : [(xH11 + yH12 + zH13)

× (xH21 + yH22 + zH23)]T e = 0

This is a second-order equation in x , y and z with co-

efficients A, B, C , D, E and F functions of e and Hij.

∀(x, y, z) : Ax2 + By2 +Cz2 + Dxy+ Exz+ Fyz = 0

Since this equation has to be fulfilled for all possible

values x , y and z, all the coefficients in the equation

have to be zero.

A = (H11 × H21)T e = 0

B = (H12 × H22)T e = 0

C = (H13 × H23)T e = 0

D = (H11 × H22 + H12 × H21)T e = 0

E = (H11 × H23 + H13 × H21)T e = 0

F = (H12 × H23 + H13 × H22)T e = 0
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In order for all the above equations to have a solution

e �= (0, 0, 0)T , the following matrix, which is a function

of Hij, must be rank-deficient.

rank





















(H11 × H21)T

(H12 × H22)T

(H13 × H23)T

(H11 × H22 + H12 × H21)T

(H11 × H23 + H13 × H23)T

(H12 × H23 + H13 × H22)T





















≤ 2

Applied to Local Regions

For local regions, the perspective deformation is

too small to be detected. As a result, only

an affine transformation can be derived. In this

case, the homographies can be approximated by

affine transformations A and B of the following

form:

A =







a11 a12 a13

a21 a22 a23

0 0 1






B =







b11 b12 b13

b21 b22 b23

0 0 1







The rank-2 constraint derived in the previous section

then becomes:

rank























0 0 a11b21 − b11a21

0 0 a12b22 − b12a22

a23 − b23 b13 − a13 a13b23 − b13a23

0 0 a11b22 − b12a21 + a12b21 − b11a22

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23























≤ 2

Rows (1), (2) and (4) force the epipole to lie at in-

finity. This corresponds to an orthographic projection

model, which indeed leads to affine transformations

between two views of a planar object. But also without

forcing the epipole to infinity there is one constraint

left:

rank







a23 − b23 b13 − a13 a13b23 − b13a23

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23







≤ 2

The actual consistency constraint used in our

experiments is then

det







a23 − b23 b13 − a13 a13b23 − b13a23

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23







≤ δ

with δ a predefined threshold.

Acknowledgments

We are grateful to RobotVis INRIA Sophia-Antipolis

for providing the Valbonne images (Fig. 13) and for

financial support from the EC project VIBES and

the IUAP project ‘Advanced Mechatronical Systems’.

Tinne Tuytelaars is a postdoctoral researcher funded by

the Fund for Scientific Research Flanders (Belgium).

Notes

1. Alternatively, one could leave out this second factor, and com-

pensate for the offsets by an appropriate normalization of the

intensities before computing the moments.

2. For more information about these images, see

http : //www.cs.sfu.ca/~color/image db/index.html.
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