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Abstract

Multivariate matching with doses of treatment differs from the treatment-control matching in three ways.
First, pairs must not only balance covariates, but also must differ markedly in dose. Second, any two
subjects may be paired, so that the matching is nonbipartite, and different algorithms are required. Finally,
a propensity score with doses must be used in place of the conventional propensity score. We illustrate
multivariate matching with doses using pilot data from a media campaign against drug abuse. The media
campaign is intended to change attitudes and intentions related to illegal drugs, and the evaluation
compares stated intentions among ostensibly comparable teens who reported markedly different
exposures to the media campaign.
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Matching With Doses in an Observational Study of
a Media Campaign Against Drug Abuse

Bo Lu, Elaine ZanuTTO, Robert HoRrNIK, Paul R. ROSENBAUM

Multivariate matching with doses of treatment differs from the treatment-control matching in three ways. First, pairs must not only
balance covariates, but also must differ markedly in dose. Second, any two subjects may be paired, so that the matching is nonbi-
partite, and different algorithms are required. Finally, a propensity score with doses must be used in place of the conventional propensity
score. We illustrate multivariate matching with doses using pilot data from a media campaign against drug abuse. The media campaign
is intended to change attitudes and intentions related to illegal drugs, and the evaluation compares stated intentions among ostensibly
comparable teens who reported markedly different exposures to the media campaign.

KEY WORDS: Coherent signed rank test; Equal percent bias reducing; Matching with doses; Nonbipartite matching; Observational
studies; Ordinal logit model; Optimal matching; Propensity score.

1. INTRODUCTION: BALANCE WITH
DIFFERENT DOSES

1.1 Varied Exposure to Antidrug Messages

The United States Office of National Drug Control Pol-
icy (ONDCP) recently launched a media campaign intended
to reduce illegal drug use by the young Americans. Because
the campaign was implemented throughout the United States,
there is no unexposed or control group available for use in
evaluating the effects of the campaign. An experiment that
divided the nation into a checkerboard of media markets, with
some markets exposed to the campaign and others not, was
judged impractical.

The National Institute on Drug Abuse (N IDA) proposed that
the evaluation plan will compare teens with varied degrees
of exposure to media campaign, that is, with varied doses of
the treatment. One would like to compare teens who received
different exposures to the campaign, but who were similar in
terms of baseline characteristics. Matching with doses means
forming pairs with very different doses of treatment in such a
way that the final high- and low-dose groups have similar or
balanced distributions of observed covariates.

Here, we illustrate new methods for matching with doses
using data on 521 teens who participated in the pilot for the
evaluation. Matched pairs are formed in which 22 covariates
are balanced, but the doses are very different. Because our
goal is to illustrate matching techniques and not to evaluate
the media campaign, our approach resembles the actual evalu-
ation plan in a few respects, but diverges from it in many oth-
ers. For instance, the pilot data are a convenient piece of the
population, whereas the evaluation will use a national sample.

1.2 Outline: Data, Method, Results, Theory

This article is organized as follows. Sections 1.3 and 1.4
discuss aspects of the data, and Section 1.5 discusses the dif-
ferences between matching with doses and matching treated
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subjects to controls. The proposed method is discussed in
Section 2, including propensity scores with doses, optimal
matching in a nonbipartite graph, and a distance measure for
use with doses. Section 3 examines the performance of the
method using the pilot data for the media campaign. Finally,
the appendix presents some theory showing that the method
has a desirable standard property namely equal percent bias
reduction.

1.3 Doses

The dose of exposure to the media campaign was defined
using the answers to the following three questions. In recent
months, about how often have you seen such antidrug com-
mercials on TV, or heard them on the radio? In recent months,
about how often have you seen such antidrug ads in newspa-
pers or magazines? In recent months, about how often have
you seen such antidrug ads in movie theatres or on rental
videos? We ignored the ordinal nature of the response cate-
gories and added the scaled responses to the three questions,
and then formed five dose groups. The three lowest dose
groups each contained about a quarter of the children, with
the rest evenly divided between the two highest dose groups.
This division reflected, in part, the discreteness of the under-
lying data and, in part, a right skewed distribution with tighter
spacing at lower doses. The use of five groups, as distinct from
three or ten, was motivated by the somewhat related results of
Cox (1957) and Cochran (1968).

To give a sense of what the dose categories mean, Table 1
describes the responses of five particular teens, one from each
of the categories. Obviously, a variety of patterns of responses
are found in each category, and only one is listed in the Table
1. Nonetheless, the dose categories are quite different.

The use of five dose categories truncates extreme responses.
Is this wise? After inspecting the data, we thought perhaps
it was. For instance, one question asked: On the weekend,
about how many hours of TV do you usually watch? Please
include both Saturday and Sunday. One teen responded with
“85 hours,” another with “68 hours,” and several more with
“50 hours.” So, in the end, we did feel comfortable truncating
extreme responses.
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Table 1. Understanding the Dose Categories: Responses of One
Typical Teen in Each of the Five Dose Categories

Dose v Print Movie

5 =high >1 per day >1 per day >4 per month
4 daily daily >4 per month
3 1 to 3 per week 1 to 3 per week >4 per month
2 1 to 3 per month 1 to 3 per week 1 to 3 per month
1=low 1 to 3 per month <1 per month <1 per month

NOTE: Responses to “How often have you seen such antidrug commercials (on TV or radio,
in newspapers or magazines, in movie theatres or rental videos)?”

1.4 Covariates

In the current illustration of matching technology, we used
the 22 covariates in Table 2. The variables describe demo-
graphics, TV habits, organized activities, and self-reported
drug use. Table 2 also reports the rank correlation with dose,
together with the two-sided P-value testing no association.
Notice that a missing mother’s education is counted in the
middle category, high school graduate. An alternative strategy
with propensity scores is to code “missing” as a separate vari-
able and include it in the propensity score (Rosenbaum and
Rubin 1984, app B). Also, due to extreme skewness of a few
covariates, we took square root transformations of some vari-
ables.

Older children reported less exposure to the media cam-
paign than the younger children, but gender and race showed

Journal of the American Statistical Association, December 2001

little or no relationship with exposure. Not surprisingly, TV
habits were related to exposure, but self-reported past drug
use showed little or no relationship. Participation in sports and
“other” activities were associated with higher exposures, but
most activities showed little or no relationship.

A few technical decisions about the covariates require brief
mention. For the purpose of evaluating the media campaign,
it is unclear whether adjustments should be made for TV
habits. On the one hand, much of the variation in exposure
to the media campaign is created by varied TV habits, and
this argues against adjustments. On the other hand, different
types of TV attract different types of viewers, and this argues
in favor of adjustments. For instance, the so-called “sensation-
seeking” is said to be related to drug abuse (e.g., Ball, Carroll,
and Rounsaville 1994; Kosten, Ball, and Rounsaville 1994;
Bardo, Donohew, and Harrington 1996), and certain types
of TV, such as MTYV, might possibly be more popular with
sensation-seekers. A thorough evaluation would synthesize the
results of many different analyses. Here, however, we wanted
to illustrate the matching techniques and so we picked the
more challenging matching problem. Because TV habits are
related to exposure, matching on TV habits makes the match-
ing task more challenging. If our algorithm can balance all the
22 covariates, then it can also balance any subset of the 22
covariates, so including all the 22 covariates provide a better
test of what our algorithm can accomplish.

The pilot data are not longitudinal, but for our current pur-
pose of illustrating matching techniques, we ignore certain

Table 2. Covariates Before Matching and Their Rank Correlations
With Dose of Exposure to the Media Campaign

Covariate Kendall’s T P-Value
Age -.10 .0013
Black (1 =yes, 0 =no) .00 .9500
Other Nonwhite Race (1 =yes, 0 =no) -.02 .6300
Gender (1 =female, 0 =male) —-.01 .8300
Mother graduated high school (0 =no, 1 = yes or missing) .00 .9300
Mother graduated college (0 = no or missing, 1 = yes) .07 .0600
Cable or satellite TV at home (1 =yes, 0 =no) 01 .7400
v/hours of TV on a weekday 07 .0300
~hours of TV on a weekend 09 .0056
Music TV per month (e.g., MTV)

0 =never,...,3=15 to 30 days/month 10 .0048
Sports channel per month (e.g., ESPN)

0 =never,...,3=15 to 30 days/month 10 .0048
Music, dance, or theater (1 =yes, 0 =no) .04 2500
Athletic teams or sports (1 =yes, 0 =no) 1 .0047
Clubs (e.g., Girl Scouts) (1 =yes, 0 =no) -.01 .8200
Religious youth groups (1 = yes, 0 =no) —.05 .2300
Other activities (1 =yes, 0 =no) .10 .0098
Ever smoked cigarettes

(0=never,...,4 =yes in the last 30 days) .01 .7600
Ever used marijuana (1 =yes, 0 =no) .00 .9900
Marijuana, last 12 months

(0 =never,...,6 =40 or more times) .01 .8100
Ever used inhalants (1 = yes, 0 =no) .03 4300
Inhalants, last 12 months

(0 =never,...,6 =40 or more times) .02 .6400
Any friends use drugs (1 =yes, 0= no) .02 .6900
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related problems that will be addressed in the actual evaluation
study. Specifically, respondents answer questions at a single
moment, but some questions ask about the past whereas oth-
ers about intentions for the future. For the current purpose
of evaluating matching techniques, we accept responses to
questions naively, accepting answers about the past as facts
about the past, and answers about the future as facts about
the future. Obviously, there is more to be considered in this
respect (Rosenbaum 1984b), but not within the limited scope
of the current article.

1.5 How is Matching-With-Doses Different?

In three ways, matching-with-doses differs from match-
ing treated subjects to untreated controls. When treated sub-
jects are matched to untreated controls, the individuals to
be matched divide into two disjoint groups—treated and
control—and individuals in one group are matched to individ-
uals in the other. In contrast, when all the subjects are exposed
to treatment but the doses vary, there are no longer two dis-
joint groups; rather there is a single group, and any individual
can, in principle, be matched to any other individual. This dif-
ference affects three aspects of matching: the definition of the
propensity score, the definition of distance, and the choice of
optimization algorithm.

In matching treated subjects to untreated controls, the
propensity score is the conditional probability of treatment
given observed covariates, and matching on an estimate of
the propensity score tends to balance observed covariates
(Rosenbaum and Rubin 1983, 1985). A simulation study sug-
gested that, when there are 20 covariates, matching on propen-
sity scores is much better than other methods considered in
the simulation (Gu and Rosenbaum 1993). Dehejia and Wahba
(1998, 1999) reach a similar conclusion by comparing meth-
ods on an empirical example. In practice, propensity scores
are unknown and must be estimated. Various consequences of
estimating the propensity score are discussed by Rosenbaum
(1984, 1987), Heckman, Ichimura, and Todd (1998), and
Hirano, Imbens, and Ridder (2000). This definition of propen-
sity scores is not applicable when there are doses.

When the treatment is not binary, and instead comes in
doses, Joffe and Rosenbaum (1999, p. 331) showed that, under
certain circumstances, a scalar balancing score exists such
that matching subjects with different doses but the same bal-
ancing score tends to balance covariates. For example, if the
conditional distribution of doses given covariates is correctly
described by McCullagh’s (1980) ordinal logit model, then the
linear portion of that model is a scalar balancing score. Bal-
ancing scores with doses will be discussed and used at several
points later.

When treated subjects are matched to controls, there is
a distance between each treated subject and each possible
choice of control describing how similar they are in terms of
observed covariates. For instance, Rubin (1980) suggests using
the Mahalanobis distance. In contrast, when all the subjects
are exposed to treatment but at varied doses, the goal is to
identify pairs that are similar in terms of observed covariates
but very different in terms of dose. The distance must measure
both the similarity in terms of covariates and the difference
in dose. We propose new distances for matching with doses.
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These new distances reproduce familiar distances when there
are just two doses, e.g., treated versus untreated.

In the network optimization literature, matching one group
to another disjoint group is called a ‘bipartite’ match-
ing, where bipartite signifies two disjoint parts; see Papadi-
mitriou and Steiglitz (1998), Rosenbaum (1989), and
Bergstralh, Kosanke, and Jacobsen (1996). Matching within a
single group is called ‘nonbipartite’ matching, and the required
algorithms are quite different.

An alternative to the propensity score for doses proposed by
Joffe and Rosenbaum (1999) and used here is a useful, inter-
esting method proposed by Imbens (2000). This paragraph
discusses the relationship between our approach and that of
Imbens (2000). Whereas, the approach we use entails a sin-
gle scalar propensity score for all dose levels, Imbens (2000)
uses a different propensity score for each dose level. The score
Imbens uses for dose level z is the probability that an indi-
vidual will receive dose z given observed covariates, so that if
there are five dose levels, then there are five propensity scores.
In contrast, under certain models, such as McCullagh’s (1980)
ordinal logit model, the single score we use characterizes the
entire distribution of dose z given covariates. An attraction of
Imbens’ approach is that it does not require any model for the
dose, at least conceptually, and moreover it could be used with
several unordered treatments. In effect, he adjusts the marginal
distribution of response separately one dose level at a time.
However, in that approach, because propensity scores for dif-
ferent doses are different functions of covariates, individuals
with different doses and the “same” propensity score are not
similar in any particular respect, and it is not natural to match
them (Imbens 2000, p. 709). As a result, in Imben’s approach,
the investigator must apply direct adjustment to propensity
strata to estimate a causal effect—stratum specific results are
not interpretable and do not estimate causal effects even when
there is no hidden bias due to unobserved covariates (Imbens
2000, p. 709). In contrast, with a single scalar propensity score
for all doses, a stratum or matched pair is defined by a single
function of covariates, the same for all dose levels, so indi-
viduals in the same stratum or pair have similar values of this
one function of covariates, and stratum or pair specific results
do estimate causal effects when there is no hidden bias due to
unobserved covariates (Joffe and Rosenbaum 1999, p. 331).

2. MATCHING WITH DOSES

2.1 Any Two Subjects Can be Matched

There are K subjects available, k = 1,...,K, and [
matched pairs of two subjects, j = 1,2, will be formed,
i=1,...,1, where K >2I. In the example, K = 521 and we

form I = 260 pairs, discarding one subject; however, when K
is very large and costly, additional data will be collected from
matched subjects, one might set / well below K /2.

Subject k has a vector x, of observed covariates, received
the treatment at dose Z,, and exhibits a response, R,. For-
mally, a matched sample is a collection € of [ disjoint,
unordered subsets of two distinct elements selected from
{1,...,K},so€={P,,..., P/} where each P, is a subset of
two distinct elements from {1,...,K} and P,NP, =2 for
ihi'=1,...,1I.
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Associated with each possible pairing of two distinct sub-
jects, {k, k'} is a nonnegative, possibly infinite, distance, di
computed from the covariates x;, and doses Z;. Later sections
will discuss the choice of distance. In particular, we will set
d )= if Z, = Zy, and this will effectively forbid match-
ing subjects with the same dose. This is analogous to forbid-
ding, with binary doses, the matching of controls to controls
or treated subjects to treated subjects. The fotal distance asso-
ciated with a matched sample € = {P,, ..., P,} is the sum
of the I distances between paired subjects, D, = ZLI dp. A
matched sample € = {P,, ..., P;} is optimal if it minimizes
the total distance D. among all possible pairings of 2/ dis-
tinct subjects into I pairs. An optimal matched sample need
not be unique. If D, = o© for an optimal matching, then the
problem is called infeasible; otherwise, it is feasible.

2.2 Optimal Matching: Minimize Total Distance

Within the field of operations research, there is a large lit-
erature on optimal nonbipartite matching; see, for example,
Papadimitriou and Steiglitz (1998, sec. 11.3). The alternative
to optimal matching is some form of greedy algorithm, in
which a best available pair is formed and removed, a best
pair is formed from the remaining data and also removed, and
so on. Greedy algorithms can be very poor when compared
to the optimal algorithms. As an illustration, suppose we had
four individuals with ages 30, 34, 36, 40. A greedy algorithm
would pick the closest pair, (34, 36), remove them, and then
pair (30, 40) for a total distance of |34 —36|+[30—40| =12.
The optimal match would pick (30, 34) and (36, 40) for a
total distance of |30 — 34|+ (36 — 40| = 8. The total distance
for the greedy match is 50% larger, 12/8 = 1.5, and one pair
is ten years apart whereas the optimal match has both pairs
matched within five years. The same issue arises with caliper
matching, say matching within five years, in which the dis-
tance is defined to be zero for subjects whose ages differ by at
most five years and is defined to be infinite if the ages differ
by more than five years. In the example just given, a five-year
caliper match exists, and optimal matching will find it when-
ever it exists, but greedy matching will not find it if it starts by
matching 34 to 36. In large problems, greedy matching can be
extremely poor when compared to optimal matching (Snyder
and Steele 1990).

We use an algorithm and Fortran code due to Derigs (1988)
to find an optimal match. Derigs’ algorithm is for nonbipar-
tite matching, which is somewhat more complex than bipar-
tite matching. He gives various computational comparisons on
computers available in 1988 and finding the algorithm solved
large problems reasonably quickly. His algorithm quickly
solved the current matching problem with K = 521, so it is
useful for problems of practical size.

Actually, Derigs’ algorithm only works in the case of a
“perfect match” with K = 2. When K > 21, we may use
Derigs’ algorithm anyway by making use of the following
device. For K > k> 1, K> k' > 1, k # k', add the same
positive constant to every d(; ;,, so that all the distances
are strictly positive. The constant does not affect the optimal
match. Now introduce K — 2/ sinks, or extra phantom units,
Spse ey S and set dy =0, d[s,YS,) =oofork=1,...,K,
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i,j=1,...,K—2I, and construct an optimal perfect match-
ing with these K + K — 217 units. In a feasible optimal perfect
match, sinks will not be matched to other sinks as this would
cost dy;, ;= 0, and K — 2/ subjects among {1,...,K} will
be matched to sinks as these cost d;; ., =0, so 2] subjects
will be matched to each other, producing / pairs of two sub-
jects. In the example, there were K = 521 subjects, I = 260
pairs, and K —2/ =1 sink was used. A related strategy is
used in a different context by Ming and Rosenbaum (2001).

2.3 Propensity Scores With Doses

In observational studies comparing a treated and a control
group, propensity scores and related balancing scores were
proposed by Rosenbaum and Rubin (1983) to aid in construct-
ing matched pairs or sets or strata that balance many covari-
ates at once. In that context, the propensity score is the prob-
ability of treatment given observed covariates. Two subjects
with the same propensity score have the same distribution of
covariates, that is, the multivariate covariate distribution is bal-
anced at each value of the scalar propensity score (Rosenbaum
and Rubin 1983, thm 1). Theoretical results, practical experi-
ence, and simulation results all suggest that estimated propen-
sity scores perform slightly better than true propensity scores,
because they cannot distinguish chance imbalances in covari-
ates from systematic imbalances, and so the estimated scores
tend to remove both to some degree (Rosenbaum and Rubin
1983, Rosenbaum 1987; Gu and Rosenbaum 1993).

When doses of treatment replace treated and control groups,
Joffe and Rosenbaum (1999) showed that scalar balancing
scores exist for certain models describing the distribution of
dose, given covariates. The key issue is whether the distribu-
tion of doses given covariates depends on the covariates via a
scalar function of the covariates. This happens, for example, in
McCullagh’s (1980) ordinal logit model, and also in a conven-
tional Gaussian multiple linear regression model with errors of
constant variance. However, it does not happen in a multiple
linear regression model with unequal variances, in which the
expectation of dose varies with one scalar function of covari-
ates and the variance varies with another. As a practical mat-
ter, the propensity score is a device for approximately balanc-
ing observed covariates, and one can straightforwardly check
whether or not a particular model for the propensity score has,
in fact, approximately balanced the observed covariates.

In McCullagh’s (1980) ordinal logit model, which we use
here, the distribution of doses, Z,, given observed covariates,
X,, is modeled as:

Pr(Z, > d
logi—r( i )

=0,+B"x,, ford=2,3,4,5.
Pr(Zk<d)} T B, o

Under this model, the distribution of doses given covariates
depends on the observed covariates only through e(xk) =
BTx,, with the consequence that the observed covariates x and
the doses Z are conditionally independent given the scalar
e(xk), SO f\(Xk) is a balancing score. The maximum likelihood

estimate, 37x,, is used in the matching.

We fit the ordinal logit model using the covariates in
Table 2. As is often true when many variables measure differ-
ent aspects of a few attributes or behaviors, the partial associ-
ations represented by the coefficients in the model are related
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but distinct from the marginal associations represented by the
rank correlations in Table 2. A covariate may have a statis-
tically insignificant coefficient in the model not because it is
unrelated to dose, but because that relationship can be cap-
tured by other covariates in the model. For example, both the
hours of TV on a weekday and the hours of TV on a weekend
have significant marginal associations with dose in Table 2,
but neither had a significant partial association with dose in
the model, perhaps because either variable could be used in
place of the other. For use as a balancing score, what is impor-
tant is BTx,, not individual coefficients in 8. For this rea-
son, we did not discard covariates with statistically insignifi-
cant coefficients, nor did we search for a parsimonious model.
The coefficients with statistically significant coefficients at the
.05 level were “age,” “sports channel,” and “other activities,’
whereas “music channel” and “religious youth groups” were
marginally significant at the .1 level.

2.4 Distances: Close on Covariates; Far
Apart on Doses

In matching treated subjects to untreated controls, various
distances 5(Xk, ka) > 0 have been proposed between the val-
ues of the observed covariates x, and x, of subjects k and
k'. These include the Mahalanobis distance, 5(Xk, Xkr) = (Xk -

Tao1/o . . .
ka) S7'(x, — x,), where S is an estimate of the covariance
matrix of the observed covariates, the propensity distance,
8(x;» x,) = {e(x,) — e(x)}?, and the Mahalanobis distance
within propensity score calipers, namely 6(x,, X,/) = o if
T
{e(x,) —e(xv)}> > c and 8(x;, xp) = (x = %) S7'(x — %)
if {e(xk) - e(xk,)}2 < ¢. See Rosenbaum and Rubin (1985) for
an empirical comparison of these three distances. A simulation
suggests that matching on the propensity score is best when
there are many, say 20, covariates (Gu and Rosenbaum 1993).

In matching with doses, the goal is not only to balance
the observed covariates, but also to produce pairs with very
different doses. To this end, consider the following distance:

8(x. x) +e

A(xk, xkf) = >
(Ze—2p)

where € > 0 is a vanishingly small but strictly positive number.
The constant € is a formal device, and it is not actually used
in computations; rather, it signifies how perfect matches on
covariates or doses will be handled. Specifically, € serves
two functions. First, if subjects k and k' have the same dose,
Z, = Z,, then the distance between them is o even if they
have identical observed covariates x, = X, and 5(Xk, ka) =0.
Second, when two subjects have identical observed covariates
and 5(Xk, ka) =0, the dose distance A(Xk, ka) will be smaller
as the difference in doses (Zk - Zkr)2 increases. The optimal
match is the same for all sufficiently small € > 0, so it is just
a formal device.

In a sense, A(Xk, ka) generalizes 5(Xk, ka) to the case of
doses. Specifically, if there are just two doses, say 1 for treated
and O for control, then A(Xk, ka) = if Z, = Z,, that is if
both k and k' are treated or both are control, and otherwise
A(Xk, ka) is essentially just 5(Xk, Xkr). In this case, an opti-
mal feasible matching will never match two treated subjects
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together, or two controls together, because of the infinite dis-
tance, and so an optimal feasible matching with two doses
using A(Xk, Xkr) will be the same as an optimal treated/control
matching using 5(Xk, Xkr).

Notice that if the doses Z, were linearly transformed by
adding a constant and by multiplying by a strictly positive
constant, then A(Xk, ka) would be divided by the square of
the multiplier, but the optimal match would not change. How-
ever, nonlinear transformations of the dose, such as a log or
rank transformation, would change the distance, and such a
transformation may be useful depending upon the initial dis-
tribution of doses.

The particular distance used here is

2
(BTxk — BTX,(/> +e

(Zk - Zk’)2

A(xe, xp) = (1)

so the distance is small when, based on the observed covariates
x, we would have expected k and k' to have received similar
doses Z, but in fact, their actual doses are very different. The
appendix discusses some theoretical motivation for the form
of (1). In fact, both BTx, and Z, were replaced by their ranks
before using formula (1), with average ranks for ties.

Although the pilot data are limited, the larger actual eval-
uation will estimate program effects separately for teens who
had previously used drugs and for those who had not. If
one wanted to do this using matching techniques, then one
might slightly alter the distance, A(Xk, Xkr). Specifically, if
both teen k and teen k' had not previously used drugs, or
if both had previously used drugs, then A(Xk, ka) would be
given by (1), but if only one teen had previously used drugs
then A(Xk, ka) = 00, This would force matched pairs to agree
on previous drug use, so the pairs could be divided into two
disjoint groups—prior users and nonusers—for some analy-
ses. Similarly, one could require pairs to agree on the type or
extent of prior drug use.

Once an optimal matching has been selected, it is conve-
nient to order the two subjects in each pair so that the first
subject received the higher dose. For the chosen feasible opti-
mal matching, € = {P,, ..., P;}, assign subscripts (i, 1) and
(i, 2) to the two subjects in pair P; so that Z;, > Z,,.

2.5 Sampling Potential Controls in
Research Design

In the present study, the K = 521 subjects are divided into
I = 260 pairs, with one subject discarded. When costly addi-
tional data are to be collected from matched subjects after
matching, one might decide that the number of matched sub-
jects, 21, should be much less than the reservoir size, K, so
that the matching serves as both an analytical device and a
sampling technique. In this case, use of a distance such as (1)
will sample pairs with similar estimated distributions of doses
given observed covariates, measured by 8Tx,, but with very
different realized doses, measured by Z,. This is a reasonable
research design if the goal is to build an observational study
resembling an efficient experiment, in which similar subjects
receive very different doses. It is less attractive as a research
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design if the goal is to estimate the typical effect in a pop-
ulation, because high and low doses may be comparatively
uncommon in the population, and oversampling high and low
doses may increase the power to detect a treatment effect at
the expense of decreasing the precision of estimates of typical
population responses.

In many settings, including the media campaign here, the
typical doses are not unalterable features of policy. If it were
found that high doses of the media campaign were highly
effective, but typical doses were not, then one policy option is
to intensify the media campaign so that the high doses become
typical. On the other hand, if all doses, even high doses, have
negligible effects, then optimizing the dose level is futile. In
experimental design, early studies of treatment efficacy often
compare quite distinct doses, to determine whether the treat-
ment has sufficient efficacy to merit refinement. For example,
in designing clinical trials, Peto et al. (1976, p. 590) write:

A positive result is more likely, and a null result is more informative, if the
main comparison is of only 2 treatments, these being as different as possible.

... it is the mark of good trial design that a null result, if it occurs, will be
of interest.

In short, sampling using a distance such as (1) is useful
in building an observational study that resembles, to some
extent, an experiment in which dramatically different doses
are assigned in an ostensibly haphazard manner. Obviously,
randomization in an experiment balances both the observed
and the unobserved covariates, whereas a distance computed
from observed covariates cannot be expected to address imbal-
ances in unobserved covariates, which must be addressed by
other means in an observational study (e.g., Rosenbaum 1995,
sec. 4). Sampling using (1) is not useful for describing typical
individuals in a population.

3. RESULTS: COMPARABILITY AND INTENTIONS
3.1

The algorithm constructs 260 matched pairs consisting of
a teen who experienced a relatively higher dose of the media
campaign and a teen who experienced a relatively lower
dose. Table 3 describes the dose distributions within the 260
matched pairs. Review Table 1 for the meaning of the five
dose categories.

Table 3 describes the joint distribution of doses within the
260 pairs, together with the two marginal distributions for
high-dose teens and low-dose teens. Each count in Table 3 is
one pair of two people. For example, in 24 pairs, the high
dose was 4 and the low dose was 1. In every pair, the dose
difference is at least one level, in 154/260 = 59% of pairs, the

Doses in Matched Pairs

Table 3. Doses of Exposure to the Media Campaign: Joint
Distributions (High, Low) in Matched Pairs

Dose 1 2 3 4 5 Total
1 0 0 0 0 0 0
2 37 0 0 0 0 37
3 43 49 0 0 0 92
4 24 28 14 0 0 66
5 14 24 21 6 0 65
Total 118 101 35 6 0 260

NOTE: Rows are high dose, columns are low dose.
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dose difference is at least two levels, and in 62/260 = 24%,
the dose difference is at least three levels. The mean dose for
the high-dose teens was 3.6 and for the low-dose teens was
1.7. In aggregate, the high-dose teens reported much higher
exposure to the media campaign.

In short, the algorithm has constructed matched pairs of
teens reporting very different doses of exposure to the media
campaign.

3.2 Balance Obtained by Matching

Table 4 shows the balance on the 22 covariates after match-
ing. Table 4 gives means and percentages for the high- and
low-dose subjects, averaging over the 260 pairs. For instance,
at both the high and low dose, the mean age was 15.9, and
24% of the high dose-teens were black, as opposed to 25%
of the low-dose teens. Overall, the high- and low-dose teens
look fairly comparable. I one compares the means using the
two sample r-test, then none of the 22 t-statistics is larger
than one in absolute value. In a completely randomized exper-
iment, 1 in 20 ¢-statistics comparing covariate balance should
be larger than about 2 in absolute value. There is more bal-
ance on observed covariates than one would expect in a ran-
domized experiment. Of course, randomization also balances
unobserved covariates, whereas matching generally does not.

The comparisons in Table 4 provide a check on the fitted
propensity score. In theory, the correct propensity score should
balance the covariates (Joffe and Rosenbaum 1999, p. 331),
so that the failure to balance the covariates indicates a fail-
ure of the model. Specifically, failure to balance the covariates
indicates that there is information in the covariates that is use-
ful in predicting the dose but which is not accurately reflected
in the fitted propensity score. Of course, the propensity score
was fitted with the single goal of matching to balance many
covariates and so checking covariate balance is the most rele-
vant way to appraise the fit.

By averaging the two columns in Table 4, means or per-
centages for the 21 = 520 teens are obtained. For instance, the
mean age for all 520 teens is (15.9+15.9)/2 =15.9.

The matching was based on the score 87x,. The mean score
for the high-dose teens was .98 and for the low-dose teens
was .97 with a two sample z-statistic of 7 =.0088. Evidently,
the matching on BTx, was quite close. In every pair, the high-
dose teen received a dose at least 1 unit greater than the low-
dose teen, so the z-statistic for dose is, by construction, enor-
mous. In other words, within pairs, the fitted distribution of
doses based on B Txk is quite balanced, but the actual doses are
very different. The matching has produced groups with sim-
ilar distributions of observed covariates, x, but very different
doses, Z.

3.3 Will You Use Marijuana or
Inhalants Next Year?

The pilot data contain four questions about intentions for
drug use over the next year, two about marijuana and hashish
and two about inhalants. Might high exposures to the media
campaign reduce stated intentions about future drug use? As
an illustration of methodology, these intentions are compared
for matched pairs. Keep in mind that the pilot data are ade-
quate to try out methodology, but too limited in scope and
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Table 4. Covariate Balance in 260 Matched Pairs of a High-Dose Teen and a Low-Dose Teen

Covariate High Dose Low Dose
Age 159 159
Black (1 =yes, 0 =no) 24% 25%
Other Nonwhite Race (1 =yes, 0 =no) 3% 3%
Gender (1 =female, 0 =male) 53% 52%
Mother graduated high school (0 =no, 1 =yes or missing) 80% 79%
Mother graduated college (0 =no or missing, 1 = yes) 27% 30%
Cable or satellite TV at home (1 =yes, 0 =no) 77% 77%
/Hours of TV on a weekday 25 25
~Hours of TV on a weekend 26 26
Music TV per month (e.g., MTV)

0=never,...,3=15 to 30 days/month 2.1 2.0
Sports channel per month (e.g., ESPN)

0=never,...,3=15 to 30 days/month 1.0 1.1
Music, dance, or theater (1 =yes, 0= no) 72% 68%
Athletic teams or sports (1 =yes, 0= no) 79% 77%
Clubs (e.g., Girl Scouts) (1 =yes, 0 =no) 46% 46%
Religious youth groups (1 =yes, 0 =no) 51% 48%
Other activities (1 =yes, 0 =no) 65% 65%
Ever smoked cigarettes

(0=never,...,4 =yes in the last 30 days) 13 1.2
Ever used marijuana (1 =yes, 0 =no) 40% 39%
Marijuana, last 12 months

(0=never,...,6 =40 or more times) 83 .78
Ever used inhalants (1 =yes, 0 =no) 10% 10%
Inhalants, last 12 months

(0=never,...,6 =40 or more times) .096 0.092
Any friends use drugs (1 =yes, 0 =no) 68% 68%

NOTE: Each mean or percentage is based on 260 teens.

too unrepresentative of the nation as a whole to be a basis for
evaluating the media campaign.

All the four questions use the same four point scale: (1) I
definitely will not, (2) Iprobably will not, (3) I probably will,
and (4) Idefinitely will. One question asks: “How likely is it
that you will use marijuana, even once or twice, in the next
12 months?” A second asks: “How likely is it that you will
use marijuana nearly every month for the next 12 months?” A
(1) response to the first question is understood to imply a (1)
response to the second. There are two parallel questions about
inhalants. The same four point scale is used for all questions,
but the questions themselves are very different, so the scale
points mean different things for different questions. Therefore,
in our analysis, scale points for one question are not compared
to scale points for another question; rather, the responses of
different subjects to the same question are compared.

For instance, in the fourth matched pair, the high-dose
teen said “I definitely will not” to all four questions, that is,
(1, 1,1, l). The low-dose teen in this pair said “Iprobably will
not” use marijuana once or twice, “I probably will not” use
marijuana nearly every month, “I probably will” use inhalants
once or twice, “I probably will not” use inhalants nearly
every month, that is, (2, 2,3, 2). The four-variate matched
pair difference for this pair is: (l, 1, 1, 1) - (2, 2,3, 2) =
(—1, -1, =2, —1), so this one pair exhibits the pattern of
intentions hoped for by the designers of the media campaign.

Table 5 describes the matched pair differences in intentions
for the 251 pairs (of 260) with complete data on the inten-
tions. For instance, a zero difference in a pair for “Marijuana

use once or twice” would mean that the high- and low-dose
teen in that pair gave the same response to this question. If
the high dose teen said “I definitely will not” or 1 and the
low dose teen said “I definitely will” or 4, then the differ-
ence would be 1 —4 = —3. Generally, negative values signify
greater intentions to use drugs by the low-dose teen in a pair,
and positive values signify the opposite. The median matched
pair difference is zero for all the four questions, and the four
sets of quartiles are symmetric about zero, with most equal to
zero. Roughly speaking, in half the pairs, the high-dose teen
expressed greater intentions to use drugs than the low-dose
teen and in half the pairs, the opposite was true. There is no
sign that dose is associated with stated intentions. When the

Table 5. Do Matched High- and-Low-Dose Teens Have Different
Intentions About Future Drug Use?

Marijuana 1-2  Marijuana-E Inhalants 1-2  Inhalants-E

Minimum -3 -3 -3 -3
Quartile 1 —1 0 0 0
Median 0 0 0 0
Quartile 3 1 0 0 0
Maximum 3 3 3 3
Deviate 45 —1.06 —.18 1.00

NOTE: Quantiles of 260 matched pair differences, high-minus-low, for four questions, with
deviates for the Wilcoxon-signed rank test. A negative difference in a pair indicates the high-
dose teen stated lower intentions to use drugs than did the low-dose teen. One question (1-2)
asks about use once or twice in the next 12 months, whereas another (every) asks about use
in nearly every month in the next 12 months.
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Wilcoxon signed rank test is applied, using average ranks for
ties, the standardized deviates are all less than 1.1 in abso-
lute value, so none are significant at the .05 level, and two are
positive, whereas a significant negative relationship between
exposure and intentions—that is, a one-sided .05 P-value—
would correspond to a deviate of —1.65.

One might hope to strengthen the test, combining the results
from the four questions by adding the corresponding signed
rank statistics (Rosenbaum 1997). Notice that this combined
test ranks separately for each question and combines the sep-
arately ranked results; it does not assume a common scale
for different questions. It is possible to show that if the treat-
ment affects each outcome in the intended direction, but the
outcomes are imperfectly correlated, then the combined test
may have much more power than each of the individual tests.
Here, however, the standardized deviate for the combined
statistic is .20, far from —1.65. These pilot data are prelimi-
nary in form, unrepresentative of the nation as a whole, and
are used only for illustration of methodology. In this illustra-
tive use of the data, there is no indication that higher doses of
the media campaign were associated with lower intentions for
future drug use when comparable teens are compared.

4. DISCUSSION

A single group of 521 teens receiving varied doses of expo-
sure to a media campaign was matched to form 260 high
dose—low dose pairs. The pairs balanced 22 covariates, but
within the pairs the doses were quite different. The approach
combined a recent proposal of Joffe and Rosenbaum (1999)
for propensity scores with doses and an algorithm for optimal
nonbipartite matching due to Derigs (1988) in which a single
group is optimally divided into pairs.

In this study, there was little or no indication of a treat-
ment effect. Had evidence of an effect been found, additional
analyses would be interesting. For instance, in an observa-
tional or nonrandomized comparison, such as this one, there is
typically the concern that an ostensible treatment effect may,
in fact, reflect a hidden bias due to an unobserved covariate
that was not controlled by matching. This possibility is par-
tially clarified by sensitivity analysis, and a method of sen-
sitivity analysis for matched data with doses is discussed by
Gastwirth, Krieger, and Rosenbaum (1998). The signed rank
statistic may be altered to incorporate dose information, (see
Rosenbaum 1997). If there were evidence of an effect, then
one might wish to model its relationship with dose, possi-
bly with effect proportional to dose for each outcome, leading
to estimates and confidence intervals for the proportionality
constants. For instance, matched pair differences in responses
might be regressed on matched pair differences in doses,
perhaps with additional adjustments for imperfectly matched
observed covariates. Alternatively, one could, of course, take
a less structured approach, estimating separate effects for the
five dose categories. The multivariate signed rank statistic
in Section 3.3 and its associated sensitivity analysis may be
used in equivalence testing; in this case, the null hypothe-
sis asserts a substantial treatment effect and in the alternative
asserts there is little or no effect, (see e.g., Li, Propert, and
Rosenbaum 2001).
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The matching procedure may be used in several other ways.
As discussed in Section 2.5, the procedure may be used to
select matched high-dose/low-dose pairs from a large reser-
voir when costly additional information is to be obtained from
the selected individuals. Unlike most other methods of adjust-
ment, matching permits quantitative and ethnographic meth-
ods to work in mutual support (Rosenbaum and Silber 2001).
Matching may be combined with covariance adjustment of
matched pair differences to improve robustness to misspecifi-
cation of the covariance model, in parallel with the method of
Rubin (1979).

APPENDIX: EQUAL PERCENT BIAS REDUCTION
WHEN MATCHING WITH DOSES

This appendix provides some theoretical motivation for the form
of the distance (1) using the concept of equal percent bias reduction.
Matched sampling is often used when covariate and treatment infor-
mation is available for a large reservoir of subjects, but responses
will be obtained later at significant cost only for matched subjects. In
this situation, response information is not available when the match-
ing is performed, so one intends the matching to reduce bias due
to observed covariates X no matter what relationship is later found
between the responses and the covariates. Consider a simple case, in
which the response R, has a linear regression on the dose, Z;, and
the covariates, x;

E(R¢|Zi. x,) = a+BZ, +0"x,,

where B describes the relationship between dose of treatment and
response, and 0 is an unknown vector parameter. One would like
to match on covariates x, in such a way that the matching tends
to reduce bias in estimating B no matter what @ turns out to be,
because there is no information on responses R, to estimate 0 at
the time the matching is performed. Obviously, exact matching on x
would remove all of the bias due to x no matter what 0 is, but exact
matching is often impossible when x is of high dimension. The ith
imperfectly matched pair formed using Z and x yields an estimate of
B, namely the slope (Ri1 —R,-Z)/(Z,-1 —Z,-z), with Z;, > Z,,, and this
estimate has bias

E<Ri1 —R;
Zy—Zy,

X —X;
Zo Zo Xy, X | — B =07 2122 ),
il i2> Xil X12> :8 (Zil _Ziz

Rubin (1976) considered the case of treatment/control bipartite
matching, so Z;; = 1 and Z;, = 0, and the bias is simply 0T (x,-1 —x,-z).
He defined a matching method to be an equal percent bias reduc-
ing if the matching reduced bias in every coordinate of the vector x
by the same percentage, say i, so that the percent bias reduction in
or (x,-1 - x,-z) is also ¢ for every 0. Moreover, he observed that if a
matching method is not an equal percent bias reducing, then there
exists a possible value of 0 such that the bias is actually increased. In
other words, if a matching method is not an equal percent bias reduc-
ing, then we may be making the bias smaller for each coordinate of
x, and yet the bias in 07x will increase for some 0. If b(x) is a scalar
balancing score, and if the expectation of x given b(x) is linear, so
that E{x | b(x)} = @+ Ab(x) for some vectors a and X, then Rosen-
baum and Rubin (1983) showed that treated/control matching on the
balancing score b(x) is an equal percent bias reducing: making pairs
more similar in b(x) ensures they are more similar in 07x for every
0. A somewhat similar result holds for matching with doses, as we
now demonstrate.

If b(x) is a balancing score, so that Pr{x|Z, b(x)} = Pr{x|b(x)},
and the pair is imperfectly matched using just Z and b(x), then the
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expected bias is

Ry — R
E<Zii — Z; Z\, Ziy, b(xyy), b(xi2)> -B
X —X;
= E{ﬂ(ﬁ) ‘Z Zi2, b(x1), b(x,a)}

=T E{x; | Z;, b(x;)} — E{x, | Z, b(x)}
Zy—Z,

(A.1)

— 0T|:E{Xil | b(xi)} — E{xi, | b(xiz)}i|
Zil _Ziz ’

providing the relevant expectations exist. Now if E{x | b(x)} = @+
Ab(x) where b(x) is a scalar, then (A.1) equals:

T {m+Ab(x;)} —{w+Ab(x,)} _ (nT b(x;;) —b(x;,)
0 |: 1Zil_Ziz 2 i|_(0 )\)|: Zlil_ZiZ 2 i|

so the absolute bias is made smaller for every @ by making |{b(x;,) —
b(x,)}/(Z;, — Z;,)| smaller. This motivates the distance (1).

[Received October 2000. Revised August 2001.]
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