
O. Chum and J. Matas: Matching with PROSAC – Progressive Sample Consensus; CVPR 2005

Matching with PROSAC – Progressive Sample Consensus

Ondřej Chum Jiřı́ Matas

Center for Machine Perception

Department of Cybernetics

Czech Technical University in Prague, Czech Republic

Abstract

A new robust matching method is proposed. The Progres-

sive Sample Consensus (PROSAC) algorithm exploits the

linear ordering defined on the set of correspondences by a

similarity function used in establishing tentative correspon-

dences. Unlike RANSAC, which treats all correspondences

equally and draws random samples uniformly from the full

set, PROSAC samples are drawn from progressively larger

sets of top-ranked correspondences.

Under the mild assumption that the similarity measure

predicts correctness of a match better than random guess-

ing, we show that PROSAC achieves large computational

savings. Experiments demonstrate it is often significantly

faster (up to more than hundred times) than RANSAC.

For the derived size of the sampled set of correspon-

dences as a function of the number of samples already

drawn, PROSAC converges towards RANSAC in the worst

case. The power of the method is demonstrated on wide-

baseline matching problems.

1. Introduction

Finding1 reliable correspondences in two or more images is

a difficult and critical step in many computer vision prob-

lems such as narrow and wide-baseline stereo matching

[10, 17, 11, 7, 6] structure and motion estimation [8, 14],

image retrieval, and object recognition [12].

It is generally accepted that incorrect matches cannot be

avoided in the first stage of the matching process where

only local image descriptors are compared. The mis-

matches, due to phenomena like occlusions, depth discon-

tinuities and repetitive patterns, are detected and removed

by robust methods that search for sets of matches consis-

tent with some global constraint. Random sample consen-

sus RANSAC [3] and similar robust hypothesize-and-verify

methods [15, 14] have become the methods of choice for

outlier removal.

1The authors were supported by the Czech Science Foundation un-

der project GACR 102/03/0440 and by the European Commission under

project IST-004176.

Figure 1: The Great Wall image pair with an occlusion.

Given 250 tentative correspondences as input, both PROSAC

and RANSAC found 57 correct correspondences (inliers).

To estimate the epipolar geometry, RANSAC tested 106,534

seven-tuples of correspondences in 10.76 seconds while

PROSAC tested only 9 seven-tuples in 0.06 sec (on average,

over hundred runs). Inlier correspondences are marked by a

line segment joining the corresponding points.

Standard RANSAC does not model the local matching

process. It is viewed as a black box that generates N ten-

tative correspondences, i.e. the error-prone matches estab-

lished by comparing local descriptors. The set U of tentative

correspondences contains an a priori unknown number I of
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correct matches (inliers). The inliers are consistent with a

global geometric model that is found by fitting a model to

a randomly selected subset of U . The hypothesize-and-test

loop is terminated when the probability of finding a superior

solution falls below a pre-selected threshold. The time com-

plexity of RANSAC depends on N , I , and the complexity m
of the geometric model. The average number of samples

drawn is proportional to (N/I)m [4].

In this paper, we introduce a new hypothesize-and-verify

(sample-and-test) matching approach called PROSAC (PRO-

gressive SAmple Consensus). The method achieves large

computational savings (with speed-up factors of the order of

102 compared to RANSAC) by exploiting the linear ordering

structure of U . The ordering is defined at least implicitly in

all commonly used local matching methods, because the set

of tentative correspondences is obtained by first evaluating

a real-valued similarity function (or “quality”) q(·) that is

subsequently thresholded to obtain the N correspondences.

Correlation of intensities around points of interest [18], Ma-

halanobis distance of invariant descriptors [17] or the ratio

of distances in the SIFT space of the first to second nearest

neighbor [5] are commonly used examples of q(·).

In PROSAC, samples are semi-randomly drawn from pro-

gressively larger sets of tentative correspondences. The

improvement in efficiency rests on the mild assumption

that tentative correspondences with high similarity are more

likely to be inliers. More precisely, we assume that the or-

dering defined by the similarity used during the formation

of tentative matches is not worse than random ordering. The

assumption was found valid in our experiments, for all qual-

ity function and for all tested image pairs. Experiments

presented in Section 3 demonstrate that the fraction of in-

liers among the top n sorted correspondences falls off fairly

rapidly and consequently PROSAC is orders of magnitude

faster than the worst-case prediction.

The PROSAC process is in principle simple, but to fully

specify it, two problems must be addressed. First, the

growth function n = g(t) that defines the set Un of n top-

ranked correspondences that is sampled after t trials must

be selected. Second, a stopping criterion giving guarantees

similar to RANSAC about the optimality of the obtained so-

lution must be found. We propose a growth function g(t)
guaranteeing that PROSAC is at least equally likely to find

the optimal solution as RANSAC. However, we have not

been able to prove analytically that PROSAC and RANSAC

have the same performance for the worst-case situation, i.e.

when the correspondences are ordered randomly. Neverthe-

less, the comparison of PROSAC and RANSAC on randomly

ordered sets of correspondences showed that their perfor-

mance was effectively identical.

The PROSAC algorithm has two other desirable features.

The size N of the set of tentative correspondences has lim-

ited influence on its speed, since the solution is typically

found early, when samples are taken from a smaller set.

One parameter of the matching process is thus effectively

removed. Instead, the user controls the behavior of PROSAC

by specifying the time when the sampling distribution of

PROSAC and RANSAC become identical. For the growth

function g(t) selected according to the above-mentioned

criteria, PROSAC can be interpreted as a process running

RANSAC processes in parallel for all Un, n ∈ {m . . . N}.

In experiments presented in Section 3, PROSAC speed was

close to that of RANSAC that would operate on (the a pri-

ori unknown) set of correspondences with the highest inlier

ratio.

Related work. Tordoff and Murray [14] combine the

MLESAC [15] algorithm with non-uniform (guided) sam-

pling of correspondences. This is the published work clos-

est to PROSAC, that differs in two important aspects. First,

guided sampling requires estimates of the probability of

correctness of individual correspondences while here we

only assume that some quantity monotonically related to

the probability is available. Second, PROSAC dynamically

adapts the sampling strategy to the information revealed

by the sampling process itself. The hypothesize-and-verify

loop is a series of incorrect guesses until the first success.

Each failure decreases the likelihood that the correspon-

dences used to estimate the model parameters are correct.

Gradually, the observed evidence against a priori preferred

correspondences should result in the reduction of their pref-

erence. PROSAC can be viewed as an instance of a process

that starts by deterministically testing the most promising

hypotheses and than converging to uniform sampling as the

confidence in the “quality” of the a priori sorting declines

after unsuccessful tests.

The objective of PROSAC is to find inliers in the set of

all tentative correspondences UN in the shortest possible

time and to guarantee, with a certain probability, that all

inliers from UN are found. Issues related to the precision

of the model that is computed from the set of inliers are not

discussed since they are not directly related to the problem

of efficient sampling. Bundle adjustment [16] can be per-

formed ex post.

1.1. Notation

The set of N data points (tentative correspondences) is de-

noted as UN . The data points in UN are sorted in descending

order with respect to the quality function q

ui,uj ∈ UN : i < j ⇒ q(ui) ≥ q(uj).

A set of n data points with the highest quality is denoted Un.

A sample M is a subset of data points M ⊂ UN , |M| = m
where m is the size (cardinality) of the sample. The quality

function on samples is defined as the lowest quality of a data
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point included in the sample

q(M) = min
ui∈M

q(ui).

2. Algorithm

The structure of the PROSAC algorithm is similar to

RANSAC. First, hypotheses are generated by random sam-

pling. The samples, unlike in RANSAC, are not drawn form

all data, but from a subset of the data with the highest qual-

ity. The size of the hypothesis generation set is gradually

increased. The samples that are more likely to be uncon-

taminated are therefore examined early. In fact, PROSAC

is designed to draw the same samples as RANSAC, only in

a different order. The hypotheses are verified against all

data. As in RANSAC, the algorithm is terminated when the

probability of the existence of solution that would be better

than the best so far becomes low (smaller than 5%). Two

important issues, the choice of the size of the hypothesis

generation set and the termination criterion of the sampling

process, are discussed below.

2.1. The growth function and sampling

The design of the growth function defining the Un must find

a balance between the over-optimistic reliance on the pre-

sorting by the quality and the over-pessimistic RANSAC ap-

proach that treats all correspondences equally. If the prob-

abilities P{ui} = P{correspondence ui is correct} were

known, it would be in principle possible to adopt a Bayesian

approach. After each sample-and-test cycle, the posterior

probability would be re-computed for all correspondences

included in the sample. The correspondences would be

sorted by their posterior probabilities and samples with the

highest probability would be drawn. We pursued this line

of research, but abandoned it for two reasons. Firstly, prob-

abilities P{ui} of correspondences tested are not indepen-

dent after a test and it is not feasible to represent the joint

probability for all but the simplest models. Secondly, errors

in estimates of P{ui} propagate through the Bayes formula

and are accentuated. So if the initial estimate of P{ui}
based on the similarity of the correspondence is incorrect,

the posterior probability becomes worthless soon.

The alternative, pursued here, is to make minimal as-

sumptions about the link between P{ui} and the similarity

function q(uj). In particular, we assume monotonicity, i.e.

q(ui) ≥ q(uj) ⇒ P{ui} ≥ P{uj}. (1)

Sequences of correspondences satisfying

i < j ⇒ P{ui} ≥ P{uj} (2)

will be called not-worse-than-random.

Note that we are searching for a single growth function.

It seems possible to adapt the growth function to reflect

the result of previous sample-and-test cycles. However, all

PROSAC (and RANSAC) runs are alike: a sequence of fail-

ures followed by a ‘hit’ due to an all-inlier sample. The

history of the sampling process is thus fully captured by t,
the number of tests carried so far.

The sampling strategy. Imagine standard RANSAC

drawing TN samples of size m out of N data points. Let

{Mi}
TN

i=1 denote the sequence of samples Mi ⊂ UN that

are uniformly dawn by RANSAC, and let {M(i)}
TN

i=1 be se-

quence of the same samples sorted in descending order ac-

cording to the sample quality

i < j ⇒ q(M(i)) ≥ q(M(j)).

If the samples are taken in order M(i), the samples that

are more likely to be uncontaminated are drawn earlier.

Progressively, samples containing data points with lower

quality function are drawn. After TN samples, exactly all

RANSAC samples {Mi}
TN

i=1 were drawn.

Let Tn be an average number of samples from {Mi}
TN

i=1

that contain data points from Un only

Tn = TN

(

n

m

)

(

N

m

) = TN

m−1
∏

i=0

n − i

N − i
, then

Tn+1

Tn

=
TN

TN

m−1
∏

i=0

n + 1 − i

N − i

m−1
∏

i=0

N − i

n − i
=

n + 1

n + 1 − m
.

Finally, the recurrent relation for Tn+1 is

Tn+1 =
n + 1

n + 1 − m
Tn. (3)

There are Tn samples containing only data points from

Un and Tn+1 samples containing only data points from

Un+1. Since Un+1 = Un ∪ {un+1}, there are Tn+1 − Tn

samples that contain a data point un+1 and m − 1 data

points drawn from Un. Therefore, the procedure that for

n = m . . .N draws Tn+1−Tn samples consisting of a data

point un+1 and m−1 data points drawn from Un at random

efficiently generates samples M(i).

As the values of Tn are not integer in general, we define

T ′
m = 1 and

T ′
n+1 = T ′

n + ⌈Tn+1 − Tn⌉. (4)

The growth function is then defined as

g(t) = min{n : T ′
n ≥ t}. (5)

In PROSAC, the t-th sample Mt consists of

Mt = {ug(t)} ∪M′
t, (6)
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where M′
t ⊂ Ug(t)−1 is a set of |M′

t| = m − 1 data

points drawn from Ug(t)−1 at random. The parameter TN

defines after how many samples the behavior of PROSAC

and RANSAC becomes identical. In our experiments, the

parameter was set to TN = 200000.

t := 0, n := m, n∗ := N
Repeat until a solution satisfying eqs. (12), (9) is

found.

1. Choice of the hypothesis generation set

t := t + 1
if (t = T ′

n) & (n < n∗) then n := n + 1 (see eqn. 4)

2. Semi-random sample Mt of size m
if T ′

n < t then

The sample contains m−1 points selected from Un−1

at random and un

else

Select m points form Un at random

3. Model parameter estimation

Compute model parameters pt from the sample Mt

4. Model verification

Find support (i.e. consistent data points) of the model

with parameters pt

Select termination length n∗ if possible according to

Section 2.2

Algorithm 1: Outline of the PROSAC algorithm.

2.2. Stopping criterion

The PROSAC algorithm terminates if the number of inliers

In∗ within the set Un∗ satisfies the following conditions:

• non-randomness – the probability that In∗ out of n∗

data points are by chance inliers to an arbitrary incor-

rect model is smaller than Ψ (typically set to 5%)

• maximality – the probability that a solution with more

than In∗ inliers in Un∗ exists and was not found after

k samples is smaller than η
0

(typically set to 5%).

From all such solutions the one that causes the termination

first is chosen.

The non-randomness requirement prevents PROSAC

from selecting a solution supported by outliers that are

by chance consistent with it. The constraint is typically

checked ex-post in standard approaches [1]. The distribu-

tion of the cardinalities of sets of random ‘inliers’ is bino-

mial

PR
n (i) = βi−m(1 − β)n− i + m

(

n − m

i − m

)

, (7)

where β is the probability, that an incorrect model calcu-

lated from a random sample containing an outlier is sup-

ported by a correspondence not included in the sample.

We set β pessimistically based on geometric considera-

tions. If needed, the estimate of β can be made more precise

during the sampling of PROSAC.

For each n, the minimal number of inliers Imin
n is cal-

culated so that the probability of size of such support being

random is smaller than Ψ

Imin
n = min{j :

n
∑

i=j

PR
n (i) < Ψ}. (8)

A non-random solution found on Un∗ must satisfy

In∗ ≥ Imin
n∗ . (9)

A maximality constraint defines how many samples are

needed to be drawn to ensure the confidence in the solution

and is the (only) termination criterion of RANSAC [4].

For a hypothesis generation set Un, the probability PIn

that an uncontaminated sample of size m is randomly se-

lected from a set Un of n correspondences is

PIn
=

(

In

m

)

(

n

m

) =
m−1
∏

j=0

In − j

n − j
≈ εm

n , (10)

where In is the number of inliers in Un and εn = In/n is

the fraction of inliers. The probability η of missing a set

of inliers of the size In on the set Un after k samples of

PROSAC, where g(k) ≤ n, is

η = (1 − PIn
)k. (11)

The number of samples that have to be drawn to ensure the

probability η falls under the predefined threshold η
0

is

kn∗(η0
) ≥ log(η

0
)/ log(1 − PIn∗

). (12)

The termination length n∗ is chosen to minimize kn∗(η0
)

subject to In∗ ≥ Imin
n∗ .

3. Experiments

The not-worse-than-random assumption about the order-

ing of correspondences was tested for two different similar-

ity functions.

Matching based on SIFT descriptors [5] was used to ob-

tain tentative correspondences in PLANT and MUG experi-

ments2. The similarity was defined as the ratio of the dis-

tances in the SIFT space of the best and second match.

The threshold for the similarity is set to 0.8 as suggested

in [5]. This setting has been shown experimentally [5, 13]

to provide a high fraction of inliers in the tentative corre-

spondences. However, this thresholding also leads to small

absolute number of tentative correspondences.

2The code was kindly provided by David Lowe, UBC, Vancouver,

Canada.
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Figure 2: The fraction of inliers ε among top n correspondences sorted by quality for the GREAT WALL (left), MUG back-

ground (center) and MUG foreground (right) scenes. The circles mark the (average) size of the largest set of correspondences

that PROSAC sampled, i.e. the size it sampled when it stopped. The circles are close to the optimal stopping size.

Figure 3: The PLANT scene. Depth discontinuities, self-

occlusions and repetitive patterns reduce the probability that

a correspondence with high quality (similarity) is indeed an

inlier. RANSAC fails to estimate epipolar geometry on this

image pair.

In the GREAT WALL experiment, the Euclidean distance

of the first fifteen Discrete Cosine Transform (DCT) coef-

ficients was used as a similarity function [9, 2]. The DCT

was computed on normalized, affine invariantly detected,

parallelograms. As tentative correspondences, points with

mutually best similarity were selected.

Figures 2 and 4 show the dependence of the fraction of

inliers ε on the order of a tentative correspondence induced

by the similarity function. In all experiments, regardless of

the similarity function used, the assumption of not-worse-

than-random ordering held. The fraction of inliers ε de-

creased almost monotonically as a function of the number

of tentative correspondences n.

Comparison of efficiency. The number of samples

drawn by RANSAC and PROSAC as well as wall clock time

of both algorithms were measured on three scenes.

For the GREAT WALL scene (Fig. 1) both PROSAC

and RANSAC algorithms found 57 inliers among the 250

tentative correspondences. RANSAC needed on average

(over hundred runs) 106,534 samples which took 10.76 sec.

PROSAC estimated the 57-inlier epipolar geometry after 9

samples (0.06 sec) on average.

The PLANT scene is challenging due to a large num-

ber of depth discontinuities and the presence of both repet-

itive (floor) and locally similar (leafs) patterns. Tentative

ε
n
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0.6
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n

Figure 4: The dependence of the fraction of inliers ε on the

ordering by the SIFT similarity on the PLANT scene. The

first 30 correspondences have similarity below the threshold

0.8. The circle shows the optimal stopping length n∗ chosen

by PROSAC.

correspondences are obtained by SIFT matching [5] com-

puted on MSERs [6]. For the 0.8 threshold, the tentative

correspondences include only 12 inliers. The epipolar ge-

ometry could not be estimated reliably by either RANSAC

or PROSAC. When the SIFT threshold was set to 0.95, there

were N = 559 tentative correspondences and I = 51 in-

liers. In this case, RANSAC fails due to low fraction of in-

liers ε = 9.2%; on average, RANSAC would need 8.43 · 107

samples to find the solution, which is not realistic. PROSAC,

on the other hand, found all the inliers and estimated the

correct epipolar geometry after 3,576 samples in 0.76 sec

on average (over 100 execution).

The MUG scene, (Fig. 5) is non-rigid. The mug moved

between the acquisition of the two images. Tentative corre-

spondences were obtained matching MSER [6] and affine-

invariant [7] regions using SIFT descriptors. First, epipolar

geometry was estimated on all tentative correspondences.

Then, inliers to the first epipolar geometry were removed

and another EG was estimated to segment the motion in the

scene. The results are summarized in Tab. 1.

In the Fig. 2, the dependency of ε on the ordering is

shown for the background segmentation (center) and the

foreground (the mug) segmentation (right). All the correct

correspondences on the mug are outliers to the background
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Figure 5: Motion segmentation. The motion of the background and the foreground (the mug) are denoted by light and black

lines respectively.

Background N = 783, ε = 79%
I k time [sec]

PROSAC 617 1.0 0.33

RANSAC 617 15 1.10

Mug N = 166, ε = 31%
I k time [sec]

PROSAC 51.6 18 0.12

RANSAC 52.3 10,551 0.96

Table 1: The number of inliers (I) detected, samples (k) and

the time needed in the motion estimation of the background

(top) and the foreground (bottom) in the MUG experiment.

k min k max k time [sec]

RANSAC 106,534 97,702 126,069 10.76

PROSAC 9 5 29 0.06

PROSAC OR 61,263 1,465 110,727 6.28

Table 2: The comparison of the number of samples drawn

by RANSAC, PROSAC, and PROSAC with random ordering

on the GREAT WALL experiment. The values of k are aver-

age, minimum, and maximum over 100 runs respectively.

motion while having high similarity score. This can be ob-

served in Fig. 2(center) as dips in the plot. This also shows

that the probability of a correspondence being an inlier to a

given geometric model depends on other factors besides the

similarity of local descriptors.

Testing robustness to the worst case situation, i.e. to

random ordering of tentative correspondences. To compare

RANSAC and PROSAC in the least favorable situation for

PROSAC, an experiment was carried out on sequences of

randomly permuted correspondences. The 250 correspon-

0 50 100 150 200 250
0

5

10

15

Figure 6: Histogram of the stopping length n∗ of PROSAC

for 100 random orderings in the GREAT WALL scene.

dences from the GREAT WALL experiment were used. For

PROSAC, the average number of samples taken over 100 dif-

ferent random permutations was 61, 263 (standard deviation

2.94 · 104). The number of samples ranged from 1, 465 to

110, 727. For RANSAC, the average and standard deviation

were 130, 419 and 6.55 · 103 respectively. The results, to-

gether with results of PROSAC on tentative correspondences

sorted by the similarity function are shown in Tab. 2.

PROSAC drew less samples and was faster than RANSAC

in this experiment. The difference in the average num-

ber of samples can be attributed to the fact that even in a

randomly permuted sequence there are sub-sequences with

higher than average inlier fractions, allowing PROSAC to

terminate earlier. The histogram of PROSAC termination

lengths n∗ is plotted in Fig. 6. Only a fraction of PROSAC

executions were terminated on the full set of the tentative

correspondences, where RANSAC is terminated. However,

the maximal number of samples drawn are comparable for

PROSAC and RANSAC, i.e. in the worst case PROSAC be-

haves as RANSAC.

The stopping criterion. In all experiments, the optimal

stopping length n∗ calculated ex-post was identical with the
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length automatically selected by PROSAC. The values of n∗

are depicted in Figs 2 and 4 as circles.

4. Conclusions

PROSAC – a novel robust estimator of the hypothesize-and-

verify type was introduced. The PROSAC algorithm ex-

ploits the ordering structure of the set of tentative corre-

spondences, assuming that the ordering by similarity com-

puted on local descriptors is better than random. The as-

sumption held in all our experiment for both quality mea-

sures that were tested.

The sampling on progressively larger subsets consisting

of top-ranked correspondences brings very significant com-

putational savings. In comparison to RANSAC, PROSAC was

more than hundred time faster on non-trivial problems. Us-

ing synthetically generated sequences of correspondences,

we showed that the worst-case behavior of PROSAC and

RANSAC are effectively identical.

PROSAC removes one parameter of the matching pro-

cess – the threshold on the similarity function for selec-

tion of tentative correspondences. Thus robustness against

either having too few correspondences or a large number

of tentative correspondences with high outlier percentage is

achieved. In one tested problem, PROSAC found a solution

of the matching problem that cannot be solved by RANSAC.
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