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ABSTRACT 
As the sheer volume of data increases, an increase in the need to link people or places or products from one data 
source to another has followed, particularly in the healthcare field.  Unfortunately, as the number of available data 
sources has sharply increased, the use of “unique” identifiers has not.  Further, what constitutes a unique identifier in 
one data set may have no relationship with a unique identifier in another.  This paper introduces the concept of fuzzy 
matching, which is a technique to link people (or other entities) across data sources when there are no unique 
identifiers available.  Fuzzy matching typically utilizes numerous fields which combine to create approximate matches 
which then must be evaluated.  Issues and examples related to the techniques and difficulties in implementing a fuzzy 
matching algorithm using SAS® software are presented, including data integrity issues, processing efficiency, 
blocking, and distance measures.  

INTRODUCTION 
Developing an effective and efficient fuzzy matching process can appear to be a daunting task.  The very nature of 
the problem makes its development, for lack of a better word, fuzzy.  Additionally, the sheer size of the data involved 
in most fuzzy matching applications tend to further confound the issue.  While a paper such as this cannot hope to 
provide step-by-step directions for developing your own fuzzy matching process, it does outline some of the important 
issues to consider before building as well as provide tips and useful concepts for the SAS® programming itself. 

WHY FUZZY MATCHING? 
In today’s data driven frenzy, it is often necessary to link people from one database to people in another database 
where there are no unique identifiers to link the people with.  For example, one may wish to link the patient records 
from Hospital A to the patient records from Hospital B.  This seems simple enough until you notice that Hospital A’s 
patient ID number has no relation to the ID numbers that Hospital B uses.  Fortunately, there are lots of other data 
fields available for each person that do not depend on the hospital, such as patient name, date of birth, social security 
number, etc.  However, these fields do not necessarily construe a unique patient identifier – social security numbers 
are often not reported, names can be changed, abbreviated, or spelled differently, and there are typically a host of 
data entry errors.  Data quality issues aside, it is entirely possible for someone to have identical values in each of 
these fields and still not be the same person. 
 
Fuzzy matching techniques help to automate the process of linking people based on some measure of “closeness” 
when unique identifiers are not available.  One of the most difficult aspects of developing a fuzzy matching algorithm 
is finding a way to make the machine “think” in a way that mimics the human decision making process.   Consider the 
following example: 
 

Record First Name Last Name Date of Birth SSN 
1 Mary Hernandez 12/24/1957 123-45-6789 
2 Mary Hernandes 12/04/1957  
3 Ixbar Zhyputin 07/19/1991 555-12-1212 
4 Ixbar Zhyputini 07/09/1991  

  
We see that the two pairs of potential matches have similar characteristics, as the last names differ by only one letter, 
the dates of birth differ by just one number, and each pair of matches is missing a social security number.  However, 
a person reviewing these records manually would tend to match the two “Ixbar”s but not the two “Mary”s, based solely 
on the fact that the name Ixbar Zyputin is far less common than Mary Hernandez.  There are many other similar 
issues to consider when automating these types of decisions. 

DESIGN CONSIDERATIONS 
As with any project of this scale, it is important to make some assessments and do some planning before jumping into 
the code writing.  
 
There are several things to consider when contemplating how you should develop your fuzzy matching application.  
There of course exist software products that one can purchase “off-the-shelf”, but these tend to be inflexible and may 
not be well suited for your particular application.  Outside of this, a custom fuzzy matching application that matches 
your needs can be as elaborate or non-elaborate as you like.  With sufficient time and SAS programming skill 
available, you can develop a fully automated and nearly perfectly accurate application that requires merely pushing a 
button and watching the programs run.  On the other hand, a rudimentary system that merely matches the “obvious” 
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records and outputs the rest for manual review are much simpler to develop, but of course require far more time and 
effort to use.  Typically, some sort of compromise is reached, and I have found that developing a system that is 
almost fully automated but that still requires some manual review of a very small percentage of the matches is the 
optimal approach. 

TIPS FOR BUILDING A FUZZY MATCHING SYSTEM 
While the actual implementation can vary greatly, there are three primary steps of any fuzzy matching system.  The 
first step involves linking each record in data set A to each record (or each reasonable record) in data set B.   Within 
each of these comparisons, the second step is then to compare the values of each of the relevant fields between the 
two.  The third and final step is actually making the decision as to whether the two records should be considered a 
match based on the evidence available.  There are many ways to accomplish these steps, and it would be impossible 
to provide a step-by-step guide; however, the following tips should greatly assist you in the development of a fuzzy 
matching system that will meet your specific needs. 

DATA QUALITY 
Anybody who has attempted to develop a fuzzy matching system can attest to the importance of data quality.  The 
more complete and accurate your source data is, the easier it is to match with.  While there is little you can do about 
missing or erroneous data, there are steps one can take to take to improve the data quality.  Ensuring consistent 
formatting, such as capitalization, removal of extraneous characters, and standardization of things such as addresses 
and titles will vastly improve the accuracy of the matching process.  SAS® in fact offers their Data Quality Solution 
package that can automate much of this type of data cleanup, or you can program these rules yourself.   
 
There are, unfortunately, data issues that are not very simple to correct, particularly with names and addresses. 
“Mike” can become “Michael”, and “123 E First Street” can easily be listed as “123 East 1st St.” While the human eye 
can quickly identify these as matches, it is more difficult to automate such a process.  One approach, recommended 
by Charles Partridge, is to “tokenize” such fields to improve consistency.  Such an approach would, for example, 
transform all variants of the name “William” (Will, Bill, William, Billy, etc.) into a single tokenized name. It is also highly 
recommended that you reduce your data elements into the most distinct fields as possible.  For example, it is far more 
effective to separate a name field into a first name, middle name, and last name field.  Otherwise it becomes very 
difficult to compare the two records, as illustrated below: 
 
 

Name Address 
John Q Public 111 E 10th St Phoenix AZ 85000 
Johnny Quincy Public 111 E Tenth Street, Phx, AZ 85001 
JQ Public Phoenix, AZ 85000 

 
 

First Name Middle 
Initial 

Last Name Street City State Zip 

John Q Public 111 E 10th St Phoenix AZ 85000 
Johnny Q Public 111 E Tenth Street Phx AZ 85001 
J Q Public  Phoenix AZ 85000 

 
We see that the act of comparing the records in the first table is extremely cumbersome – to SAS, the string “John Q 
Public” looks much different than the string “JQ Public”.  But, separating this into first, middle, and last names makes 
such comparisons much simpler – it is easy to see that the Last Name and Middle Initial fields match exactly, and that 
the first name is different by only three characters.  Thus SAS would be much more likely to match these records 
when the fields have been separated in this manner.   The address fields are similarly much easier to compare when 
separated into their distinct elements.  This also serves as an excellent way to both identify and work around missing 
values. 
 
Also to be contended with are null entries that have been instead pre-filled with things such as “JOHN DOE” and 
“999-99-9999”.   These can be very difficult to catch, particularly in large datasets, and can lead to grave matching 
errors.  Therefore it is recommended that you create frequency distributions on these fields to help identify over-used 
values.  Again, this is an example of how knowing your data and building your matching process to meet your 
particular needs can vastly improve the accuracy of the resulting matches.  
 
All of these data quality issues can have drastic impacts on the matching results, and thus time invested in correcting 
these before beginning the matching is always time well spent. 
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CHOOSING FIELDS TO COMPARE 
In nearly all fuzzy matching applications, there are multiple fields available to help identify potential matches.  One of 
the difficult design questions that must be addressed is choosing which fields are the most useful to use in your 
comparison.  There is a tendency to want to use every available field under the belief that the more information, the 
better.  If we were dealing with perfect data, this would be true, but one must be wary of fields that can contain 
erroneous data or data elements that can be reported differently at different times.  Two important criteria to consider 
are the field’s discriminatory power and consistency.  A field’s discriminatory power has to do with how well the field 
can discriminate between two records, and consistency refers to how consistently the data is reported across time 
and data sets.  Suppose, for example, that your data sets have the following variables available: 
 

First Name 
Middle Name 
Last Name 
Social Security 
Number 
Age 
Gender 
Race 
Address 
Zip Code 

 
In this example, the first name, last name, and social security number fields are clearly useful fields.  The middle 
name, while potentially very helpful in identifying a person, is useful only if it is consistently captured in both data sets 
– if this field is null most of the time in one dataset, than it will not prove useful.  Age is generally not very useful, 
unless both data sets were collected during almost identical time periods.  Gender, while not providing highly 
identifiable information, is almost always reported correctly, rarely changes, and thus can provide some discriminatory 
information -- if the gender does not match, it is almost certainly not the same person.  Race, on the other hand, can 
be reported differently by the same person at different times, and is often omitted, and thus is usually less useful.  
Fields such as address and zip code can be very useful if the fields are accurately reported, have been well scrubbed, 
and standardized, and the data sets you are matching are from at least similar time periods. 

BLOCKING 
Once the data have been appropriately scrubbed and the data fields have been chosen, one can begin the task of 
comparing all of the records to each other.  The concept is fairly straightforward – compare each record in dataset A 
to each record in dataset B, and then flag all the records that look like reasonable matches.  Unfortunately, such a 
process requires a full Cartesian join, which become of astronomical size with even moderately sized tables (e.g., 
joining just 10,000 records in dataset A to 10,000 records in dataset B would result in a table with 100,000,000 
records).  The technique known as blocking allows one to only attempt to match records that have any reasonable 
chance of being a match.  That is, only those records which have some basic elements in common are compared to 
each other.  A very simple example would be to block on gender and thus only attempt to join records whose gender 
already match. Using the previous example, blocking on gender would potentially result in matching 5,000 males in 
dataset A to the 5,000 males in dataset B and then the 5,000 females in dataset A to the 5,000 females in dataset B, 
resulting in two sets of 250,000 record tables, for a total of 500,000.  Employing additional blocks can more even 
more drastically reduce the number of matching attempts that are made.  However, employing blocks that are 
restrictive will ultimately reduce the accuracy of your matching, as matches that violate your blocking assumptions will 
never even be attempted. 

DISTANCE MEASURES 
Methods for assessing how “close” two potential matches are is an area that is still under some research.  Unless one 
can be assured of perfectly cleaned and tokenized data, one must allow for some amount of variation in two fields that 
could still be considered a match.  For example, names can be abbreviated or spelled incorrectly; digits can be 
transposed on social security numbers and dates of birth, etc.  One must calculate a distance measure that can take 
into account misspellings and transpositions effectively.  A good distance measure should numerically compute how 
different one string is from another by accounting for these spelling errors, transpositions, and truncations. There is a 
variety of distance measures available, including the SPEDIS function in SAS, as well as more advanced measures 
such as Euclidian or Hamming distances.  Also invaluable are tools which can transform proper names into their 
phonetic equivalent, such as the SOUNDEX function available in SAS® as well as more sophisticated phonetic 
algorithms that can be programmed.  

ACCURACY AND DECISION MAKING 
Improving and tuning the accuracy of the resultant matches is often a matter of trial and error as well as just 
continued process improvement.  When performing fuzzy matching using several fields at once, it is usually desirable 
to assign greater weight to certain fields matching than others.  For example, a matching zip code and date of birth 
between two people is not very strong evidence of a match, while a matching social security number is very strong 
evidence.  Thus, a certain amount of tinkering is required to determine the optimal weights for each field comparison 
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that suits your particular data and application.  Also of importance is developing a way to weed out false matches 
resulting from either bad data or common names.  There are a variety of resources available that discuss these 
approaches in greater detail.   Above all, it is strongly recommended that you test your algorithm thoroughly using test 
data and subsets before putting it into production.  

CONCLUSIONS 
Developing your own fuzzy matching system can be a trying and difficult endeavor, but the resultant tool is often 
invaluable for tasks that are becoming increasingly necessary.  Building an accurate, efficient, and easy to use fuzzy 
matching application can vastly improve the way an organization can assimilate and store information. 
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