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MATCHINGS, COVERINGS,
AND CASTELNUOVO-MUMFORD REGULARITY

RUSS WOODROOFE

ABSTRACT. We show that the co-chordal cover number
of a graph G gives an upper bound for the Castelnuovo-
Mumford regularity of the associated edge ideal. Several
known combinatorial upper bounds of regularity for edge
ideals are then easy consequences of covering results from
graph theory, and we derive new upper bounds by looking
at additional covering results.

1. Introduction and background. Let G be a graph with vertex
set {x1, . . . , xn}, and let R = k[x1, . . . , xn] be the polynomial ring over
a field k obtained by associating a variable with each vertex of G. We
consider the edge ideal of G in R, defined as

I(G) = (xixj : {xi, xj} an edge of G).

The Castelnuovo-Mumford regularity of an ideal I, denoted by reg I,
is one of the main measures of the complexity of I. Several recent
papers [13, 19, 29, 30, 32, 34, 37] have related the Castelnuovo-
Mumford regularity of the edge ideal I(G) with various invariants of
the graph G.

The purpose of this paper is to give a new upper bound on reg(R/I(G)),
and to show that this new upper bound generalizes several other re-
cently discovered upper bounds.

A graph G is chordal if every induced cycle in G has length 3 and
is co-chordal if the complement graph G is chordal. It follows from
Fröberg’s classification of edge ideals with linear resolutions [14] that
reg (R/I(G)) ≤ 1 if and only if G is co-chordal. (A direct proof using
the techniques in Section 3 is also straightforward). The co-chordal
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cover number, denoted cochordG, is the minimum number of co-chordal
subgraphs required to cover the edges of G.

Our main result is as follows.

Theorem 1. For any graph G and over any field k, we have
reg (R/I(G)) ≤ cochordG.

We will see the proof to follow almost immediately from a result of
Kalai and Meshulam [22]. Nevertheless, Theorem 1 provides a fun-
damental connection between combinatorics and commutative algebra,
and it will help us give simple and unified proofs of both known and
new upper bounds for the regularity of R/I(G).

A particularly simple condition yielding a co-chordal cover (hence a
bound on regularity) is as follows.

Theorem 2. If G is a graph such that V (G) can be partitioned into
an (induced) independent set J0 together with s cliques J1, . . . , Js, then
reg (R/I(G)) ≤ s.

The following is a recursive version of Theorem 2:

Theorem 3. If G is a graph such that J ⊆ V (G) induces a clique,
then reg (R/I(G)) ≤ reg (R/I(G \ J)) + 1, where G \ J denotes the
induced subgraph on V (G) \ J .

In plain language, Theorem 3 says that deleting a clique lowers
regularity by at most 1. The author hopes that Theorems 2 and 3
may be helpful to practitioners in the field for quickly finding rough
upper estimates of regularity of edge ideals.

The remainder of this paper is organized as follows. In the remainder
of this section we review terminology from graph theory. In Section 2,
we prove Theorem 1. In Section 3, we introduce the equivalent notion of
regularity of a simplicial complex. We then use topological techniques
to calculate regularity of several examples, and more generally, to
obtain lower bounds. In particular, we give a geometric proof of the
well-known fact (Lemma 7) that reg (R/I(G)) is at least the induced
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matching number of G. In Section 4, we combine Theorem 1 with
results from the graph theory literature to prove Theorems 2 and 3.
We recover and extend results of [19, 25], but show that the results of
[27, 34] cannot be proved using this technique.

1.1. Terminology and notation from graph theory. All graphs
discussed in this paper are simple, with no loops or multiedges. We
assume basic familiarity with standard graph theory definitions as in,
e.g., [10, 26], but review some particular terms we will use.

If F is a family of graphs, then an F covering of a graph G is a
collection H1, . . . , Hs of subgraphs of G such that every Hi is in F ,
and such that

⋃
E(Hi) = E(G). Elsewhere in the literature this notion

is sometimes referred to as an F edge covering, to contrast with covers
of the vertices. The F cover number is the smallest size of an F cover.
We will mostly be interested in the case where F is some subfamily of
co-chordal graphs.

An independent set in a graph G is a subset of pairwise non-adjacent
vertices. Similarly, a clique is a subset of pairwise adjacent vertices.
We do not require cliques to be maximal.

A matching in a graph G is a subgraph consisting of pairwise disjoint
edges. If the subgraph is an induced subgraph, the matching is an
induced matching. The graph consisting of a matching with m edges
is denoted as mK2.

The independence number α(G), clique number ω(G) and induced
matching number indmatchG are, respectively, the maximum size of
an independent set, clique or induced matching.

A coloring of G is a partition of the vertices into (induced) inde-
pendent sets (colors), and the chromatic number χ(G) is the smallest
number of colors possible in a coloring of G. A graph G is perfect if
α(H) = χ(H) for every induced subgraph H of G. It is well-known
that the complement of a perfect graph is also perfect.

We denote by Pn the path on n vertices (having edges {x1x2, x2x3, . . .,
xn−1, xn}), and by Cn the cycle on n vertices (having the edges of Pn

together with x1xn).
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2. Proof of Theorem 1. As previously mentioned, Theorem 1 is an
easy consequence of the following deep result by Kalai and Meshulam
[22].

Theorem 4 (Kalai and Meshulam [22, Theorem 1.2]). If I1, . . . , Is
are square-free monomial ideals of a polynomial ring R = k[x1, . . . , xn]
(for some field k), then

reg
(
R
/
(I1 + · · ·+ Is)

)
≤

s∑
j=1

reg (R/Ij).

Remark 5. Theorem 4 was conjectured by Terai [32]. Herzog [21]
later generalized the result to monomial ideals that are not square-free.

Remark 6. Kalai and Meshulam stated [22, Theorem 1.2] in terms of
reg (Ij)’s, rather than reg (R/Ij)’s. Theorem 4 is equivalent since, by
e.g., [28, Theorem 1.34], we have reg I = reg (R/I) + 1.

In the context of edge ideals, Theorem 4 says that if G1, . . . , Gs are
graphs on the same vertex set {x1, . . . , xn}, then

(1) reg

(
R/I

( s⋃
j=1

Gj

))
≤

s∑
j=1

reg (R/I(Gj)).

Proof of Theorem 1. Recall from above that reg (R/I(H)) = 1 if and
only if H is co-chordal with at least one edge. The result then follows
immediately from (1) by considering the case where each R/I(Gj) has
regularity 1.

We comment that (1) can more generally be applied to edge ideals of
clutters (i.e., to square-free monomial ideals with degree > 2), but that
in this case the set of ideals with linear resolution (that is, smallest
possible regularity) is not classified, giving more fragmented results. In
this paper we henceforth restrict ourselves to the case of graphs.

3. Lower bounds and simple examples. Before discussing
applications, it will be convenient to have lower bounds to compare
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with the upper bound of Theorem 1. As we will shortly see that
reg (R/I(H)) ≤ reg (R/I(G)) for every induced subgraphH of G, lower
bounds usually come from examples.

We will compute regularity through Hochster’s formula (see, e.g.,
[28]), which relates local cohomology of the quotient R/I of a square-
free monomial ideal with the simplicial cohomology of the simplicial
complex of non-zero square-free monomials in R/I. We refer to [20]
for basic background on simplicial cohomology, or to [2] for a concise
reference aimed at combinatorics.

The Castelnuovo-Mumford regularity of a simplicial complex Δ over
a field k, denoted by regk Δ, is defined to be the maximum i such that
the reduced homology H̃i−1(Γ; k) �= 0 for some induced subcomplex Γ
of Δ. It is well known to follow from Hochster’s formula (together with
the Betti number characterization of regularity) that regkΔ is equal to
the Castelnuovo-Mumford regularity of the Stanley-Reisner ring of Δ
over k. We remark that complexes with regularity at most d have been
referred to as d-Leray and have been studied in the context of proving
certain Helly-type theorems [22].

In the case of the edge ideal of a graph G, let IndG denote the
independence complex of G, consisting of all independent sets of G. In
this case our above discussion specializes to the relation:

(2) reg
(
k[x1, . . . , xn]

/
I(G)

)
= regk(IndG).

(Note that we write k[x1, . . . , xn] rather than R to emphasize the field
over which we are working.)

In particular, it follows immediately from the definition of regkΔ that
regk(IndH) ≤ regk(IndG) for H an induced subgraph of G. Thus,
for example, finding an induced subgraph of G whose independence
complex is a d-dimensional sphere would show that reg (R/I(G)) =
regk(IndG) ≥ d+ 1.

Such bounds often do not depend on the choice of field k that we
work over, and in such cases we will suppress k from our notation.

Recall that an induced matching in a graph G is a matching which
forms an induced subgraph of G, and that indmatchG denotes the
number of edges in a largest induced matching. Induced matchings
have a considerable literature, see e.g., [1, 5, 6, 11, 16].
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The following is essentially due to Katzman; we will give a short
geometric proof.

Lemma 7 (Katzman [23, Lemma 2.2]). For any graph G, we have
reg (R/I(G)) ≥ indmatchG.

Proof. Let m = indmatchG, so that G has mK2 as an induced
subgraph. Notice that if H is the disjoint union of subgraphs H1 and
H2, then Ind (H) is the simplicial join Ind (H1) ∗ Ind (H2). Thus, the
independence complex of the disjoint union of m edges is the m-fold
join of 0-spheres, hence an (m−1)-sphere. (It is the boundary complex
of an (m− 1)-dimensional cross-polytope.) The result follows.

A more general result follows immediately from the Künneth formula
in algebraic topology [2, (9.12)].

Lemma 8. For any field k and simplicial complexes Δ1 and Δ2, we
have regk(Δ1 ∗Δ2) = regkΔ1 + regkΔ2.

In the context of edge ideal quotients, if G1 and G2 are any two
graphs, then over any field k, for their disjoint union G1 �G2 we have

(3) reg (R/I(G1 �G2)) = reg (R/I(G1)) + reg (R/I(G2)).

Thus, Lemma 7 is the special case where we take the disjoint union of
graphs with a single edge.

Lemmas 1 and 7 admit the simple combined statement that, for any
graph G, we have

(4) indmatchG ≤ reg (R/I(G)) ≤ cochordG.

Both inequalities can be strict, as the interested reader can quickly see
by examination of C5 and C7. Indeed, it follows easily that regularity
can be arbitrarily far from both indmatchG and cochordG:

Proposition 9. For any nonnegative integers r, s there is a graph G
such that

indmatchG =reg (R/I(G))−r and cochordG=reg (R/I(G))+s.
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Proof. Consider r copies of C5 disjoint union with s copies of C7.

Another relevant construction can be found in Lemma 21 and the
discussion following.

More generally, Kozlov calculated the homotopy type of the inde-
pendence complexes of paths and cycles [24, Propositions 4.6 and 5.2],
from which the following is immediate:

Proposition 10. reg (R/I(Cn)) = reg (R/I(Pn)) = �(n+ 1)/3	 for
n ≥ 3.

(Regularity of R/I(Pn) was also calculated in [3] using purely alge-
braic methods.)

It is easy to see that the regularity is equal to the lower bound of
Lemma 7 in the Pn case, and in the Cn case when n �≡ 2 (mod 3); but
that reg (Ind (C3i+2)) = i+ 1 = indmatch (C3i+2) + 1.

Since the graph formed by two disjoint edges is not co-chordal, we
see that cochordal subgraphs of Pn and Cn (for n ≥ 5) are paths with
at most three edges. Thus, regularity is equal to the upper bound of
Theorem 1 in the Pn case, and in the Cn case when n �≡ 1 (mod 3);
but, for i > 1, we have reg (Ind (C3i+1)) = i = cochord (C3i+1)− 1.

By combining Proposition 10 with Lemma 8, we can somewhat
improve the induced matching lower bound of Lemma 7:

Corollary 11. If a graph G has an induced subgraph H which is the
disjoint union of edges and cycles

H ∼= mK2 �
n∐

j=1

C3ij+2,

then reg (R/I(G)) ≥ m+ n+
∑n

j=1 ij.

4. Applications. We can recover, and in some cases improve,
several of the upper bounds for regularity in the combinatorial commu-
tative algebra literature by combining Theorem 1 with covering results
from the graph theory literature. Theorem 1 thus seems to capture
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an essential connection between Castelnuovo-Mumford regularity and
pure graph-theoretic invariants.

4.1. Split covers. Although co-chordal covers per se have not
been a topic of frequent study, there are many results in the graph
theory literature concerning the F -cover number of graphs for various
subfamilies of co-chordal graphs. We will review several of these with
an eye to regularity.

A split graph is a graph H such that V (H) can be partitioned into
a clique and an (induced) independent set. It is easy to see that such
graphs are both chordal and co-chordal; see e.g., [26, Chapter 5] for
additional background. Covering the edges ofG with split graphs allows
us to prove Theorem 2.

Proof of Theorem 2. (Essentially, e.g., [26, Lemma 7.5.2]). Let Hi

be the subgraph consisting of all edges incident to at least one vertex
in Ji. Each Hi can be partitioned as the clique on Ji together with
the independent set V (G) \ V (Ji). Therefore, each Hi is a split graph.
Thus, H1, . . . , Hs is a split graph covering, hence a co-chordal covering.
The result follows by Theorem 1.

To help clarify the meaning of the condition in Theorem 2, we notice
that when J0 = ∅, the sets J1, . . . , Js are exactly an s-coloring of G.

However, the bound reg (R/I(G)) ≤ χ(G) resulting from the J0 = ∅

case of Theorem 2 is trivial. Indeed, this bound follows from the
inequalities χ(G) ≥ α(G) and α(G) ≥ reg (R/I(G)). (The latter
is immediate by Hochster’s formula, as discussed in Section 3, since
α(G) = dim Ind (G) + 1 and H̃i(Δ) always vanishes above dimΔ.)

The proof of Theorem 3 is entirely similar:

Proof of Theorem 3. Let H consist of all edges incident to J . Then H
is a split graph, with E(G) = E(H) ∪E(G \ J), and the result follows
from (1).

We now recall two results of Hà and Van Tuyl, for which we will
give new proofs via Theorem 2. The matching number of a graph G,
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denoted ν(G), is the size of a maximummatching; that is, the maximum
number of pairwise disjoint edges.

Theorem 12 (Hà and Van Tuyl [19, Theorem 6.7]). For any graph
G, we have reg (R/I(G)) ≤ ν(G).

Proof. This is the special case of Theorem 2 where J1, . . . , Js is a
maximum size family of 2-cliques.

An easy (stronger) corollary of Theorem 2 is that reg (R/I(G)) is at
most the size of a minimum maximal matching. Indeed, we can regard
Theorem 2 as it is stated to be a strong generalization of Theorem 12.

We also give a new proof for:

Theorem 13 (Hà and Van Tuyl [19, Corollary 6.9]). If G is a chordal
graph, then reg (R/I(G)) = indmatchG.

Proof of Theorem 13. Cameron [5] observed that a chordal graph
G has split cover number (as in Theorem 2) equal to indmatchG; the
result follows by (4).

4.2. Weakly chordal graphs, and techniques for finding
co-chordal covers. We can considerably extend Theorem 13
by considering more general covers. A graph G is weakly chordal if
every induced cycle in both G and G has length at most 4. (It is
straightforward to show that a chordal graph is weakly chordal.)

Theorem 14. If G is a weakly chordal graph, then reg (R/I(G)) =
indmatchG.

Proof. Busch, Dragan and Sritharan [4, Proposition 3] show that
indmatchG = cochordG for any weakly chordal graph G. (Abueida,
Busch and Sritharan [1, Corollary 1] earlier showed the same result
under the additional assumption that G is bipartite.)

The essential technique introduced in [5] and further developed in
[1, 4] is to examine a derived graph G∗, with vertices corresponding
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to the edges of G, and two edges adjacent unless they form an induced
matching in G. Thus, an independent set of G∗ corresponds to an
induced matching of G. (In graph-theoretic terms, G∗ is the square of
the line graph of G.)

In a weakly chordal [4] (chordal [5], chordal bipartite [1]) graph, these
papers show that

i) G∗ is perfect, so that there is a partition of the vertices of G∗ into
α(G∗) cliques, and

ii) that the subgraph of G corresponding to a maximal clique of G∗

is co-chordal.

The equality of indmatchG and cochordG follows.

We use a modification of this approach to prove Theorem 16 below.

4.3. Biclique and chain graph covers. Following our terminology
from subsection 1.1, the biclique cover number of a graph G is the
minimum number of bicliques (complete bipartite graphs) required to
cover the edges of G. As a complete bipartite graph Km,n is clearly
co-chordal, the biclique cover number is an upper bound for cochordG.
More generally, it is straightforward to show that a bipartite graph G
is co-chordal if and only indmatchG = 1. Bipartite co-chordal graphs
have been called chain graphs.

Recall that a graph is well-covered if every maximal independent set
has the same cardinality. Kumini showed:

Theorem 15 (Kumini [25]). If G is a well-covered bipartite graph,
then reg (R/I(G)) = indmatchG.

We recover Theorem 15 as a corollary of the following chain graph
covering result:

Theorem 16. If G is a well-covered bipartite graph, then indmatchG
= cochordG.

In order to prove Theorem 16, we will need two lemmas. First,
well-covered bipartite graphs have long been known to admit a simple
characterization:
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Lemma 17 (Ravindra [31], Favaron [12]; see also Villarreal [36]).
If G is a well-covered bipartite graph with no isolated vertices, then G
has a perfect matching. Moreover, in every perfect matching M of G,
the neighborhood of any edge in M is complete bipartite.

We will also need the following technical lemma. Two edges are
incident if they share a vertex; in particular, we consider an edge to be
incident to itself.

Lemma 18. Let G be a well-covered bipartite graph and M a perfect
matching in G. Let M0 be a subset of M so that no pair of edges in M0

form an induced matching in G. Then the subgraph H of G consisting
of all edges incident to M0 has indmatchH = 1 and is, in particular,
co-chordal.

Proof. Since the neighborhood of any edge in M is complete bipartite,
it suffices to show that if e is an edge of H and c0 an edge of M0, then e
and c0 do not form a 2K2; that is, that there is some edge of G incident
to both e and c0.

If e ∈ M0, then this is immediate by the hypothesis. Otherwise,
e = {x, y} where y is in some edge c1 = {y, z} ofM0. By the hypothesis
on M , either y or z is in some edge b incident to c0. If y ∈ b, then we
are done. Otherwise, b = {z, w} with w ∈ c0. But then w and x are
both neighbors of c1, hence adjacent by Lemma 17.

Proof of Theorem 16. Assume, without loss of generality, that G has
no isolated vertices, and let M be a perfect matching, as guaranteed
to exist by Lemma 17. We construct a new graph M∗ with vertices
consisting of the edges ofM , and with two vertices adjacent unless they
form an induced matching in G. Thus, M∗ is an induced subgraph of
the graph G∗ from the discussion following Theorem 14.

Any independent set in M∗ still corresponds to an induced matching
of G, so that α(M∗) ≤ indmatchG. On the other hand, if K∗ is a
clique in M∗, then Lemma 18 gives the subgraph of all incident edges
to be co-chordal. Since every edge in G is incident to at least one edge
of M , we get that cochordG ≤ χ(M∗).
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But Kumini shows [25, Discussion 2.8] that the graph obtained from
M∗ by identifying pairs of vertices v and w with N [v] = N [w] is a
comparability graph, hence perfect; so M∗ is perfect by, e.g., Diestel
[10, Lemma 5.5.5]. Hence, we have that α(M∗) = χ(M∗), and the
result follows.

We remark that, in Theorem 14, we apply a result from the graph
theory literature to prove a new result on regularity while, in Theo-
rem 16, a result from combinatorial commutative algebra guides us to
a new min-max result on well-covered bipartite graphs.

4.4. Co-interval covers and boxicity. An interval graph is a
graph with vertices corresponding to some set of intervals in R and
edges between pairs of intervals that have non-empty intersection. A
co-interval graph is the complement of an interval graph. Interval
graphs are exactly the chordal graphs which can be represented as the
incomparability graph of a poset. See [26] for general background on
such graphs.

The boxicity of G, denoted boxG, is the co-interval cover number of
G. (The original formulation of boxicity was somewhat different, and
the connection with covering is made in [8].) Thus, by Theorem 1, we
have that reg (R/I(G)) ≤ boxG.

Since a planar graph G contains no K5 subgraph, we have that
reg (R/I(G)) ≤ dim Ind (G)) + 1 = α(G) ≤ 4. The literature on
boxicity yields a stronger result:

Proposition 19. If G is a planar graph, then reg (R/I(G)) ≤ 3.
This upper bound is the best possible.

Proof. Thomassen [33] proves that boxG ≤ 3. To see that the bound
is best possible, notice that the complement of 3K2 (that is, the graph
consisting of three disjoint edges) is the 1-skeleton of the octahedron,
which is well known to be planar.

By way of contrast, we remark that the proof of Proposition 9 shows
that if G is a planar graph, then reg (R/I(G)) may be arbitrarily large.
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4.5. Very well covered graphs. In this subsection we present a
negative result. A graph is very well-covered if it is well-covered and
α(G) = |V |/2. It is obvious that every well-covered bipartite graph
is very well-covered. Mahmoudi et al. [27] generalized Theorem 15 to
show:

Theorem 20 [27]. If G is a very well-covered graph, then reg(R/I(G))
= indmatchG.

We will demonstrate, however, that the gap between indmatchG and
cochordG can be arbitrarily large for very well-covered graphs. In
particular, the proof via (4) of Theorem 15 cannot be extended to
prove Theorem 20.

If G is a graph on n vertices, then let W (G) be the graph on 2n
vertices obtained by adding a pendant (an edge to a new vertex of
degree 1) at every vertex of G. This construction has been previously
studied in the context of graphs with Cohen-Macaulay edge ideals [35],
where it has been referred to as whiskering; and has been studied in the
graph theory literature as a corona [15]. Because the pendant vertices
form a maximal independent set, it is immediate that W (G) is very
well-covered.

Lemma 21. For any graph G, we have indmatchW (G) = α(G) and
cochordW (G) = χ(G).

Proof. For the first equality, we notice that if an induced matching
of W (G) contains an edge {v, w} of G, then we can get a new induced
matching by replacing {v, w} with the pendant edge at v. Since a
collection of pendant edges forms an induced matching if and only if the
corresponding collection of vertices of G is independent, the statement
follows.

For the second equality, we first notice that a coloring of G partitions
the vertices of G into cliques, inducing a covering of W (G) by split
graphs (as in Theorem 2). Hence, cochordW (G) ≤ χ(G). On the
other hand, any co-chordal cover {Hi} of W (G) in particular covers
the pendant edges, and two pendant edges form an induced matching
if the corresponding vertices of G are not connected. Hence, a co-
chordal cover induces a covering of the vertices of G by cliques, and
thus cochordW (G) ≥ χ(G), as desired.
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But then, for example, we have indmatchW (C5) = 2 and cochordW
(C5) = 3. Moreover, it is well-known that the gap between the clique
number and chromatic number of G can be arbitrarily large, even if
ω(G) = α(G) = 2. (See, e.g., [10, Theorem 5.2.5].) Hence, the
gap between indmatchW (G) and cochordW (G) can also be arbitrarily
large.

Van Tuyl [34] has shown an analogue to Theorem 16: that if G is a
bipartite graph such that R/I(G) is sequentially Cohen-Macaulay, then
reg (R/I(G)) = indmatchG. (See his paper [34] for definitions and
background.) The following example, however, shows that indmatchG
and reg (R/I(G)) may also be strictly less than cochordG in this
situation.

Example 22. Let G be obtained from C6 by attaching a pendant
to vertices x1, x2, x3, x4. It is easy to see from the conditions given
in [34] that IndG is sequentially Cohen-Macaulay. But, an approach
similar to that in Lemma 21 will verify that indmatchG = 2, while
cochordG = 3.

4.6. Computational complexity. An immediate consequence
of Lemma 21 is that calculating reg (R/I(G)) from the graph G is
computationally hard:

Corollary 23. Given G, calculating reg (R/I(G)) is NP-hard, even
if G is very well covered.

Proof. One can construct W (G) from G in polynomial time, and
reg (R/I(W (G))) = indmatchW (G) = α(G). But, checking whether
α(G) ≥ C is well known to be NP-complete!

Since computing the independence complex of G is already NP-hard,
and as it is hard to imagine finding regularity without computing the
independence complex, Corollary 23 is perhaps not too surprising. It
might be of more interest to find the computational complexity of
computing reg (R/I(G)) from IndG.

We remark that many of the results we have referenced are from
the computer science literature, and efficient algorithms for finding
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indmatchG and cochordG in special classes of graphs are a main
interest of [1, 4, 5] and other papers. In particular, given a weakly
chordal graph G, we can calculate reg (R/I(G)) = indmatchG in
polynomial time [4, Corollary 8].

In general graphs, however, computing indmatchG or cochordG is
NP-hard. It follows from, e.g., the proof of Corollary 23 that determin-
ing whether indmatchG ≥ C is NP-complete; while Yannakakis showed
[38] that determining whether cochord (G) ≤ C is NP-complete. The
corresponding problem for split graph covers (as in Theorem 2) is also
NP-complete [7]. An overview of these and similar hardness results can
be found in [26, Chapter 7].

4.7. Questions on claw-free graphs. Nevo [30] showed that, if
G is a (2K2, claw)-free graph, then reg (R/I(G)) ≤ 2. Dao, Huneke
and Schweig [9] have recently given an alternate proof. Can the same
be shown using Theorem 1?

Question 24. If G is (2K2, claw)-free, then is cochordG ≤ 2?

We notice that a cover by split graphs will not suffice; for example,
the Petersen graph P has girth 5. Hence, P is (2K2, claw)-free. But
it is easy to verify that no two cliques in P satisfy the condition of
Theorem 2.

András Gyárfás points out [18] that, in [17, Problem 5.7], he has
asked whether every graph G with cochordG = 2 has χ(G) bounded
by some function of α(G). We observe that the complement of a graph
with girth ≥ 5 is (2K2, claw)-free, with α(G) = 2. Since a graph with
girth ≥ 5 can have an arbitrarily large chromatic number [10, Theorem
5.2.5], a positive answer to Question 24 would imply a negative answer
to Gyárfás’s question.

If the answer to Question 24 is negative, then the following might
still be of interest.

Question 25. If G is claw-free, then does G have a (2K2,claw)-free
cover by at most indmatchG subgraphs?
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If Question 25 has a positive answer, then a direct application of (1)
would then imply that, for a claw-free graphG, we have reg (R/I(G)) ≤
2 · indmatchG.

After acceptance of this paper, Shahab Haghi and Siamak Yassemi
pointed out to me in an email communication (March, 2013) that
Question 25 has a negative answer for the cyclic graph C8. So far as
I am aware, the question remains open as to whether reg (R/I(G)) ≤
2 · indmatchG for any claw-free graph G.
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