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Abstract— MapReduce is a powerful platform for large-scale 

data processing. To achieve good performance, a MapReduce 

scheduler must avoid unnecessary data transmission by 

enhancing the data locality (placing tasks on nodes that contain 

their input data). This paper develops a new MapReduce 

scheduling technique to enhance map task’s data locality. We 

have integrated this technique into Hadoop default FIFO 

scheduler and Hadoop fair scheduler. To evaluate our technique, 

we compare not only MapReduce scheduling algorithms with and 

without our technique but also with an existing data locality 

enhancement technique (i.e., the delay algorithm developed by 

Facebook). Experimental results show that our technique often 

leads to the highest data locality rate and the lowest response 

time for map tasks. Furthermore, unlike the delay algorithm, it 

does not require an intricate parameter tuning process. 

 

Keywords—MapReduce; Hadoop; data locality; scheduling 

technique 

I. INTRODUCTION 

MapReduce is a framework used by Google for 

processing huge amounts of data in a distributed 

environment [1] and Hadoop [2] is Apache’s open source 

implementation of the MapReduce framework. Due to the 

simplicity of the programming model and the run-time 

tolerance for node failures, MapReduce is widely used for 

not only commercial applications but also scientific 

computations. Facebook uses a Hadoop cluster composed of 

hundreds of nodes to process terabytes of user data. The 

New York Times rents a Hadoop cluster from Amazon EC2 

[3] to convert millions of articles. Michael C. Schatz [4] 

introduced MapReduce to parallelize blast which is a DNA 

sequence alignment program and achieved 250 times 

speedup. As MapReduce clusters get popular, their 

scheduling becomes increasingly important. In a 

MapReduce cluster, data are distributed to individual nodes 

and stored in their disks. To execute a map task on a node, 

we need to first have its input data available on that node. 

Since transferring data from one node to another takes time 

and delays task execution, an efficient MapReduce 

scheduler must avoid unnecessary data transmission.  

In this paper, we focus on the problem of decreasing data 

transmission in a MapReduce cluster and we develop a 

scheduling technique to improve map tasks’ data locality 

rate. For a given execution of MapReduce workload, the 

data locality rate is defined in this paper as the ratio between 

the numbers of local map tasks and all map tasks, where a 

local map task refers to a task that has been executed on a 

node that contains its input data. A low data locality rate 

means more data transfer between machines and higher 

network traffic. To avoid unnecessary data transfer, our 

scheduling technique aims to achieve high data locality rate 

and also short response time for MapReduce clusters. 

Existing MapReduce algorithms provide some 

mechanisms to improve the data locality. For instance, to 

assign map tasks to a node, the Hadoop default FIFO (first-

in-first-out) scheduler always picks the first job in the 

waiting queue and schedules its local map tasks (i.e., tasks 

with input data stored in the node). If the job does not have 

any map task local to the node, only one of its non-local 

map tasks will be assigned to the node at a time. However, 

due to FIFO scheduler’s inherent deficiencies (like 

following the strict FIFO job order for assigning tasks), this 

mechanism can only slightly improve the data locality.  

Zaharia et al. [5] have developed a delay technique to 

improve the data locality rate. With this technique, a 

MapReduce scheduler breaks the strict job order when 

assigning map tasks to a node. That is, if the first job does 

not have a local map task, the scheduler can delay it and 

assign another job’s local map tasks. A maximum delay 

time D is specified. Only when a job has been delayed for 

more than D time units will the scheduler assign the job’s 

non-local map tasks. For the delay algorithm, the maximum 

delay time D is a critical factor. It is configurable but may 

need to vary for different workloads and hardware 

environments.  

This paper develops a new technique to enhance the data 

locality. The main idea of the technique is as follows. To 

assign tasks to a node, local map tasks are always preferred 

over non-local map tasks, no matter which job a task 

belongs to, and a locality marker is used to mark nodes and 

to ensure each node a fair chance to grab its local tasks. 

Experiments are carried out to evaluate the aforementioned 

techniques and experimental results show that our technique 

leads to the highest data locality rate and the lowest 

response time for map tasks. Unlike the delay algorithm, our 

technique does not require the tuning of the delay parameter.  
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The remainder of this paper is organized as follows. 

Section 2 presents the background. In Section 3, we describe 

our scheduling technique, which is evaluated in Section 4. 

Section 5 presents the related work and Section 6 concludes 

this paper. 

II. BACKGROUND 

Hadoop [2] is a widely-used open source implementation 

of Google MapReduce [1].  In this section, we briefly 

describe how a Hadoop cluster works since other 

MapReduce-style clusters work similarly. In later parts of 

this paper, we will thus use the terms “Hadoop cluster” and 

“MapReduce cluster” interchangeably. A MapReduce 

cluster is often composed of many commodity PCs, where 

one PC acts as the master node and others as slave nodes. A 

Hadoop cluster uses Hadoop Distributed File System 

(HDFS) [6] to manage its data. It divides each file into small 

fixed-size (e.g., 64 MB) blocks and stores several (e.g., 3) 

copies of each block in local disks of cluster machines. A 

MapReduce [1] computation is comprised of two stages, 

map and reduce, which take a set of input key/value pairs 

and produce a set of output key/value pairs. When a 

MapReduce job is submitted to the cluster, it is divided into 

M map tasks and R reduce tasks, where each map task will 

process one block (e.g., 64 MB) of input data.  

A Hadoop cluster uses slave nodes to execute map and 

reduce tasks.  There are limitations on the number of map 

and reduce tasks that a slave node can accept and execute 

simultaneously. That is, each slave node has a fixed number 

of map slots and reduce slots. Periodically, a slave node 

sends a heartbeat signal to the master node. Upon receiving 

a heartbeat from a slave node that has empty map/reduce 

slots, the master node invokes the MapReduce scheduler to 

assign tasks to the slave node. A slave node who is assigned 

a map task reads the contents of the corresponding input 

data block, parses input key/value pairs out of the block, and 

passes each pair to the user-defined map function. The map 

function generates intermediate key/value pairs, which are 

buffered in memory, and periodically written to the local 

disk and partitioned into R regions by the portioning 

function. The locations of these intermediate data are passed 

back to the master node, which is responsible for forwarding 

these locations to reduce tasks. A reduce task uses remote 

procedure calls to read the intermediate data generated by 

the M map tasks of the job. Each reduce task is responsible 

for a region (partition) of intermediate data. Thus, it has to 

retrieve its partition of data from all slave nodes that have 

executed the M map tasks. This process is called shuffle, 

which involves many-to-many communications among 

slave nodes. The reduce task then reads in the intermediate 

data and invokes the reduce function to produce the final 

output data (i.e., output key/value pairs) for its reduce 

partition [1].  

Since network bandwidth is a relatively scarce resource 

in a MapReduce cluster, we can conserve it by taking 

advantage of the fact that the input data is stored in the local 

disks of machines that make up the cluster [1]. Thus, a 

MapReduce scheduler often takes input files’ location 

information into account and attempts to schedule a map 

task on a slave node that contains a replica of the 

corresponding input data block. This way, map tasks’ data 

locality rate can be improved, where most input data is read 

locally and consumes no network bandwidth.  
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Figure 1. Hadoop Framework 

A. Hadoop default FIFO scheduler 

The Hadoop default FIFO scheduler has already taken 

data locality into account. When a slave node with empty 

map slots sends the heartbeat signal, the MapReduce 

scheduler checks the first job in the queue. If the job has 

map tasks whose input data blocks are stored in the slave 

node, the scheduler assigns the node one of these local tasks. 

If a slave node has more unused map slots, the scheduler 

will keep assigning local tasks to the node. However, if the 

scheduler can no longer find a local task from the first job, it 

assigns the node one and only one non-local task during this 

heartbeat interval, no matter how many free slots the node 

has.  

This default FIFO scheduler, however, has deficiencies. 

First of all, it follows the strict FIFO job order to assign 

tasks, which means it will not allocate any task from other 

jobs if the first job in the queue still has an unassigned map 

task. This scheduling rule has a negative effect on the data 

locality because another job’s local tasks cannot be assigned 

to the slave node unless the first job has all its map tasks 

(many of which are non-local to the node) scheduled.  

Secondly, the data locality is randomly decided by the 

heartbeat sequence of slave nodes. If we have a large cluster 

that executes many small jobs, the data locality rate could be 

quite low. As mentioned, in a MapReduce cluster, tasks are 

assigned to a slave node in response to the node’s heartbeat. 

With the FIFO scheduler, heartbeats are also processed in a 

FIFO order and a node is assigned a non-local map task 

when there is no local task from the first job. In a large 

cluster many nodes heartbeat simultaneously. However, a 
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small job has less input data that are stored in a small 

number of nodes. It is thus a high probability event that the 

scheduler assigns tasks to slave nodes that do not have the 

small job’s input data but give heartbeats first. For example, 

if we execute a job of 5 map tasks on a MapReduce cluster 

of 100 slave nodes, it is unlikely to get a high locality rate. 

Since each map task needs one input data block, which by 

default has 3 replicas stored in 3 nodes, at most 15 out of 

100 nodes have input data for the job, i.e., the job’s tasks are 

all non-local to at least 85 nodes. A slave node with empty 

map slots that sends in a heartbeat first will always be 

assigned at least one map task, local or non-local. It is 

highly likely that the job’s tasks will be assigned to many of 

those 85 nodes which do not have the input data blocks 

before a node even gets a chance to grab a local task from 

the job.  

B. Delay scheduling 

Zaharia et al. [5][7] have developed a delay scheduling 

algorithm to improve the data locality rate of Hadoop 

clusters. It relaxes the strict job order for task assignment 

and delays a job’s execution if the job has no map task local 

to the current slave node. To assign tasks to a slave node, 

the delay algorithm starts the search at the first job in the 

queue for a local task. If not successful, the scheduler delays 

the job’s execution and searches for a local task from 

succeeding jobs. A maximum delay time D is set. If a job 

has been skipped long enough, i.e., longer than D time units, 

its non-local tasks will then be assigned for execution. With 

the delay scheduling algorithm, a job’s execution is 

postponed to wait for a slave node that contains the job’s 

input data. Here, the delay time D is a key parameter. By 

default, it is set at 1.5 times the slave node’s heartbeat 

interval. However, to obtain the best performance for the 

delay scheduling algorithm, we have to choose an 

appropriate D value. If the value is set too large, job 

starvations may occur and affect performance.  On the 

contrary, a too small D value allows non-local tasks to be 

assigned too fast. For different kinds of workloads and 

hardware environments, the best delay time may vary. To 

get an optimal delay time always needs careful tuning.  

In addition, this delay algorithm allows a node to obtain 

multiple non-local map tasks in a heartbeat interval if the 

node has more than one free slot. In some situations, this 

algorithm could perform worse than the FIFO scheduler’s 

locality enhancement policy because the latter only allows 

one non-local task to be assigned to a node in a heartbeat 

interval.  

Although first developed to improve the data locality of 

the Hadoop fair scheduler [14], delay scheduling is 

applicable beyond fair sharing, in general, applicable to any 

scheduling policy (e.g., FIFO) that defines an order in which 

jobs should be given resources [5].  

III. MATCHMAKING SCHEDULING ALGORITHM 

This section presents our new technique for enhancing 

the data locality in MapReduce clusters. The main idea 

behind our technique is to give every slave node a fair 

chance to grab local tasks before any non-local tasks are 

assigned to any slave node. Since our algorithm tries to find 

a match, i.e., a slave node that contains the input data, for 

every unassigned map task, we call our new technique the 

matchmaking scheduling algorithm.  

First of all, like the delay scheduling algorithm, our 

matchmaking algorithm also relaxes the strict job order for 

task assignment. If a local map task cannot be found in the 

first job, the scheduler will continue searching the 

succeeding jobs. Second, in order to give every slave node a 

fair chance to grab its local tasks, when a node fails to find a 

local task in the queue for the first time in a row, no non-

local task will be assigned to the node. That is, the node gets 

no map task for this heartbeat interval. Since during a 

heartbeat interval, all slave nodes with free map slots have 

likely given their heartbeats and been considered for local 

task assignment, when a node fails to find a local task for 

the second time in a row (i.e., still no local task a heartbeat 

interval later), to avoid wasting computing resources, the 

matchmaking algorithm will assign the node a non-local 

task. This way, our algorithm achieves not only high data 

locality rate but also high cluster utilization. To enforce the 

aforementioned rule, our algorithm gives every slave node a 

locality marker to mark its status. If none of the jobs in the 

queue has a map task local to a slave node, depending on 

this node’s marked value, the matchmaking algorithm will 

decide whether or not to assign the node a non-local task. 

Third, our matchmaking algorithm allows a slave node to 

take at most one non-local task every heartbeat interval. At 

last, all slave nodes’ locality markers will be cleared when a 

new job is added to the job queue. Because a new job may 

comprise new local tasks for some slave nodes, upon the 

new job’s arrival, our algorithm resets the status of all nodes 

and again starts the all-to-all task-to-node matchmaking 

process. Tables 1 and 2 give the pseudo code of our 

algorithm. Like delay scheduling algorithm, our 

matchmaking algorithm is applicable to any scheduling 

policy (e.g., FIFO or fair sharing scheduling) that defines an 

order in which jobs should be given resources.    

IV. EVALUATION 

To evaluate our matchmaking scheduling algorithm, we 

compare it with the Hadoop default FIFO scheduler and the 

delay scheduling algorithm. Two metrics, i.e., map tasks’ 

data locality rate and average response time, are used for 

evaluation.  

We run experiments in a private cluster of 1 head node 

and 30 slave nodes that are configured as one rack. We 

modify Hadoop-0.21 and integrate our matchmaking 

algorithm with both Hadoop FIFO scheduler and Hadoop 

fair scheduler. The cluster is configured with a block size of 

128MB, which follows Facebook’s Hadoop cluster block 
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size configuration [5]. Table 3 lists our Hadoop cluster 

hardware environment and configuration.  

TABLE 1. SCHEDULING ALGORITHM  

Algorithm 1: Matchmaking Scheduling Algorithm 

for each node i of the N slave nodes do 

set LocalityMarker[i]=null 

end for 

 

Upon receiving a heartbat from node i: 

while node i has free slots, i.e., its free slot count s>0  

 

set previousMarker=LocalityMarker[i]  

 

for each job j in the JobQueue do      

if  job j has an unassigned local task t then 

assign t to node i 

set s=s-1 

if LocalityMarker[i]==null then  

LocalityMarker[i]=1  

else LocalityMarker[i]+=1 

end if 

break for 

else continue 

end if 

end for     

     

if previousMarker==LocalityMarker[i] then 

set LocalityMarker[i]=0          //mark this node 

break while 

else if LocalityMarker[i]==0 then 

          assign node i a non-local task t’ from the first job in 

the JobQueue 

          set s=s-1 

break while 

end if 

end while 

TABLE 2. LOCALITY MARKER CLEANING ALGORITHM 

Algorithm 2: Locality Marker Cleaning Algorithm 

When a new job j is added into the JobQueue: 

for each node i of the N slave nodes do 

     set LocalityMarker[i]=null 

end for 

A. Experimental Environment 

To evaluate our matchmaking algorithm, we create a 

submission schedule that is similar to the one used by 

Zaharia et al. [5]. Zaharia et al. [5] generated a submission 

schedule for 100 jobs by sampling job inter-arrival times 

and input sizes from the distribution seen at Facebook over a 

week in October 2009. By sampling job inter-arrival times 

at random from the Facebook trace, they found that the 

distribution of inter-arrival times was roughly exponential 

with a mean of 14 seconds. 

They also generated job input sizes based on the 

Facebook workload, by looking at the distribution of 

number of map tasks per job at Facebook and creating 

datasets with the correct sizes (because there is one map task 

per 128 MB input block). Job sizes were quantized into nine 

bins, listed in Table 4 [5], to make it possible to compare 

jobs in the same bin within and across experiments. Our 

submission schedule has similar job sizes and job inter-

arrival times. In particular, our job size distribution follows 

the first six bins of job sizes shown in Table 4, which cover 

about 89% of the jobs at the Facebook production cluster. 

Because most jobs at Facebook are small and our test cluster 

is limited in size, we exclude those jobs with more than 300 

map tasks. Like the schedule in [5], the distribution of inter-

arrival times is exponential with a mean of 14 seconds, 

making our submission schedule totally 21 minutes long.  

TABLE 3. EVALUATION ENVIRONMENT 

Nodes Quantity Hardware and Hadoop 

Configuration 

Master node 1 2 single-core 2.2GHz 

Optron-64 CPUs, 8GB 

RAM, 1Gbps Ethernet 

Slave nodes 30 2 single-core 2.2GHz 

Optron-64 CPUs, 4GB 

RAM, 1 Gbps Ethernet, 1 

rack, 2 map and 1 reduce 

slots per node 

We generate 100 input data blocks in Hadoop Distributed 

File System (HDFS). The popularity of blocks is assumed to 

follow a uniform distribution. That is, when a job requests a 

block, it is evenly likely to be any one of the blocks stored 

in HDFS. Each of the blocks has 2 replicas. We distribute 

and store these 200 block replicas evenly in 30 slave nodes, 

ensuring no two replicas of a block be stored in the same 

node. As a result, every slave node contains about 6 (or 7) 

blocks. By uniformly distributing blocks among our cluster 

nodes, we avoid hotspots of data requests.  

We use our submission schedule for two application 

workloads. One is loadgen which is a test example from the 

Hadoop test package. It loads input data and outputs a 

fraction of the data intact. This application has been used as 

a test workload for the delay algorithm [5][7]. The other 

application we adopt is wordcount which is a classic 

example of Hadoop applications.  

As mentioned, we have modified Hadoop-0.21 and 

integrated our matchmaking algorithm with both Hadoop 

FIFO scheduler and Hadoop fair scheduler.  

In our experiments, we always configure the cluster to have 

just one job queue. With Hadoop fair scheduler, all jobs in a 

queue are scheduled following either fair sharing or FIFO 

scheduling rule. With fair sharing scheduling, resources are 

assigned to jobs such that all jobs get, on average, an equal 

share of resources over time. We have tested the 

performance of delay algorithm within Hadoop fair 

scheduler. Depending on the applied scheduling rule (FIFO 

or fair sharing), we have two different versions: FIFO with 

delay algorithm and Fair with delay algorithm. Since we 

have tested our matchmaking algorithm within Hadoop 

FIFO scheduler, when testing matchmaking algorithm 

within Hadoop fair scheduler, only the fair sharing 

scheduling rule is applied.  

43



We thus run each workload under five schedulers: 

Hadoop FIFO scheduler, Hadoop FIFO scheduler with 

matchmaking algorithm, FIFO with delay algorithm, Fair 

with delay algorithm, and Fair with matchmaking algorithm. 

TABLE 4. DISTRIBUTION OF JOB SIZES (IN TERMS OF NUMBER OF MAP TASKS) 

AT FACEBOOK [5] 

Bin #Maps 
%Jobs at 

Facebook 

#Maps in 

Benchmark 

# of jobs in 

Benchmark 

1 1 39% 1 38 

2 2 16% 2 16 

3 3-20 14% 10 14 

4 21-60 9% 50 8 

5 61-150 6% 100 6 

6 
151-

300 
6% 200 6 

7 
301-

500 
4% 400 4 

8 
501-

1500 
4% 800 4 

9 >1501 3% 4800 4 

 

For the delay algorithm, we need to configure the 

maximum delay time D. In our experiments, a total of 8 

different D values are chosen. They are from 0.1 to 10 times 

the slave node’s heartbeat interval. Since we configure the 

heartbeat interval to be 3 seconds long, the maximum delay 

time D changes from 0.3 to 30 seconds.  

To eliminate the possible randomness of cluster hardware 

status, every point shown in the figures is the average of 

three runs.  

B. Experiments 

We first use the data locality rate to measure the 

performance of the following three schedulers: Hadoop 

FIFO scheduler, Hadoop FIFO scheduler with matchmaking 

algorithm, and FIFO with delay algorithm. Given a 

workload execution, the data locality rate is defined as, 

Data Locality Rate=
n

l
      (1) 

where l is the number of local map tasks and n is the total 

number of map tasks. Our experimental results on data 

locality rate with the two application workloads are shown 

in Figures 2 and 3. As we can see, the data locality rate 

achieved with the delay algorithm increases with the 

maximum delay time D. The longer a job is allowed to be 

delayed, the higher the probability that the job finds slave 

nodes that contain the input data blocks.  

Figures 2 and 3 also show that the FIFO scheduler leads 

to the worst performance, i.e., the lowest data locality rate. 

However, when we integrate our matchmaking technique 

with the FIFO scheduler, the algorithm achieves the highest 

data locality rate, better than any of those achieved with the 

delay algorithm of different D values.  

To evaluate the algorithms’ performance only via the data 

locality rate is not enough since we can easily design an 

algorithm that enforces the constraint that all tasks have to 

be executed on slave nodes that contain their input data, 

leading to 100% data locality rate but also long response 

time for map tasks due to the long delay required to satisfy 

the strict constraint. Therefore, we also evaluate our 

algorithms by another metric: the average response time of 

all map tasks. Figures 4 and 5 present the experimental 

results. As shown in the figures, when we run the workloads 

with the FIFO scheduler, we get the longest average 

response time for map tasks. After enhancing the FIFO 

scheduler with our matchmaking algorithm, we reduce the 

average response time significantly.  

 

 

Figure 2. Loadgen Workload: Data Locality Rate 

 

Figure 3. WordCount Workload: Data Locality Rate 

For the delay algorithm, although the higher the D value, 

the better the data locality rate (see Figures 2 and 3), the 

relationship between the D value and the average response 

time is not so straightforward. When running the loadgen 

workload, the average response time varies with the D value, 

e.g., getting smaller when D increases from 0.3 to 1.5 

seconds but longer when D increases from 1.5 to 3 seconds 

(see Figure 4). The lowest average response time is achieved 

when the maximum delay time is set at 30 seconds (see 

Figures 4 & 7-loadgen). But, that is not the optimal D value 

when running the wordcount workload. As shown in Figure 

5 (and also in Figure 7-wodcount), when D = 9 seconds, we 

get the best average response time for the wordcount 
workload. In neither cases, the default configuration (i.e., D 

= 4.5 seconds, 1.5 times the heartbeat interval) leads to the 

best performance. This group of experiments demonstrate 

that for different workloads, the best delay parameter varies, 

indicating the necessity of parameter tuning for the delay 
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algorithm. However, our matchmaking algorithm does not 

require this intricate parameter tuning process. For both 

workloads, the FIFO scheduler with our matchmaking 

algorithm achieves the lowest average response time, better 

than that achieved by the optimally-configured delay 

algorithm.  

Let tavg represent the average response time of all map 

tasks. It equals to the summation of two parts. That is,   
nl

avgl

l

avglavg tRtRt )1( −+=      (2) 

where Rl denotes the data locality rate, 
l

avgt represents the 

average response time of all local map tasks, and  
nl

avgt the 

average response time of all non-local map tasks.  

Because network bandwidth is a relatively scarce 

resource in a MapReduce cluster [1] and the network data 

transferring rate is slower than the disk access rate, a local 

map task’s execution is often much faster than that of a non-

local map task. Therefore, according to Equation (2), 

increasing the data locality rate Rl tends to decrease the 

average response time of all map tasks tavg.  On the other 

hand, with the delay algorithm, as the maximum delay time 

D increases, a job and its tasks’ execution is allowed to be 

delayed for a longer time. As a result, although Rl increases, 

both 
l

avgt  and 
nl

avgt increase as well, leading to the potential 

increase of tavg. This explains why map tasks’ average 

response time does not decrease monotonically with the 

increase of the maximum delay time D.  

So far, we have used experiments to compare three 

schedulers: Hadoop FIFO scheduler, Hadoop FIFO 

scheduler with matchmaking algorithm, and FIFO with 

delay algorithm. The results show that the FIFO scheduler 

with matchmaking algorithm achieves the highest locality 

rate and the lowest map task response time without the 

parameter tuning hassle. Next, to further compare the delay 

algorithm and our matchmaking algorithm, we integrate the 

matchmaking algorithm into Hadoop fair scheduler and 

compare the following two schedulers: Fair with delay 

algorithm and Fair with matchmaking algorithm.  

Figures 6 and 7 show the data locality rate and the map 

tasks’ average response time for the Hadoop fair schedulers. 

 

Figure 4. Loadgen Workload: Map Tasks’ Average Response Time 

 

Figure 5. WordCount Workload: Map Tasks’ Average Response Time 

We can see that when integrated with the fair sharing 

scheduling, our matchmaking algorithm still achieves better 

data locality rates and near-optimal average response times. 

More importantly, our algorithm achieves this great 

performance without the necessity of parameter tuning.   

V. RELATED WORK 

Due to the increasing importance of MapReduce clusters, 

recently there have been multiple studies on MapReduce 

scheduling. 

MapReduce clusters can deal with node failures 

automatically. If a node fails to give a heartbeat within a 

timeout period, a MapReduce cluster will re-schedule the 

node’s tasks to different nodes. Similarly, if a task’s 

execution progresses slowly, a MapReduce cluster will run a 

speculative copy of this task on another node. This 

mechanism is called speculative execution.  It prevents a job 

from being delayed by the worst performing node. Google 

has announced that this mechanism can improve a job’s 

response time by 44% [1]. However, Hadoop’s scheduler 

implicitly assumes that cluster nodes are homogeneous and 

tasks make progress linearly, and uses these assumptions to 

decide when to speculatively re-execute tasks that appear to 

be stragglers [9]. To overcome this limitation and make the 

speculative execution mechanism effective in heterogeneous 

environments, researchers then developed LATE (Longest 

Approximate Time to End) scheduler [9] and SAMR (Self-

Adaptive MapReduce Scheduling) algorithm [10]. 

Yahoo! developed a multi-queue scheduler called 

Capacity Scheduler [11] for Hadoop clusters, where every 

queue is guaranteed a fraction of the capacity. Within a 

queue, it supports job priorities but no job pre-emption is 

allowed. To prevent one or more users from occupying all 

resources of a queue, each queue enforces a limit on the 

percentage of resources allocated to a user at any given time, 

if there is competition for resources.  

The fair scheduler [14] also supports multiple queues 

(also called pools). Jobs are organized into pools and 

resources are fairly divided between these pools. By default, 

there is a separate pool for each user, so that each user gets 

an equal share of the cluster. Within each pool, jobs can be 

scheduled using either fair sharing or FIFO scheduling. Fair 

sharing scheduling is a method of assigning resources to 
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jobs such that all jobs get, on average, an equal share of 

resources over time. When there is a single job running, that 

job uses the entire cluster. When other jobs are submitted, 

task slots that free up are assigned to the new jobs, so that 

each job gets roughly the same amount of CPU time. Unlike 

the default Hadoop FIFO scheduler, which forms a queue of 

jobs based on job arrival times, this lets short jobs finish in 

reasonable time while not starving long jobs. It is also an 

easy way to share a cluster between multiple users [14].  

 

 
 

   

Figure 6. Fair Scheduler: Data Locality Rate 

 

 

Figure 7. Fair Scheduler: Map Tasks’ Average Response Time 

To improve MapReduce clusters’ data locality, 

researchers have used technologies like prefetching [15] or 

node status prediction [8]. The one that is most closely 

related to our work is the delay scheduling algorithm [5], 

which was first developed to improve the data locality of 

Hadoop fair scheduler [14].  

Some MapReduce applications have deadlines. J. Polo et 

al. [12] developed a scheduler that focuses on MapReduce 

jobs that have soft deadlines. It estimates jobs’ execution 

times and tries to let jobs satisfy their deadlines by 

scheduling resources according to the estimated finishing 

times. Kamal Kc et al. [13] created a scheduler that works 

for MapRedeuce applications with hard deadlines. It also 

estimates the job finishing time according to current 

resources in a MapReduce cluster. The difference is if a job 

cannot finish before the hard deadline, the scheduler will not 

execute the job and will instead inform the user to adjust the 

job deadline.  

VI. CONCLUSION 

In this paper, we develop a new matchmaking algorithm 

to improve the data locality rate and the average response 

time of MapReduce clusters. We have carried out 

experiments to compare not only MapReduce scheduling 

algorithms with and without our matchmaking algorithm but 

also with an existing data locality enhancement technique 

(i.e., the delay algorithm [5]). Experimental results 

demonstrate that our matchmaking algorithm can often 

obtain the highest data locality rate and the lowest average 

response time for map tasks. Furthermore, our matchmaking 

algorithm does not need any parameter tuning.  
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