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Abstract 

A mechanical model for the analysis of reinforced concrete frame 
structures based on the Finite Element Method (FEM) is proposed 
in this paper. The nonlinear behavior of the steel and concrete is 
modeled by plasticity and damage models, respectively. In addi-
tion, geometric nonlinearity is considered by an updated lagrangi-
an description, which allows writing the structure equilibrium in 
the last balanced configuration. To improve the modeling of the 
shear influence, concrete strength complementary mechanisms, 
such as aggregate interlock and dowel action are taken into ac-
count. A simplified model to compute the shear reinforcement 
contribution is also proposed. The main advantage of such a mod-
el is that it incorporates all these effects in a one-dimensional 
finite element formulation. Two tests were performed to compare 
the provided numerical solutions with experimental results and 
other one- and bi-dimensional numerical approaches. The tests 
have shown a good agreement between the proposed model and 
experimental results, especially when the shear complementary 
mechanisms are considered. All the numerical applications were 
performed considering monotonic loading. 
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1 INTRODUCTION 

Nowadays, the search for mathematical models that accurately represent the mechanical behavior of 
reinforced concrete elements is still intense. Several phenomena present in the reinforced concrete 
make it a very complex and difficult material to model. Although complex models are usually more 
representative of the real behavior of the materials, they may cause more numerical problems and 
require more time of processing. A great challenge today is the development of more accurate mod-
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els with simple formulations and easy accessibility to computational codes already established. 
However, some barriers must be overcome, as, for example, the proper representation of the rein-
forced concrete behavior with respect to shear strength and all the complementary mechanisms. 

The FEM has been successfully used in the modeling of reinforced concrete structures, although 
its classical formulation does not consider the shear influence and its strength complementary 
mechanisms. Among these mechanisms, the aggregate interlock, dowel action, bond-slip behavior 
between steel and surrounding concrete and tension stiffening can be cited. The first works in this 
area, such as those by Krefeld and Thurston [19], Dei Poli et al. [9], Gergely [14], Dulacska [10], 
Jimenez et al. [18], Walraven [33], Laible et al. [21], Bazant and Gambarova [3] and Millard and 
Johnson [25] were performed to identify these mechanisms and discover how they interact with each 
other during the loading process along the reinforced concrete members. Later, researches were di-
rected to the development of mathematical models to represent these phenomena and their imple-
mentation in FEM formulations. Most of those developments were considered in 2D FEM formula-
tions with elastoplastic constitutive laws for concrete and steel. In these formulations, the rein-
forcement bars are taken into account by 1D finite elements embedded in the concrete plane ele-
ments and distributed along the longitudinal and transversal directions, as shown in the works of 
Bhatt and Kader [6], Martín-Perez and Pantazopoulou [23], He and Kwan [16], El-Ariss [11], Oliver 
et al. [27], Frantzeskakis and Theillout [13], Soltani et al. [31], Maitra et al. [22], Belletti et al. [5], 
Ince et al. [17] and Nogueira [26]. 

This paper presents a mechanical model based on one-dimensional finite element method taking 
into account the aggregate interlock, dowel action and shear reinforcement contributions in the 
reinforcement concrete member’s strength. These phenomena were adapted to a plane frame finite 
element (1D) coupled with a damage model for concrete and an elastoplastic model for the rein-
forcements. Each mechanism was incorporated in a nonlinear finite element computational code 
already developed. The main advantage of this coupled model is its simplicity, as all those mecha-
nisms were considered in a 1D FEM formulation.  
 
2 A BRIEF REVIEW OF FEM FORMULATION 

The Principle of Virtual Works postulates that the work done by internal forces on a virtual dis-
placement field must be the same work done by the external forces acting on the structure. Based 
on Galerkin’s method, the interpolation function can be expressed by the displacement field of the 
real problem (Bathe [2], Clough and Penzien [7], Felippa [12]): 
 

ε{ }
T

D[ ] ε{ }dΩ
Ω
∫ = u{ }

T

b{ }dΩ
Ω
∫  (1) 

 
in which ε{ }  is the actual strain field from the actual displacement field u{ } , D[ ]  represents the 

fourth-order tensor elastic materials properties and Ω  is the structure domain. 
The FEM solves the problem dividing it into a finite number of subsets Ω j , called finite ele-

ments. The equation system is then represented by the sum of the contributions of each finite ele-
ment, as: 
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Fields u{ }  and ε{ }  are defined by the product of interpolation functions and nodal parameters 

of the finite elements, as: 
 

u{ } = H[ ] u j{ }

ε{ } = B[ ] u j{ }
 (3) 

 
in which H[ ]  and B[ ]  are, respectively, the known interpolation functions matrices for the dis-

placement and strain and u
j{ }  is the vector of the nodal displacements of each finite element. 

Placing Eq. (3) in (2) results in: 
 

u j{ }
T

B[ ]
T
D[ ] B[ ]dΩ

Ω j

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
u j{ }

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j=1

n

∑ = u j{ }
T

H[ ]
T
b{ }dΩ

Ω j

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j=1

n

∑  (4) 

 
Equation 4 represents the total energy potential of the solid defined by the contribution of all fi-

nite elements. The classical equation system of the FEM can be reached by the minimization of this 
total energy potential. Therefore, the process is defined by: 
 

K
j

⎡⎣ ⎤⎦ u
j{ }( )

j=1

n

∑ = F
j{ }( )

j=1

n

∑  (5) 

 

in which K j
⎡⎣ ⎤⎦ = B[ ]

T
D[ ] B[ ]dΩ

Ω j

∫  and Fj{ } = H[ ]
T
b{ }dΩ

Ω j

∫ . For nonlinear problems, the stiff-

ness matrix K[ ]  depends on the actual displacements intensity and Eq. (5) must be expressed as: 

 

K
j
u
j( )⎡

⎣
⎤
⎦ u

j{ }( )
j=1

n

∑ = F
j{ }( )

j=1

n

∑  (6) 

 
3 NONLINEARITY OF THE MATERIALS 

3.1 Damage model for concrete 

The nonlinear behavior of the concrete originates from the crack growing along the concrete mass. 
Damage models are particularly interesting, because they allow penalizing the material stiffness in 
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function of the strain increase. In this study, we adopted the Mazars’ damage model [24], which is 
grounded in the following hypotheses: damage is an isotropic variable, the residual strains are total-
ly neglected, as depicted in Fig. 1 and damage occurs by tensile strains. 
 

 
 

Figure 1   Real and idealized concrete behavior 

 

The state of stretching at a point can be represented by the equivalent strain as: 
 

 
ε = ε

1( )
+

2

+ ε
2( )

+

2

+ ε
3( )

+

2

 (7) 

 

in which ε
i( )

+
 corresponds to the positive components of the main strain tensor. Thus, one has

ε
i( )

+
= ε

i
+ ε

i
⎡⎣ ⎤⎦ 2 , with ε

i( )
+
= ε

i
 in case of ε

i
> 0  or ε

i( )
+
= 0  in case of ε

i
< 0 . 

The criterion to verify the material integrity at a point is given by: 
 

 
f = ε − Ŝ D( ) < 0  (8) 

 

Function Ŝ D( )  represents the limit strain value in function of the damage. At the beginning of 

the incremental-iterative process, Ŝ D( )  receives the strain value corresponding to the concrete 

tensile strength ε
d0

. In the following steps Ŝ D( )  is updated by the  ε  value of the last step with 

damage. Due to the non symmetry of the concrete behavior in tension and compression, the damage 
variable is formed by the sum of two independent parts: tensile portion D

T
 and compression por-

tion D
C

. Each of these portions indicates tensile and compression contribution to the local strain 

state and can be obtained in function of the equivalent strain and the internal parameters of the 
damage model as: 
 

 

εp ε

σ

real behavior

Ei

Ep (1-D)E

Ei

σ

ε
idealized damage behavior
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D
T
= 1−

ε
d0
1− A

T( )
ε

−
A
T

e
BT ε−εd 0( )⎡⎣ ⎤⎦

D
C
= 1−

ε
d0
1− A

C( )
ε

−
A
C

e
BC ε−εd 0( )⎡⎣ ⎤⎦

 (9) 

 
in which ε

d0
, A

T
, B

T
, A

C
, B

C
 are the internal parameters of Mazars’ damage. Indices T and C 

refer to tension and compression, respectively. 
After reaching each part of the damage, the final value of the point strain state is given by 
 

D =α
T
D
T
+α

C
D
C
 (10) 

 
 

Coefficients α
T
 and α

C  can be calculated by: 

 
 

α
T
=

ε
Ti( )

+
i

∑

ε
V

+

 

 e α
C
=

ε
Ci( )

+
i

∑

ε
V

+
 (11) 

 
 

in which ε
Ti

 and ε
Ci

 are calculated from the main stresses considering elastic material and ε
V

+  

represents the total state of stretching given by ε
V

+
= ε

Ti( )
+

i

∑ + ε
Ci( )

+
i

∑ . 

After damage, the stress state at the point is defined by: 
 
 

σ = 1− D( )Eε

τ = 1− D( )Gγ
 (12) 

 
 
in which E  and G  are, respectively, the longitudinal and transversal elasticity modules of the 
material and ε  and γ  are, respectively, the longitudinal and transversal strains. 

 
3.2 Plasticity model for steel 

Steel has an elastic behavior until it reaches the yield stress. After that, there are some movements 
in the internal crystals of the material, which give it a new strength capacity. In this phase, called 
hardening, there is loss of stiffness, but the material still presents strength capacity until it reaches 
its rupture limit. The models based on the plasticity theory are appropriate to describe such a be-
havior (Owen and Hinton [28]). Thus, the model chosen for the steel is defined by an elastoplastic 
constitutive law with positive isotropic hardening, as depicted in Fig. 2.  
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Figure 2   Elastoplastic steel behavior 

 
The criterion to verify the elastoplastic steel behavior is given by: 

 
 

f =σ s − σ sy + Kα( ) < 0  (13) 

 
 
in which σ

s
 is the steel reinforcement layer stress, σ sy  is the steel yielding stress, K  is the hard-

ening plastic modulus and α  is an equivalent plastic strain measurement. 
The stress over each reinforcement layer can be written as: 

 
 

f ≤ 0→σ = Eε

f > 0→σ = Etε
 (14) 

 
 
in which E

t
 is the tangent elasticity modulus given by E

t
= EK E + K( ) . It is interesting to note 

that the expression of the tangent elasticity modulus is valid only for monotonically crescent load-
ing models. 
 

4 GEOMETRIC NONLINEARITY 

Fig. 3 illustrates the initial and final configurations of a point P in a solid after the loading action. 
The horizontal and vertical displacements are defined by: 

 

 

θ

ϕ

tg(θ)=E

tg(ϕ)=
E+K
EK

ε

σ

σy

εy
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Figure 3   Initial and final configuration of a point 
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Considering a second-order approximation for small displacements, where sinθ = v ' x( )  and

cosθ = 1− v '
2
x( ) 2 , one can write Eq. (15) as: 

 

u
p
x, y( ) = u x( )− yv ' x( )

v
p
x, y( ) = v x( )− y

v ' x( )
2

2

 (16) 

 
in which u  and v  correspond, respectively, to the horizontal and vertical displacement fields of any 
point of the bar. 

Considering the geometric nonlinearity second-order terms given by Green strain measurement, 
the longitudinal and transversal strain fields, ε

xx
 and γ xy , respectively, are written by: 

 

ε
xx
=
∂u

p

∂x
+
1

2

∂u
p

∂x
⎛
⎝⎜

⎞
⎠⎟

2

+
∂v

p
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⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤
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p
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+
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p
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p
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Eq. (16) and (17) provide the final expression for the strains field, which is written in function of 
the displacements for the frame finite element: 
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1

2
u '( )

2

+
1

2
v '( )

2

− yv '' 1+ u '( )

γ
xy
= v '−ϕ − u 'v '−

v '
3

2

 (18) 

 
in which ϕ  is the additional rotation term of Timoshenko’s kinematics. 

Green’s strain tensor is naturally conjugated by the second Piola-Kirchhoff stress tensor. Howev-
er, in the field of small displacements and strains, the second Piola-Kirchhoff stress tensor can be 
replaced by the conventional stress tensor (Paula [29]): 
 

S = D
0

ε xx
γ xy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (19) 

 
in which S  is the conventional stress tensor with longitudinal and transversal component and D

0
 

is the material’s elastic properties tensor written as D
0
=

E 0

0 G

⎡

⎣
⎢

⎤

⎦
⎥ . 

The updated lagrangian formulation describes the structure situation based on the last balanced 
configuration. Thus, all the information necessary for the next load step is taken from the last con-
verged step. In practical terms, this idea means two updates: positions in each node of the structure 
and stresses in each integration point along the finite element. The stress tensor is updated by relat-
ing Cauchy’s tensor with the second Piola-Kirchhoff stress tensor. However, for small displacements 
and strains, Cauchy’s tensor in the current configuration coincides with the second Piola-Kirchhoff 
tensor of the last configuration. Thus, the update occurs simply by adding the extra stress of the 
current step to the last step values, as follows: 
 

x = x
a
+ Δx

y = y
a
+ Δy

 (20) 

 
σ

xx
=σ

xxa
+ Δσ

xx

τ
xy
= τ

xya
+ Δτ

xy

 (21) 

 
in which x

a
 and ya  are the nodes positions in the x  and y  directions of the last step, Δx  and 

Δy  are the displacements of the current step, σ
xx

a

 and τ xya
 are the axial and tangential stresses of 

the last step and Δσ
xx

 and Δτ xy  are the extra stresses calculated in the current step. 
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5 SHEAR STRENGTH MODEL 

Fig. 4 shows a portion of a cracked reinforced concrete member with the shear force from each 
stress transfer mechanism. 
 

 
 

Figure 4   Cracked reinforced concrete member and shear force portions 

 
The concrete contribution, V

c
, is given by the V

i
 and V

a
portions, which are related to the in-

tact concrete and the aggregate interlock, respectively. The contributions of the longitudinal and 
transversal reinforcements are given by the dowel action V

d
and shear reinforcementV

sw
, respective-

ly. 
 
5.1 Intact concrete and aggregate interlock contributions 

The contributions of the concrete are given according to the criterion: 
 

D = 0→V
c
=V

i

0 < D <1→V
c
=V

a

 (22) 

 
One of the mostly used forms to take into account the aggregate interlock existence is reducing 

the transversal elasticity modulus by a factor that depends essentially on the diagonal opening 
cracks (Walraven [33], Millard and Johnson [25], He and Kwan [16], Martín-Perez and Pantazopou-
lou [23]). This opening crack measurement can be approximated by the main tensile strain ε

1
. 

Therefore, the new value of G  is given by µG , where µ  is a number between 0 and 1 that de-

pends on ε
1
. This paper proposes to consider this reduction in function of the material damage 

state. It is assumed that the calibration of the damage model internal parameters in function of the 
tensile and compression experimental results in the concrete specimens automatically considers this 
effect of the aggregate interlock. As the damage variable is a function of the main strain state at a 
point, strain ε

1
 also influences directly the reduction in the concrete transversal stiffness. Thus, the 

intact concrete and the aggregate interlock strength portions are assessed by the integration of the 
shear stresses along the reinforced concrete finite elements cross-section as follows: 
 

 

Vd

Va

Vi

Vsw
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Vi = Gγ xy dy
−h 2

h 2

∫

Va = 1− D( )Gγ xy dy
−h 2

h 2

∫
 (23) 

 
in which h  is the cross-section height. 
 
5.2 Dowel action contribution 

The dowel action is a shear strength complementary mechanism attributed to the concrete. Howev-
er, it occurs when cracks cut across the longitudinal reinforcement bars, providing an increase in the 
shear strength. The faces of the crack transfer shear stresses to reinforcement bars, which start a 
local bending and shear at the bars. The dowel action can significantly increase the shear strength, 
as well as the post-peak ductility of some structural elements, such as beams with few or no shear 
reinforcement. In this model, the reinforcement bars work as beams over the elastic foundation of 
the concrete. Therefore, the dowel action behavior may be affected by several factors, such as the 
bars position along the cross-section, concrete cover and longitudinal and transversal reinforcement 
ratio. Fig. 5 shows the development of the dowel forces in a reinforced concrete cracked member. 
The bending moment caused by the dowel action can be given by: 
 

M
d
=V

d
L  (24) 

 
in which V

d
 is the dowel shear force and L  is the finite element length. 

 

 
 

Figure 5   Dowel action mechanism along the cracked reinforced concrete member 

 
The criterion for the beginning of the dowel action contribution is given by the same damage 

criterion. Fig. 6 presents the proposed criterion to initiate the dowel action contribution. The exist-
ence of damage is verified in the integration points immediately before and after the reinforcement 
layer. If the two points are damaged, that reinforcement layer will contribute to the dowel action. 
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Figure 6   Criterion for dowel action existence along the cross-section 

 
He and Kwan [16] proposed an interesting formulation to estimate both the dowel force and the 

dowel displacement: 
 

V
d
= E

s
I
s
λ
3
Δ
s
≤V

du
 (25) 

 
The parameters involved in the V

d
 calculations are: 

 

I
s
=
πϕ

s

4

64
, λ =

k
c
ϕ
s

4E
s
I
s

4 , kc =
127c fc

ϕs

23

 (26) 

 
in which E

s
 is the steel elasticity modulus, I

s
 is the moment of inertia of a circular cross-section 

bar, ϕ
s
 is the bar diameter, λ  is a parameter that compares the surrounded concrete stiffness with 

the bars stiffness, Δ
s
 is the dowel displacement, k

c
 represents the stiffness coefficient of the sur-

rounding concrete, fc  is the concrete compression strength and c  is an experimental parameter 

that reflects the spacing between the bars. Values between 0.6 and 1.0 may be assumed. In this 
paper 0.8 was adopted for parameter c . 

The dowel strength is limited by the ultimate shear capacity of the bar, which is given by: 
 

Vdu = 1.27ϕs

2
fc σ sy  (27) 

 
Diameter ϕ

s
 of the bars is replaced by an equivalent diameter ϕs,eq  calculated in function of 

the reinforcement area of each layer, as: 
 

ϕs,eq =
4As

π
 (28) 

 

 

b

h
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integration points

D>0
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Vd2=0
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V
d
=
2 πA

s

π
E
s
I
s
λ
3
Δ
s
≤V

du
 (29) 

 
The dowel displacement of the cross-section of a finite element can be approximated by the 

arithmetic mean of the values assessed for each integration point (He and Kwan [16]), as: 
 

Δ s =

π
λ

ε
1
cos α( )sin α( )+ γ xy cos

2 α( )⎡⎣ ⎤⎦{ }
ii=1

nht

∑
nht

 
(30) 

 
in which α  is the main tensile direction defined over the horizontal plane and n

ht
 is the number of 

integration points along the cross-section of a finite element. 
 
5.3 Shear reinforcement contribution 

In traditional modelings with one-dimensional finite elements, the contribution of the transversal 
reinforcement is not considered. Therefore, it becomes necessary to introduce an approximated 
model to take into account its influence, especially when shear stresses cannot be neglected. In 
beams with high span-to-depth ratio, the bi-dimensional stress state causes an increase in the dam-
age, which is assessed considering the shear and normal stresses. In these cases, the concrete quickly 
loses its stiffness and the presence of shear reinforcement becomes necessary to guarantee the load-
ing capacity of the cross-sections. According to Belarbi and Hsu [4], shear reinforcement presents 
significant strains only after the beginning of the concrete diagonal cracking. Prior to such cracking, 
the stresses are resisted by both the intact concrete over the non-damaged region and the aggregate 
interlock mechanism over the regions of low levels of damage. For the concrete, the diagonal cracks 

opening is directly associated with the main tensile strain 1
ε . In the same way, the damage model 

criterion is based on the presence of tension in the main strain tensor, which allows admitting that 
the stirrups will be loaded after the beginning of the damaging of the concrete. Thus, the criterion 
to initiate the shear reinforcement contribution along the loading process is given by the same dam-
age criterion, as expressed in equation 8. The main idea of the model consists in transferring part of 
the shear force dissipated by the damaging effect to the stirrups, as depicted in Fig. 7. While the 
equivalent strain does not reach the limit imposed by the damage criterion, the shear force in the 
stirrups is zero. After reaching this limit, the total strain can be separated into two parts: 

 
ε = ε

e
+ ε

d
 (31) 

 
in which e  represents the elastic strain portion and d  is the dissipated portion.  

From Eq. (12) one can write the dissipated strain portion as ε
d
= Dε . In the same way, the 

damaged stress portion is written by σ
d
= DEε .  
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Figure 7   Scheme for stress transfer from concrete to stirrups 

 
The Ritter-Mörsch’s truss analogy was used to calculate the stirrups transferred force portion. 

Sanches Jr and Venturini [30] considered the stress state of the middle point to define the stirrups 
strain. However, in nonlinear behavior the stirrup stresses increase from the compressed flange to-
ward the tensioned flange, but decrease in the regions close to the longitudinal tensile reinforce-
ment. Points localized between the cross-section central line and the closest reinforcement layer 
must be verified because their strains may be larger than those obtained in the cross-section middle 
point. To describe the equilibrium, the cross-section point with the largest strain was adopted and 
assessed by the maximum value of the rotated main strain damaged portion toward the reinforce-
ment direction. Mathematically, one has: 

 

ε
sw
= max ε

1
Dsin α( )⎡⎣ ⎤⎦  (32) 

 
in which ε

sw
 is the stirrups strain, α  is the main tensile direction, as depicted in Fig. 8, and max 

represents the maximum operator. 
The resultant shear force in each stirrup can be assessed by σ

sw
A
sw

, where A
sw

 corresponds to a 

single stirrup cross-section area and σ
sw

 is the stirrup stress. This stress value is obtained by the 

elastoplastic model over strain ε
sw

. According to the Ritter-Mörsch’s truss analogy, the shear force 

resisted by the stirrups can be calculated for a range of width equal to the effective depth of section
d . Therefore, the shear reinforcement contribution can be written as: 

 
V
sw
=σ

sw
ρ
sw
bd  (33) 

 
in which ρ

sw
 is the transversal reinforcement ratio defined by A

sw
sb( ) , s  is the spacing between 

the stirrups and b  is the cross-section width. 
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6 SOLUTION OF THE NONLINEAR PROBLEM 

The Newton-Raphson’s technique with tangent matrix was used to solve the nonlinear problem. 
The loading process is transformed into an incremental-iterative process, in which the stiffness ma-
trix is constructed by the contribution of each integration point. Thus, the integrals expressed by 
Eq. (6) are converted into a discrete sum of all the material’s contributions. 

The stiffness matrix of each finite element K[ ]  is composed of three parts: concrete bending

K[ ]
c, flex

, concrete shear K[ ]
c,cis

 and longitudinal reinforcement K[ ]
s
: 

 
K[ ]= K[ ]

c, flex
+ K[ ]

c,cis
+ K[ ]

s
 (34) 

 

K[ ]
c, flex

= Bxx,ij

T
1− Dij( )EcBxx,ij + Bxx,ij

T ηijEcBxx,ij +Gxx,ijSxx,ij⎡
⎣

⎤
⎦

j=1

nh

∑ bh

2
wy, j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

L

2
wx,i

i=1

nl

∑

K[ ]
c,cis

= Bxy,ij

T
1− Dij( )GcBxy,ij + Bxy,ij

T ηijGcBxy,ij +Gxy,ijSxy,ij⎡
⎣

⎤
⎦

j=1

nh

∑ bh

2
wy, j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

nl

∑ L

2
wx,i

K[ ]
s
= Bxx,ij

T
EsBxx,ij +Gxx,ijσ s,ij

⎡⎣ ⎤⎦
j=1

ca

∑ As, j
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

nl

∑ L

2
wx,i

 (35) 

 
The internal forces in each finite element, i.e., normal forces N , shear forces V  and bending 

moments M  are obtained by: 
 

N = N
c
+ N

s
 (36) 

 
V =V

l
+V

a
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d
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sw
 (37) 
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in which nl  and nh  are, respectively, the number of integration points along the length and height 
of each finite element, ca  is the number of longitudinal reinforcement layers in each finite element, 
E
c
 and G

c
 are, respectively, the longitudinal and transversal elasticity modules of the concrete, b , 

h  and L  are, respectively, the width, height and length of each finite element, y  and ys  are, re-

spectively, the distances of each integration point and each reinforcement layer until the middle 
point of the cross-section, A

s
 is the area of each longitudinal reinforcement layer, A

st
 is the sum of 

all the areas of the longitudinal reinforcement layers which contribute to the dowel action and w
x
 

and wy  are, respectively, the weight-factors of each integration point on the length and height of 

the finite elements, B
xx

 and Bxy  are the incidence matrices containing the derivatives of the finite 

elements shape functions, G
xx

 and Gxy  are the incidence matrices of the geometric nonlinearity. 

 
 

Bxx = A
T
+ A

T
u( )AT

+ B
T
u( )BT

− yC
T
− y C

T
u( )AT

− y A
T
u( )CT

Bxy = D
T
− B

T
u( )AT

− A
T
u( )BT

−
3

2
B
T
u( )BT

B
T
u( )

Gxy = AA
T
+ BB

T
− yAC

T
− yCA

T

Gxy = −BA
T
− AB

T
− 3 B

T
u( )BBT

 (39) 

 
 

The strain fields are related to the nodal parameters of the finite elements through the AT , BT , 

C
T , DT vectors, as: 

 
 

A
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⎤

⎦
⎥
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 (40) 

 
 

in which N
i

'  and N
i

''  with i = 1 to 6 are first and second derivatives of the shape functions and g  

is the Weaver’s constant, which is g = 6EI 0.833GAL  for the rectangular cross-sections. 

The shape functions of the problem are given by: 
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 (41) 

 
 
in which x  corresponds to any horizontal coordinate along the finite element length. 

The η  function considers the equivalent strain derivatives related to the strain components and 

is assessed by: 
 
 

η = F ε( )
∂ ε

∂ε
 (42) 

 
 

According to Mazars’ damage model, 
 
F ε( )  is a linear combination of the tensile and compres-

sion damaging functions obtained with 
 
F ε( ) =α

T
F
T
ε( )+α

C
F
C
ε( ) . 

 
 

F
T
ε( ) =

ε
d0
1− A

T( )
ε
2

+
A
T
B
T

e
BT ε−εd 0( )⎡⎣ ⎤⎦

F
C
ε( ) =

ε
d0
1− A

C( )
ε
2

+
A
C
B
C

e
BC ε−εd 0( )⎡⎣ ⎤⎦

 (43) 

 
 

The derivative of the equivalent strain related to the horizontal portion of the strain tensor de-
pends on the directions of the fiber strains according to: 
 
 

 

∂ ε

∂ε
x

= 1  (tension) ou 
 

∂ ε

∂ε
x

= −ν 2  (compression)  (44) 
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A complete flowchart for the entire proposed FEM model is illustrated in Fig. 8. The boxes with 
a numerical index are explained in details because they describe the most important parts of the 
program, including all the developed particular models. 
1 – Initial Data: in this section, one can check the models which will be considered in the numerical 
analysis, such as dowel action, shear reinforcement contribution, Euler-Bernoulli or Timoshenko’s 
theory and the finite element mesh description; 
2 – Starting Incremental Process: in this section, the program applies the load or displacement in-
crement on the particular nodes of the mesh; 
3 – Starting Iterative Process: in this section, the program starts the iterative process preparing all 
the internal variables of the damage and plasticity models, as well as the shear strength mecha-
nisms; 
4 – Local Stiffness Matrix: in this section, the stiffness matrix of each finite element is calculated, 
considering local degradation state and local plasticization state of the integration Gauss points on 
the cross-section and longitudinal reinforcement layers along the finite elements, respectively. The 
local stiffness matrix is evaluated by Eq. 34, in which the separated parts for concrete (bending and 
shear) and for longitudinal reinforcements steel are given by [K]c,flex, [K]c,cis and [K]s, respectively 
(evaluated by Eq. 35). Each of the variables used in these equations was already described, depend-
ing of the adopted shape functions and their derivatives, mechanical properties of the materials, 
geometry of the structure and internal variables of the damage and plasticity models (as described 
by Eq. 39 to 44). 
5 – Internal Forces Assessment: in this section, the internal resistances forces are assessed taking 
into account material behaviors and shear complementary mechanisms, which are aggregate inter-
lock and dowel action, as well as the contribution of shear reinforcement. The internal forces given 
by the normal force, shear force and bending moment in each cross-section over all the discretiza-
tion points along the finite element length are assessed by Eq. (36), (37) and (38), respectively. It is 
necessary to identify each component of these calculations: Nc and Ns are the contributions of un-
damaged concrete and longitudinal reinforcement for normal forces; Vl and Va are the contributions 
of undamaged concrete and aggregate interlock, respectively; Vd and Vsw are the contributions of 
the dowel action and shear reinforcement assessed by the developed models, respectively; Mc, Ms 
and Md are the contributions of concrete, longitudinal reinforcement and the bending moment from 
dowel action, respectively. 

The last parts of the program as depicted in Fig. 8 are classical in all the nonlinear numerical 
FEM models. 
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Figure 8   Flowchart of the developed FEM model 
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7 NUMERICAL APPLICATIONS 

The common information to all the numeric examples is: force and displacement convergence toler-
ance to verify the equilibrium is 10-4; 6 and 20 integration points along the length and the cross-
section of the finite elements, respectively. Value of the KS parameter for the elastoplastic behavior 
of the steel reinforcements is, in both examples, 10% of ES. 
 
7.1 Example 1 

In this example three reinforced concrete beams with same geometry and loading, but different lon-
gitudinal and transversal reinforcement ratios were analyzed. The beams were experimentally tested 
by Ashour [1] and numerically tested by He and Kwan [16]. They considered the steel bars embed-
ded in a quadrilateral isoparametric finite element (plain stress state) of concrete with two extra 
degrees of freedom for bending to eliminate the shear locking. The ultimate loads were compared 
with the results of Wang and Hoogenboom [34], who simulated beams from a stringer-panel bi-
dimensional mechanical model, in which the cracked concrete was considered an orthotropic materi-
al. The reinforcement details, as well the mesh of 18 finite elements with different lengths are shown 
in Fig. 9. The mechanical parameters used for each beam are given in Table 1. 
 

Table 1   Concrete and steel properties 

 

RC Beam fc (MPa) Ec (MPa) νc fs (MPa) Es (MPa) Ks (MPa) 

01 30.0 25921 0.24 500 205000 20500 

02 33.1 27227 0.23 500 205000 20500 

03 22.0 22198 0.26 500 205000 20500 

 

The parameters of the damage model εd0, AT, BT, AC and BC were calibrated for each concrete 
compression strength and are given in Table 2. The mechanical models used in these analyses took 
into account the Timoshenko’s theory only with the concrete contributions, i.e., intact concrete and 
aggregate interlock (T) and the full Timoshenko’s theory with all the contributions (TSD). 

The results of the analysis are depicted in Fig. 10, 11 and 12. It is possible to verify a considera-
ble difference between the results of the T and TSD models in the two first beams, which shows the 
importance of the stress transfer from the cracked concrete to the shear reinforcement. 
 

Table 2   Parameters of the damage model 

 

fc (MPa) εd0 AT BT AC BC 

30.0 0.000078 1.004 9000 1.056 1034 

33.1 0.000080 1.018 8997 1.048 963.3 

22.0 0.000074 0.964 9011 1.081 1253 
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From the point of view of the equilibrium trajectory, the 1D FEM model considering TSD 
showed, for beam 01, a better behavior than that observed with the He and Kwan [12] 2D FEM 
model, as depicted in Fig. 10. The Mazars’ damage model tends to produce better results for rein-
forced concrete members with higher reinforcement rates than for concrete members with lower 
reinforcement rates. Such a behavior is due to the damaging along the concrete member producing 
a better representation of the real cracking panorama. Moreover, the aggregate interlock defined by 
the damage model proved to be better considered in this case and also in the ultimate load and 
TSD was more accurate than the others, as seen in Table 3. 

For beam 02, all the numerical modeling showed a more rigid behavior than the experimental re-
sults. The withdrawal of two reinforcement layers closer to the beam’s geometric center and the 
largest vertical spacing between the layers demonstrated importance in the description of the equi-
librium trajectory, but they did not provide a good agreement with the experimental results. How-
ever, in terms of ultimate load, the TSD model reached almost the same value obtained in the ex-
perimental test, as illustrated in Table 3. 

Beam 03 presented almost the same result for the T and TSD models, since there was no shear 
reinforcement. The shear strength in this case was given by the intact concrete, aggregate interlock 
and dowel action portions. The dowel action influence was found to be small when compared to the 
shear transversal reinforcement. Therefore, the shear reinforcement together with the concrete con-
tributions is responsible for the shear strength in deep reinforced concrete beams. The ultimate load 
value provided by the dowel action was different from the value observed in the T model (Table 3), 
indicating a small contribution to the final shear strength of the beam. 

 
Table 3   Values of the ultimate load 

 
Model RC Beam Fult (kN) Fult / Fexp 

Experimental 

01 

1095.2 1.000 

He and Kwan 1071.2 0.978 
Wang and Hoogenboom 1060.0 0.968 
This paper – T 701.8 0.641 
This paper – TSD 1090.8 0.996 

Experimental 

02 

947.6 1.000 

He and Kwan 899.6 0.949 
Wang and Hoogenboom 814.0 0.859 
This paper – T 731.3 0.772 
This paper – TSD 953.9 1.007 

Experimental 

03 

567.6 1.000 

He and Kwan 533.4 0.940 
Wang and Hoogenboom 456.0 0.803 
This paper – T 566.9 0.999 
This paper – TSD 567.8 1.000 
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Figure 9   Geometry, loading and discretization of the analyzed beams 
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Figure 10   Equilibrium trajectory of vertical node 14: beam 01 

 
 
 
 

 
 

Figure 11   Equilibrium trajectory of vertical node 14: beam 02 
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Figure 13   Equilibrium trajectory of vertical node 14: beam 03 

7.2 Example 2 

The structure studied in this example is a reinforced concrete frame tested by Vecchio and Emara 
[32] and numerically analyzed by Güner [15] and La Borderie et al. [20]. The considered models 
were Euler-Bernoulli (B) without shear contributions and full Timoshenko’s (TSD). The loads and 
frame geometry are depicted in Fig. 13. 
 

 
Figure 13   Geometry and loads of the reinforced concrete frame 
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Two types of support conditions were considered: case I – frame with a support beam and case II 
– clamped-clamped frame, as shown in Fig. 13. The response obtained by La Borderie et al. [20] was 
considered only for case II and repeated for case I. Concerning the types of analyses, Güner [15] 
used the SAP 2000 [8] software, in which the structure is considered with a mixed behavior, i.e., 
elastic-linear along the one-dimensional finite elements and plastic hinges at the appropriate mem-
ber ends. These hinges are positioned at the end nodes of some special finite elements, such as the 
joint of a beam and column to simulate the existence of rigid offsets. The La Borderie et al. [20] 
modeling was performed with one-dimensional finite elements, but with their own damage model, in 
which the inelastic strains from the damage were taken into account. 
 

 
 

Figure 14   Cases of the support conditions considered 

The parameters used were concrete elasticity modulus of 23674MPa, concrete compression 
strength of 30MPa, concrete Poisson’s ratio of 0.2, steel yielding stress of 418MPa, steel elasticity 
modulus of 192500MPa and steel plastic modulus of 19250MPa. The horizontal loading on the 
frame top was applied in steps of 5kN. The damage parameters were, respectively, εd0, AT, BT, AC, 
and BC: 0.000085; 1.145; 10330; 1.117 and 1189. The equilibrium trajectories for cases I and II are 
depicted in Fig. 15 and 16. 
 

 
Figure 15   Horizontal equilibrium trajectory of node 21: case I 
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The use of clamped supports, as observed in case II, provided higher stiffness to the structure, 
since there was no rotation in the support nodes. The support beams adopted in case I did not show 
a significant difference for model B. However, for the TSD model, some changes were observed in 
terms of displacements after concrete cracking and especially in terms of ultimate load. The great 
capacity of internal forces redistribution may be the main reason for this behavior. 
 

 
Figure 16   Horizontal equilibrium trajectory of node 21: case II 

Tables 4 and 5 present the values of the loading and horizontal displacement for both reinforce-
ment steel yielding in node 1 and frame ruin. The column Error (%) was evaluated from a compari-
son between experimental and each numerical result for both yielding and ultimate loads. 
 

Table 4   Comparison between the results: case I 

 

Model 
Yielding Ultimate 

F (kN) d (cm) Error (%) F (kN) d (cm) Error (%) 

Experimental 264.0 2.68 0.0 332.0 8.21 0.0 

Güner [15] with SAP2000 238.0 1.89 -9.8 309.0 8.06 -6.9 
La Borderie et al. [20] 277.0 2.53 +4.9 373.0 8.64 +12.3 

B 285.0 2.88 +7.9 355.0 8.20 +6.9 
TSD 265.0 2.85 +0.4 320.0 8.31 -3.6 

 

Table 5   Comparison between the results: case II 

 

Model 
Yielding Ultimate 

F (kN) d (cm) Error (%) F (kN) d (cm) Error (%) 

Experimental 264.0 2.68 0.0 332.0 8.21 0.0 

Güner [15] with SAP2000 238.0 1.89 -9.8 309.0 8.06 -6.9 
La Borderie et al. [20] 277.0 2.53 +4.9 373.0 8.64 +12.3 
B 285.0 2.86 +7.9 365.0 8.27 +9.9 
TSD 283.0 2.80 +7.2 360.0 8.10 +8.4 
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As one can observe, the TSD model for case I represented better the real behavior of the frame 
in terms of ultimate load and reinforcement steel yielding, showing differences of only -3.6% and 
+0.4%, respectively, in comparison to the experimental tests. In the case II, in which the structure 
is considered as a clamped-clamped frame, the proposed model was capable to obtain a good agree-
ment compared to the other models regarding the experimental results, especially for the ultimate 
load. 
 
8 CONCLUDING REMARKS 

This paper presented a mechanical model based on the one-dimensional finite element method 
which incorporates the shear reinforcement strength, the dowel action and the aggregate interlock 
from the concepts of the damage mechanics, besides the geometric nonlinearity. One of its ad-
vantages consists in adapting the shear strength mechanisms for a bar finite element without 2D 
analysis. The results allowed concluding that the model could satisfactorily represent a structural 
behavior in which the influence of the shear strains must be considered, highlighting the contribu-
tions of the shear reinforcement, dowel action and aggregate interlock. The aggregate interlock por-
tion was assessed together with the intact concrete portion given by the damage model. Thus, by 
calibrating the damage parameters, the aggregate interlock was automatically taken into account, 
because these parameters are obtained from the experimental tests of the concrete. The coupling 
between the shear strength complementary mechanisms, the damage model for concrete and geo-
metric nonlinearity is also another interesting aspect. It allowed simulating frame structures, which 
take the equilibrium in the deformed configuration with the stiffness loss from bending and shear 
strain states. Finally, the model has showed numerical stability and capability of assessing the ulti-
mate loads, the start of concrete cracking and the reinforcement steel yielding values of the ana-
lyzed structures with good accuracy. 
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