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We consider launching a monochromatic surface acoustic wave packet on a large set of random

scatterers. The interference of the multiple scattered waves creates a random pattern of ripples on the

crystal surface that is recorded by optical interferometry. The Fourier transform of the amplitude and

phase data of the measured wave field unveils the complete slowness curve, i.e., the wave-vector as

a function of the propagation angle. A simple acoustic speckle model is proposed to explain this

observation. © 2011 American Institute of Physics. �doi:10.1063/1.3554424�

The structural anisotropy of crystalline solids directly

influences the velocity of acoustic waves or phonons. Con-

versely, the measurement of the velocity as a function of the

angle of propagation allows one to evaluate the elasticity

tensor of the material. The observation of waves propagating

at the surface of solids has been performed by various

means. Matsuda et al. performed pump-probe experiments in

which they could observe the ripples originating from a

punctual excitation of surface acoustic waves �SAWs�.1 In

these time-domain experiments, they demonstrated that a

few wavelengths away from the source, the phase front fol-

lows the shape of the surface wave, i.e., the locus of the

group velocity as a function of the propagation angle, vg���.
Alternatively, frequency-domain experiments can be con-

ducted at a fixed wavelength to evaluate the slowness curve,

i.e., the inverse of the phase velocity of a plane wave as a

function of the phase angle, s���. There is a simple and

direct relation between the slowness curve and the wave sur-

face, vg���= �s���cos����−1, with � as the beam-steering

angle and �=�+�.
2,3

Accurate knowledge of the slowness

curve is needed in the design of SAW devices, as illustrated

by tailored interdigital transducers �IDTs� that can focus a

SAW beam
4

or even create a subwavelength acoustic

source.
5

Wickramasinghe and Ash
6

showed that SAW slow-

ness curves can be measured using a phase sensitive laser

probe. Indeed, given the wave field distribution obtained

from a SAW transducer emitting within some angular range,

they obtained the corresponding portion of the slowness

curve by a one-dimensional Fourier transform �FT� of two

line scans separated by a given distance. Robbins and Rudd
7

performed a similar experiment by using a scanning laser

acoustic microscope. They observed that the waves scattered

from the edges of their sample contribute to the measure-

ment, although very faintly. Later on, a scanning acoustic

force microscope was also used to observe the phase velocity

of surface waves.
8

In this letter, we consider obtaining the full slowness

curve without prior knowledge of the elastic constants.

Whereas the previously described methods resolve an angu-

lar range limited by the emission of the transducer, we con-

sider the random interference of surface waves coming from

all possible angles of incidence. This interference forms an

acoustic speckle field that contains all the necessary informa-

tion for extracting the slowness curve via a Fourier transform

if the coherence of the surface waves is properly captured. To

this end, we use a scanning heterodyne optical probe
9

that

records both the phase and absolute amplitude of the acoustic

speckle field.

In our experiment, we selected the Y-cut of lithium nio-

bate �LiNbO3� as the anisotropic substrate material. The ex-

periment is depicted in Fig. 1. The IDTs have 50 finger pairs,

a pitch of 8 �m, and an aperture of 500 �m. The surface of

the scan area is metallized with 150 nm of aluminum. Note

that the same design would operate on any piezoelectric sub-

strate whatever the crystalline orientation and with or with-

out the central metallization. The frequency of the mono-

chromatic SAW is tuned to 223 MHz �near the IDT

resonance� using a signal generator. The collimated SAW

beams are directed toward regions containing many random

a�
Electronic mail: vincent.laude@femto-st.fr.

FIG. 1. �Color online� Schematic presentation of the experiment proposed to

obtain the slowness curve from random SAW scattering �not to scale�. �a�
Two identical IDTs generate SAWs at angular frequency �, which propagate

toward regions containing a large number of random scatterers �S�. The

scattered SAWs generate a random wave field, or speckle, that is captured in

the central area �c� using a scanning heterodyne optical probe. The ampli-

tude of one such scan is shown in the central area for illustration. The set of

axes with capital letters is for the crystallographic directions while the other

set of axes is for the measurement coordinate-system. �b� A scanning elec-

tron microscope view inside one of the regions with random scatterers �S� is

shown.
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scatterers. These regions are created by repetitively scanning

a femtosecond laser beam over the crystal surface along

many different directions. The complex interplay of material

ablation and redeposition then creates scattering structures

that are irregular in shape, with lateral dimensions much

smaller than the incident acoustic wavelength. Each scatterer

is expected to convert part of the incoming SAW beam to

annular SAWs.
10

The scattered surface waves travel on the

surface and interfere, creating an acoustic speckle similar to

the laser speckle observed on a screen where a continuous-

wave laser beam is diffused. The coherence time of the sig-

nal delivered by the frequency generator is much longer than

1 s and even though some phase noise is introduced by the

experimental set-up, we infer that the coherence time of the

SAW is larger than 1 s. Considering an average velocity of

3500 m/s, the scattered SAW can then propagate over dis-

tances larger than 3500 m and still interfere with subsequent

incoming SAWs. Given that the sample size is a few centi-

meters, the acoustic speckle remains perfectly coherent even

after many scattering events.

The intensity and the phase of the acoustic speckle are

random quantities originating from the interference of the

scattered waves. In the experiment depicted in Fig. 1, the

acoustic speckle field is sampled over a certain area away

from all sources, i.e., both away from the IDTs and the scat-

terers. The scanning heterodyne optical probe is sensitive to

the vertical displacement of the surface.
9,11

The amplitude

and phase of the measured speckle field are shown in Fig. 2,

together with the FT result. It can be seen that the FT is also

a random quantity but that its distribution concentrates

mostly along a closed curve in Fourier �wave-vector� space.

This closed curve is the slowness curve for SAWs propagat-

ing on the crystal surface. This observation is confirmed by

comparing the measured closed curve, Fig. 2�c�, with the

slowness curve computed
10

using the material constants in

Ref. 12, Fig. 2�d�.
It can also be observed that the interior of the measured

slowness curve is filled with a random background, while its

exterior shows no wave contributions. We attribute this to the

waves that are scattered to the bulk of the substrate. Since

these are trapped between the two surfaces of the crystal

plate, they can propagate at any angle. Their wave-vector in

the surface plane is, however, limited to that of the slowest

bulk acoustic wave as they are constrained to the sound cone.

The calculated projection of the sound cone is depicted in

Fig. 2�d� as a gray area for comparison with the experimental

result. Furthermore, it can be noted that the experiment also

reproduces the ‘forbidden’ regions between the SAW slow-

ness curve and the projected sound cone. This is seen in the

experiment as the blue area between the filled interior and

the slowness curve.

We now formulate a simple model for the formation of

the SAW speckle and of its Fourier transform. Bulk contri-

butions are neglected in this analysis, which is limited to

SAWs in the far-field of the sources. At any observation

point r, a large number of scattered waves are received. We

assume that the scatterers can be regarded as point sources,

or equivalently, that their size is much smaller than the SAW

wavelength at frequency �. We formally write this superpo-

sition as

u�r� = �
n

AnG��r − rn� . �1�

In this equation, u is the vertical displacement, An is a ran-

dom variable �the oscillation amplitude of the nth scatterer�,
and G� is a Green’s function giving the field scattered by a

point scatterer.
10

It is important to note that we assume that

the Green’s function is independent of the particular scatterer

considered. The statistical properties of An need not to be

precisely known. However, it can be assumed for simplicity

that they correspond to white noise with the properties �An�

=0 and �An
�Am�=	In

	Im�mn, where the scatterers can have

unequal amplitude variance. It is useful to consider the fol-

lowing spectral representation of the Green’s function

G��r,�� = 

0

+� kdk

4	2

0

2	

d�G̃��k,��e−ıkr cos��−��. �2�

In the far-field of a scatterer, the Green’s function is domi-

nated by the SAW contribution, which possesses a singular

kernel lying on the slowness curve so that the spectral

Green’s function can be approximated by the single-pole

formula
10

G̃��k,�� =
a���

k − �s���
. �3�

The �unbounded� Fourier transform of Eq. �1� is

FIG. 2. �Color� Experimental measurement of the SAW speckle at 223 MHz

and comparison to the simulated slowness curve. The measured absolute

amplitude and phase �in degrees� of the surface vibration field are shown in

�a� and �b�, respectively. The Fourier transform of the measured wave field

in �c� shows the wave content as a function of slowness �or inverse phase

velocity�. The SAW slowness curve is seen as the continuous outer bound-

ary and waves scattered into the bulk as the filled interior disk. The calcu-

lated dispersion relation is displayed in �d�, with the computed SAW slow-

ness curve shown as a solid red line and the projection of the sound cone for

bulk waves shown as a gray region. Bulk waves propagating in the plane of

the surface are identified and labeled as S1, S2, and L for the two shear and

the longitudinal waves, respectively.
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ũ�k� = ��
n

Aneık·rn�G̃��k� . �4�

From this expression, we observe that the FT of the vertical

displacement field is the product of a random function and of

the singular spectral Green’s function. Since the FT of white

noise is also white noise, the FT of the speckle appears as an

image of random bright and dark spots. The singularity of

the spectral Green’s function enhances very locally the FT of

the speckle and hence makes the slowness curve visible.

The previous analysis would result in speckle grains

having a vanishing size. This idealization is a consequence of

our assumption of an infinite number of random sources in

Eq. �1� and their pointlike extent. There are at least two

limiting dimensions in our experiment. First, the step size of

the scan limits the maximum spatial frequency. In practice, it

is sufficient to have a few samples per wavelength to satisfy

the Nyquist criterion. Second, the lateral size of the scan, 
x,

limits the spatial frequency resolution. The speckle grain size

can roughly be estimated to be inversely proportional to the

size of the scanning window. Denoting this window W�r�,
Eq. �1� can be rewritten as

uW�r� = �
n

AnG��r − rn�W�r� . �5�

The spatial Fourier transform of this expression is

ũW�k� =
 dk�

4	2
ũ�k��W̃�k − k�� . �6�

In the experiment, the scanning area is bounded and the Fou-

rier transform of the scanned amplitude and phase field is

thus the convolution of a speckle grain function times the FT

of the unbounded acoustic speckle field. The speckle grain

function is the Fourier transform of the window function.

The relative spatial frequency resolution can be roughly es-

timated as � /
x. In the experiment presented here, this rela-

tive resolution is around 2%. This number can be improved

by using a larger scan area, of course, at the expense of a

longer scan time. Furthermore, a priori knowledge of the

properties of the SAW slowness curve �for instance, that it is

a continuous and periodic function of the angle� could be

incorporated in the estimation algorithm.

As a conclusion, we have shown that the slowness curve

for surface acoustic waves, a direct measure of the aniso-

tropy of a solid material, can be recovered by recording the

acoustic speckle originating from random scattering. The

measurement of the phase of the acoustic speckle field, in

addition to its amplitude, is essential in this process. We have

proposed a simple model for the formation of the acoustic

speckle, stressing the importance of the singularity of the

spectral Green’s function along the slowness curve. The

method could be used, for example, to estimate the elastic

constants of anisotropic media.
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