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Abstract. This paper presents an approach to a reliable material classification
for printed circuit boards (PCBs) by constructing a spectral imaging system.
The system works in the whole spectral range [400-700nm] and the high spec-
tral resolution. An algorithm is presented for effectively classifying the surface
material on each pixel point into several elements such as substrate, metal, re-
sist, footprint, and paint, based on the surface-spectral reflectance estimated
from the spectral imaging data. The proposed approach is an incorporation of
spectral reflectance estimation, spectral feature extraction, and image segmenta-
tion processes for material classification of raw PCBs. The performance of the
proposed method is compared with other methods using the RGB-reflectance
based algorithm, the k-means algorithm and the normalized cut algorithm. The
experimental results show the superiority of our method in accuracy and com-
putational cost.
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1 Introduction

Material classification is one of the important problems in computer vision, which is
depending on surface-spectral reflectance of observed materials. The surface-spectral
reflectance of objects is inherent to the material composition. Therefore this inherent
physical property can be helpful in recognizing objects and segment regions in the
illumination invariant way. With computer hardware and camera advances, new
computer vision algorithms should be developed and applied in industry. A PCB in a
variety of industries is one of the most complicated objects to understand from the
observed image. The surface layer of a raw PCB is composed of various elements,
which are a mixture of different materials and the area of each element is very small.
These features make the machine inspection difficult.

There are numerous algorithms, approaches, and techniques in the area of PCB in-
spection nowadays [1-5]. Most of them are based on binary or gray-scale images sub-
traction to classify board defects. Chang et al. [1] developed a case-based reasoning
evolutionary model to classify defects of PCB images based on binary image differ-
ence. An eigenvalue-based similarity measure between two gray-level images is
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proposed in [2] with application of assembled PCB defect inspection. Ibrahim et al.
[3] applied image difference operation in the wavelet-domain image in order to mini-
mize computational time for PCB inspection. A contour-based window extraction
approach for bar PCB inspection from gray-scale images is proposed in [4]. Leta et al.
[5] presents a new algorithm to solve PCB inspection problem based on gray-level
images subtraction technique.

Since image understanding is the first and foremost step in the inspection of PCBs,
an improved image capturing system supports detection of defects. In our previous
works, a material classification algorithm was proposed based on surface-spectral
reflectance [6], [7]. However, due to limitations of spectral imaging, the method was
too simple to obtain enough accuracy in segmentation results of PCB images. The
present paper presents a non-contact measurement approach to performing a reliable
material classification for PCBs that can be used in inspection system by constructing
an improved spectral imaging system. The proposed approach is an incorporation of
spectral reflectance estimation, spectral feature extraction, and image segmentation
processes for material classification of raw PCBs.

The performance of our spectral image segmentation algorithm is compared with
typical segmentation algorithms. First, RGB-based image segmentation and the previ-
ous method [6] are compared with our results to show importance of the modified
spectral imaging system. Then, we compare the segmentation results with the RGB-
based k-means [8] and the RGB-based normalized cut algorithms [9]. Experimental
results from a number of raw PCBs have shown the effectiveness of the developed
method for classification of complicated images.

2 Spectral Imaging System

Figure 1 shows the newly constructed spectral imaging system for raw PCBs. The
camera system consists of a monochromatic CCD camera (Retiga 1300) with 12-bit
dynamic range and Peltier cooling, a macro lens of C-mount connected directly to the
camera, VariSpec™ Liquid Crystal Tunable Filter (LCTF), and a personal computer.
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Fig. 1. Imaging system Fig. 2. Partial image of a raw circuit board

We used multiple light sources of incandescent lamps for effective surface illumi-
nation. The LCTF has the spectral properties of bandwidth 10nm and wavelength
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range [400-720nm]. The image resolution is 1280x1024 pixels for the area of 35mm x
30mm. The previous system in [6] had the limited spectral resolution and range of
40nm and [450-650nm]. Moreover the image resolution and sensitivity are much im-
proved. The viewing direction of the camera is always perpendicular to the board sur-
face as shown in Fig. 1. Figure 2 shows the observed image of a small part on a raw
circuit board. The main elements on the circuit board surface are four materials
(metal, resist-coated metal, silk-screen print, and substrate) and metal holes.

Figure 3 shows the measuring geometry with multiple light sources. The observed
surface reflectance depend not only on the material composition, but also on the sur-
face geometry and roughness. In order to avoid large fluctuation of pixel values be-
tween highlight area and matte area, we control the illumination direction of a light
source. In our system, we use three incandescent light sources of 300W. Two light
sources illuminate the same surface alternatively from one of two directions (from left
or right) that are mirrored about the viewing direction. The third light source works as
back illumination for detecting holes. We investigated a proper illumination angle for
observing PCB materials. We found that the minimum illumination angle is 20° this is
because of the camera shadow on the board. Then the incidence angel 25° was chosen
in our imaging system. Decreasing the incident angle to less than 25° makes strong
specular highlight on the board especially on metal parts, and increasing this angle to
more than 25° makes metal parts more noisy and difficult to classify.
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Fig. 3. Measuring geometry with multiple light sources

3 Reflectance Estimation Based on Material Features

3.1 Material Properties

The PCBs materials reflection properties depend on the measuring geometries. We
can divide the PCB materials into two categories of metal parts and non-metal (dielec-
tric) parts on the basis of reflection. In the case of metal, incident light is specularly
reflected. Sharp edges of metal flakes and holes produce specular highlights and
shadowing effects on the other side. Moreover, for metal surface and footprint mate-
rial edges at some angles of viewing and lighting strong specular highlights appear.
Thus specular reflection and shadowing effects can be controlled by changing direc-
tion of light. For dielectric parts, materials surface are smooth and strong specular
highlights cannot occur at some illumination directions. According to the dichromatic
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reflection model [10], the diffuse spectral reflectance of these materials is constant.
Thus, changing the illumination angle will not have a great effect on the spectral re-
flectance estimation for such type of materials. The elements of substrate, print, foot-
print, and resist are classified into this type.

3.2 Spectral Reflectance Data

We use a straightforward way of obtaining a reliable estimation of the reflectance
function from the camera outputs of narrow band filtration. Let the wavelength bands

of the filter be 31 bands of A,4,,..., 4, corresponding to 400, 410, ..., 700nm. Let
S(4,;x,y) be the surface-spectral reflectance at wavelength 4, (k =1,2,...,31) at loca-
tion of (x, y), which can be recovered by eliminating the illumination effect from the
sensor outputs as follows:

pk ()C, )’)
j:ff E(A)R, (A)d A

S(A;x,y) = (D

where E(A) is the illuminant spectral power distribution of the light source, and
R, (A) is the k-th sensor spectral sensitivity function. This process is repeated for the
spectral images from both lightning directions of left and right.

3.3 Unified Spectral Reflectance

The light sources illuminate the same surface alternatively from one of two directions.
We combine the spectral reflectance data to produce only one spectral reflectance
image from two captured images. Because the shape of spectral reflectance character-
izes the material properties of each pixel point on the PCB, some features of the spec-
tral curves are used in the combination operation. The proposed combination process
is composed of the following steps,

1. LetS; =S (4, ,x,y)be the average of the observed reflectance at a particular
wavelength k over the entire image region. Then we calculate the average spec-

tral reflectance (S1,S2,...,S31) from both images.
2. If both pixel values from left and right images are high and the both reflectances

achieve the condition S(/Ik;x,y) > Sk (k=1, 2, ..., 31), this pixel is classified

into the silk-screen print area, and the higher reflectance is chosen.

3. If one pixel value from both images is very high and the other is extremely low,
this pixel includes specular highlight of metal. The higher reflectance is chosen
for a metal surface. Then we can neglect shadow area on the board.

4. If both pixel values do not have big difference in reflectance, this pixel is classi-
fied into dielectric. The average reflectance is calculated.

5. For the remaining pixels except for the material areas extracted in the above, the
higher reflectance from both sides is chosen.
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4 Material Classification and Image Segmentation

A material classification algorithm is proposed based on the spectral features among
the spectral reflectances. The image segmentation process is divided into two
sub-processes of pixel-based classification and region growing.

4.1 Pixel-Based Classification Algorithm

The following algorithm is applied to each pixel independently. Adjacent pixels with
close reflectance are gathered in the same region and used as initial segments for the
post processing level.

1. The average spectral reflectance (31 , Ez yeees 531 )is calculated for the whole image.

2. Pixels with high reflectance values and satisfy S(/ik;x, y) > Ek k=1, 2, ..., 31)

for the whole visible range [400-700nm] are classified into silk-screen print.
3. The peak wavelength of each spectral curve is detected for the remaining pixels
except for screen-print. If the spectral peak exists in the range [600—700nm] and

the spectral reflectance values satisfy conditions of S (/Ik;x, y) > Sk (k=21, 22,

...,31)and S(;Lk (X, y) < Ek (k=1, 2,...,11), the pixel is classified into metal.
4. If the peak wavelength in the remaining pixels is in the range [510-590nm] and

the relevant spectral reflectance satisfies the conditions S(/lk;x, y) > Ek (k=12,

13, ..., 20) and S(/”Lk;x, y) < Ek (k=21, 22, ..., 31), then the pixel is classified

into resist-coated metal. .

5. The other pixels satisfying the condition § (ﬂk;x, y)< Sk (k=1, 2, ..., 31) are
classified into substrate.

6. Finally, the through holes are determined independently from the observed im-
age by using back-illumination. The back-illuminated image is binarized using a
threshold, in which the brighter parts correspond to the holes.

4.2 Region Growing Algorithm

The above algorithm partitions the spectral image of a PCB into different material
regions. However, there are pixels remaining without any labels in the above. In
addition, isolated regions with a small number of pixels can be considered as noisy
pixels. Hence, an algorithm of merging those undetermined pixels into the neighbor-
ing regions is needed. The initial segments are provided by the above pixel-based
algorithm. Let us consider the following condition of region homogeneity R j

H(Rj)zTrue,j=1,2,.--,N ) 2

where N is the number of initial segments. The merging process depends on calculat-
ing distances between segments S and S'. We define the distance as a spectral differ-
ence in the 31-dimensional vector, which is calculated using Euclidian distance

D=k (5;-5%. 3)
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where K is the number of wavelengths. The region growing algorithm is started using
a region of 3x3 pixels with overlapped widows. The minimum distance is checked
between the current pixel and surrounding pixels to update the segments. This process
continues until the merging of all adjacent regions stop. Finally, a smoothing opera-
tion is executed to get the final image segmentation result.

S Experiments

5.1 Performance of the Proposed Method

The scene of the raw circuit board shown in Fig. 2 was captured with the present
spectral imaging system under incandescent lamps. The image size was 1280x1024
pixels. Two data sets of surface-spectral reflectances were estimated from the two
spectral images at two different light sources. We combined these reflectance images
into one reflectance image by comparing the corresponding reflectances at the same
pixel point and applying the above rules to all pixels. Then, the proposed classifica-
tion algorithm was executed for the spectral reflectance image. The typical spectral
reflectances obtained for the PCB in Fig. 2 is shown in Fig. 4(a). Figure 4(b) shows
the classification results of the developed method.
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Fig. 4. (a) Typical curves of surface-spectral reflectance for print, metal, metal, and substrate of
the PCB shown in Fig. 2. (b) Material classification results for a part of the raw PCB.

In the figure, the regions classified are painted in different colors, such as white for
silk-screen, yellow for metal, green for resist-coated metal, black for substrate and
grey for hole. It should be note that the observed PCB image is clearly classified into
four material regions and through-holes.

5.2 Comparison with RGB Reflectance-Based Method

In order to examine the effectiveness of surface reflectance in material classification,
the spectral camera system was replaced with a digital still camera. We used a Canon
camera, EOS-1Ds Markll to capture color images of the same PCB under the same
illumination environment. A Kenko extension ring was inserted between the camera
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body and the lens to get the required focus from enough distance. The RGB images
with the same size 1280x1024 as the spectral images were obtained. The normalized
color values were calculated as spectral reflectance from Eq. (1) for only R, G, and B
channels by eliminating illumination effect. Figure 5 shows the captured RGB image.
Figure 6 shows the typical color reflectances obtained for different PCB materials.
The classification process based on the RGB reflectances developed as follows:

1. Average color reflectances E 6 E over the whole image are calculated from red,
green and blue values.

2. High reflectance pixels satisfying three conditions R(x,y) > § G(x,y)> 6

B(x,y)> B are classified into silk-screen print.
3. If the remaining pixels except for the screen print satisfy the condi-

tions R(x, y) > } and R(x,y) > G(x,y) > B(x,y) , then the pixels are classified

into metal.
4. If the remaining pixels satisfy R(x, y) < B(x, y), B(x,y) < G(x, y), then the pix-
els are classified into resist metal.
The other pixels are classified into substrate.
6. Finally, the through holes can be determined by using back-illumination.
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Fig. 5. Captured color image Fig. 6. Materials typical RGB reflectances

Figure 7(d) presents the RGB-based segmentation results using the above classifi-
cation algorithm without holes detection to easily compare segmentation results.
Comparing with Fig. 4(b), we can confirm the accuracy of the proposed reflectance-
based classification algorithm. This is clear from the shape of materials, especially
metal flakes and metal holes, where the RGB-based algorithm has a lot of miss-
classified pixels and some other pixels has wrong classification, especially in metal
parts with specular highlight area.

5.3 Segmentation Comparison with K-Means and Normalized Cut Algorithms

For comparison with a traditional clustering algorithm and a popular graph theoretic
algorithm, we choose the k-means [8] and the normalized cut [9] algorithms. Those
algorithms require expensive computational cost and memory requirements for large
size images. Moreover, the high dimension of the spectral images makes it difficult
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(e) RGB-based K-means (f) RGB-based N-cut

Fig. 7. Segmentation results by the different methods, compared with the ground truth

to apply such algorithms to the present problem. Therefore, we apply the k-means
algorithm to the RGB reflectance image and the normalized cut algorithm to the re-
sized RGB reflectance image to check the performance of our classification method.
The final segmentation results for all algorithms are summarized in Fig. 7 without
holes detection to easily present the performance of each algorithm in PCB segmenta-
tion. Fig. 7(a) shows the ground truth of segmentation. The ground truth is manually
generated as a desired segmentation. Fig. 7(b) shows the image segmentation results
by the proposed method. Figs. 7 (c)-(f) show the segmentation results by the previous
method proposed in [6], RGB reflectance-based method, the k-means clustering, and
the normalized cut algorithm, respectively. We changed the initial seed points for k-
means many times but we got nearly same result.

Table 1 lists the accuracy and CPU time of the compared algorithms. The methods
are run on CPU Intel Xeon E5405 2GHz with 3G memory. The proposed, previous
and RGB methods used C language on FreeBSD software. K-means and N-cut used
Matlab on the same system.
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Table 1. Comparison of the accuracy and CPU time for the compared methods

Method Proposed Previous RGB-based | RGB-based | RGB-based
method method [6] K-means N-cut

Quality rate 98.72% 96.45% 94.01% 77.56% 74.37%

CPU time (s) 8.71 8.22 6.64 3.86 1321.57

To demonstrate the accuracy of our method, we apply the proposed algorithm on a
more complicated four materials PCB. Figure 8 shows segmentation result of a differ-
ent board with four materials.

(a) Four materials PCB spectral image (b) Relevant segmentation result

Fig. 8. Segmentation results of a four material PCB

In case of five materials PCB with footprint elements, the proposed algorithm can
easily be extended by calculating the average reflectance for the remaining pixels
except print, resist, and metal after step 4 in section 4.1. Then check step 5 for sub-
strate and the remaining pixels will be footprint. The classification of a five material
PCB is presented in Fig 9. We can easily note that the developed method can be used

: ’Fbotpri‘lft'

(b) Relevant segmentation result

(a) Five materials PCB spectral image

Fig. 9. Segmentation results of a five material PCB
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for different PCBs with different number of materials. The classification results have
shown a high accuracy with CPU time less than 9s for 1280x1024x31 spectral color
PCB image.

6 Conclusion

This paper has presented an approach to a reliable material classification for PCBs by
constructing a spectral imaging system. The system worked in the whole spectral
range of visible wavelength [400-700nm] and the high spectral resolution of narrow
filtration. An algorithm was presented for effectively classifying the surface material
on each pixel into several elements such as substrate, metal, resist, footprint, and
paint, based on the surface-spectral reflectance information estimated from the imag-
ing system. The proposed approach was an incorporation of spectral reflectance esti-
mation, spectral feature extraction, and image segmentation processes for material
classification of raw PCBs. The performance of the proposed method was compared
with the other methods using the previous method, the RGB-reflectance based algo-
rithm, the k-means algorithm and the normalized cut algorithm. The experimental
results showed the goodness of the present method in classification accuracy and
computational cost. The algorithm can be applied directly to the material classifica-
tion problem in a variety of raw PCBs.

References

1. Chang, P.C., Chen, L.Y., Fan, C.Y.: A case-based evolutionary model for defect classifica-
tion of printed circuit board images. J. Intell. Manuf. 19, 203-214 (2008)

2. Tsai, D.M., Yang, R.H.: An eigenvalue-based similarity measure and its application in de-
fect detection: Image and Vision Computing 23(12), 1094-1101 (2005)

3. Ibrahim, Z., Al-Attas, S.A.R.: Wavelet-based printed circuit board inspection algorithm.
Integrated Computer-Aided Engineering 12, 201-213 (2005)

4. Huang, S.Y., Mao, C.W., Cheng, K.S.: Contour-Based Window Extraction Algorithm for
Bare Printed Circuit Board Inspection. IEICE Trans. 88-D, 2802-2810 (2005)

5. Leta, F.R., Feliciano, F.F., Martins, F.P.R.: Computer Vision System for Printed Circuit
Board Inspection. In: ABCM Symp. Series in Mechatronics, vol. 3, pp. 623-632 (2008)

6. Tominaga, S.: Material Identification via Multi-Spectral Imaging and Its Application to
Circuit Boards. In: 10th Color Imaging Conference, Color Science, Systems and Applica-
tions, Scottsdale, Arizona, pp. 217-222 (2002)

7. Tominaga, S., Okamoto, S.: Reflectance-Based Material Classification for Printed Circuit
Boards. In: 12th Int. Conf. on Image Analysis and Processing, Italy, pp. 238-243 (2003)

8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, New
York (2001)

9. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. on Pattern
Analysis and Machine Intelligence 22(8), 888-905 (2000)

10. Tominaga, S.: Surface Identification using the Dichromatic Reflection Model. IEEE Trans.
PAMI 13, 658-670 (1991)



	Material Classification for Printed Circuit Boards by Spectral Imaging System
	Introduction
	Spectral Imaging System
	Reflectance Estimation Based on Material Features
	Material Properties
	Spectral Reflectance Data
	Unified Spectral Reflectance

	Material Classification and Image Segmentation
	Pixel-Based Classification Algorithm
	Region Growing Algorithm

	Experiments
	Performance of the Proposed Method
	Comparison with RGB Reflectance-Based Method
	Segmentation Comparison with K-Means and Normalized Cut Algorithms

	Conclusion
	References


