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A Bessel beam without an axial gradient can exert a pulling force on an object [A. Novitsky, C.W. Qiu,

and H. Wang, Phys. Rev. Lett. 107, 203601 (2011)]. However, it cannot be called a ‘‘tractor beam’’ per se,

as long as the light pulling effect is ultrasensitive to the object’s material and size, a perturbation of which

will make the optical traction go away. In this Letter, we investigate and report on the universality for a

Bessel beam to be either a material-independent or size-independent optical tractor beam within the

dipolar regime. Moreover, a general condition for a nonparaxial laser to be simultaneously a material- and

size-independent tractor beam is proposed. These universal pulling effects and conditions are discussed in

association with insight on modified far-field scattering, scattering resonances, and induced polarizabil-

ities. Interestingly, we find that the acoustic pulling force exhibits only size independence, owing to the

acoustic scattering theory in contrast to the light scattering counterpart. The findings pave the way for the

realistic engineering and application of universal tractor beams pulling a wide variety of objects.
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When one studies the pulling effect of light, it is natural

to consider optical trapping [1] or tweezers [2], which can

drag particles due to gradient fields. An optomechanical

system can be adopted to form the field gradient between a

waveguide and a microdisk, leading to the reactive force

[3]. The mechanism of pulling by optical tweezers owes

itself to the gradient intensity, resulting in the force driving

the object to the point of the field extremum. The field

extremum can be formed by converging a plane wave with

a lens or interfering a number of different waves. However,

such a pulling effect depends on the location of the field

extremum rather than the light source, and the driving force

is not due to the negative radiation pressure.

It is possible to overcome this restriction by interfering

two different nondiffracting Bessel beams [4]. The pulling

force by this approach relies on a highly lossy particle and

high-index background material whose refractive index is

higher than that of the particle, which is impractical. It is

also asserted that only the interference of two (or more)

different Bessel beams could result in the negative optical

force [4]. However, this assertion is not rigorous because

the negative optical force can be achieved by a single

nonparaxial Bessel beam, due to the interference of electric

and magnetic dipoles or higher-order multipoles or by a

single static solenoid beam [5]. There are some ubiquitous

proofs of pulling forces found in thermodynamics [6],

optics [7], and acoustics [8].

A single paraxial nondiffracting wave (e.g., a Bessel

beam [9]) results in pushing objects along the light propa-

gation path. Such nondiffracting beams can also trap par-

ticles in its cross section due to the transverse field gradient

[1,2]. However, the pulling is forbidden by momentum

conservation [10,11] and, thus, cannot be achieved by a

single paraxial nondiffracting light.

Recent works on nonparaxial light beams [7,12] have

suggested that a single beam can be a tractor beam, but in

order to show that a pulling force is possible, one needs to

wisely select the numerical aperture of the beam (non-

paraxiality of the beam) and the particle’s permittivity

and size. In other words, if a subtle deviation in one of

those parameters spoils the phenomenon of traction, the

optical traction is neither stable nor universal. This prob-

lem has not been answered or attempted in the pioneering

work on tractor beams, which basically showed some

typical cases for the optical force being negative.

Alternatively, a series of beams with individual control of

polarization and phase of each wave can exert a negative

force on a collection of particles treated as a black box

[13]. That method is robust because those multiple incident

waves provide a large degree of freedom for optimization

of all magnitudes and phases. The price for robustness is

that the optimized phases need sophisticated control in

practice, and all incident waves require reoptimization

for different targets, sizes, or distributions. These problems

become critical in practical scenarios. In the mean time, the

origin of the negative optical force has not been answered

previously. Thus, it is imperative to answer and solve the

following problems at once: (i) What is the most funda-

mental reason for the pulling force and how to interpret the

negative force value by electromagnetic (EM) language

rather than by mathematical value? (ii) Can the pulling

force be independent (at least quasi-independent) of an

object’s material or size? (iii) Can a quantitative condition

be proposed for achieving the utmost independence on
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material and size? (iv) Can the universality condition be

scaled to acoustics or even more general disciplines for the

pulling force?

Based on those important motivations, we demonstrate

the single-independence (on either material or size) and

double-independence (on both material and size) tractor

beams for dipolar objects. We derive the necessary condi-

tion for such independent pulling forces and investigate the

acoustic counterpart where only size dependence is found.

Last but not least, the fundamental physics of a tractor

beam, its independence on dipolar objects, and its relation

to EM scattering are discussed and explained in the exact

context of classical electrodynamics. It opens up an un-

precedented way of achieving optical traction forces in

practice stably and universally. In the dipole approxima-

tion, we deal only with electric and magnetic dipole mo-

ments. Assume a spherical bead of radius R is placed in

vacuum and characterized by both dielectric permittivity "
and magnetic permeability �. Polarizabilities of the bead

are expressed in terms of the Mie coefficients [14]

a� ¼ n2j�ðnxÞðxj�ðxÞÞ0 ��j�ðxÞðnxj�ðnxÞÞ0
n2j�ðnxÞðxhð1Þ� ðxÞÞ0 ��hð1Þ� ðxÞðnxj�ðnxÞÞ0

;

b� ¼ �j�ðnxÞðxj�ðxÞÞ0 � j�ðxÞðnxj�ðnxÞÞ0
�j�ðnxÞðxhð1Þ� ðxÞÞ0 � hð1Þ� ðxÞðnxj�ðnxÞÞ0

;

(1)

where x ¼ k0R, k0 ¼ !=c is the wave number in vacuum,

! is the angular frequency, c is the speed of light, n ¼ ffiffiffiffiffiffiffi

"�
p

is the bead’s refractive index, j� and hð1Þ� are the spherical

Bessel and Hankel functions of the order �, prime means

derivative with respect to the argument, e.g., ðnxj�ðnxÞÞ0 ¼
dðnxj�ðnxÞÞ=dðnxÞ. The sum of all harmonics (dipole,

� ¼ 1; quadrupole � ¼ 2, etc.) results in the scattered field

produced by the illuminated particle. The dipole particle

has strong dipole terms a1 and b1 in the scattering and can

be characterized by the electric �e ¼ 3ia1=ð2k3Þ and mag-

netic �m ¼ 3ib1=ð2k3Þ polarizabilities.
Such dipole approximations are valid when the quadru-

pole (and higher) terms are weak (ja2j; jb2j � ja1j; jb1j).
We quantify this criteria by applying the rule ja2j<
0:2ja1j. This criterion confines the region of interest within
the unshaded domain in Figs. 1(a) and 1(b). We expect

intensive interaction between dipole moments in a region

of intermediate size parameters k0R� 1, where both Mie

coefficients a1 and b1 are large.
Since many materials lose magnetism at high frequen-

cies or do not possess a strong magnetic response in

general, it would be beneficial to operate with nonmagnetic

materials instead. A magnetic dipole moment indeed can

artificially be induced in a large particle [15], and this is

confirmed by large b1 (therefore, magnetic polarizability

�m) for the nonmagnetic spheres shown in Fig. 1(b). Thus,

we start with nonmagnetic objects and come back to

magnetic particles later.

Let us consider a nonmagnetic sphere of dielectric

permittivity " in vacuum illuminated by a single nondif-

fracting Bessel beam fEðr; tÞ;Hðr; tÞg ¼ expðikzzþ
im’� i!tÞfEðr; ’Þ;Hðr; ’Þg, where kz is the longitudinal
wave number, and m is the beam order. Nonparaxiality (kz
is not close to k0) of such Bessel beams is crucial for

inducing the negative optical force upon the microscopic

particle. Vector Bessel beams considered herein are the

exact solutions of the Maxwell equations in cylindrical

coordinates [16],

Eðr; ’Þ ¼
�

Jmðqk0rÞc2ez �
1

q
c1ðez � bÞ þ �

q
c2b

�

; (2)

where b ¼ iJ0mðqk0rÞer � ðm=qk0rÞJmðqk0rÞe’, and pa-

rameters � and q are defined below. Equation (2) describes

the superposition of phase-shifted TE (complex amplitude

c1) and TM (amplitude c2) Bessel beams. Wave vectors of

all plane waves forming the light beam lie on the cone

surface with angle 2� at the vertex of the cone [see

Fig. 1(c)]. Then the nonparaxiality of the beam can be

uniquely characterized by the cone angle �. The longitu-

dinal and transverse components of the wave vector are

expressed as kz ¼ k0� ¼ k0 cos� and k?¼k0q¼k0 sin�,
respectively. The beam configuration follows the previ-

ously defined optimal parameter, i.e., c2=c1 ¼ i (see the

analysis of the influence of c2=c1 [7]).
The time-averaged force on a dipole particle can thus be

calculated as [17]

FIG. 1 (color online). Mie coefficients (a) a1 and (b) b1 for the
nonmagnetic (� ¼ 1) spherical particle. On the right-hand side

of the figures, the region of invalid dipole approximation (ja2j>
0:2ja1j) is shaded. (c) Pulling force by a nonparaxial beam (� is

large) versus pushing force for paraxial beam (� is small).
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hFzi ¼
k0�

2
ðImð�eÞjEj2 þ Imð�mÞjHj2Þ

� k40
3

Reð�e�
�
mPzÞ; (3)

where Pz ¼ ez � ðE�H
�Þ, and its real part is proportional

to the z component of the Poynting vector Sz. It should be

noted that the dipole particles are considered in this paper,

and their sizes are not much smaller than the wavelength. It

can be observed from the second term in Eq. (3) that the

axial force formula for the dipolar object as described in

Eq. (3) is fundamentally distinguished from that for the

Rayleigh particle in Ref. [7].

The first two terms in Eq. (3) describe the contributions

of the electric and magnetic dipoles. For passive particles

[Imð�e;mÞ> 0], these contributions are always positive.

The last term in Eq. (3) is responsible for the interaction

between the dipoles, and the negative interaction term

leads to the pulling force hFzi< 0. It is obvious from

Eq. (3) that the pulling-force effect requires small longitu-

dinal wave numbers kz ¼ k0� (large cone angle �) and
large positive (forward-directed) Poynting vectors.

Equation (3) is applied for the computation of the optical

force hFzi as demonstrated in Fig. 2(a). The region corre-

sponding to the dipole approximation is not shaded. It is

true that such abrupt boundary is not realistic, but its

functionality is confirmed by the comparison with the

exact solution involving both the dipole and higher-order

moments. The black curve in Fig. 2(a) for " ¼ 6 ideally

reproduces negative values of the optical force for k0R
between 1 and 1.3. At the same time, in the shaded region

further away from the boundary the discrepancy of the

exact and dipole forces is significant because a consistent

recognition of the quadrupole terms is required.

It is interesting to follow what exactly happens to the far-

field scattering diagram when the optical pulling force is

observed. In Fig. 2(a), the pulling force exhibits a recog-

nizable feature in the far field (e.g., the backscattering is

weak and forward scattering dominates) due to the in-

creased momentum by redirecting photons from other

directions toward the forward direction. Our scheme is in

contrast to the amplified forward momentum using gain

media [18], i.e., pumping more photons toward the forward

direction. Usually the cone angle � is small for paraxial

beams. In this case, the forwardly scattered field captured

by the cone of 2� at the vertex is negligible compared to

the backward scattering. The backward scattering pushes a

particle in accordance with the momentum conservation.

The same reasoning holds for the large cone angles (see the

scattering diagram in Fig. 2 for k0R ¼ 0:7). The interaction
of the electric and magnetic dipoles can be manipulated to

redirect the scattered field forward, while a large � allows

the forward scattering to exceed over the backward scat-

tering (see the scattering diagram for k0R ¼ 1:15). Then,
the momentum conservation dictates the appearance of the

pulling optical force.

It is important that the pulling force is feasible for the

nonmagnetic dipole objects of arbitrary permittivities or

sizes (or at least within a large range of variation). This

brings us to the concept of the material-independent and

size-independent tractor beam. Indeed, a tractor beam

should only allow beam characteristics which achieve or

prohibit the pulling effect, rather than the beam needs to

‘‘negotiate’’ with the object to see if it can be called a

tractor beam. In fact, it is not likely to achieve a perfectly

universal tractor beam pulling everything, but it is still very

meaningful that the size and refractive index of the object

can be chosen in a wide and continuous range. As can be

seen in Fig. 2, for an object of a specified size, it is always

possible to manipulate the force to be a pulling force, even

though the permittivity varies within a very wide range.

The region may extend to large values of permittivity,

which confirms our conclusion that the high permittivity

will induce the large Mie scattering coefficient b1 in

FIG. 2 (color online). Density plots demonstrate the dipole

force hfzi ¼ hFzik2=jc1j2 < 0 calculated according to Eq. (3)

for (a) transparent and (c) absorptive [" ¼ Reð"Þ þ 0:1i] non-
magnetic spherical beads. Region beyond the dipole approxima-

tion is shaded. Black curves in (a) and (c) depict exact the optical

forceop hfzi at " ¼ 6 and " ¼ 6þ 0:1i, respectively, when

higher moments have been taken into account. Numbers 1 and

2 indicate scattered far field for pushing (k0R ¼ 0:7) and pulling

(k0R ¼ 1:15) optical forces, respectively. Black arrows show the

forward scattering limited by the cone angle � ¼ 70�.
(b) Absolute value of the difference of the Mie coefficients

ja1 � b1j demonstrates that the pulling force (shaded region)

appears near �e ¼ �m. The nonparaxial Bessel beam has char-

acteristics m ¼ 1, � ¼ 70�, c2=c1 ¼ i.
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Fig. 2(b). It is, however, not the case for the acoustic tractor

beam, which will be shown in the following. The size

independence can be even robust within a wide range of

k0R from Rayleigh to larger particles at a given value of

material parameters, as shown in Fig. 3.

The pulling force effect cannot exist when the electric

and magnetic polarizabilities are incomparable. However,

at �e ¼ �m the optical force hFzi � �� 1þ 4ð2�� 1Þy2
is always less than zero when �< 1=2 (here, y2 is just a

positive quantity). Figure 2(b) indeed reveals that hFzi< 0

arises for close �e and �m. The shaded region of the

negative force in Fig. 2(b) covers the region around

the violet line of �e ¼ �m (or a1 ¼ b1). This line can

be approximated by a hyperbola so that dipole particles

become optically pulled for
ffiffiffi

"
p

k0R approximately

within 2.5–3.

Absorption does not violate the concept of independent

tractor beams. As expected, absorption only shrinks the

parameter band of the pulling force and reduces the mag-

nitude of the negative force, but the band is still large even

at the absorption level of Imð"Þ ¼ 0:1 [Fig. 2(c)]. A further

increase of absorption eliminates the pulling for

small-Reð"Þ particles.
In contrast to absorption, the magnetic response of a

bead makes the pulling force easier. Although the un-

shaded region of the valid dipole approximation shrinks,

the presence of the permeability enlarges the parameter

band of the pulling force. For small dielectric permittiv-

ities, hFzi becomes insensitive to the particle radius, as the

bottom part of Fig. 3 shows. Figure 3 clearly illustrates the

improvement of the pulling optical force due to the mag-

netic properties of the material. Thus, magnetic permeabil-

ity � maintains the concept of the material-independent

and size-independent tractor beam.

Actually, further investigation reveals that dipole objects

bear the universally necessary condition for an electromag-

netic beam to be a tractor beam. This condition is inde-

pendent of the material parameters or size of the dipole

bead but only imposes a limitation on the longitudinal

wave number kz ¼ k0� (or cone angle �). Since the cross
product Pz ¼ ezðE�HÞ cannot be greater than the prod-

uct of the absolute values of the constituent vectors jEjjHj,
the pulling optical force hFzi< 0 requires [see Eq. (3)]

�<
k30Reð�e�

�
mPzÞ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Imð�eÞImð�mÞ
p

jEjjHj
<

k30Reð�e�
�
mÞ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Imð�eÞImð�mÞ
p : (4)

Polarizabilities of the nonabsorptive spheres can be repre-

sented as �e;m ¼ �ð0Þ
e;m=ð1� ið2=3Þk30�ð0Þ

e;mÞ, where �ð0Þ
e;m are

real-valued quantities. Then Eq. (4) takes the form

�<
1

2
: (5)

This universal condition can be rewritten in terms of the

cone angles as �> 60�. Thus, angle � ¼ 60� is the mini-

mal cone angle, failing which it is not possible to have a

pulling force for the passive dipole particles [19].

The concept of independent tractor beams is the conse-

quence of the wave physics and, therefore, may be ob-

served in acoustics. For a zeroth-order nonparaxial

acoustic Bessel beam (cone angle �), the acoustic pulling
force Fz ¼ �R2I0YP=ðc0 cos�Þ acting on a sphere of ra-

dius R can be presented in terms of the dimensionless

function YP, where c0 is the sound speed of the ambient

fluid, and I0 is the acoustic intensity [8]. The scattered

function of the velocity potential c sc ¼
P1

n¼0 dn�
n is

reduced to the sum of monopole (n ¼ 0) and dipole

(n ¼ 1) terms for a dipole bead, where dn defines the

strength of multipolelike Mie coefficients in optics. For

the dipole approximation, we need to impose small d2,
compared to d0 and d1. The monopole-dipole interaction

originates the pulling force, analogous to the similar phe-

nomenon (interaction of electric and magnetic dipoles) in

electrodynamics discussed above.

In spite of the evident similarity of the acoustic and

optical forces, there is a substantial difference. The acous-

tic pulling force in the dipole approximation cannot be

achieved within a large range of �, i.e., the ratio of

densities of the drop and surrounding fluid. Introducing

the condition of the validity of the dipole approximation

jd2j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

jd0d1j
p

< 0:2, we get the limitation � < 1:3 (Fig. 4).

At the same time, there are realistic materials allowing the

negative force for �’s in this range (see example of a

benzene particle in water in Fig. 4). When � is between

1.2 and 1.3, the pulling force does not depend on the

particle’s radius k0R in the wide range, including small

values. Such behavior corresponds to parameters � and �
satisfying equation 1þ 2� ¼ 3�2�2, where � is the ratio

of the drop and surrounding fluid sound speeds (see

Refs. [8,20]). Therefore, the density ratio � provides

FIG. 3 (color online). The optical pulling force hfzi ¼
hFzik2=jc1j2 for magnetic particles (� ¼ 1:2). Parameters:

m ¼ 1, � ¼ 70�, c2=c1 ¼ i. In the inset, the force hfzi vs k0R
(beyond the dipole approximation) at " ¼ 1:2 is shown.

PRL 109, 023902 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
13 JULY 2012

023902-4



size-independent rather than material-independent acous-

tic traction.

In conclusion, we have revealed and demonstrated

the novel concept of material-independent and size-

independent optical pulling forces and explained the origin

of universal optical traction. As a general schematic to

guide the realization of practical universal tractor beams,

a necessary condition is proposed on the nonparaxial angle

for Bessel lasers. It is important that the articulated prop-

erties do not vanish for absorptive particles. Distinctions of

independent tractor beams in optics and acoustics have

been discussed within the dipole approximation, in which

the acoustic tractor beam only exhibits the size indepen-

dence. Nevertheless, the material-independent acoustic

traction can be expected beyond the dipole approximation.

Even if the Bessel beam cannot be ideally nondiffractive

experimentally, it is still a long-range propagating

wave and the pulling force will work over the long dis-

tance. The large numerical aperture (cone angle �)
is the major challenge in experiments, which may be

enabled by future development of advanced optics.

Hence, these reported findings are believed to be useful

in powering the research of tractor beams and, more

importantly, to be able to provide guidelines for future

experimental verification of universal optical tractor

beams.
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