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Compression Fracture-Mechanics
of Damage Localization and Size Effect

Z.P. BAZANT

ABSTRACT

The present paper summarizes several results on compression fracture and its scaling re-
cently obtained at Northwestern Universitv. They deal with the development of approxi-
mate asymptotic formulas for the nominal strength of quasibrittle structures, and focuses
on concrete and fiber composites. One approach exploits the approximate method of energy
release zones, and another approach is based on asymptotic expansions of quasi-LEF)\! so-
lutions. The compression fracture is assumed to be caused either by axial splitting or by
lateral propagation of a band of axial splitting cracks. The residual stress transmitted across
the band is governed by internal buckling. The size effect curve of the logarithm of nominal
strength versus the logarithm of size is found to terminate with a horizontal asymptote.

1 INTRODUCTION

The fracture of quasibrittle materials due to compressive stress is one of the most
difficult aspects of fracture mechanics. In compression fracture, one must distinguish

two distinct phenomena:

e micromechanics of initiation of compression fracture, and
o mechanics of global compression fracture causing failure.

The first problem has been investigated much more than the second, and various mi-
cromechanical mechanisims that initiate fracture under compressive stresses have heen
identified: e.g., the growth of axial splitting cracks from voids (Cotterell 1972, Sammis
and Ashby 1986. Kemeny and Cook 1987. 1991, Steif 1934, Wittmann and Zaitsev,
1981, Zaitsev 1985, Fairhurst and Cornet 1981, Ingraffea Heuzé 1980, Nesetova and
Lajtai 1973, Carter 1992, Yuan et al. 1993) or near inclusions, the creation of axial
splitting cracks by groups of hard inclusions, and the formation of wing-tip cracks
from sliding inclined surfaces (Hawkes and Mellor 1970, Ingraffea 1977. Ashby and
Hallam 1986, Horii and Nemat-Nasser 1932, 1986, Sanderson 1988, Schulson 1990,
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356 Z.P. BAZANT

Costin 1991, Batto and Schulson 1993. Schulson and Nickolavev 1995. Lehner and
Kachanov 1996, and a critique by Nixon 1996).

[t must be realized. however, that these mechanisins do not explain the global fail-
ure of the structure. They can cause only a finite extension of the axial splitting cracks
whose length is of the same order of magnitude as the size of the void, the inclusion,
or the inclined microcrack. Each of these mechanism can produce a zone of many
splitting cracks approximately parallel to the uniaxial compressive stress or, under
triaxial stress states, to the compressive principal stress of the largest magnitudz.

Biot (1965) proposed that the cause of compression failure may consist of three-
dimensional internal buckling which can occur either in the bulk of specimen or within
an inclined band. However, he considered only elastic behavior and did not conduct
any energy analysis of fracture. Finite strain analysis of compression failure caused
by internal buckling of an orthotropically damaged material or orthotropic iaminate
was analvzed by Bazant (1967). Iendall {197&) showed that. with the consideration
of buckling phenomena under eccentric compressive loads. the enzrgy balance condi-
tion of fracture mechanics yields realistic predictions of compression fracture of test
cylinders loaded only on a part of the end surface.

The purpose of the present paper is to outline some results on compression fracture
and its scaling that have been recently obtained at Northwestern University. The
symposium lecture will also provide a broad overview of the problem.

2 MECHANISM OF SIZE EFFECT

-

The global compression fracture has been analyzed (Bazant 1993. BaZant and Niang
1997, Bazant and Planas 1997. Bazant and Chen 1997) under the hypothesis that
the aforementioned micromechanisms create a band of axial splitting cracks as shown
in Fig. 1. which propagates laterally. in a direction either inclined or normal tc the
direction of the compressive stress of the largest magnitude {Bazant, 1993. Bazant
and Niang. 1997). In the post-peak regime. the axial splitting cracks interconnect
to produce what looks as a shear failure although there is no shzar slip before the
post-peak softening (in fact, shear failure per se is probably impossible in concrate).
The energy analysis of the propagating band of axial splitting cracks shows that.
inevitably, there ought to be a size effect. Let us discuss it for the prismatic specimen
s“own in Fig. 1. '

Formation of the axial splitting cracks causes a narrowing of the band and. in
an approximate sense, a buckling of the slabs of the material between the splitting
cracks as shown in the figure (alternatively. this can be modeled as internal buckling of
damaged continuum). This causes a reduction of stress. which may be considered to
occur approximately in the shaded triangular areas (where the strain energy density
drops from that given by area 0120 to that given by area 0340 in Fig. 1d). For
the calculation of the energy change within the crack band one needs to take into.
account the fact that the slabs of material between the axial splitting cracks ought
to undergo significant post-buckling deflections corresponding to the horizontal line
3.5. Thus, the energy change in the splitting crack band is given by the difference
of the areas 0120 and 03360 in Fig. le ithe fact that there is a residual stress cer
in compression fracture is an important difference from a similar analysis of tensile
crack band propagation). The energy released must be consumed and dissipated by
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Figure 1: Simplified analysis of energy release in compression fracture.
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the axial splitting cracks in the band. This is one conditic:. for the analysis.

Another condition is that the narrowing of the band zue to microslab buckling
must be compatible with the expansion of the adjacent t:langular areas due tc the”
stress relief. One needs to write the condition that the shortening of segment HI
in Fig. 1 on top left is compensated for by the extensicr: of segments GH and 1J,
which i1s a compatibility condition. The energy release frcm the crack band is given
by the change of the areas under the stress-strain diagran:s in the middle of Fig. 1
(bottom). caused by the drop of stress from the initial ccpressive stress o to the
final compressive stress o, carried by the band of splitting cracks.

The resulting size effect on the nominal strength o ¢ larg: structures fallmo in

compression has. according to this analysis. the form:
=D+ C
ox = () + Co (1)

where C;. Cp = constants and D = characteristic dimensic: of the structure.

Mathematical formulation of the foregoing arguments 1 Bazant. 1993: Bazant and
Xiang, 1997) provided a formula for the compression faiiure which exhibits a size
effect. This size effect is plotted in Fig. 1(f), with the ogarithm of size D as a
coordinate and either logon or log{on — . ) as the ordina-z. In the latter plot « Fig.
1f). the size effect is shown to approach an asymptote of slcpe —2/5. This is ancther
interesting featu.c, which results from the fact that the spz:ing =f the axial splitting
cracks is not constant but depends on the overall energy bz.ance. The solution of the
nominal strength of on has been obtained under the assun:ption of arbitrary spacing
s. and it was noted that ¢y exhibits a minimum for a certai:. spacing s. which dep=nds
on size D. It is this condition of minimum which causes 1= asymptotic slope 2 be
—2/5 mstead of ~1/2. .

The foregoing approximate theoretical results. given by s:imp .= formulas (Bazant,
1993). have been compared (Bazant and Niang. 1997: Fiz. 2 to the test results
(Bazant and Kwon. 1994) on size effect in reduced-scal: -ied reinforced coun.:rate
columns of three different sizes (in the ratio 1:2:4) and th-:= diffzrent slendernesses,

=19.2.35.8 and 52.5. The columns were made of concre:= with reduced aggrezate
size. The test results indicated a significant size effect whick is igrrored by the current
design codes. Recently a similar size effect has been confirm=4 for iarge columns made
w th normal size aggregate by the tests of B.I.G. Barr and S. Ser=r at the University
of Wale., Cardiff (private communication. 1997).

A size effect is known to occur also in the breakout of bereholss in rock. as exper-
imentally demonstrated by Nesetova and Lajtai (1992). Caster 11992). Carter et al.
(1992), Yuan et al. (1992), and Haimson and Herrick (1933). It is known from the
studies of Kemeny and Cook (1987, 1981) anc others that i3e break out of boreholes
occurs due to the formation of splitting cracks paralle] to -he direction of the com-
pressive stress of the largest magnitude. oyoo. This mechznism of failure has been
analyzed in similar manner as just explained, however, 2n analvtical solution was
made possible by the approximate assumption that the growing cracking zones or: the
sides of the borehole are elliptical (although in reality thess zones are narrower and
closer to triangles). The assumption of an elliptical boundary permitted the energy
release from the surrounding infinite solid to be easily caiculated according to Es-
helby’s theorem for eigenstrains in ellipsoidal inclusions (Bzzant. Lin and Lippmann,
1993). According to the theorem. the energy release from the infinite rock mass can
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Figure 3: Propagation of an axial splitting crack band (left) and the corresponding
size effect plot compared to size effect for lateral propagation (right).

be approximated as

All = —~[(a + 2R)Rc2 , + (2a + R)aa;;’Cc — 20ROz Oyo:
(2)
—2a°c2J(1 - v /2E

in which R = borehole radius, ¢ = principal axis of the ellipse, o, and ¢,.. =
remote principal stresses, £ = Young’s modulus of the rock. and v = Pcisson ratic.
A similar energy balance analysis as that for the propagating band of axizl splitting
cracks. already explained, has provided a formula for the breakout stress which has a
plot similar to those in Fig. 1{f). and has the asymptotic hehavior descrit=d by Ea.

(1).

3 LACK OF SIZE EFFECT IN AXIAL SPLITTING

Why do small uniaxial compression specimens fail by an axial splitting crack and
exhibit no size effect?

In a uniform uniaxial stress field. a sharp planar axial crack does not change the
stress and thus releases no energy. Therefore a damage band of finite width (Fig. 3
left) must precede the formation of an axia! splitting crack. The energy is released
only from this band but not from the adjacent undamaged solid. Therefore. the
energy release is proportional to the length of the axial splitting crack, which implies
that there is no size effect (Fig. 3 right).

Consequently, the lateral propagation of a band of splitting cracks, which involves
a size effect, must prevail for a sufficiently large specimen size (Fig. 1 left and Fig.
3 right, BaZant and Xiang 1996). The reason that the axial splitting prevails for a
small enough size is that the overall fracture energy consumed (and dissipated) by a
unit axial extension of the splitting crack band is smaller than that consumed by a
unit lateral extension, for which new cracks must nucleate.
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4 SIZE EFFECT FOR THE CASE OF MANY INDEPENDENT LOADS

Before analyzing compression fracture it is useful to deduce the appr:ximate size
effect law for a structure with many independently varving loads P;,. The enc:gy
release rates of different loads are not additive, but their stress intensity factors zre.

By superposition, it can be shown that

>_owiv/Dgilao+6) = VEG: ®)

where £ = Young's elastic modulus, Gy = fracture energy of the materiz! (for tensile
fracture), aq = ag/D = relative notch length of relative leagth of the inizial tractizn-
free crack (ao = actual notch length), 8 = ¢;/D = relative size of the fracture procss
zone (whose actual size is ¢f), on; = P;/bD = nominal stresses. and ¢, a) are the
nondimensionalized LEFM energy release rate functions corrqspondmg to loads P,
(i=1,2,...n). 1t is now convenient to define the nominal design stresses as cp; = o 'u
where p = safety factor, and expand functions G; into a Tavlor series as follows:

L / 1 ) .
gi(ao +0) = gi(ag) + g'(:)0 + zg,( AN @)
Truncating the series after the second term. one gets
= VEG/ (plo'Dl “"/72002'*‘...-i-p,]r_:..:)_l/‘2 (5)
where
p? = gi(ag)D + gi(ao)cy (6)

These equations for the safety factor define the failure of 3> structure az: its dep=n-
dence on structure size D.

[t should be noted that the interaction diagram defining the failure 2 a functizn
of the nominal stresses is linear. This is a necessary cons:cuence of the ziditivity of
stress intensity factors.

For the case of macroscopic crack initiation from a smocih surface, we tave g, (0 =
0. Therefore, the series expansions cannot be truncated after the linea: term. We
may truncate them after the quadratic terms. A similar procedure as tefore th=n
vields for p the same expression (5) as before, but with

pi= \/;;wm v b ™

Equations (5) with (6) and (7) represent the large-size asymptotic app:oximatic ns
of size effect for the case of many loads. Small-size asymprtotic approximations for the
case of many loads can be derived similarly, replacing the variable § with n = 1/6.

Similar to the case of one load, it is further possible to find, for the czse of many
loads, a universal size effect law that has the correct asymptotic propertizs for large
as well as small sizes and large cracks as well as crack initiation. It mezy again be
written in the form of (6) but with

c =l BT e R R o

0
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ri = lergi{ao)]™M? Doi = crgi{ao)/gi(ac) ©)
Dy; = cs{~gi'(@0))/4gi{ax0)

Here r, s and 7} are empirical constants whose magnitudes are of the ordzr of 1.

5 ASYMPTOTIC SCALING FOR TENSILE OR COMPRESSIVE
CRACKS WITH RESIDUAL COHESIVE STRESS

In the case of compression fracture due to lateral propagation of a kand of axial
splitting cracks, a residual stress given by the critical stress for internal buckling
in the band remains. This stress can be regarded as a second load applied on the
structure, which means one can apply the preceding analysis of failure under many
loads.

Lumping the fracturing strains distributed over a band into a line. one may ap-
proximately treat such a fracture as a line crack in which interpenetration of the
opposite faces is allowed and the softening compressive stress-displacement law ter-
minates with a plateau of residual ¢onstant stress oy . A constant residual stress oy
may be assumed for characterizing the tensile stress-displacement law for a crack in
a fiber-reinforced composite (e.g. fiber-reinforced concrete).

The asymptotic formulae (5)-(7) for the case of many loads can be applied t:3 this
case because the uniform pressure oy along the crack can be regarded as one of two
loads applied on the structure. We write the stress intensity factors due to the applied
load P and the uniform crack pressure oy as K7 = o3 Dy{ag + 8) (with § = ¢ D),
and [\"}" = o;", (o +8). respectively. where g and % are dimensionless fun-tions taking
the role of y, and g» in the preceding formulae. In this manner. (6) and (7] yield.
after rearrangements. the following formula for the size effect 1and shzpe effect: n
the case of a large crack:

VEG; + oy /Y {ao)es + v.03)D
GN = (10)
Vg'(av)es +g(ao)D

For geometrically similar structures and size-independent ag, this formula yvizlds a
size effect curve that terminates, in the log D scale, with a horizontal asymptcte on
the right and begins with a higher horizontal asymptote on the left.

In the case of initiation of a crack with uniform residual stress oy . equations «3)
and (7) can be reduced to the following size (and shape) effect formula:

_ VEG; +oy \/’f’(O)Cf +1y0)% an
_V il
Ve'(0)es + Lg7(0)

whose logarithmic plot also terminates with a horizontal asymptote.

If the residual stress is compressive and is determined by internal buckling in a
band of axial splitting cracks of arbitrary spacing, then oy in the foregoing equations
is not constant. As already explained, minimization of o\ with respect to the crack
spacing s shows that the crack spacing in the band should vary as D*/*. For such
variable spacing it is found that, in the foregoing equations (10) and (11}.

Vv EG; must be replaced by \/EG;DI/10 12)

N
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Furthermore, the oy value also depends on the crack spacing. according to the formula
for the critical buckling load. The overall trend is well approximated by (1), and in.
particular on approaches the large-size asymptotic limit as D=2/3,

6 THE QUESTION OF SIZE EFFECT ON KINK BAND FAILURE OF
COMPOSITES

The last two formulae ought to be also applicable to the compression failure cause by
fiber micro-buckling in a propagating kink band, as observed in wood or in composites
reinforced by parallel fibers. This problem has so far been treated by elasto-plasticity,
and solutions of failure loads which give good agreement with the existing test data
have been presented (Rosen 1965, Argon 1972, Budianski 1983, Budianski et al. 1997,
Budianski and Fleck 1994, Kyriakides et al. 1995, Christensen and DeTeresa, 1997).
There is nevertheless good reason to suspect that a size effect exists, and that it may
have been missed in previous experiments because of insufficient specimen sizes. This

is indicated by observing that:

o the shear slip and fracture along the fibers in the kink band exhibits post-peak
softening, i.e., a gradual reduction of the shear stress. which approaches some
final asymptotic value, and

e the kink band does not form simultaneously along the entire kink band but
has a front that propagates, in the manner of the band of parallel compression
splitting cracks.

In view of these observations. the size effect should k= describable by equations

(10) and (11) in which. however, (¢ and oy have different meaning (Bazant. Kim.
Daniel and Becq-Giraudon 1997);

Gy = Gf%‘ , oy = N T ‘ (13)

Here w = width of the kink band, s = typical spacing of axial cracks between the
fibers in the kink band, G; = shear fracture energy for the axial cracks between
fibers in the kink band: Gy = elastic shear modulus of the fiber composites relative
to the axial and transverse axes z and y. o = initial misalignment angle of the fibers,
d; = slip displacement at which the shear stress on (cohesive) axial is reduced to the
residual stress 7, and v, = 7. /Gy.

Tests just completed at Northwestern Lmversnv (Bazant. Kim. Daniel and Becg-
Giraudon 1997) confirm that notched geometrically similar uni-directionally rein--
forced specimens of carbon-PEEK composites exhibit a strong size effect. and that

the size effect approximately agrees with (10) and (13); Fig. 4.
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