
Material interpolation schemes in topology optimization
M. P. Bendsùe, O. Sigmund

Summary In topology optimization of structures, materials and mechanisms, parametrization
of geometry is often performed by a grey-scale density-like interpolation function. In this paper
we analyze and compare the various approaches to this concept in the light of variational
bounds on effective properties of composite materials. This allows us to derive simple neces-
sary conditions for the possible realization of grey-scale via composites, leading to a physical
interpretation of all feasible designs as well as the optimal design. Thus it is shown that the so-
called arti®cial interpolation model in many circumstances actually falls within the framework
of microstructurally based models. Single material and multi-material structural design in
elasticity as well as in multi-physics problems is discussed.

Key words topology optimization, multi-material designs, effective property, interpolation
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1
Introduction
The area of computational variable-topology shape design of continuum structures is presently
dominated by methods which employ a material distribution approach for a ®xed reference
domain in the spirit of the so-called `homogenization method' for topology design, [1]. That is,
the geometric representation of a structure is similar to a grey-scale rendering of an image, in
discrete form corresponding to a raster representation of the geometry. This concept has
proven very powerful, but it does involve a number of dif®culties. One is the issue of existence
of solutions, another the issue of solution method. Here, the notion of physical models for
`grey' material is of great importance, and it is these interpolation schemes and their relation to
characterizations of composite materials which are the themes in the following.

In many applications, the optimal topology of a structure should consist solely of a mac-
roscopic variation of one material and void, meaning that the density of the structure is given
by a ``0±1'' integer parametrization (often called a black-and-white design). Unfortunately, this
class of optimal design problems is ill-posed in that, for example, nonconvergent, minimizing
sequences of admissible designs with ®ner and ®ner geometrical details can be found, see [2, 3].
Existence of black-and-white solutions can be achieved by con®ning the solution space to limit
the complexity of the admissible designs, making the designs dependent on the choice of
parameters in the geometrical constraint. Such a restriction of the design space can be ac-
complished in a number of ways, e.g. by enforcing an upper bound on the perimeter of the
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structure [4±6], one can introduce a ®ltering function that effectively limits the minimum width
of a member, [7]; see also [8] for an overview; or one can impose constraints on slopes on the
parameters de®ning the geometry, [9±12].

For reasonable raster representations of the ``0±1'' black-and-white design, the solution of
the resulting large-scale integer programming problem becomes a major challenge. Recently,
dual methods have been shown to be effective, in the absence of local constraints, [13].
However, the most commonly used approach is to replace the integer variables with continuous
variables, and then introduce some form of penalty that steers the solution to discrete 0±1
values. A key part of these methods is the introduction of an interpolation function that
expresses various physical quantities, e.g. material stiffness, cost, etc., as a function of con-
tinuous variables. The continuous variables are often interpreted as material densities, as in the
so-called penalized, proportional `®ctitious material' model. Inspired by the relaxed formula-
tions that introduce composites (see below), some methods use interpolations derived from
employing composite materials of some given form together with penalizations of intermediate
densities of material.

Existence of solutions can also be achieved through relaxation, leaving the concept of a
black-and-white design. Relaxation is sometimes attained by expanding the solution space to
include microstructures and using homogenized properties to describe their behaviour, as seen
in [1, 14]. In these formulations, the design is allowed to exhibit high-frequency oscillations at
an indeterminate, microscopic length scale. Alternatively, we may describe these nonconven-
tional designs through mathematical relaxation, e.g., quasi-convexi®cation, etc. [15, 16]. In
general, these approaches lead to designs that can only be realized by incorporating micro-
structure; however, there is no de®nite length scale associated with the microstructure. Relaxed
formulations provide an appropriate basis for direct synthesis where composite materials are
allowed to constitute part of the ®nal design, simply because microstructure is admissible.
Indeed, the demand for ``ultimate'' performance can lead one to consider all possible materials
in the design formulation, [17, 18]. In general, relaxation yields a set of continuously variable
design ®elds to be optimized over a ®xed domain, so the algorithmic problems associated with
the discrete 0±1 format of the basic problem statement are circumvented; this was one of the
main motivations for the initial use of the relaxation concept. Sometimes, a subset of the design
®elds is optimized analytically, leaving a reduced problem for numerical optimization, [19, 20].

It should be emphasized that the continuum relaxation approach can be very involved
theoretically. As of today, it has been mathematically fully worked for minimum compliance
design of structures only (for both single and multiple loads) and for a broader class of
problems involving the Laplace operator [15, 19, 21±24].

While this paper has some of the features of a survey paper, it is not our purpose here to
cover all contributions to the area. The interested reader is instead referred to more com-
prehensive surveys which can be found in [8, 9, 25±30].

In the subsequent section we will study the various interpolation schemes used in black-and-
white topology design, as seen from a micromechanical point of view. That is, the interpolation
schemes will be compared to variational bounds for effective material parameters of mixtures
of materials (e.g. the Hashin-Shtrikman bounds), and it will be shown how the interpolations
can be realized using composites. Among other things, this implies that the commonly used
label `®ctitious material model' is actually misleading. This investigation is ®rst done for single
material topology design (material and void structures) in elasticity, then for multiple mate-
rials, ending with a discussion of techniques for problems involving several material charac-
teristics, for example in multiple physics problems.

It is important to point out that this comparison of interpolation schemes with microme-
chanical models is signi®cant mainly for the bene®t of understanding the nature of such
computational measures. If a numerical scheme leads to black-and-white designs, one can in
essence choose to ignore the physical relevance of intermediate steps which may include `grey'.
However, the question of physical relevance is often raised, especially as most computational
schemes involving interpolations do give rise to designs which are not completely clear of
`grey'. Also, the physical realization of all feasible designs plays a role when interpreting results
from a premature termination of an optimization algorithm.

2
Basic problem statement
The continuum topology design problems considered are de®ned on a ®xed reference domain
X in R2 or R3. In this domain, we seek the optimal distribution of material, with the term
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`optimal' being de®ned through choice of objective and constraint functions, and through
choice of design parametrization. The objective and constraint functions involve some kind of
physical modelling that provides a measure of ef®ciency within the framework of a given area
of applications, for example structural mechanics.

The basis for our discussion is the minimum compliance problem for a linearly elastic
structure in 2-D (or 3-D, when speci®ed as an example only; the micromechanical consider-
ations in the sequel are not restricted to this setting). We thus consider a mechanical element as
a body occupying a domain Xm which is part of a the reference domain X, on which applied
loads and boundary conditions are de®ned Fig. 1. This reference domain is often referred to as
the ground-structure, in analogy with terminology in truss topology design, [26]. Referring to
the reference domain X we can de®ne the optimal topology-shape design problem as a mini-
mization of force times displacement, over admissible designs and displacement ®elds satis-
fying equilibrium

minimize
u 2 U; H

Z
X

pu dX�
Z

CT

tu ds;

subject to:Z
X

Cijkl�x� eij�u�ekl�v�dX �
Z

X
pv dX�

Z
CT

tv ds; for all v 2 U;

Cijkl�x� � H�x�C0
ijkl;

H�x� � 1 if x 2 Xm,

0 if x 2 XnXm,

�
Vol�Xm� �

Z
X

H�x�dX � V;

Geo�Xm� � K :

�1�

Here, the equilibrium equation is written in its weak, variational form, with U denoting the
space of kinematically admissible displacement ®elds, u the equilibrium displacement, p the
body forces, t boundary tractions and e�u� linearized strains. Moreover, Geo�Xm� denotes a
constraint function limiting the geometric complexity of the domain Xm, imposed here to
obtain a well-posed problem.

In problem (1), C0
ijkl denotes the stiffness tensor of a given elastic material from which the

structure is to be manufactured, with a total amount of material V ; H�x� denotes the pointwise
volume fraction of this material, and for a black-and-white design this can only attain the
values zero or one.

Problem (1) is a discrete optimization problem, and for many applications it is useful to
consider reformulations in terms of continuous variables, with the goal of using derivative
based mathematical programming algorithms. This means that one changes the model for
material properties, i.e., the relations de®ned in (1) as

Cijkl � H C0
ijkl � either C0

ijkl,
or 0 ,

�
�2�

to a situation where the volume fraction is allowed any value between zero and one. It may also
involve ®nding an appropriate method for limiting geometric complexity, for example, ex-
changing the total variation of a density for the perimeter of a domain.

Reference
domain

Material

No material

Fig. 1. The generalized shape design problem of ®nding the optimal material distribution
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In the subsequent sections we will concentrate solely on the interpolation models for the
material properties, and will not address in further detail other aspects of the modelling and
solution procedures connected with various choices of objective and constraint functions,
physical modelling, discretization schemes, and optimization algorithms.

3
Isotropic models for solid-void interpolation in elasticity

3.1
The SIMP model
In order to set the scene for our discussions of the various popular interpolation schemes we
will begin by studying the so-called penalized, proportional `®ctitious material' model, also
names as the solid isotropic material with penalization model (SIMP), [31±34]. Here, a con-
tinuous variable q, 0 � q � 1 is introduced, resembling a density of material by the fact that the
volume of the structure is evaluated as

Vol �
Z

X
q�x�dX : �3�

In computations, a small lower bound, 0 < qmin � q, is usually imposed, in order to avoid a
singular FEM problem, when solving for equilibrium in the full domain X.

The relation between this density and the material tensor Cijkl�x� in the equilibrium analysis
is written as

Cijkl�q� � qp C0
ijkl ; �4�

where the given material is isotropic, i.e. C0
ijkl is characterized by just two variables, here chosen

as the Young' s modulus E0 and the Poisson ratio m0. The interpolation (4) satis®es that

Cijkl�0� � 0; Cijkl�1� � C0
ijkl : �5�

This means that if a ®nal design has density zero or one in all points, this design is a black-and-
white design for which the performance has been evaluated with a correct physical model. For
problems where the volume constraint is active, experience shows that optimization does
actually result in such designs if one chooses p suf®ciently big (in order to obtain true `0±1'
designs, p � 3 is usually required). The reason is that, for such a choice, intermediate densities
are penalized; volume is proportional to q, but stiffness is less than proportional.

3.2
Microstructures realizing the SIMP-model
For the SIMP interpolation (4), it is not immediately apparent that areas of grey can be
interpreted in physical terms. However, it turns out that, under fairly simple conditions on p,
any stiffness used in the SIMP model can be realized as the stiffness of a composite made of
void and an amount of the base material corresponding to the relevant density. Thus using the
term `density' for the interpolation function q is quite natural.

The stiffness tensor Cijkl�q� of the SIMP model is isotropic, with a Young's modulus varying
with q and a constant Poisson ratio, independent of q. If this tensor is to correspond to a
composite material constructed from void and the given material at a real density q, the bulk
modulus j and the shear modulus l of the tensor Cijkl�q� should satisfy the Hashin-Shtrikman
bounds for two-phase materials, [35], written here for plane elasticity and for the limit of one
phase being void

0 � j � qj0l0

�1ÿ q�j0 � l0
; 0 � l � qj0l0

�1ÿ q��j0 � 2l0� � j0
(in 2-D� : �6�

Here j0; l0 are the bulk and shear moduli, respectively, of the base material. This implies that
the Young modulus should satisfy [36]
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0 � E � E� � qE0

3ÿ 2q
(in 2-D� : �7�

From (7), the SIMP model should satisfy

qpE0 � qE0

3ÿ 2q
for all 0 � q � 1 ; �8�

which is true if and only if p � 3. However, the SIMP model presumes that the Poisson's ratio is
independent of the density, and this leads to a stronger condition. From the relationship

j0 � E0

2�1ÿ m0� ; l � E0

2�1� m0� (in 2-D� ; �9�

the condition (6) for the SIMP model can be written for all 0 � q � 1 as

0 � qpE0

2�1ÿ m0� �
qE0

4ÿ 2�1� m0�q ;

0 � qpE0

2�1� m0� �
qE0

2�1ÿ q��3ÿ m0� � 2�1� m0� :
�10�

After some algebra, this leads to a condition on the power p in the form

p � p��m0� � max
2

1ÿ m0
;

4

1� m0

� �
(in 2-D� ; �11�

which in itself implies p � 3. The inequality p � 2=�1ÿ m0� comes from the bulk modulus
bound, while the inequality p � 4=�1� m0� is due to the shear modulus bound. Example values
of p� are

p��m0 � 1
3� � 3; p��m0 � 1

2� � 4; p��m0 � 0� � 4; p��m0 � 1� � 1;

p��m0 � ÿ1� � 1 (in 2-D� ; �12�

and p� � 3 holds only for m0 � 1=3.
It is important to note that the condition (11) implies that the SIMP model can be made to

satisfy the Hashin-Shtrikman bounds, so that it makes sense to look for composites which
realize the stiffness tensor for the model. The form of this composite can be computed through
a design process, where the desired material properties of a periodic medium are obtained by
an inverse homogenization process, [7, 39, 40]. The geometry of the composite may depend on
the density, and one can normally not expect to obtain the wanted properties by analytical
methods.

It is still an open problem if all material parameters satisfying the bounds also can be
realized as composites of the given materials. For two materials, one in®nitely stiff, one in®-
nitely soft, it is shown in [37] that composites can be build for any positive de®nite material
tensor. However, in topology design the stiffness is restricted and the density speci®ed.

In order to illustrate the realization of the SIMP model we use an example with a base
material with m0 � 1=3. For this case the requirement on the power p is p � 3, and the bulk and
shear bounds as well as the Young's modulus bound (8) all give rise to this condition. As the
Young's modulus bound (8) is achieved by a composite for which both the maximum bulk and
shear modulus is attained, and as this material will also have Poisson ratio m � 1=3, inde-
pendent of density, we can compare the bounds and the SIMP model in one diagram which
shows the values of Young's modulus as a function of density, Figs. 2 and 3. In these ®gures we
also show the geometry of the base cell of a periodic medium that realize the relevant corre-
sponding Young's moduli and m � 1=3. These geometries are obtained through the method-
ology of inverse homogenization (material design) described in [7, 39±41]. An illustration of
typical microstructures which realize the SIMP model with p � 4 and for Poisson's ratio m � 0
and m � 1=2 are shown in Fig. 4.
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The discussion above holds for planar problems. In 3-D, there is, in a sense, more geometric
freedom to construct microstructures, and here the Hashin-Shtrikman bounds lead to the
condition

p � max 15
1ÿ m0

7ÿ 5m0
;

3

2

1ÿ m0

1ÿ 2m0

� �
�in 3-D� ; �13�

on the power p in the SIMP model. This condition can be derived as outlined above, but as the
algebra is rather lengthy this is omitted here. Example bounds are here

p � 3 for m0 � 1
3; p � 2 for m0 � 1

5; p � 15
7 for m0 � 0;

p � 5
2 for m0 ! ÿ1; p!1 for m0 ! 1

2 �in 3-D� ; �14�

so some lower values of p are possible in dimension three. Note, however, that for m � 1=3 we
have the same bounds in 2-D and in 3-D.

3.3
Variable thickness sheets ± the Voigt bound
Design of variable thickness sheets allows for a physical given linear interpolation of stiffness
through the thickness variable of the sheet
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Hashin Shtrikman upper bound
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Fig. 2. A comparison of the SIMP
model and the Hashin-Strikhman
upper bound for an isotropic ma-
terial with Poisson ratio 1=3 mixed
with void. For the H-S upper
bound, microstructures with prop-
erties almost attaining the bounds
are also shown
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Fig. 3. Microstructures of material
and void realizing the material
properties of the SIMP model with
p � 3 Eq. (11), for a base material
with Poisson's ratio m � 1=3. As
stiffer material microstructures can
be constructed from the given
densities, non-structural areas are
seen at the cell centers
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Cijkl � h C0
ijkl; 0 � h�x� � 1; x 2 X � R2;Vol �

Z
X

h�x�dX : �15�

Here, the maximal thickness is set equal to one, in order to maintain the setting of an inter-
polation scheme, cf. (2). This problem was ®rst studied in [42] as a basis for computational
topology design. Mathematically, the linear dependence of stiffness and volume on the thick-
ness h leads to the existence of solutions for the compliance problem also in the case where
geometric constraints are not imposed, see [43] and references therein. Optimal designs within
this framework of variable thickness sheets customarily possess large areas of intermediate
thickness, but topology may also be identi®ed from areas with h � 0. The discrete computa-
tional form of the variable thickness problem is analogous to what is seen in optimal truss
topology design, and very ef®cient algorithms can be devised, [44]. Of other recent numerical
studies we mention [45, 46].

The variable thickness sheet problem is in essence a problem in ``dimension 21
2'' . For purely

planar and purely three dimensional problems, an interpolation of the form

Cijkl � q C0
ijkl ; 0 � q�x� � 1;Vol �

Z
X

q�x�dX; �16�

where q is a density of material, corresponds to using the Voigt upper bound on stiffness,
which cannot be realized by composites of material and void. The use of the Voigt upper-bound
interpolation for general topology optimization is nevertheless fairly popular, especially in the
so-called evolutionary design methods, [47, 48]. Also note that striving for black-and-white
designs requires some form of penalization of `grey', and such measures necessitates the
reintroduction of geometric constraints in order to obtain a well-posed problem.

It is worth noting that the variable-thickness sheet problem plays an important role as an
equivalent subproblem in the design labelled `free-material optimization', [17, 18]. Here, the

Poisson ratio0

Density 0.25 Density 0.5 Density 0.75

Poisson ratio 0.5

Fig. 4. Microstructures of material and void realizing the material properties of the SIMP model with
p � 4, Eq. (11), for a base material with Poisson's ratio m � 0 and m � 0:5, respectively. As in Fig. 3,
nonstructural areas are seen at the centers of the cells
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design problem is de®ned over all possible material tensors, with a generalized, linear cost
expressed in terms of tensor invariants. This setting has also been used for black-and-white
topology design in [49], by posing a sequence of well-posed, free material design problems.

3.4
The Hashin-Shtrikman bound
In light of the importance of the Hashin-Shtrikman bounds for the realization of intermediate
densities and noting that the bounds have a similar penalization of intermediate density as does
the SIMP model, it is rather surprising that these bounds have so far not been used as inter-
polation functions for topology design. Using these bounds one will have an interpolation of
Young's modulus and of Poisson's ratio in the form

E�q� � qE0

3ÿ 2q
;

m�q� � 1ÿ q �1ÿ m0�
3ÿ 2q

;

�17�

where not only Young's modulus, but also Poisson's ratio, depends on density. Observe that
independent of the Poisson ratio of the base material, the low volume fraction limit has a
Poisson ratio equal to 1/3. The interpolation (17) corresponds to the material parameters of a
composite that achieves simultaneously the Hashin-Shtrikman upper bounds on bulk and
shear moduli, and such a material can be realized by, for example, an isotropic rank-3 lami-
nation (see [40] for a recent overview).

3.5
Other models
The Voigt upper-bound model (16) has been combined in a number of papers [50±52] with the
Reuss lower bound for mixtures of materials in order to obtain alternative schemes. For a
mixture of void and material, the Reuss lower bound is zero, and in this case the interpolation
(called the Reuss-Voigt interpolation in the sequel) reads

Cijkl�q� �
aqC0

ijkl if q < 1;

C0
ijkl if q � 1;

(

Vol �
Z

X
q�x�dX :

�18�

Here, a is a parameter which weighs the contribution by the Voigt and Reuss bounds. The
interpolation introduces a jump at q � 1 (a potential problem in computations), but this is not
the case when void is exchanged with a material with higher stiffness (see below).

Similarly to the analysis for the SIMP model above, one can check the range of the parameter
a for which the Hashin-Shtrikman bounds are satis®ed. For 2-D elasticity this leads to the
condition

a � a��m0� � min
1ÿ m0

2
;

1� m0

4

� �
: �19�

The largest value of a is thus 1=3, and this is only possible if m0 � 1=3. For comparison, the
Young's modulus of the Hashin-Shtrikman bounds, the Reuss-Voigt interpolation and the
Voigt bound, as a function of density, is illustrated in Fig. 5; for consistence we choose
m0 � 1=3, as this results in a constant Poisson ratio of m � 1=3 for all three cases.

Finally, we note that an isotropic interpolation model based on the 3-D effective properties
of a statistically isotropic medium with spherical inclusions has been proposed in [53, 54]. The
Young's modulus and Poisson's ratio of this model has also been used for planar problems.
However, it is worth noting that for this interpolation scheme the 2-D Hashin-Shtrikman
bounds are violated, a feature stemming from the incompatibility of planar elasticity and
spherical inclusions.
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3.6
Example designs
The interpolation schemes described above are, in essence, computational approximations to
the black-and-white 0±1 problem. As the problems are different in form, the results obtained
with the various methods are, as expected, not the same. Conceptually, there are strong sim-
ilarities, but the differences in detail can be quite signi®cant. This is not a major problem when
employing the techniques in a design context, as long as these differences are understood and
acknowledged.

In implementations of topology design schemes based on density interpolation it is often
seen that a too severe penalization of intermediate density can lead to designs which are local
minima, and which are very sensitive to the choice of the initial design for the iterative
optimization procedure. Thus, a continuation method is often advisable, which, for example,
for the SIMP method means that the power p is slowly raised through the computations, until
the ®nal design is arrived at for a power satisfying (11) or (13). This procedure is thus a
compromise, since initial designs will be analysed using an interpolation which is not realizable
as a composite structure.

Figure 6 shows examplary optimal designs for a simple, planar, minimum-compliance de-
sign problem using the Voigt upper-bound interpolation, the Hashin-Shtrikman upper-bound
interpolation and SIMP for various powers of p. For the latter cases, the power is maintained
®xed in the iterative optimization scheme, except in one situation. Note that the Voigt upper-
bound interpolation does not satisfy our goal of ®nding a black-and-white design. The com-
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0
0 0.2 0.4 0.6 0.8 1.0

Density variable, ρ

Hashin Strikhman upper bound
Voigt bound
Reuss-Voigt interpolation ( =1/3)α
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Fig. 5. A comparison of the Voigt upper
bound, the Hashin-Strikhman upper
bound and the Reuss-Voigt interpolation
for a mixture of material and void
(Poisson's ratio m � 1=3)

Voigt (p=1) p=1.5 p=2

p=3 Continuation method (p=3) H-S upper bound model

Fig. 6. Optimal design results for material and void, using various powers p in the SIMP interpolation
scheme, and using the Hashin-Shtrikman upper bound. Problem de®nition as in Fig. 1
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putations for all cases were here carried out with a ®lter technique for maintaining a limited
geometric resolution, and in order to avoid checkerboard-like areas in the solution (see [8] for
further details on these aspects).

4
Homogenization models with anisotropy
The initial work on numerical methods for topology design of continuum structures used
composite materials as the basis for describing varying material properties in space, [1]. This
approach was strongly inspired by theoretical studies on generalized shape design in con-
duction and torsion problems, and by numerical and theoretical work related to plate design,
[2, 3, 14, 15]. Initially, composites consisting of square or rectangular holes in periodically
repeated square cells were used for planar problems. Later so-called ranked laminates (layers)
have become popular, both because analytical expressions of their effective properties can be
given and because investigations proved the optimality of such composites, in the sense of
bounds on effective properties, (see [55±57] and references therein). Also, with layered ma-
terials existence of solutions to the minimum compliance problem for both single and multiple
load cases is obtained, without any need for additional constraints on the design space e.g.
without constraints on the geometric complexity. For all the models mentioned here, ho-
mogenization techniques for computing effective moduli of materials play a central role. Hence
the use of the phrase `the homogenization method' for topology design for procedures in-
volving this type of modelling.

The homogenization method for topology design involves working with orthotropic or
anisotropic materials. This adds to the requirements of the ®nite element analysis code, but the
main additional complication are the extra design variables required to describe the structure.
Thus, a microstructure with rectangular holes in square cells requires three distributed vari-
ables, as the material properties at each point of the structure will depend on two size-variables
characterizing the hole and one variable characterizing the angle of rotation of the material
axes (the axes of the cell).

In topology design based on homogenization of periodic media, one always works with
microstructures of a given type, so the realization of the interpolation is not an issue. However,
a key question also in this case is a comparison of the stiffness parameters of the micro-
structure at hand with bounds on such parameters. For anisotropic materials, such bounds are
expressed in terms of strain or complementary energies.

For planar problems, any composite, constructed from void and an isotropic, linearly elastic
material with Young's modulus E0 and Poisson ratio m0, has an elasticity tensor C which
satis®es the lower complementary energy bound, [57],

1

2
Cÿ1
� �

ijkl
rijrkl �

1
2E0q r2

I � r2
II ÿ 2�1ÿ q� qm0�rIrII

� �
if rIrII � 0;

1
2E0q r2

I � r2
II � 2�1ÿ qÿ qm0�rIrII

� �
if rIrII � 0 ;

8<: �20�

for any stress tensor r with principal stresses rI ; rII . The inequalities (20) express an upper
bound on the stiffness of the composite. This bound can also be expressed in terms of strain
energy, [20],

1

2
Cijkleijekl �

E e2
I�e2

II�2�1ÿq�qm�eIeII� �
2�1ÿm��2ÿq�mq� if eI�eII

�1ÿm�eI
< q;

E e2
I�e2

IIÿ2�1ÿqÿqm�eIeII� �
2�1�m��2ÿqÿmq� if eIÿeII

�1�m�eI
< q;

qEe2
I

2 otherwise :

8>>>>><>>>>>:
�21�

This holds for any strain tensor e with principal strains eI ; eII ordered such that eIj j � eIIj j. As
void is allowed, the lower bound on stiffness is zero.

The bounds (20) and (21) can be attained by so-called rank-2 laminates, consisting of a
layering at two length scales and with the layers (and axes of orthotropy) directed along the
principal strain or principal stress axes (they coalesce). For stresses with rIrII � 0, single-scale,
single inclusion microstructures (named after Vidgergauz) which attain the bounds, have been
presented in [58, 59]. In a recent study, [60], it is shown that for rIrII < 0 no single-scale
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periodic composite obtain the bounds, and any composite obtaining the bound (in 2-D) must
be degenerate (i.e. has a singular stiffness tensor). For illustration, Fig. 7 shows a range of single
inclusion Vigdergauz-like microstructures for a range of positive as well as negative values of
rII=rI ; these structures have been computed by the inverse homogenization methodology (see
above for references).

For their use in optimal topology design it is useful to compare energies attainable by other
microstructures and interpolation schemes with the bound (20). Figure 8 thus shows a com-
parison of the optimal bound for q � 0:5, achievable by the ranked layered materials, with the
range of minimal complementary energies which can be obtained by the SIMP interpolation, by
microstructures with square holes, by microstructures with rectangular holes, and by the
Vigdergauz microstructures. What is noticeable, is how close the various energies are for stress
®elds close to pure dilation, while shearing stress ®elds demonstrate a considerable difference.
In the latter case, the microstructural based models are considerably stiffer than the SIMP
model, an effect which can to a large extent be attributed to the possibility of rotation for the
orthotropic microstructures. Moreover, the microstructure with square holes is notably less
stiff for uniaxial stresses compared to the other microstructures, since the imposed symmetry
of this microstructure here hinders an ef®cient use of material.

The plots of the complementary energy explain many features of computational experience
with various interpolation schemes. For compliance optimization, the complementary energy
should be minimized. As ranked laminates are ef®cient also at intermediate densities, optimal

σII σI = 0
σII σI = 0.25

σII σI = 0.5
σII

σI = 0.75
σII σI = 1

σII
σI = -0.25

σII
σI = -0.5

σII σI = -0.75
σII σI = -1

Fig. 7. The shape of single inclusions of void in a cell of a homogenized, periodic medium minimizing
complementary energy (Vigdergauz-like structures for m � 1=3 and a density q � 0:5). Results for a range
of principal stress ratios of a macroscopic stress ®eld
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Fig. 8. Comparison of the optimal (mini-
mal) complementary energy as a function
of the ratio of the principal stresses, for a
density q � 0:5, and for various types of
microstructures and interpolation schemes
(material and void mixtures). The Vid-
gergauz-like structures are shown in Fig. 7
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design with this material model leads to designs with typically rather large areas of intermediate
density. This is also the case when using the microstructures with rectangular holes and the
Vigdergauz microstructures. Thus if such materials are used for obtaining black-and-white
designs, some other form of penalization of intermediate density has to be introduced, [5, 61].
One possibility is adding a term K

R
X q�x� 1ÿ q�x�� �dX to the objective function (with K large).

On the other hand, the SIMP model and the microstructure with square holes usually lead to
designs with very little `grey', as intermediate values of density tend to give poor performance
in comparison with cost.

We close this section by noticing that the `homogenization method', based on interpolation
with composites, has constituted the basis for studies ranging over a wide area of design
problems, encompassing vibration and buckling problems, design of compliant mechanisms,
design of materials etc. We refer to the surveys mentioned in the introduction for further
details.

5
Multiple materials in elasticity

5.1
Two materials with non-vanishing stiffness
For a topology design problem, where we seek the optimal distribution of two isotropic, linearly
elastic materials with nonvanishing stiffness, the stiffness tensor of the problem (1) takes the
form

Cijkl � H C1
ijkl � �1ÿH�C2

ijkl �
either C1

ijkl

or C2
ijkl

(
�22�

where the two materials are characterized by the stiffness tensors C1
ijkl;C

2
ijkl. Here we assume

that material 1 is the stiffer, i.e., C1
ijkleijekl � C2

ijkleijekl for any strain e. Note that the volume
constraint now signi®es the amount of material 1 which can be used, as the total amount of
material amounts to the total volume of the domain X.

The two-material problem has been the focal point of theoretical works on generalized shape
design problems, as the possible singularity of stiffness is not an issue. Computational studies
are scarcer, with early numerical work concentrating on conduction problems, [14, 15], but this
variant of the topology design problem has gained recent interest, mainly as a method for
generating microstructures with interesting (and extreme) behaviour, [40, 41, 62].

An analysis of various interpolation schemes can follow exactly the same lines as above, as
the bounds on effective properties used there are actually just special cases of the general
results for mixtures of any two materials. The `special' case was here treated ®rst, as the
material-void problems is the most studied for topology design applications. Moreover, the
algebra for this case is more transparent.

For the two-material problem, the SIMP model can be expressed, as suggested in [41];

Cijkl�q� � qp C1
ijkl � �1ÿ qp�C2

ijkl;

Vol (material 1) �
Z

X
q�x�dX ;

�23�

while the Reuss-Voigt interpolation model takes the form, [50±52],

Cijkl�q� � a�q C1
ijkl � �1ÿ q�C2

ijkl� � �1ÿ a��q C1
ÿ �ÿ1��1ÿ q� C2

ÿ �ÿ1�ÿ1
ijkl;

Vol (material 1) �
Z

X
q�x�dX :

�24�

For the two-material problem, the lower Hashin-Shtrikman bound for isotropic composites
is non-zero, so here a goal of realization with microstructures means that both lower and
upper bounds will impose constraints on the interpolation models. In order to clarify the
fundamental effects of these bounds, the discussion here will be limited to the 2-D case,
where both base materials as well as the interpolations have Poisson's ratio equal to 1=3.
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In this case, the Hashin-Shtrikman bounds on the bulk and shear moduli for isotropic
composites reduce to one and the same condition, which can be expressed as a condition
on the Young's modulus

�2� q�E1 � �1ÿ q�E2

2�1ÿ q�E1 � �1� 2q�E2
E2 � E�q� � qE1 � �3ÿ q�E2

�3ÿ 2q�E1 � 2qE2
E1 (in 2-D� ; �25�

where E1;E2 denotes the Young's moduli of the two materials, for which E1 � E2.
The derivative at zero density of the lower bound in (25) is positive. Thus, condition (25)

implies that a SIMP model in the form (23) will never satisfy the Hashin-Shtrikman bounds for
all densities. However, it is possible to keep the SIMP model fairly close to the behaviour
governed by these bounds, see Fig. 9. Moreover, it can be shown that the Reuss-Voigt inter-
polation model (with m � 1=3) satis®es the bounds if and only if a � 1=3. As also noted in Sec.
4, the Hashin-Shtrikman bounds in themselves constitute sensible interpolations, and here one
can choose between the upper and the lower bound. For comparison of the various models we
also include here results for the short `cantilever' problem treated in Sec. 4, Fig. 10.

5.2
Three-materials design
Topology design involving void and two materials with non-vanishing stiffness has so far been
used for design of sandwich-like structures (using layered microstructures, [63]) and for design
of multi-phase composites with extreme behaviour [41, 62].

In this case isotropic interpolation schemes can be compared to the multiphase Hashin-
Shtrikman bounds for isotropic composites, [35]. As above, this is done here in the case of
Poisson's ratio equal to 1=3 for all phases as well as the interpolation scheme. As one phase is
zero, the bounds, expressed in terms of Young's modulus are (again we assume E1 � E2)

0 � E�q1; q2� �
q1E1 q2E1 � �3ÿ q2�E2� �

3ÿ 2q1q2� �E1 � 6ÿ 6q1 � 2q1q2� �E2
if q1 < 1 �in 2-D� : �26�

Here q1; 0 � q1 � 1 is the density of the mixture of the two materials with stiffness, and
q2; 0 � q2 � 1 is the density of material 1 in this mixture, such that

Vol (material 1� �
Z

X
q1�x� q2�x�dX; Vol (material 2� �

Z
X

q1�x� 1ÿ q2�x�� �dX;

Total volume of material �
Z

X
q1�x�dX : �27�

For a SIMP-like interpolation model, it is most convenient to interpolate ®rst between the two
nonzero phases and then between this `material' and void. The resulting model is

0 0.2 0.4 0.6 0.8 1.0
Density variable, ρ

0

0.2

0.4

0.6

0.8

1.0
Hashin
Reuss
Power laws (p=2 and p=3)
Reuss-Voigt interpolation ( =1/3)α

Yo
un

g'
s 

m
od

ul
us

Shtrikman
and Voigt bounds

Fig. 9. A comparison of the Voigt up-
per and the Reuss lower bound, the
Hashin-Strikhman upper and lower
bound, SIMP models, and the Reuss-
Voigt interpolation for mixtures of two
material with equal Poisson's ratio
m � 1=3, and with Young's moduli
E1 � 1 and E2 � 0:1
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E � qp1

1 qp2

2 E1 � 1ÿ qp2

2

ÿ �
E2

� �
; �28�

which for example for p1 � p2 � 3 is compatible with (26), i.e., for m1 � m2 � 1=3. Note,
however, that for q1 � 1 the bounds (25) should be satis®ed, and there is a (natural) singularity
in the conditions when shifting from a solid mixture to a mixture involving void. Designs
obtained using (28) are shown in Fig. 11.

6
Multiple physics, nonlinear problems and anisotropic phases

6.1
Multiple physics
The phrase `multiple physics' is used here to cover topology design where several physical
phenomena are involved in the problem statement, thus covering situations where for example
elastic, thermal and electromagnetic analyses are involved.

When modelling such situations, the basic concept of the homogenization method for to-
pology design provides a general framework for computing interpolation schemes. As the
theory and computational framework of homogenization of composite media is not limited to
elasticity, choosing a speci®c class of composites and computing effective elastic, thermal and
electromagnetic properties will lead to the required relationships between intermediate density
and material properties. An example of this approach for thermo-elastic problems can be found
in [64]. However, direct links between speci®c classes of composites and proofs of existence for
such coupled problems have yet to be discovered.

The reduced complexity of the design description achieved by the SIMP approach has also
lead to the development of such interpolation schemes for multiple physics problems. In [41],
microstructures with extreme thermal expansion are designed by combining the three-mate-
rials interpolation of (28) for the elastic properties with an interpolation of the thermal ex-
pansion coef®cients in the form

Voigt upper bound (p=1) Reuss lower bound

SIMP (p=2) Hashin-Shtrikman upper boundSIMP (p=3)

Hashin-Shtrikman lower bound

Reuss-Voigt
interpolation
( =1/3)α

Fig. 10. Optimal design results for two-materials design (for E1 � 1, E2 � 0:1, and m1 � m2 � 1=3), using
various interpolation schemes. The geometry and loading of the problem as in Fig. 1, comp. Fig. 6. The
compliances of the designs lie within a few percent of one another
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aij � �1ÿ qp
2�a1

ij � qp
2a

2
ij �29�

Here aij is the thermal strain tensor which does not depend on the total density q1 of the
mixture of the two materials 1 and 2. In recent work on topology design of thermo-electro-
mechanical actuators, an interpolation of isotropic, thermal as well as electric conduction
properties (with d0 denoting the conductivity of the solid material)

d�q� � qpd0 ; �30�

has with success been combined with the basic SIMP interpolation (4), [65]. It is here worth
noting that for this combination of interpolations, the condition (11) for the power p is
suf®cient for compatibility also with the Hashin-Shtrikman bounds for conduction

d�q� � q
2ÿ q

d0 ; �31�

as well as the cross-property bounds [36, 66],

j0

j
ÿ 1 � j0 � l0

2l0

d0

d
ÿ 1

� �
;

l0

l
ÿ 1 � j0 � l0

j0

d0

d
ÿ 1

� �
: �32�

Topology design methods have also been implemented for the design of piezo-electric
composites, which involves a coupled electrostatic and elastic analysis. Here, material inter-
polation has been performed using a homogenized medium, [67], as well as by a Voigt-type

p=1

p=1

p=1

p=2

p=2

p=2

p=3

p=3

p=3

Total material

Material no. 1

Material no. 2

Fig. 11. Optimal design results for three-materials design (two materials with m1 � m2 � 1=3 and with
stiffness E1 � 1, E2 � 0:1, and void), using various powers p in the interpolation scheme (28). The ge-
ometry and loading of the problem as in Fig. 1. Compare with Figs. 6 and 10
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interpolation of the stiffness tensor, the piezoelectric tensor and the dielectric tensor, with a
separate penalization of intermediate density, [68].

6.2
Nonlinear problems
For nonlinear problems (elasto-plasticity etc.) both the `homogenization method' and the SIMP
approach to topology design provide an even greater theoretical challenge, mainly due to the
less developed and more involved theory of homogenization and to dif®culties in deriving
bounding theorems for such problems. It is here important to underline that micromechanical
considerations should always play a role in the development of interpolation schemes, as
experience shows that the computational feasibility of such schemes can be closely related to
how faithfully the interpolations mimic physical reality.

For geometrically nonlinear problems, the constitutive laws remain linear so it is here
natural to use the interpolation schemes developed for the linear problems. This has been done
for large displacement problems in [69, 70], using the SIMP model to design structures and
compliant mechanisms.

For materially nonlinear problems, references [71] and [72] use numerical analysis of the
homogenized elasto-plastic behaviour of a microstructure of rectangular holes in square cells as
the basis for topology design for elasto-plastic problems (beams and shells), while the SIMP
approach has been implemented in [73]. A fundamental question in these problems, among
others, is a reasonable description (interpolation) of the yield limit at intermediate densities, a
problem that also is to be addressed for stress-constrained design problems. The stress-con-
strained problem is treated in the linear elastic domain. In [74], a micromechanical study of
rank-2 laminates together with numerical experiments lead to a SIMP interpolation of the
stiffness and stress limit in the form

E�q� � qpE0; rY�q� � qprY
0 : �33�

It is here convenient to interpret (33) as an interpolation between physical properties, which
are relevant if material is present, and which should vanish when material is not present, and in
order not to introduce bias, all properties are based on the same interpolation. For topology
design involving damage models, [75], a similar scheme is to express the linear and nonlinear
strain energies in a form

W�q� � qpW0; WD�q� � qpWD
0 ; �34�

which is consistent for a black-and-white design (an index zero indicates the energy expression
valid at density 1).

6.3
Anisotropic phases
It is straightforward to extend the SIMP model to encompass also topology design with an-
isotropic materials, but for such cases the rotation of the base material should also be included
as a design variable, [76]. The design of laminates (as stacks of plies of ®ber-reinforced
materials) can be seen as a topology design problem, where a combination of the Voigt bound
(for the membrane stiffness), SIMP with p � 2 (coupling stiffness) and SIMP with p � 3
(bending stiffness) describes the design. This analogy allows for the application of a range of
the theoretical tools developed for the homogenization method for topology design [77].

7
The significance of void
The discussion in this paper on interpolation models all refer to an approach to topology
design where material is distributed in a ®xed domain. A pivotal aspect of this idea in com-
putational implementations is the use of a ®xed FEM mesh for the domain. This is not an
inherent requirement, but is useful for computational ef®ciency. Recently, adaptive strategies
have been implemented in order to improve geometric resolution, [73]. If the topology of
material and void is the goal of the design process, this will imply that low density areas are also
included in the analysis for each feasible design. For certain settings this leads to dif®culties
both in the formulation of the problem as well as in the numerical treatment.
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For stress-constrained problems, the so-called stress singularity phenomenon, [78, 79],
means that it is crucial that the design formulation only imposes the stress constraint in areas
of nonzero density. This is, from a mathematical programming point of view, a complicated
type of constraint which, as it turns out, requires use of constraint-relaxation techniques (not
to be misinterpreted in terms of the variational relaxation discussed elsewhere in this paper),
[74].

A somewhat more subtle problem arising from the basic design representation in topology
design appears in situations involving stability and vibration criteria. The relevant criteria are
here the eigenvalues of the structurally relevant parts of the structure, i.e., the buckling loads
and the vibration frequencies of the `black' part of a black-and-white design. In a true black-
and-white design, this are the nonzero eigenvalues, but at intermediate steps of an iterative
optimization method implemented with interpolation schemes it can become unclear what are
the relevant values to consider. Examples of this are localized modes which appear in low
density regions and which should be ®ltered out in order that the optimization deals with the
structurally interesting modes. Such a procedure is demonstrated in [80] for buckling prob-
lems, solved using homogenized material properties. For vibration problems two-materials
design (labelled `reinforcement problems') is usually reported (see [81] for a survey), but in
vibration problems for black-and-white design local modes are also seen and require similar
attention, [82].

8
Conclusions and perspectives
The analyses presented here demonstrates that various approaches to black-and-white topology
design can in many situations all be interpreted within the framework of micromechanically
based models, thus clarifying a long ongoing discussion in the structural optimization com-
munity regarding the physical relevance of different interpolation schemes. However, it remains
an important issue to examine models in relation to micromechanics, and to be fully aware of
limitations or approximations used in the numerical schemes which are devised for solving
topology design problems. Moreover, it is in this context crucial to recognize if a topology design
study is supposed to lead to black-and-white designs or if composites can constitute part of the
solution, (see [30] for further discussion on this). It should again be emphasized that, if a
numerical method leads to black-and-white designs, one can, in essence, choose to ignore the
physical relevance of `grey', and in many situations a better computational scheme can be
obtained if one allows for a violation of the bounds on properties of composites. This is espe-
cially the case where the bounds do not allow for a high enough penalization of intermediate
density. The alternative is to introduce an explicit penalization of the density, cf. Sec. 4.

It is also evident from an overview of current methodologies that despite the abundance of
results, here are still complicated theoretical and practical questions to overcome. Thus, the
precise relationship between relaxation, microstructures, and existence of solutions is open for
most classes of problems, and closely related to this are questions of bounds on properties for
coupled and nonlinear problems. From a practical point of view, the most pressing question is
no doubt the development of a general framework for devising interpolation schemes for
coupled and nonlinear problems.
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