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Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing

to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses.

Further-

more, the possibility exists for combining spectroscopic characterization or identification with imaging because

the radiation is broadband in nature.
waveforms.
waveforms.
unknown sample under certain conditions.

To achieve this, we require novel methods for real-time analysis of THz
This paper describes a robust algorithm for extracting material parameters from measured THz
Our algorithm simultaneously obtains both the thickness and the complex refractive index of an
In contrast, most spectroscopic transmission measurements re-
quire knowledge of the sample’s thickness for an accurate determination of its optical parameters.

Our ap-

proach relies on a model-based estimation, a gradient descent search, and the total variation measure. We
explore the limits of this technique and compare the results with literature data for optical parameters of sev-
eral different materials. © 2001 Optical Society of America

OCIS codes: 320.7160, 300.6270, 120.4530.

1. INTRODUCTION

The ability to readily explore the electromagnetic spec-
trum in the far-infrared, or terahertz (THz), region of the
spectrum was limited until recently. Novel approaches
based on nonlinear optics have opened new possibilities in
this area. One of the most versatile of these recent de-
velopments is terahertz time-domain spectroscopy (THz-
TDS), in which femtosecond optical pulses generate a
freely propagating THz wave via ultrafast gating of a pho-
toconductive switch.!™ The resulting electromagnetic
pulse is broadband, spanning from below 100 GHz up to
several THz. Photoconductive or electro-optic sampling
techniques eliminate the need for cumbersome cryogenics
for detection of these subpicosecond THz pulses. Fur-
thermore, these detection schemes are coherent in that
they provide measurements of the THz electric field
Erp,(t) rather than of the intensity |Eqg,(t)|?. The result
is an extremely robust and versatile spectrometer with
the potential to be both compact and portable.

Within the past several years, numerous researchers
have recognized the possibility of exploiting the broad-
band nature of the THz-TDS system for materials identi-
fication and characterization. The far-infrared optical
properties of many different materials have been
determined.®? More recently, adaptations to the THz-
TDS system allowed for imaging, using both pixel-by-
pixel*” and focal-plane®® methods. These early experi-
ments demonstrated the utility of a far-infrared imaging
system of this sort in applications as diverse as moisture
analysis,*® package inspection,*® biomedical diagnosis,’
and gas sensing.'® In many of these imaging applica-
tions it would be valuable not only to generate an image
of a sample but also to perform spectroscopic analysis and
identification of the materials that constitute the sample.
This would require a more advanced signal-processing
technique than those used in previous THz imaging ex-
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periments. Similar techniques have been powerful tools
at other wavelengths.''™'® THz-TDS offers a unique op-
portunity to provide such capabilities in the technology
gap between the high-frequency limit of modern elec-
tronic components and the low-frequency limit of most
practical lasers and midinfrared incoherent sources.

Spectroscopic measurements require an analysis
method for THz waveforms. Typically one measures the
transmitted, time-domain waveform both with and with-
out a sample present and then performs a Fourier decon-
volution in order to extract material parameters. The
success of this method requires precise knowledge of the
thickness of the sample, as both the absorption and the
phase delay vary exponentially with sample thickness.
Indeed, in many of these measurements, the dominant er-
ror in the optical constants arises from uncertainty in the
thickness measurement. Also, analytical solutions do
not exist to derive these constants from the measured
electric fields, and we must employ numerical methods.
Duvillaret et al. recently described one example of a nu-
merical inversion algorithm for this purpose.’® As with
most spectroscopic methods, this algorithm also relies on
an accurate knowledge of the sample thickness. Very re-
cently, Duvillaret et al. extended their work to also ex-
tract the thickness; however, alignment error and algo-
rithm initialization using a guessed thickness not
relatively near the actual thickness can lead to inaccurate
results.®

We propose a new technique to determine simulta-
neously the thickness and the complex index of refraction
of an unknown material. We emphasize that the
samples under consideration here are thin planar slabs of
dielectric material, such as what one might find in many
of the examples described in previous discussions of THz
imaging.* These samples are optically thin in most cases
and are therefore not well suited for the most accurate de-
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termination of their optical constants. We demonstrate,
however, that our approach permits us to measure the op-
tical constants to a sufficient degree of accuracy to permit
material identification with no a priori knowledge of the
thickness of the slab. This capability will be extremely
valuable when implemented in conjunction with imaging,
as it will be possible to determine, at each pixel, the com-
position of the sample under study.

To extract both the complex dielectric parameters and
the thickness, we exploit the multiple reflections gener-
ated by a short optical pulse propagating through a pla-
nar slab. The THz-TDS system provides a time-domain
signal that contains not only the initial pulse transmitted
through the material but also several subsequent pulses,
resulting from internal reflections, that arrive at delayed
times. Our method is a model-based approach in which
the extraction of material parameters arises from the
analysis of the multiple internal reflections described by
the Fabry—Perot effect.!® A gradient search minimizes
the difference between the model and the measured sig-
nals over a range of thicknesses. At each guessed thick-
ness, we iteratively update the complex index of refrac-
tion function to minimize the total error. Once the
complex index of refraction is identified for a particular
thickness, a total variation metric measures the smooth-
ness of the complex refractive-index function. The total
variation metric can be used for highly dispersive materi-
als and noisy data, in contrast to Duvillaret et al.1>'6
The estimated material thickness and complex refractive
index are identified by the deepest local minimum of the
total variation metric as a function of thickness. Our
method can examine an extremely large range of guessed
thicknesses while advantageously providing a null output
if the correct thickness is not within the search region.
We investigate the limits of our method and compare our
results with literature data for several different materi-
als.

This paper is organized as follows: In Section 2 we
characterize the THz-TDS signals and overview the equa-
tions that govern our model. Section 3 briefly describes
some of the processing techniques necessary to use the
measured waveforms, outlines the algorithm used to
minimize the difference between the model and measured
waveforms, introduces the total variation measure, and
validates the use of the deepest local minimum. Section
4 contains both experimental and simulated results,
along with an examination of the limits of the method.

2. MODEL FOR HOMOGENEOUS, PLANAR
MATERIALS

The goal of this work is to develop an algorithmic ap-
proach for identification of materials via their spectro-
scopic signatures in the THz range. We envision that
this would be coupled with imaging, so that a material
could be identified, perhaps by use of a library or lookup
table of known results, at each pixel of an image. Issues
of particular interest for our purposes are the character-
ization of the THz waveforms and the model that de-
scribes the interactions between the waveforms and a ho-
mogeneous, planar solid. Details of the THz-TDS system
can be found in the literature.!™’
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Translation of the sample provides a means to collect
and process signals in a pixel-by-pixel fashion. For each
pixel, the system receives a single waveform that is the
result of the interactions between the THz pulse and the
sample. One may assume that the reference waveform,
measured without the sample in place, is known. Figure
1(a) shows a typical THz waveform E,({¢) without a
sample. It is characterized by a single-cycle pulse of ap-
proximately 1 ps duration. We also show a waveform
measured with a planar sample in the THz path. This
waveform E,,,.(¢) [see Fig. 1(a), bottom] shows a simi-
lar initial pulse that is due to the first transmission
through the material, but it also contains three smaller
pulses caused by multiple internal reflections. The time-
domain analog of the Fabry—Perot effect describes these
additional pulses.!” They are also similar to the well-
known multiples in the geoscience field.'® We note that
all of the pulses in the waveform Eg,,,.(f) are time
shifted, attenuated, and reshaped compared with the ref-
erence waveform E,.(¢). These changes, in both the
time and the frequency domains [Fig. 1(b)], form the basis
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Fig. 1. (a) Time-domain signals from the THz system without a
sample (thick curves) and with a sample (thin curves) of a 0.51
+ 0.02-mm-thick silicon wafer obtained through transmission.
The parameter-estimation algorithm described in the text re-
quires the primary transmission and two multiples. Three mul-
tiples are evident in the output. The signals are offset for clar-
ity. (b) Corresponding discrete Fourier transform magnitudes of
the signals from (a). (c) Fourier deconvolution of the sample ver-
sus no sample obtained using frequency values between 250 GHz
and 1.4 THz.
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for the information we wish to extract. (These experi-
ments were performed in a dry-air environment to elimi-
nate the spectral absorption lines due to water vapor.1®)

Figure 2 displays a schematic of the interaction of the
THz pulse with the sample. An incident pulse impinges
on the front surface of the sample. Part of the energy is
transmitted, and part is reflected. As the transmitted
portion moves through the material, propagation affects
the THz wave. Also, reflections can occur at internal in-
terfaces to create multiple output pulses from a single in-
put pulse. We capture these interactions in our model.

The Fresnel equations describe the transmission and
reflection of the THz wave at each interface.!” These are
based on the material’s complex index of refraction in the
frequency domain, 7i(w) = n(w) — jk(w), where n(w)
represents the real refractive index, «(w) is proportional
to the absorption coefficient, x(w) = a(w)c/(2w), and wis
angular frequency. The Fresnel equations at an inter-
face between two layers are

271,(w)cos 6

(D

fapl) = fig(w)cos B + 7iy(w)cos O’

fiy(w)cos 6 — 71,(w)cos B

(2)

Fap(@) fiy(w)cos B + fiy(w)cos 6’
where ¢,,(®) is the transmission coefficient of a wave at
an incidence angle 0 from region a to region b and r,;,(w)
is the reflection in region a at the a—b interface. The
angle 6 is estimated, and B is an approximation of Snell’s
law for nearly transparent materials (which covers all
samples examined in this work)!":

3

n, sin @
B = arcsin
ny
As the wave moves through a material along a ray of
length d, its propagation is governed by
—Jjiy(w)od )

c

pb(w’d) = exp( (4)

where c is the speed of light, and the ray length is deter-
mined by

l
d = (5)

cos B

We neglect scattering (e.g., interface roughness) in our
model.

We consider the THz path both with and without a
sample in place. For the free-air path, we have

Eref(w) = Einitial(w)pair(w, x),
fl:(w) = 1.00027 — O, (6)

with x the distance between the transmitter and receiver.
This includes the small but measurable contribution of
the refractive index from air at standard pressure and
room temperature.20

We must also determine the propagation distance of
the terahertz pulse in air with the sample in place. This
distance between the transmitter and receiver, minus the
path through the material, depends on the angle of the
sample and how much the incident pulse is refracted.
The amount subtracted from the distance between the
emitter and the detector is defined as the following:
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Fig. 2. Transmission and reflection pathways for a THz wave
through a planar, homogenous material. We rotate the sample
in the drawing to exaggerate nonnormal incidence and clarify the
multiple-reflection pathways. Our model describes the interac-
tions at each transmission or reflection interface and the propa-
gation through the material. The resulting signal includes the
first transmission through the sample and two multiples caused
by internal reflections.

m = d cos(0 — B), where 6= . (7

As shown in Fig. 2, we examine a planar, homogeneous
material placed in the pathway of the THz radiation.
Owing to the Fabry—Perot effect, a number of multiples
occur.’® Our iterative approach, explained in Section 3,
requires that the primary and at least two multiples be
present in the measured waveforms to solve for the free
variables. The equations for the primary received signal

and two multiples with the sample in place are
Eisia(@)panl 0, (x — m)]

X t01P sample( @5 d)t 10, (8)
E isia(@)p [ @, (x — m)]

E primary( w) =

E st multiple( @) =
X t01D sample( @, @)710 P sample( @, d)
X 710D sample( @, d) 10
= Eiitial( @) ai| @,(x — m)]
X 01 P sample( @, d)E 1077 pZample(w’ d),
9
E second muttiple( @) = Einitial( )P ain] @,(x — m)]
X £01P samplel @, d) 1071 p;*ample(w, d).
(10)
To make our system of equations more tractable, we first

add Eqgs. (8)—(10). This models the measured waveform
that contains all three temporal signals:

Ecomplete(w) = Einitial(w)pair[w7 (.’XJ - m)]t01 psample(w7 d)
2

X t10) 1 + kEl [r2) Pl @, D1F [

FP(w)
(11)
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We are now able to clearly discern the multiples FP(w)
described by the Fabry—Perot effect. Dividing Eq. (11) by
Eq. (6), we obtain

Ecomplete( w)

H(w) - Eref(w)

47 41 ©) R gample( @) €OS 6 cos B

[ﬁair(w)cos B + ﬁsample(w)cos 0]2

( {_j[dﬁsample(w) - mﬁair(w)]w]
X lexp

c

FP(w).

12)

Equation (12) is essentially the same as in Duvillaret
et al., but the incident angle 6 is included.’® It provides
the transfer function for our model. The complex func-
tion Agample( @), I, and 6 are the only free variables (the
variables d and m are dependent on [).

3. SIGNAL PROCESSING OF TERAHERTZ
WAVEFORMS

In Section 2 we developed the transfer function of the
sample. Equation (12) for H(w) models the normalized
interaction of the THz pulse with the material. We com-
pare the measured signals with this model to determine
the values for the free variables; however, we must first
consider two signal-processing concerns, namely, data
record length and regularization.

The deconvolution in frequency of our measured tempo-
ral signals is

H(w) = Esample(w) (13)
()= E (o) .

Here E g,p1e( @) is the discrete Fourier transform (DFT) of
the time-based signal with the sample in place, and
E . (w) is the DFT of the system output without sample.
Since the DFT uses circular convolution, our method re-
quires sufficient temporal signal length to maintain the
proper ordering of the features. Zero padding extends
the data records obtained from the THz system. Unfor-
tunately, this creates artificial step functions in the data
where the zeros are added. To counter this effect, we
taper the values to attenuate near the ends of the data
record. We typically apply the taper only to the first and
last 25 data points (out of 1024) to avoid modifying the
THz pulses in the signal.

Another consideration is the regularization of the de-
convolution. Equation (13) produces good results except
where very small values occur in the denominator. This
introduces the need for high and low frequency limits, as
seen in Fig. 1(b). The deconvolution therefore only uses
the frequency information between 0.25 and 1.4 THz.
Shown in Fig. 1(c) is the inverse DFT A(¢) of the decon-
volution H(w). It is the impulse response of the sample
derived from the waveforms in Fig. 1(a).

We wish to compare the deconvolution of the measured
signals H(w) [Eq. (13)] with the modeled transfer func-
tion H(w) [Eq. (12)]. Unfortunately, the real and imagi-
nary parts of H(w) are oscillating functions that produce
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many global minima for any error measure. Instead, us-
ing the magnitude and unwrapped phase information pro-
vides a unique solution.’® The algorithm must unwrap
the phase for both the modeled and the measured decon-
volution similarly in order to make a valid comparison.
In unwrapping, we require that the phase must extrapo-
late to zero at zero frequency. Our algorithm resets
the phase at w = 0 to zero and unwraps all subsequent
phases, assuming that no two adjacent values have a dif-
ference greater than 2.

We define the error by taking the absolute difference
between the magnitude and the unwrapped phase of the
measured data versus the model:

mER(0) = [H(0)|~|H(w)|,
pER(w) = LH(w) — LH(w). (14)

The total error over all frequencies of interest is
ER = 2, |mER(w)| + |pER(w)|. (15)

Duvillaret et al. used a somewhat different error calcula-
tion by taking the squared error of the natural log of the
magnitude and the unwrapped phase.’® Since we do not
apply a parabolic-fit method to match the model to the
measured signals, we do not use the same error measure.

Our procedure uses a three-step process. First, we
make an initial guess at the thickness. Second, our algo-
rithm calculates the beginning functions for the complex
index of refraction. The initial guess assumes a nondis-
persive material. Third, a gradient descent algorithm it-
erates the complex index of refraction function in fre-
quency until the total error no longer decreases
monotonically. Our algorithm records the final complex
refractive-index function and repeats these steps for a
range of thicknesses. We review each of these steps in
detail below.

First, the algorithm bounds the upper and lower limits-
of-thickness guesses by

At e Ate

upper = ) ltower =
n1 = Nair Ng = Nair

l ,  (16)

where At is the time delay between the pulse in E (¢)
and the first pulse in Eg,pp(¢) of the measured signals.
The parameters n; and ny limit the range of refractive in-
dices considered. Values of n; = 1.2 and ny = 8 cover
most practical cases.

Second, the best initial starting function for the com-
plex refractive index occurs when the first peak location of
the temporal model’s deconvolution is the same as the
first peak location of the measured deconvolution. The
real refractive index and the thickness of a material con-
trol where the first peak exists in the temporal deconvo-
lution. The imaginary index of refraction and the thick-
ness affect the amplitude of the first peak. Assuming a
nondispersive material (flat frequency response) for the
estimated n(w), the following equation governs the rela-
tionship between the thickness and the real refractive in-
dex on the basis of the location of the pulse in the mea-
sured signal’s temporal deconvolution:
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{argmax[|h(t)|]c
n =4{———————  + 1.00027, 17

l

where [ is the estimated thickness of the material selected
in the first step and argmax[|h(¢)|] is the time index of
the absolute maximum of the measured temporal decon-
volution. This assumes that the input signal begins at
t = 0. We do not expect a constant real refractive index
in most real materials, but this provides a good way to
generate an initial estimate. The initial value for «(w)
begins at zero and increments until the absolute maxi-
mum of the modeled temporal deconvolution is less than
or equal to the absolute maximum of the measured tem-
poral deconvolution.

Third, after the initialization of n(w) and «(w), they are
updated by use of a gradient descent algorithm?®:

nnew(w) = nuld(w) + prR(w),
Knew(®) = Koq(@) + e mER(w), (18)

where € is the update step size. It determines how much
of an effect the magnitude and phase error has on the new
values for the complex refractive index. A reasonable
value is € = 0.01. The algorithm updates the complex
index of refraction functions until the total error in Eq.
(15) is no longer monotonically decreasing.

Our algorithm applies the three steps outlined above to
generate a complex index-of-refraction function for a va-
riety of guessed thicknesses. We require a metric in or-
der to identify which thickness and complex refractive-
index pair are the estimated properties for our sample.
Total error is an obvious choice; however, a poor signal-
to-noise ratio (SNR) or too large a thickness stepping dis-
tance causes inaccurate results (as demonstrated below).
Instead, we introduce the total variation of degree
one22:23.

Dim] = |n[m — 1] = n[m]| + |«[m = 1] = «[m]],
(19)

TV = >, D[m], (20)

where the sum ranges over the useful data, between 250
GHz and 1.4 THz. For most samples, we do not expect
that the recorded complex index of refraction will vary
dramatically from one frequency sample to the next, since
the sampled frequency step size is relatively small. (Our
temporal window width is approximately 60 ps with a
sample rate of 7 fs, which gives a frequency sampling of
Af = 17 GHz.) Though the index may have strong varia-
tions with frequency, the majority of solid materials do
not have spectral features that are sharp compared with
Af32*  Note that this method fails for samples with
sharp spectral features (e.g., gases).

We use the recorded complex index of refraction to cal-
culate the total variation at each thickness. As shown in
Fig. 3, the final complex index of refraction shows a
marked reduction in oscillations at the proper thickness.
We observe, however, that the amount of ripple in n(w)
and «(w) also decreases as [ increases. By identifying the
thickness at which the deepest local minimum for total
variation occurs, our algorithm identifies the proper
thickness.
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The total variation [Eq. (20)] is a more-robust metric
than the peak-to-peak measurements of the refractive-
index functions used in previous reports.'® For a highly
dispersive material, the oscillatory structure seen in Fig.
3 rides on a smoothly varying background arising from
the material dispersion. In this case, the peak-to-peak
measurement does not accurately characterize the ampli-
tude of the oscillatory structure. In contrast, TV is a
measure of local variations and thus provides a more-
accurate estimation of the thickness. It also tolerates
noisy regions where poor regularization or noisy data in-
duce artificial oscillations.

Owing to the large range of thicknesses to be consid-
ered, we apply the three steps outlined above on three dif-
ferent thickness ranges and stepping distances. The first
pass uses a coarse stepping distance At; over the full
range of thicknesses identified in Eq. (16). The next two
passes use finer stepping distances At, and Ats over a
limited range identified from the previous pass. The
deepest local minimum of the total variation on each pass
determines the center point for the next-finer pass. In a
limited number of simulations, the final pass did not con-
tain a minimum; therefore we modified the total-variation
metric:

TV2 = >, |[D[m] - D[m + 1]|. (21)

This modified total variation takes the absolute difference
between adjacent points of Eq. (19). Using Eq. (21), we
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Fig. 3. Final real index of refraction obtained from our algo-
rithm at various guessed thicknesses for a sample of GaAs. As
we approach the appropriate thickness, the oscillations in the
complex index of refraction decrease. The general trend as the
guessed thickness increases, however, is the decrease in ampli-
tude for the complex refractive index. This leads us to use the
deepest local minimum and the total variation of degree of one
metric in Egs. (19)—(21).
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are able to amplify the variations in the smoothness mea-
sure. Use of the modified total variation on only the final
pass produced a local minimum for all experimental and
simulated results.

4. RESULTS

We examine several materials through both simulation
and experimental data and investigate the general limits
of this method. The simulated results are for materials
with a low real refractive index, since the number of mul-
tiples in experimental data is SNR limited. The THz sys-
tem provides data for several high-index materials. We
present data for Si, GaAs, InP, and LiNbO; (ordinary
axis) using TV and TV2 metrics.

We first consider the data for a silicon wafer sample.
Previous THz-TDS studies used silicon as a sample mate-
rial since it has essentially zero absorption and a flat
spectral response [i.e., i(w) = 3.42 — j0].15:1624  Fjgure
4(a) shows the total error plotted over the initial coarse
sampling of thicknesses for a high-resistivity silicon wafer
sample (p > 10*Q cm). Note that the error curve ini-
tially has an exponentially decaying trend at small-to-
medium thicknesses with a large portion of the error
terms near zero.

The beginning exponential shape in Fig. 4(a) results
from the exponential dependence of the transfer function
on A gample(®@). The argument of the exponential function
in Eq. (12) must remain constant as / (the variables d and
m are dependent on /) linearly increases; therefore, while
[ is relatively small, A ppe(@) must remain relatively
large. Consequently, the algorithm cannot reduce the er-
ror below some limit. Conversely, as / becomes relatively
large, 7igumpie(®w) decreases, and the error decreases
greatly during the gradient descent. In effect, our total
error curve is mapped onto an exponentially decaying
function. A global minimum may exist at the correct
thickness; however, signal noise may prevent its exis-
tence, or the thickness step size A¢; may step over the
global minimum. We therefore locate the deepest local
minimum. Note that the total-error measure is lower in
Fig. 4(b) than in Fig. 4(a), demonstrating the effect of Az,
being coarser than At,.

In Fig. 4(b) we show the total-variation measure after
the minimum total error at a particular thickness is
achieved. The resulting curve is again exponentially de-
creasing. An inconsistent dip, however, in the TV curve
occurs at the proper thickness because of a good match
between the model and measured signals. The inclusion
of the Fabry—Perot effect in Eq. (12) causes the inconsis-
tent dip in the total-error curve at 0.49 mm. The model
matches the measured deconvolution better at this loca-
tion relative to the adjacent thicknesses. The deepest lo-
cal minimum identifies the proper thickness. The total-
variation metric has an advantage over total error in that
the concave function around the local minimum occurs
over a wider range of guessed thicknesses; therefore the
selection of A¢; is less critical for total variation.

Figure 4(c) shows the estimated real and imaginary in-
dices of refraction at the thickness identified from the
TV2 metric. Repeated measurements made with calipers
give a thickness of 0.51 = 0.02mm. The results of the
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Fig. 4. (a) Total error between the model and measured signals,
according to Eq. (15), for a 0.51 = 0.02-mm-thick sample of sili-
con plotted over a wide range of thicknesses. The box indicates
the boundaries for the next graph. (b) We compare the total error
curve (circles) against the total variation metric (triangles) for
the intermediate stepping distance 0.01 mm. The deepest local
minimum for total variation provides a better indicator of the ac-
tual thickness than total error since it has a wider concave region
and is more noise tolerant. The measured thickness with error
region is shown. (c) Corresponding real and imaginary indices of
refraction for the thickness identified by the modified total-
variation deepest local minimum of the final pass (solid lines).
Literature data puts the complex index of refraction of silicon at
3.42 — jO (dashed lines).

estimation agree with the caliper measurements, within
the uncertainty. The solid lines indicate the estimated
values. The dashed lines are the values for the complex
refractive index taken from the literature.?* The esti-
mated and the expected values are essentially superim-
posed, and both the real and the imaginary estimated val-
ues are independent of frequency as expected.

Since the primary source of error is sample alignment,
we included the incidence angle 6 in our model. For
other samples, silicon is used as a reference material to
determine the THz beam angle. We adjust the value of 6
in the model until the known optical parameters of silicon
are obtained. The angle is then fixed for all other
samples.

A second sample is high-resistivity, semi-insulating
GaAs, which has a somewhat higher refractive index.
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Figure 5(a) shows the total variation over a range of
thicknesses by way of the same procedure as for silicon
outlined above. The estimated thickness for GaAs is 0.63
mm, compared with the measured thicknesses of 0.65
+ 0.02mm. The initial stepping distance used to iden-
tify a local minimum was 0.1 mm. In Fig. 5(b), we show
the complex index of refraction at the estimated thick-
ness. The data points represent the literature values,?
with a dashed line to guide the eye. Again, good agree-
ment is obtained. In particular, the small dispersion of
the real part of the index is estimated correctly.

Next we examine InP. The same plots are generated
in Fig. 6 as in the GaAs experiment. Note the absence of
a local minimum for total error as compared with total
variation in Fig. 6(a) with a 0.1-mm stepping distance
used for A¢z;. Obviously, At; must be reasonably small
to identify the local minimum. The complex index of re-
fraction for InP is shown in Fig. 6(b). We note that the
three samples, Si, GaAs, and InP, all have similar indices
of refraction. Nonetheless, we are able to distinguish
clearly between these materials, and also to extract the
thickness of each sample accurately.

A similar analysis for LiNbOj (ordinary axis) is shown
in Fig. 7. The estimated thickness is 0.49 mm, and the
measured thickness is 0.50 = 0.02mm. The real index
of refraction tracks the literature data well; however,
some low-frequency noise existed in the raw signals.2’
The increasing absorption of LiNbO3 at higher frequen-
cies is captured by our estimate.

Since the technique requires that the primary and two
multiples be present in the measured waveforms, it is dif-
ficult to obtain the parameters from materials with low
indices of refraction. To explore this limit, we turn to

£ 6 A Estmated thickness = 0.63 mm
el . Measured thickness = 0.65:£0.02 mm
® I
= 4 ¢
© ,
>
© 2
§ { Dggpest local
0 minimum
0.4 0.8 1.2 1.6 2
thickness (mm)
(a)
3.8
Estimated real at / = 0.63 mm

3.7 '/
c LS, e e
c 36
5 — Expected real
g 3.5
al_) - e
- T ]
= 0.1 '/ Estimated imaginary at / = 0.63 mm
)
.E Y - \ Il

0.4 Expected imaginary

02 0.25 0.5 0.75 1.0 125 1.4
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)
Fig. 5. (a) Total-variation measure for GaAs shown with a
0.1-mm stepping distance. (b) Complex refractive index for the
estimated thickness (solid line) compared with the index from
the literature (dashed line). We note the slight dispersion of the
material.
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'/- Estimated imaginary at /= 0.38 mm
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frequency (THz)
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Fig. 6. (a) Total error and total-variation measure for InP
shown with a 0.1-mm stepping distance. We note that the ini-
tial stepping distance did not produce a local minimum for total
error, although one does exist for total variation. (b) Real refrac-
tive index for the estimated thickness compared with the litera-
ture data. Literature data is not available for the imaginary re-
fractive index over the frequency range shown, but an imaginary
value of 8.7 X 1073 at 6 THz is reported in the literature.?

simulation to validate our approach. For low real refrac-
tive indices, we create a simulation to produce both the
input and the output time-domain waveforms. A Ray-
leigh distribution models the faster current rise and
slower current fall in a photoconductive switch. We
modify the distribution to smooth the region around the
origin so that it is differentiable. The derivative of a
modified Rayleigh distribution is used as the model for a
single-cycle THz pulse.

We simulate a material with a constant complex index
of refraction 7gympe(w) = 1.9 -0 and [ = 1.27mm.
The algorithm described above produced the total error
and total variation curves shown in Fig. 8(a). The deep-
est local minimum for total error does not occur at the cor-
rect thickness with a 0.1-mm stepping size for thickness.
As a result, we introduced the total variation of degree
one in Egs. (19) and (20) as shown in Fig. 8(a). Figure
8(b) shows both the total error and the total variation
curves with a 0.001-mm thickness stepping size. Here,
the global minimum coincides with the thickness of the
simulated material and with the deepest local minimum
of the total variation metric in Fig. 8(a). To obtain the
global minimum, a very small step size is required owing
to the narrow width of the minimum in Fig. 8(b). The
computational load therefore is extremely high, and a cor-
rect global minimum was not always observed with real
data owing to the addition of noise. We also note that the
false local minimum in the total error at an approximate
thickness of 2 mm does not appear at all in the total-
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variation curves. The modified total-variation metric
[Eq. (21)] has been used in the final pass to analyze all of
the data in Figs. 4-7, 9.

The total-variation measure has several advantageous
features. First, it selects the local minimum on the basis
of oscillations in the complex refractive index; however, it
measures local oscillations as opposed to a global peak-to-
peak measure. Dispersive materials, noisy raw-data sig-
nals, and nonuniform oscillations in the estimated
Ml sample(®) are better characterized by a local measure.
Second, total variation ignores the multiple local minima
in the total error measure as shown in Figs. 8(a) and 8(b).
Third, a wider concave region exists around the actual
thickness, as compared with the total error measure. Fi-
nally, if the initial guessed thickness is greater than the
actual thickness and subsequent thickness guesses only
increase, the total variation will not report a local mini-
mum. The natural conclusion would be to start with a
lower guessed thickness or check the thickness stepping
distance.

Last, we examine the limitations of the total-variation
method. To be mathematically tractable, the primary
and two multiples must occur in the signal with the
sample. As the real index of refraction decreases, the
amplitude of the multiples decreases owing to the reduced
internal reflections. For a given SNR ratio, there is a
corresponding limit to the minimum real refractive index
that can be studied.

From SNR measurements of the THz system, we rea-
sonably expect a ratio of 1500 between the peak-to-peak
waveform amplitude and the rms. noise amplitude.* Us-
ing simulations and a captured noise signature, we deter-
mine the minimum real index resolved by our algorithm.
Figure 9 shows the range of parameters for which the
method is applicable. The circles denote test cases that
passed with the thicknesses indicated by the vertical
dashed lines and a nondispersive, real index of refraction.
The darker shaded area represents the region where the
test cases passed. Below this region the method is lim-

7.0 — - N
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6.9 Measured thickness = 0.50£0.02 mm

6.8

6.7

- Estimated real with /= 0.49 mm

6.6 K
6.5

/ Estimated imaginary with / = 0.49 mm

Expected real

index of refraction

0.1

0 MM

-0.1

-0.2

0.25 0.5 0.75 1.0 125 1.4
frequency (THz)

Fig. 7. Complex index of refraction for LiNbO; (ordinary axis)
displayed at the estimated thickness of 0.49 mm. The real re-
fractive index tracks the literature data well; however, some low-
frequency noise exists in the raw-data signals. We note the in-
creasing absorption at higher frequencies captured by our
estimate, as expected.
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Fig. 8. (a) Total error (circles) and total variation (triangles) for
a simulated material with a low real index of refraction. The
deepest local minimum for total error does not occur at the
proper thickness with a 0.1-mm-thickness stepping size. (b) Total
error and total variation as in (a) with a 0.001-mm-thickness
stepping size. A global minimum is possible for both measures,
but real data often provide only a deepest local minimum, owing
to noise. Total variation is a more robust and computationally
efficient metric to indicate the correct material thickness, owing
to the larger thickness step size allowed.
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Fig. 9. Limits of our method displayed for a simulated material
at a signal-to-noise ratio of 1500:1. The circles indicate the test
cases that passed for the thickness indicated by the vertical
dashed lines. At each point, the real refractive index was con-
stant across frequency, while the imaginary component was zero.
The darker area represents the passing region. The area below
the passing region is signal-to-noise limited. The lighter area at
the top indicates a region that should pass; however, the initial
stepping distance for thickness needs to be smaller and/or the
data record needs to be longer. At larger thicknesses, the mul-
tiple reflections might exceed the data record length.

ited by SNR. Above this region we expected the simula-
tions to pass. The initial step size, however, was too
large to produce a local minimum, or the analysis window
size (25 ps in this simulation) limited the number of mul-
tiples. Obviously, both the thickness stepping size and
the analysis window can be changed depending on the
material under investigation. For example, in Fig. 6(a) a
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reduced thickness stepping size would be advantageous.
Consequently, our method is applicable in both of the
shaded regions in Fig. 9.

5. CONCLUSIONS

We have introduced a method to simultaneously calculate
the thickness and complex index of refraction of an un-
known homogenous sample with use of THz time-domain
spectroscopy (THz-TDS). The THz-TDS system provides
a noncontact, nondestructive approach for investigation.
Also, analysis can occur on samples enclosed in standard
packaging materials (e.g., cardboard, cellophane, styro-
foam), since these materials are transparent at low THz
frequencies. Our method simply requires the primary
transmission and two multiples in the output waveform.

Our method uses a model-based approach that mini-
mizes the absolute difference between measured wave-
forms and the model by use of a gradient descent algo-
rithm. For each thickness over a range of thicknesses,
we use the final iteratively determined complex index of
refraction to calculate the total-variation measure. The
total-variation metric determines the smoothness of the
estimated complex index of refraction. The deepest local
total variation minimum provides an estimate at each
pass. By scanning smaller intervals on each of three
passes, we refine the search over thickness. The final
pass uses the smallest thickness range with the smallest
stepping distance. We apply the modified total-variation
metric on the final pass. The total-variation metric ex-
ploits the fact that most materials have a smoothly vary-
ing spectrum. Our metric measures the local oscillatory
artifacts, as in Fig. 3, which can characterize dispersive
materials, noisy raw-data signals, and nonuniform oscil-
lations in the estimated complex refractive index. This is
more general than minimizing the peak-to-peak ampli-
tude, as in Ref. 16. Also, a null result is reported if the
scanned thickness range does not overlap the actual
thickness.

Our algorithm operates on a single signal pair (refer-
ence and signal with sample) for each experiment (with
the potential inclusion of a reference-material waveform
to determine the angle of incidence); however, sample
translation allows for pixel-by-pixel imaging. The addi-
tion of simple optics provides a method to achieve a
diffraction-limited focal spot approximately 250 pum in
diameter.® Efforts to determine similar parameters, but
at a lower real index of refraction, are ongoing. The abil-
ity to parameterize materials with multiple interfaces or
with composite construction is also of interest.

Outlines of the algorithms used for this work are avail-
able at www.dsp.rice.edu/~mit.
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