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Abstract. The degree to which the coordinate transformation concept first
demonstrated for electromagnetic waves can be applied to other classes of
waves remains an open question. In this work, we thoroughly examine the
coordinate transformation invariance of acoustic waves. We employ a purely
physical argument to show how the acoustic velocity vector must transform
differently than the E and H fields in Maxwell’s equations, which explains why
acoustic coordinate transformation invariance was not found in some previous
analyses. A first principles analysis of the acoustic equations under arbitrary
coordinate transformations confirms that the divergence operator is preserved
only if velocity transforms in this physically correct way. This analysis also
yields closed-form expressions for the bulk modulus and mass density tensor
of the material required to realize an arbitrary coordinate transformation on the
acoustic fields, which we show are equivalent to forms presented elsewhere.
We demonstrate the computation of these material parameters in two specific
cases and show that the change in velocity and pressure gradient vectors under
a nonorthogonal coordinate transformation is precisely how these vectors must
change from purely physical arguments. This analysis confirms that all of
the electromagnetic devices and materials that have been conceived using the
coordinate transformation approach are also in principle realizable for acoustic
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waves. Together with previous work, this analysis also shows how the curl,
divergence and gradient operators maintain form under arbitrary coordinate
transformations, opening the door to analyzing other wave systems built on these
three vector operators.
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1. Introduction

Pendry et al (2006) showed that arbitrary coordinate transformations of Maxwell’s equations
can be interpreted in terms of an electromagnetic material in the original coordinates with
transformed permittivity and permeability values. Consequently, the bending and stretching
of electromagnetic fields specified by coordinate transformations can be implemented
with electromagnetic materials, enabling unexpected and interesting solutions such as
electromagnetic cloaking (Pendry et al 2006, Schurig et al 2006), and others (Luo et al
2008, Rahm et al 2008).

The degree to which this coordinate transformation concept can be applied to other
classes of waves remains an open question. An analysis by Milton et al (2006) indicated
that the coordinate transform approach cannot be extended to elastodynamic waves in solids
in the fully general case or even for the special case of compressional waves in a fluid, i.e.
acoustics. However, a scattering theory analysis has shown that the cloaking solution exists for
acoustic waves in fluids in three-dimensions (3D) (Cummer et al 2008) and, by analogy with
electromagnetics, it has been shown that 2D acoustic waves (Cummer and Schurig 2007) and
3D acoustic waves (Chen and Chan 2007) can be made transformation invariant. The material
parameters required to implement acoustic coordinate changes have also been obtained by
Greenleaf et al (2008).

Some important pieces of physical understanding remain incomplete, though.
Demonstrating the invariance through analogy with electromagnetics or by a general analysis
of the scalar Helmholtz equation masks some of the physics of the transformation approach,
particularly how vectors such as particle velocity and the pressure gradient change under
transformation. Our findings reported here are as follows. Through an analysis of how power
flow and constant phase surfaces must transform for completely general waves, we show that
the velocity vector in acoustics must transform in a different way than the E and H vectors
in electromagnetics. By itself this explains why previous elastodynamic analysis (Milton et al
2006), which assumed that the acoustic velocity transforms like E and H, did not result in
acoustic equation transformation invariance.

Then we derive from first principles the conditions on material properties and the scaling
of vectors that must be met for the acoustic equations to be coordinate transformation invariant.
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Figure 1. The deformation of power flow lines and phase fronts for a general
uniform plane wave after a linear coordinate transformation in one direction.
This deformation is the same for all types of waves (electromagnetic, acoustic,
etc).

This confirms the material parameter expressions found previously by analogy and also
demonstrates how the velocity vector must transform to maintain invariance, which is in
agreement with that found from our qualitative argument based on wave physics. Taken together,
this analysis and the corresponding derivation for electromagnetics (Pendry et al 2006) also
show how the complete set of curl, divergence and gradient operators maintain form invariance
under arbitrary coordinate transformations, opening the door to analyzing other wave systems
built on these three vector operators. Several examples demonstrate the connection between the
math and the physics in how the fields transform in orthogonal and nonorthogonal cases.

2. General wave behavior under transformations

Pendry et al (2006) noted that conserved vectors in the electromagnetic system, namely the
magnetic field B, the electric displacement D and the Poynting vector S, transform in a
certain way in order to preserve the form of the Maxwell equations. Physically relevant but
nonconserved vectors, however, transform in a different way. For example, in a uniform plane
wave the wave vector (or phase front normal) k and the Poynting vector S are parallel, but
after the plane wave has been distorted by a cloaking transformation (Pendry et al 2006),
these vectors are no longer parallel in the transformed region and they thus do not transform the
same way.

To understand this further, we take as a starting point the notion that coordinates
transformations stretch nonvector objects, including scalar fields, power flow lines and surfaces
of constant phase, as they would be stretched if they were tied to space itself. Consequently, if
a region of space containing a uniform plane wave is stretched in one direction, the power flow
lines and constant phase surfaces (lines in 2D) distort as shown in figure 1.

Although phase fronts and power flow are universal wave concepts, the vectors involved
in different kinds of waves have different relationships to the phase front normal (i.e. the wave
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Figure 2. The transformation of vectors in electromagnetic (left) and acoustic or
compressional elastodynamic (right). The white converging arrows denote which
component of each vector is compressed by the coordinate transformation.

vector) and power flow directions. For example, electromagnetic waves contain E and H vectors
that are perpendicular to the power flow S, and D and B vectors that are perpendicular to
the wave vector k. How these electromagnetic field vectors must transform in a coordinate
transformation is thus illustrated in the left panel of figure 2. The vectors that are conserved,
namely B, D and S, must conserve their components parallel to the transformation direction.
Thus their components perpendicular to the transformation direction must be compressed
(denoted in the figure by the converging white arrows) by the coordinate stretching factor so
that they maintain the correct orientation with respect to the power flow lines and phase fronts.
The nonconserved vectors, namely E, H and k, must conserve their components perpendicular
to the transformation direction. Thus their components parallel to the transformation direction
must be compressed by the coordinate stretching factor. Thus the nonconserved vectors E and
H are stretched or compressed in the same direction as the coordinate transformation, while
the conserved vectors are stretched or compressed in the direction orthogonal to the coordinate
transformation.

The same idea can be applied to compressional elastodynamic (i.e. acoustic) waves, as
shown in the right panel of figure 2. Power flow S and particle velocity v are conserved vectors
and therefore must transform so that their components normal to the stretched coordinate
direction are altered. Thus, the vector component in acoustic waves, v, must transform in a
fundamentally different way than the vectors E and H that describe electromagnetic waves. This
immediately explains why the analysis of Milton et al (2006) did not reveal the possibilities
of acoustic cloaking or, more generally, transformation acoustics. The analysis assumed that
the displacement vector u (equivalent to v) is compressed in the direction of the coordinate
transformation, in the manner of E and H. The first principles analysis below shows that when
the velocity or displacement vectors are allowed to transform in the physically correct way, the
acoustic field equations are invariant to coordinate transformations, leading to cloaking and all
other coordinate transformation-based devices.

3. Direct derivation of transformation acoustics

Recognizing that v in an acoustic wave must transform differently than E or H in an
electromagnetic wave, we can show directly that the form of the acoustic equations,
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Figure 3. The parallelepiped that defines an infinitesimal volume in the
transformed coordinates. The area and unit normal of each face enters in the
calculation of the net flux of a vector out of this volume.

namely

∇ p = iωρ(r̄)ρ0v, (1)

iωp = λ(r̄)λ0∇ · v, (2)

where ρ(r̄) and λ(r̄) are the normalized density and bulk modulus, respectively, of the medium,
is coordinate transform invariant and therefore demonstrate the concept of transformation
acoustics in its full form, including expressions for the material parameters and how v must
transform. Following the analysis of the curl operator (Pendry et al 2006), we first consider an
acoustic wave velocity field v in a nonorthogonal coordinate system described by coordinates
q1, q2 and q3 with unit vectors û1, û2 and û3, respectively. As in Pendry et al (2006), let for
i = 1, 2, 3

Q2
i =

(
∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

. (3)

Figure 3 shows what happens when we apply the divergence theorem to an infinitesimal
volume in this nonorthogonal coordinate system. Deriving the net outward flux of v from
this volume and setting it equal to the divergence of v times the infinitesimal volume, it is
straightforward to show that

(∇ · v)Q1 Q2 Q3|û1 · (û2 × û3)| =
∂

∂q1

[
Q2 Q3v · (û2 × û3)

]
+

∂

∂q2

[
Q1 Q3v · (û1 × û3)

]
+

∂

∂q3

[
Q1 Q2v · (û1 × û2)

]
. (4)

Going forward, let Vfrac = |û1 · (û2 × û3)| because this is the fraction by which a unit
volume is compressed by the coordinate nonorthogonality, and we use the conventional
superscript (subscript) notation for contravariant (covariant) vector components. Using

v · (û2 × û3) = v1û1 · (û2 × û3), (5)
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equation (4) can be rewritten as

(∇ · v)Q1 Q2 Q3Vfrac =
∂

∂q1

(
Q2 Q3Vfracv

1
)

+
∂

∂q2

(
Q1 Q3Vfracv

2
)

+
∂

∂q3

(
Q1 Q2Vfracv

3
)
. (6)

Noting that the divergence in the transformed coordinates is defined by ∇q · v = ∂v1/∂q1 +
∂v2/∂q2 + ∂v3/∂q3, we can write

(∇ · v)Q1 Q2 Q3Vfrac = ∇q ·

(
Vfrac

¯̄Qper[v1 v2 v3]T
)

= ∇q · ṽ, (7)

where

¯̄Qper =

Q2 Q3 0 0
0 Q1 Q3 0
0 0 Q1 Q2

 (8)

and the transformed velocity vector ṽ is given by

ṽ = Vfrac
¯̄Qper[v

1 v2 v3]T . (9)

We use the per subscript on the tensor ¯̄Qper to denote that the diagonal elements transform
each vector component by the product of the coordinate scaling factors perpendicular (more
generally, not parallel, for the case of nonorthogonal coordinates) to the direction of the vector
component. Recall that our qualitative discussion above, summarized in the right panel of
figure 2, showed that this is precisely how the velocity vector must transform in a compressional
wave in order for transformation acoustics to work. Note that the elements of the column vector
[v1 v2 v3]T are the contravariant components of v in the nonorthogonal coordinate system
while the elements of the vector ṽ are the components in the original orthogonal coordinate
system. The examples given in the next section help clarify this distinction. Contrast this to the
electromagnetic case (Pendry et al 2006) in which the transformed electric field Ẽ is given by

Ẽ = [Q1 E1 Q2 E2 Q3 E3]T . (10)

where the scaling factors parallel to each component are applied to the covariant components
of the original electric field in the new coordinate system to yield the transformed field in the
original coordinate system. The H field transforms the same way.

Multiplying (2) (with λ(r̄) = 1) by Q1 Q2 Q3Vfrac and using (9) results in the equation, in
the transformed coordinates,

iωp = λ(q̄)λ0∇q · ṽ, (11)

with

λ(q̄) = (Q1 Q2 Q3Vfrac)
−1. (12)

This demonstrates the coordinate transformation invariance of (2) provided the bulk modulus
is modified according to (12) and the velocity vector is transformed according to (11). More
generally, this also shows how a vector must transform in order for the gradient operator to
maintain its basic form.

Now we derive how (1) and therefore the gradient operator transforms under a coordinate
change. Using the gradient theorem and integrating ∇ p along a short length in the q1 coordinate
direction, we find that

∇ p · Q1û1 =
∂p

∂q1
= (∇q p)1. (13)
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The left-hand side contains the scaled covariant components of ∇ p which must be converted
to covariant components before it can be equated component-wise to ∇q p, the gradient in the
transformed coordinates. We therefore find that

∇q p =
¯̄Qpar

¯̄h
−1

(∇ p), (14)

where ¯̄Qpar is the diagonal tensor containing coordinate scaling factors parallel to the direction
of the vector component, or

¯̄Qpar =

Q1 0 0
0 Q2 0
0 0 Q3

 (15)

and

¯̄h
−1

=

û1 · û1 û1 · û2 û1 · û3

û2 · û1 û2 · û2 û2 · û3

û3 · û1 û3 · û2 û3 · û3

 . (16)

Note that this ¯̄h
−1

is the same as ¯̄g
−1

defined by Pendry et al (2006). We rename this tensor
because we will use ¯̄g later to denote the metric tensor which is not quite the same as this ¯̄h.

Finally, multiplying (1) (with ρ(r̄) = 1) by ¯̄Qpar
¯̄h

−1
, we find

∇q p = iω ¯̄Qpar
¯̄h

−1
ρ0v = iω ¯̄Qpar

¯̄h
−1

¯̄Q
−1

perV
−1

fracρ0ṽ (17)

leaving us with the equivalent of (1) in fully transformed coordinates

∇q p = iω ¯̄ρρ0ṽ (18)

with

¯̄ρ =
¯̄Qpar

¯̄h
−1

¯̄Q
−1

perV
−1

frac. (19)

Equations (11) and (18) show that the acoustic equations are fully transformation invariant
with the modified material parameters in (12) and (19). We further show below that these
expressions are equivalent to those shown by Chen and Chan (2007) purely by analogy with
electromagnetics through the electric conductivity equation (Greenleaf et al 2003) and those
derived by Greenleaf et al (2008) for the general scalar Helmholtz equation. Consequently
cloaking shells, concentrators and other devices that have been designed theoretically for
electromagnetics can also be realized for acoustics provided that the bulk modulus and
anisotropic effective mass density tensor can be realized in practice as specified by (12) and
(19). Importantly, this first principles derivation shows explicitly in (9) how the acoustic velocity
vector must transform under coordinate changes, which, as noted above, is different from how
the E and H fields transform in electromagnetics. The scalar pressure is, however, not changed
by the coordinate transformation and thus, like phase fronts and power flow lines, is simply
deformed by any coordinate transformation.

4. Equivalent forms and special cases

The material parameters required to realize a particular coordinate transformation in (12) and

(19) can also be expressed in terms of the metric tensor. Noting that ¯̄Qper = Q1 Q2 Q3
¯̄Q

−1

par, (19)
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can be rewritten as the inverse mass density tensor as

¯̄ρ
−1

= (Q1 Q2 Q3Vfrac)
¯̄Q

−1

par
¯̄h ¯̄Q

−1

par. (20)

It is straightforward to show that the metric tensor gi j can be expressed as

gi j
= ¯̄g =

¯̄Q
−1

par
¯̄h ¯̄Q

−1

par, (21)

and, recognizing that det( ¯̄Qpar) = Q1 Q2 Q3 and det( ¯̄h
−1

) = V 2
frac, we also have

det(gi j) =
∣∣gi j

∣∣ = (Q1 Q2 Q3Vfrac)
−2. (22)

Therefore, the transformed bulk modulus and mass density tensors can be expressed as

¯̄ρ
−1

=

¯̄g√∣∣gi j
∣∣ , (23)

λ =

√∣∣gi j
∣∣, (24)

which is equivalent to that reported in Greenleaf et al (2008). Note that the inverse mass density
tensor here is identical to the permittivity and permeability tensors for electromagnetics (Schurig
et al 2006) under the same coordinate transformation.

The special equivalence in 2D between acoustics and transverse electric (TE) and
transverse magnetic (TM) polarization electromagnetics (Cummer and Schurig 2007) is a
straightforward consequence of the above result. If Q3 = 1 and û1 · û3 = û2 · û3 = 0, and
recalling that the inverse mass density tensor ¯̄ρ

−1
for a given transformation in acoustics

is the same as the permittivity ¯̄ε and the permeability ¯̄µ for the same transformation in
electromagnetics, then

¯̄ρ
−1

= ¯̄ε = ¯̄µ = Q1 Q2Vfrac



û1 · û1

Q2
1

û1 · û2

Q1 Q2
0

û2 · û1

Q1 Q2

û2 · û2

Q2
2

0

0 0 1

 (25)

and

λ−1
= Q1 Q2Vfrac. (26)

Thus, for TE fields, λ−1
= εz. And for the special case of an orthogonal coordinate

transformation, all off diagonal elements are zero and the two upper diagonal elements simply
invert when the matrix is inverted to give the density ¯̄ρ, giving

µxx = ρyy = Q1/Q2, (27)

µyy = ρxx = Q2/Q1. (28)

Thus the equivalence of transposed diagonal µ and ρ components and of λ−1 and εz found
in (Cummer and Schurig 2007) occurs in 2D for orthogonal transformations, such as the
cloaking transformation. The equivalence for TM fields is similar.
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Figure 4. Schematic of an acoustic beam normally incident on a beam shifting
material defined by an x dependent shift of the y-coordinate. The relationship
between the v and ∇ p vectors, the beam direction and the wave vector are shown
for both materials.

5. Orthogonal and nonorthogonal examples

We now apply the theory discussed above for two specific cases to illustrate the theory. Firstly,
consider the spherical cloaking transformation (Pendry et al 2006) specified by r ′

= a + r
(b − a)/b, where a and b are constants and b > a. This coordinate transformation is orthogonal
and thus ¯̄h = I and Vfrac = 1, which simplify things considerably. The Qi length scaling factors
are straightforward to calculate provided one realizes that the azimuthal and polar angles are
not lengths as in cartesian coordinates and (3) must be modified slightly. The Qi are defined by
the ratio of infinitesimal lengths in the transformed and untransformed coordinates, and thus

Qr =
dr

dr ′
=

b

b − a
, Qφ =

r dφ

r ′ dφ′
=

b

b − a

r ′
− a

r ′
, Qθ =

r sin(θ) dθ

r ′ sin(θ ′) dθ ′
= Qφ, (29)

which from (19) and (12) yield a diagonal mass density tensor and complete material
properties of

ρr =
b − a

b

(
r ′

r ′ − a

)2

, ρφ = ρθ =
b − a

b
, λ =

(
b − a

b

)3 (
r ′

r ′ − a

)2

, (30)

in agreement with the parameters found previously through other approaches (Chen and Chan
2007, Cummer et al 2008, Greenleaf et al 2008).

Next, we consider the nonorthogonal coordinate transformation of the beam shifter
described by Rahm et al (2008) and summarized in figure 4. The coordinate transformation
from cartesian coordinates (x, y, z) to the new coordinates (x ′, y′, z′) is

x ′
= x, y′

= y + ax, z′
= z, (31)

which yields the scaling factors

Q1 =

√

1 + a2, Q2 = 1, Q3 = 1. (32)
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The unit basis vectors in the new coordinate system are (Rahm et al 2008)

x̂ ′
=

x̂ − a ŷ
√

1 + a2
, ŷ′

= ŷ, ẑ′
= ẑ. (33)

which give Vfrac = (1 + a2)−1/2 and

¯̄h
−1

=


1 −

a
√

1 + a2
0

−
a

√
1 + a2

1 0

0 0 1

 . (34)

Together with (19) and (12) these yield the material parameters for the acoustic beam shifter

¯̄ρ =


1

1 + a2
−a 0

−a 1 0
0 0 1

 (35)

and

λ = 1. (36)

It is also useful to examine the directions of physically relevant vectors in the transformed
medium. In acoustic waves, power flow is parallel to v and thus, in the beam shifter material,
v should point in the direction of the beam, which is x̂ + a ŷ in the original cartesian basis. To
confirm this using (9), we first compute the contravariant components of the original velocity
v0 x̂ in the transformed basis (33), which are

v1
=

v0
√

1 + a2
, v2

= av0, v3
= 0. (37)

It is easy to confirm that v1 x̂ ′ + v2 ŷ′ + v3 ẑ′
= v0 x̂ . Each of these components is then scaled as in

(9) and when expressed in the original basis, we have

ṽ = Vfrac(Q2 Q3v
1 x̂ + Q1 Q3v

2 ŷ) = v0(x̂ + a ŷ). (38)

This is precisely the velocity required in the new medium to steer the beam in the new direction
but also conserve the velocity component normal to the interface with free space.

The wave vector k0 x̂ in the transformed medium also changes as it should according to
basic wave physics. As described in section 2 above, the wave vector is not conserved and thus
transforms like E or H in electromagnetics, as defined by (10). First, we compute the covariant
components of the original wave vector in the transformed basis, which are

k1 =
k0

√
1 + a2

, k2 = 0, k3 = 0. (39)

When scaled and expressed in the original basis, we have

k̃ = Q1k1 x̂ = k0 x̂, (40)

which again is precisely what is needed to conserve the component of k transverse to the
interface with free space and maintain the phase front normal in the x̂-direction as shown in
figure 4.

Note that the above procedure also shows how one can compute the directions of
electromagnetic fields in media derived using a transformation optics approach. E and H are
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nonconserved vectors and thus transform like k above, while B, D, S and J (current density)
are all conserved and thus transform exactly as v above. Vectors in other wave systems will
also transform in these ways, again depending on whether they are conserved or nonconserved
vectors.

6. Conclusions

Through a purely physical argument based on how power flow and phase fronts change under
coordinate transformations for all types of waves, we showed how vectors in electromagnetic
(E and H) and acoustic waves (v) must transform differently under coordinate transformations.
This explains in simple terms why a thorough analysis of the coordinate transformation
invariance of elastodynamics (Milton et al 2006) in which v was assumed to transform like
E did not show invariance even for the limited case of acoustics. A first principles analysis of
the acoustic equations under arbitrary coordinate transformations confirms that the divergence
operator is preserved only if velocity transforms in this physically correct way. This analysis
also shows directly that the acoustic equations are coordinate transformation invariant, as
has been demonstrated by analogy (Chen and Chan 2007) with the electric conductivity
equations (Greenleaf et al 2003) and by analysis of the scalar Helmholtz equation (Greenleaf
et al 2008). We show that these different expressions for the bulk modulus and mass density
tensor needed to realize an arbitrary deformation of the acoustic velocity and pressure fields
are fundamentally equivalent. We demonstrate the computation of these material parameters in
two specific cases and show that the change in velocity and pressure gradient vectors under
a nonorthogonal coordinate transformation is precisely how these vectors must change from
purely physical arguments.

This further confirms that all of the electromagnetic devices and materials that have been
conceived using the coordinate transformation approach (Luo et al 2008, Rahm et al 2008),
are also in principle realizable for acoustic waves. Methods for creating composite materials
to realize the required anisotropic acoustic materials have already been described (Cheng
et al 2008, Torrent and Sanchez-Dehesa 2008a, Torrent and Sanchez-Dehesa 2008b). Together,
this acoustic analysis and the corresponding electromagnetic analysis (Pendry et al 2006)
show how the curl, divergence and gradient operators maintain form under arbitrary coordinate
transformations, opening the door to analyzing other wave systems built on these three vector
operators.
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