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ABSTRACT

A hierarchy of inhomogeneous, nonstationary stochastic models of material transport is formulated, and its
properties are described. The transport models from the hierarchy sequence provide progressively more skillful
simulations of the subgrid-scale transport by mesoscale eddies, which are typically not resolved in coarse-grid
representations of the ocean circulation. The stochastic transport models yield random motion of individual
passive particles, and the probability density function of the particle population can be interpreted as the con-
centration of a passive tracer.

Performance of the models is evaluated by (a) estimating their parameters from Eulerian and Lagrangian
statistics of a fluid-dynamic reference solution, (b) solving for the transport, and (c) comparing the stochastic
and fluid-dynamic transports. The reference solution represents midlatitude oceanic gyres, and it is found by
solving steadily forced, quasigeostrophic equations of motion at large Reynolds number. The gyres are char-
acterized by abundant coherent structures, such as swift, meandering currents, strong vortices, eddies, and
planetary waves. The common, nondiffusive spreading of material (i.e., single-particle dispersion that is a
nonlinear function of time) is induced by all these structures on intermediate times and by inhomogeneity and
lateral boundaries on longer times. The higher-order members of the hierarchy are developed specially for
simulating nondiffusive transports by turbulence in the presence of organized fluid patterns.

The simplest, but least skillful, member of the hierarchy is the commonly used diffusion model. In terms of
the random particle motion, the diffusion is equivalent to the random walk (Markov-0) process for particle
positions. The higher-order members of the hierarchy are the Markov-1 (a.k.a. Langevin or random acceleration),
Markov-2, and Markov-3 models, which are jointly Markovian for particle position and its time derivatives.
Each model in the hierarchy incorporates all features of the models below it. The Markov-1 model simulates
short-time ballistic behavior associated with exponentially decaying Lagrangian velocity correlations, but on
large times it is overly dispersive because it does not account for trapping of material by the coherent structures.
The Markov-2 model brings in the capability to simulate intermediate-time, subdiffusive (slow) spreading as-
sociated with such trappings and with both decaying and oscillating Lagrangian velocity correlations. The
Markov-3 model is also capable of simulating intermediate-time, superdiffusive (fast) spreading associated with
sustained particle drifts combined with the trapping phenomenon and with the related asymmetry of the decaying
and oscillating Lagrangian velocity correlations.

1. Introduction

The ocean circulation consists of time-mean currents
and transient variability on a very broad range of scales.
The latter may be divided into low-frequency, large-
scale variability patterns; a variety of coherent meso-
scale structures, such as jets, intense vortices, eddies,
and planetary (Rossby) waves; and submesoscale fluc-
tuations. All these components transport (i.e., spread and
mix) the fluid and its material properties in a complex
way. There are two strategic pathways toward under-
standing the transport processes. First, their rates have
to be measured in the ocean. For meso- and larger scales
this is accomplished by releasing surface drifters and
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neutrally buoyant floats and tracking their trajectories
and by measuring the distributions of various chemical
tracers. Second, simple mathematical models with clear
physics have to be developed for simulating the ob-
served transport. Such a transport model is a necessary
part of coarse-resolution, ocean circulation simulations
as a parameterization of transport by unresolved eddies.
This paper focuses on the stochastic transport models
that are capable of simulating turbulent transport in the
presence of organized fluid patterns.

In the introduction we pose the problem and describe
the background. In section 2 we provide a general for-
malism for the stochastic transport model hierarchy. In
section 3 we summarize the transport properties of a
fluid-dynamic, eddy-resolving ocean circulation, which
is used as the reference solution for evaluating the sto-
chastic transport models. In section 4 we formulate and
evaluate the first-order Markov-1 model, and the higher-
order Markov-2 and -3 models are similarly analyzed
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in sections 5 and 6, respectively. Conclusions and dis-
cussion follow in section 7.

a. Statement of the problem

We view our results as part of a long-term strategy
aimed at solving the oceanic mesoscale transport prob-
lem. The strategy is a sequence of goals that must be
achieved in turn:

1) to create skillful transport models and to examine
their performance by comparing them to ocean ob-
servations and to eddy-resolving computer simula-
tions;

2) to implement these models in ocean general circu-
lation models (OGCMs) as efficient subgrid-scale
parameterizations;

3) to find closures that relate the transport model pa-
rameters simply to the coarse-grid dynamic fields,
which are explicitly resolved in OGCMs.

This paper is a modest contribution to (1), and its
purpose is to formulate and test a hierarchy of simple,
physically consistent and mathematically rigorous, sto-
chastic transport models capable of simulating some
transport properties of the oceanic general circulation,
in particular, and of other turbulent flows in the presence
of coherent dynamic patterns, in general. The stochastic
transport models use a few gross characteristics of the
turbulent circulation as internal parameters, and we
show that they are not difficult to implement and solve.

A commonly used transport model for representing
and parameterizing the passive-tracer, mesoscale, eddy-
induced transport in coarse-grid OGCMs is diffusion
(a.k.a turbulent eddy diffusion; Taylor 1921). This mod-
el represents the large-time asymptotic behavior of sin-
gle-particle dispersion in homogeneous and stationary
turbulence in an unbounded domain. The corresponding
evolution of the tracer concentration, c(t, x), is governed
by the classical advection-diffusion equation

]c
1 u · =c 5 = · (K · =c), (1)

]t

where is a large-scale advective velocity, and K is theu
diffusivity tensor coefficient. In the ocean and atmo-
sphere, at the spatial scales with the greatest energy, the
magnitude of K is larger by many orders of magnitude
than the molecular diffusivity. The widespread use of
(1) is due to its simplicity, elegance, and capability of
simulating transport characterized by single-particle dis-
persion that is a linear function of time. Equation (1) is
based on the assumption of rapid Lagrangian velocity
decorrelation (i.e., a rapid memory loss following La-
grangian particles). Although this assumption is true for
many physical systems, such as simple molecular mo-
tion, it is often not true for oceanic mesoscale eddies.

We focus on midlatitude oceanic gyres, such as in the
North Pacific and North and South Atlantic, but the
presented transport theory can be used for other aspects

of the ocean circulation and for a broad variety of tur-
bulent flows in the presence of organized patterns. Per-
formance of the stochastic transport models is tested
against the fluid-dynamic transport phenomenology
from Berloff et al. (2002, hereafter BMB). We focus on
the most turbulent circulation from BMB (computed on
7.5-km horizontal grid), and refer to it as the fluid-
dynamic solution. The transport phenomenology has the
following physical assumptions (also see the end of sec-
tion 7).

1) The motion of Lagrangian particles is strictly two-
dimensional and nondivergent within each isopycnal
fluid layer, consistent with the quasigeostrophic
(QG) approximation.1

2) The mesoscale eddies resolved in the fluid-dynamic
model dominate the tracer transport so that no ex-
plicit representation is required for transport con-
tributed by submesoscale fluctuations [Armenio et
al. (1999) argue that this contribution is small].

3) The tracer evolution is adiabatic (i.e., without sourc-
es and sinks) and dynamically passive (i.e., the tracer
is a marker that does not influence the fluid motion).2

The hierarchy of stochastic transport models is based
on random Markov processes, which govern the mo-
tion of Lagrangian particles (e.g., Gardiner 1983).
The motion consists of the time-mean and random
components. The locally averaged concentration of
particles [the probability density function (PDF) of
particle positions] is proportional to a passive tracer
concentration. Each model satisfies the physical,
well-mixedness constraint in inhomogeneous, non-
stationary situations and has its parameters estimat-
able from statistics of Lagrangian float trajectories.
The stochastic Lagrangian particles are passive [i.e.,
they satisfy (iii)], and we use the transport models
in accordance with (1) and (2). The models have the
following mathematical assumptions (also see the
end of section 7).

4) Model parameters are deterministic functions vary-
ing in space and time (the simplest situation is when
each parameter is a universal constant).

5) Spatial correlations of Lagrangian velocities are

1 The QG dynamic model has important advantages, in comparison
with more dynamically complete OGCMs, because solutions can be
calculated for the long time needed for reliable transport statistics
and/or with the fine spatial resolution needed for achieving turbulent
regimes with large Re [see Siegel et al. (2001) for even larger Re
than analyzed here]. The latter is important for resolving the spectrum
of mesoscale fluctuations contributing to transport.

2 Many tracers, such as industrial pollution and phytoplankton,
evolve by both passive physical transport and reactive chemical and
biological mechanisms. Even dynamically active tracers—heat, salt,
and potential vorticity—are sometimes transported approximately
passively. In OGCMs the common practice is to represent the subgrid-
scale transport of all tracers as if they are passive and to apply active
dynamics only for resolved-scale fields. Stochastic transport models
are usable in the same conceptual framework.
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completely neglected, hence the particles are not cor-
related with each other (i.e., they are individual).

6) Random forcing is Gaussian (a.k.a. normal).

The simplest member of the hierarchy, equivalent to the
advection-diffusion process (1), is referred to as the
Markov-0 model (a.k.a. the random walk process), and
it yields random displacements of particle positions:

1/2dx 5 u dt 1 [K ] dW (t),i i ij j (2)

where dW is the random increment vector defined be-
low.3 The underlying assumption is that observed ve-
locities very rapidly decorrelate in time and may be
represented as completely random (as a consequence,
the eddies are assumed to have infinitesimal spatial and
temporal correlation scales). This model is so classical
and well studied [see Griffa (1996) for the oceanograph-
ic context], that in this paper we do not consider it
explicitly. The higher members of the hierarchy are the
Markov-1 (our notation for the random acceleration
model), Markov-2, and Markov-3 models, each of
which, in a homogeneous, stationary situation without
lateral boundaries, is an autoregressive process of the
corresponding order for Lagrangian velocity fluctua-
tions. Each of these models has nontrivial velocity cor-
relations that allow simulation of more complex trans-
port processes than diffusion. Each model completely
incorporates all features of the models below it in the
hierarchy. The Markov-1, Markov-2, and Markov-3
models are jointly Markovian for (x, u9), (x, u9, g), and
(x, u9, g, p), respectively; where x, u9, g, and p are
position, velocity, acceleration, and hyperacceleration,
respectively. We do not examine even higher-order Mar-
kov models because we have not identified an important
transport behavior that requires us to do so. In choosing
a particular model from the hierarchy, it is important to
follow principles of parsimony—using the fewest pa-
rameters necessary for simulating a given phenome-
non—and computational efficiency.

b. Background

Ocean measurements with Lagrangian floats (Free-
land et al. 1975; Krauss and Boning 1987; Rupolo et
al. 1996), theoretical arguments (Davis 1987; Griffa
1996), and solutions of idealized ocean circulation mod-
els (Figueroa and Olson 1994; Figueroa 1994; Bower
and Lozier 1994) lead to the conclusion that the dif-
fusion process is often not an accurate model for real
oceanic transport by mesoscale eddies. This failure is
caused by the presence of coherent structures, which
induce Lagrangian velocity correlations over substantial
time, and it is further aggravated by flow inhomogeneity,

3 Our convention is that a repeated subscript index implies a sum-
mation when it occurs across a product of matrices or vectors, but
not otherwise. For example, summation over j is implied in (2), but
Kii denotes the ith diagonal component of K.

nonstationarity, and intermittency. Nevertheless, K is
often estimated from Lagrangian float trajectories, either
from the linear fit of the single-particle dispersion at
large time, or as K 5 IsTL [where s is fluctuation ve-
locity variance and TL is the integral timescale of the
Lagrangian velocity autocorrelation function, R(t), of
the time lag, t]. Both approaches rely on the asymptotic,
large-time information [in many parts of the ocean R(t)
decays slowly], and in the inhomogeneous, nonstation-
ary situation that introduces the substantial nonlocality
of the K estimate; hence, its usefulness becomes prob-
lematic.

Diffusion (i.e., a random walk) has the underlying
assumptions that the velocity fluctuations have a Gauss-
ian distribution and that eddies have infinitesimal scales.
Most theories rely on the first assumption, although ve-
locity fluctuations in idealized kinematic flows, 2D tur-
bulence, and oceanic measurements often have strongly
non-Gaussian statistical distributions (del Castillo-Ne-
grete 1998; Bracco et al. 2000). Some progress in re-
laxing this assumption is achieved in stochastic transport
models of the 1D atmospheric convective boundary lay-
er (Luhar et al. 1996; Maurizi and Lorenzani 2002), and
2D homogeneous and isotropic turbulence (Pasquero et
al. 2001). An approach for relaxing the second as-
sumption is to use a generalized advection-diffusion
model that relates the transport to the time-lagged, con-
centration gradient (Davis 1987). Another approach is
to use stochastic models for the particle position and its
time derivatives (e.g., Griffa 1996). Transport models
based on the use of stochastic equations for the motion
of individual particles have an extensive history [see
the reviews by Pope (1994) and Rodean (1996)], and
the ideas are developed far beyond the random walk
process, which is just the simplest stochastic model.
Each stochastic particle model with its boundary con-
ditions has an equivalent description of the phase-space
PDF in terms of a partial differential equation called the
forward Kolmogorov (or Fokker–Planck) equation (Ris-
ken 1989). For example, (1) is the Fokker–Planck equa-
tion for (2). The stochastic transport models are either
straightforwardly integrated in time (Dutkiewicz et al.
1993; Zambianchi and Griffa 1994) or they are used
‘‘inversely’’ for extracting information about certain
flow statistics (Griffa et al. 1995).

A hierarchy of Markovian stochastic transport models
contains the random walk model on its lowest level.
Based on measured Lagrangian velocity spectra, Griffa
(1996) argues that the next model after the random walk
in the hierarchy—the Langevin or random acceleration
model—can be accurate of simulating transport in the
upper, but not the deep, ocean. In an application of the
random acceleration model, Dutkiewicz et al. (1993)
show that small-scale turbulence substantially enhances
and modifies the material transport across a weakly me-
andering, kinematic (i.e., with an ad hoc velocity field
rather than a dynamically derived one) zonal jet. As a
result the random acceleration model may overestimate
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the cross-jet transport when the meandering has a period
shorter than the velocity correlation time (Cencini et al.
1999). This suggests that for skillful transport modeling
one sometimes has to go not only beyond the random
walk but also beyond the random acceleration model.

The next model in the hierarchy beyond random ac-
celeration is jointly Markovian for the position, velocity,
and acceleration. In this model (in addition to TL, which
is usually related to the most energetic fluctuations)
there is another, shorter than TL, timescale. Sawford
(1991) argues that this model improves the simulation
of homogeneous, isotropic 3D turbulent transport at
large Re, where the new timescale is related to the Kol-
mogorov scale. Although Sawford’s model is capable
of simulating many features of direct numerical solu-
tions (Yeung and Pope 1989), it remains to be seen
whether this model is relevant to oceanic transport in-
duced by mesoscale coherent structures.4

Most geophysical applications of stochastic transport
models make simplifying assumptions of homogeneity
and stationarity, although these are often not true. An
exception is made for vertical inhomogeneity in the at-
mospheric boundary layer (Rodean 1996), where the
constraint of well-mixedness must be satisfied to avoid
a variety of unphysical behaviors (Thomson 1987). The
well-mixedness constraint—a uniform distribution of
particles or tracer concentration remains uniform under
evolution—ensures the correctness of the small-time be-
havior of the velocity distribution of particles from a
localized source, the compatibility of the stochastic
model with Eulerian equations of motion, and the com-
patibility of forward and backward in time formulations
of the model.

Since Lagrangian observations in the ocean are
scarce, dynamic, eddy-resolving simulations of La-
grangian trajectories provide a useful alternative. In par-
ticular, simulations may be used for (a) testing the dy-
namic models; (b) testing transport models; (c) esti-
mating transport parameters, such as eddy diffusivity
(Rhines and Schopp 1991); and (d) estimating statistical
requirements and optimizing sampling strategies for La-
grangian float measurements. The double-gyre dynamic
model is a popular paradigm for the midlatitude ocean
circulation, but it is rarely looked at from the transport
point of view. Figueroa and Olson (1994) estimate K(x,
y) in a double-gyre, primitive-equation model, but the
use of an advection-diffusion transport model with this
K(x, y) on a coarse grid does not simulate well the actual
tracer evolution by the resolved eddies (Figueroa 1994).
This suggests that the transport induced by mesoscale
oceanic eddies requires a better parameterization than
the diffusion model.

BMB analyze the transport in double-gyre, flat-bot-
tom, QG midlatitude circulation at several values of Re.

4 We show that recirculating particle motion, as in mesoscale ed-
dies, can be simulated by Sawford’s model, but with different pa-
rameter choices.

It is shown that tracer transport by mesoscale eddies
occurs much differently than in the commonly used
model of homogeneous and isotropic eddy diffusion. In
most of the basin, and especially in the deep layers,
subdiffusive (slow), single-particle dispersion occurs
due to long-time trapping of material by coherent struc-
tures such as vortices near the strong currents and plan-
etary waves in the eastern part of the gyres. Superdif-
fusive (fast), single-particle dispersion behavior is found
in the western part of the subtropical gyre and in fluc-
tuating jetlike flows near the boundaries. Sub- and su-
perdiffusion are associated with a strong first negative
and second positive lobe, respectively, in local R(t).
Also, persistent transport barriers (e.g., across the east-
ward jet of the subpolar gyre) are identified and studied,
and the meridional material fluxes are measured. These
results are used here for testing the skills of the sto-
chastic model hierarchy.

2. General view on Markov transport models

In this section we present the general ideas and for-
malism of the stochastic transport model hierarchy. The
specific forms of Markov-1, -2, and -3 models are in
sections 4, 5, and 6, respectively. The central idea is
the following. Transport of a turbulent flow regime is
simulated with a set of stochastic differential equations
(SDEs) that govern random motions of individual par-
ticles transported by both the time-mean and fluctuating
currents. A set of SDEs, together with internal param-
eters, boundary, and initial conditions, and a time in-
tegration rule, constitute a stochastic transport model.
No such model can simulate all aspects of the dynamic
fluid motion, but the goal is to simulate only certain
statistical Lagrangian properties of the flow regime (e.g.,
single-particle dispersion). The transport model param-
eters are to be statistically estimated from Eulerian (i.e.,
at a given location) and/or Lagrangian (i.e., from float
trajectories) observations. The idea here is to make the
parameter estimate as local, both in space and time, as
possible.

We consider stochastic models, which are Markovian
(i.e., with a random component that is independent of
any previous time and state). The general form of a
model from the hierarchy is

df 5 D (t, f , f )dt, df 5 D (t, f , f , f )dt,1 1 1 2 2 2 1 2 3

· · · 5 · · ·

df 5 D (t, f , f , . . . , f )dt 1 b (t, f )dW (t), (3)N N 1 2 N ij 1 j

where (f1, f2, . . . , fn, . . . , fN) is the state vector of the
system, and each element of it, fn, is a 2D physical-
space vector (i 5 1, 2 and j 5 1, 2 are spatial coordinate
indices), and summation is implied over a repeated in-
dex. The variables fn correspond to x, u, u̇, etc. The Dn

are deterministic functions; dW(t) is a random incre-
ment vector; and bij is the tensor amplitude multiplying
the random increment vector. Random forcing enters
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FIG. 1. (a) and (c) Time-mean velocity streamfunction and (b) and (d) in the (a)Ïs 1 s11 22

and (b) upper and (c) and (d) deep ocean. Contour intervals: (a) 104 m2 s21, (b) 6.0 cm s21, (c)
0.25 3 104 m2 s21, and (d) 3.0 cm s21. The arrows indicate where localized particle releases
are initialized.

only the last equation in the sequence (i.e., the one with
the highest time derivative of the particle position) and
all the lower time derivatives and the position itself are
obtained by integration in time. The probability that the
system is in a certain state is given by the corresponding
conditional (i.e., in Lagrangian phase space) PDF, PL(0,
x | t, x), and each model has an equivalent Fokker–
Planck equation for the phase-space evolution of PL

(Risken 1989). The tracer concentration is the projection
of PL obtained by integrating over all the state variables
except x.

We define W j(t) as an independent incremental Wie-
ner process in each coordinate direction:

t

W (t) 5 j(s) ds. (4)j E
0

This process is a continuous but nondifferentiable in-
tegral of a zero-mean, discontinuous, stationary, Gauss-
ian, white noise process, j(t). Its variance is equal to
dt. The relationship (4) is interpreted as dW(t) 5 j(t)dt
in (3).

Boundary conditions are required for (3) in a bounded
domain, such as an oceanic basin. The most common
choices are that either particles do not reach the bound-
ary because the velocity variance vanishes there or that
particles reach the boundary and then are either reflected
or absorbed (Durbin 1983). For an oceanic application

the physically correct choice of the boundary condition
is uncertain beyond the integral constraint of the tracer
conservation. For simplicity pro tem, we choose perfect
reflection: the normal component of the velocity, u (n),
and all its time derivatives, u̇ (n), ü (n), . . . , change signs
when a particle hits the boundary. A more realistic al-
ternative might be a reflection coefficient that smoothly
decays away from the boundary. Initial conditions are
required by (3) for the fn, and, except for position, they
are chosen randomly from the corresponding normal
distributions (appendixes B, C, and D).

For integrating (3) in time, we use an Ito (rather than
Stratonovich) calculus, both of which yield the same
result in homogeneous, stationary situation but other-
wise require different formulations of the Dn (Rodean
1996). For simulating transport in the oceanic gyres, we
use a 3-h time step, and the results are insensitive to
further reductions of dt. The time-mean advection term
in D1 is integrated with a fourth-order Runge–Kutta
scheme. The parameter coefficients in Dn and bij are
calculated only once on a uniform 30-km grid,5 and at
each time step they are interpolated bicubically to the
instantaneous particle position. The accuracy is such

5 That is consistent with BMB, but the optimal choice is to have
the grid size consistent with the local homogeneity approximation.
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FIG. 2. Fluid-dynamic (a) (x, y) and (b) (x, y) in the upper ocean; (c) and (d) are the(1) (1)T T11 22

same quantities in the deep ocean (CI 5 1 day).

that in the absence of fluctuations particles closely fol-
low time-mean streamlines for several gyre circuits.

Solutions of (3) are characterized by the single-par-
ticle dispersion tensor,

D [t, x(0)] 5 [x (t) 2 x (0)][x (t) 2 x (0)], (5)ij i i j j

where the overline indicates an ensemble average over
many realizations generated by (3) with the same ini-
tial position, x(0). In the absence of boundaries and
in the large-time limit, all the homogeneous and sta-
tionary Markov models have linearly growing D(t)
(i.e., they are asymptotically diffusive) but they have
distinctive behaviors at finite time. In both oceanic
float observations (e.g., Krauss and Boning 1987;
Sundermeyer and Price 1998) and numerical solutions
(BMB), D(t) evolves in a complicated, nonlinear way.
Complex D(t) may be described by intermediate-time
power laws,

aiiD (t) ; t ,ii (6)

along principal directions of the velocity variance
(BMB). This relation implicitly assumes local homo-
geneity approximation, that is, during the time period
of interest the spreading length scale, L (t) 5Dii

, remains less than the inhomogeneity scale,ÏD (t)ii

L , over which the Lagrangian statistical propertiesIi

vary6 in the ith coordinate direction, including proximity
to a boundary (L ; x i as x i → 0). This assumption isIi

most doubtful where LI is relatively small and velocity
fluctuations are large (e.g., LI near the western boundary
current). Other measures that characterize (3) are the
autocorrelation function,

2 2 1/2R (t) 5 u9 (t)u9 (t 1 t)/[u9 u9 ] , (7)ij i j i j

of Lagrangian velocity time series, the corresponding
power spectrum, and evolving particle PDF from lo-
calized particle releases.

In a homogeneous, stationary situation and in an un-
bounded domain, each Markov model from the hier-
archy corresponds to a linear, stationary autoregressive
process (AP) for the velocity fluctuation (i.e., f2) in the
limit dt → 0 (Box et al. 1994). By transforming each
Markov model to the corresponding linear AP, some of
its properties become clear and parameter estimating
procedures become easier. We provide some basic in-
formation on AP in appendix A.

3. Fluid-dynamic solution
The fluid-dynamic Lagrangian behavior is analyzed

extensively in BMB, and here we briefly summarize

6 There is analogous statement about the nonstationarity timescale.
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some of the results needed for evaluating performance
of the Markov transport models. The midlatitude ocean
is represented by QG dynamics at large Re in a flat-
bottom, square basin with size L 5 3840 km and a no-
slip velocity condition on lateral walls. The circulation
is driven by asymmetric zonal wind stress. The ocean
is discretized vertically in three isopycnal layers with
depths Hi, and the presentation is focused on only the
upper and middle layers because the Lagrangian prop-
erties in the bottom and middle layers are qualitatively
similar. After the initial spinup process, the turbulent-
equilibrium solution is computed for 104 days and stored
for analysis. As the primary evaluation criteria for the
transport models, we use the fluid-dynamic, large-scale
PDFs of localized tracer releases and the meridional,
Lagrangian, time-mean intergyre fluxes.7 The localized
release is initialized in the subtropical western boundary
current (WBC), but other release sites lead to similar
conclusions.

The time-mean, upper-ocean velocity streamfunction
has an asymmetric, double-gyre structure with two
WBCs and their associated eastward jet extensions and
recirculation zones (Figs. 1a,c). The asymmetry of the
gyres is due to asymmetry of the wind forcing. The
intergyre boundary between the time-mean gyres is lo-
cated slightly to the south of the subpolar eastward jet.
The eastward jets are separated from each other by a
moderately active, in terms of both mean and fluctuating
currents, zone. The time-mean flow in the deep ocean
is weak except near the subtropical WBC and its east-
ward jet extension, where it is predominantly anticy-
clonic. The fluctuations are characterized by the vari-
ance tensors for the velocity,

s (x) 5 u9u9, (8)ij i j

acceleration,

j (x) 5 g g , (9)ij i j

and hyperacceleration,

z (x) 5 p p , (10)ij i j

where components of the hyperacceleration vector are
defined as

21p 5 ü9 1 j [s ] u9,i i im mj j (11)

and operator is used as an infinite-time average sof
that all the stochastic models are evaluated in the sta-
tionary regime. In the homogeneous and isotropic sit-
uation, each of (8), (9), and (10) corresponds to single
value. The physical meaning of p i becomes simple in
the Markov-3 model: it is the linear combination of
the rate of change of the acceleration and the average

7 In general global and single-basin GCMs are intended to simulate
the large-scale spreading process and meridional fluxes more than
the mesoscale properties of transport; therefore, we emphasize the
former, but the goal is to create skillful transport models that operate
equally well on all scales.

velocity fluctuation in its direction. At all depths the
fluctuations are intense near the main currents with
typical velocity variances of 0.5 in the upper and 0.2
m s 21 in the deep ocean (Figs. 1b,d). The flow is
substantially anisotropic away from the main currents:
s 22 /s11 ø 2 in the interior of the basin, and near the
lateral boundaries (except the western one) the an-
isotropy is even more pronounced. The a ii (x, y, z)
strongly varies over the basin, and we refer to a lo-
cation as subdiffusive if a ii (x, y) , 0.8, superdiffusive
if a ii (x, y) . 1.2, and approximately diffusive if 0.8
, a ii (x, y) , 1.2.

Ratios of the variance tensors (8)–(10) yield two fun-
damental parameters of the problem: the first kinematic
timescale is found from the relationship

(1) (1) 21T T 5 j [s ] ,ik kj ik kj (12)

and the second kinematic timescale is found from

(2) (2) 21T T 5 z [j ] .ik kj ik kj (13)

These parameters enter the Markov-2 and -3 models.
The kinematic timescales, T (1) (x) and T (2) (x), are
straightforwardly estimated from either Eulerian or La-
grangian (float) measurements, hence their estimates are
not constrained by the local homogeneity approximation
(section 2). For simplicity pro tem, we neglect the non-
diagonal elements of all the tensors that appear in the
stochastic models.8 The first kinematic time is typically
larger in zonal direction and in the upper ocean, and it
has smaller values near and along the boundaries (Fig.
2). Away from the main currents, typical values of T (1)

are 7–10 days in the upper, and 11–13 days in the deep
ocean; they are 3–7 days in the subtropical WBC and
its eastward extension at all depths. The second kine-
matic time is about 2 days in the subtropical WBC and
its eastward extension, and it is 1–2 weeks away from
the swift currents; the differences between the upper
and deep oceans are small away from the swift currents;
otherwise T (2) is larger in the deep ocean (Fig. 3).

Distributions of particles released in the subtropical
WBC are shown in Figs. 4 and 5. In the upper ocean
the particles spread throughout the subtropical gyre over
about 1000 days, and the subpolar gyre remains only
weakly invaded over that time because the subpolar east-
ward jet is a strong barrier to the transport (BMB). In
the eastern part of the basin, the particles remain con-
centrated in a propagating PDF front associated with

8 This simplification cannot be justified by the smallness of these
elements (BMB). However, when we compare the Markov-1 model
solutions with and without these elements, we find that they make a
hardly detectable difference in the particle PDFs from localized re-
leases (N.B., Figs. 10–11), and the resulting changes in the intergyre
flux are only about 2% in the upper and less than 1% in the deep
ocean (N.B., Table 1). Since these are the primary evaluation criteria
for the transport models, and the inclusion of nondiagonal elements
substantially complicates the parameter estimating procedures for the
higher-order models, we make this simplification for the initial study,
recognizing that the issue is to be addressed in the future.
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FIG. 3. The same as Fig. 2 but for and (CI 5 2 day).(2) (2)T T11 22

local subdiffusive behavior. This behavior is more ev-
ident in the deep ocean where the time-mean flow is
weak in the interior of the basin, and the PDF propa-
gation into the eastern basin is very slow.

Across the intergyre boundary, by its definition as the
time-mean streamline running from one boundary to the
other, there is no time-average Eulerian flux of material,
but there is time-average Lagrangian flux. In the ith layer,
the total, time-average, Lagrangian intergyre flux is

LVi(n,s) (n,s)F (t) 5 N (t, x) dx, (14)i E it 0

where L is size of the basin; Vi 5 L2Hi/N is the fluid
volume corresponding to each of N particles; (t,(n,s)N i

x) is the probability density of first-time, intergyre
boundary crossing; and the superscripts indicate wheth-
er the crossing is in the northward or southward direc-
tion. Because of integral mass conservation: F (n)(t) 5
F (s)(t), but N (n)(t, x) and N (s)(t, x) are generally not the
same (Fig. 13a), indicating that locally nonzero net La-
grangian fluxes occur between the gyres. The fluid-dy-
namic F i(t) (n) is listed in Tables 1, 2, and 3, and the

(t, x) is plotted in Fig. 13a. Initial and later positions(n,s)N i

of crossing particles are another measure of the large-
scale transport (Fig. 6) used together with the particle
PDFs and fluxes for evaluating the stochastic transport
models.

4. The Markov-1 Model

a. Formulation and properties

The Markov-1 (i.e., Langevin or random acceleration)
model is the most commonly used stochastic transport
model after diffusion. It is derived in appendix B for
an inhomogeneous and nonstationary situation in 2D.
The governing equations are

dx 5 [u (x) 1 u9]dt,i i i

(1) 21du9 5 [2[[u (x)] ] u9 1 ã (x, u9)]dti ij j i

1 b (x)dW (t), (15)ij j

where the first rhs term in the second equation represents
a fading memory for velocity fluctuations; (x) is the(1)uij

(nonsingular) Markov-1 fading-memory time tensor; the
drift correction term (for well-mixedness constraint) is

21][s ]1 ]s s jmik imã 5 2 (u 1 u9) u9i k k j2 ]x 2 ]xk k

21][s ]s mjim
2 u9u9, (16)j k2 ]xk

and the random forcing amplitude is defined by
(1) 21b b 5 2s [[u ] ] .ij jk ij jk (17)

The drift correction term is zero when the turbulence is
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both stationary and homogeneous (i.e., sij is a constant
tensor). These criteria do not determine ãi uniquely (ap-
pendix B). This is a weakness of the present stochastic
transport theories (Rodean 1996). Our choice of ãi is
the same as that of Thomson (1987), and it is shown to
perform better than an alternative one in a uniform shear
flow (Sawford and Yeung 2000). In general, however,
this remains an important open issue.

In a homogeneous, stationary situation without
boundaries, the elements of are found by integrating(1)uij

Rij(t) over t:

`

(1)u 5 R (t) dt. (18)ij E ij

0

In this case is called the Lagrangian integral time,(1)uij

TL. Yet beyond the simplest situation, this relationship
is not valid. In a general situation, given the assumption
of local homogeneity (section 2), the elements of uij are
to be found locally along the principal directions of sij

(in this coordinate system both tensors are diagonal).
As explained in section 3, we ignore the off-diagonal
terms and use the common geographical coordinates
(which in our fluid-dynamic solutions are approximately
aligned with the boundary currents, eastward jets, and
the gradient of the Coriolis frequency). We define the
components of diagonalized uij(x, y) as the time t at
which the corresponding components of a locally sta-
tionary Rij(t, x, y) approach the first zero (BMB).

The mathematical formalism of autoregressive pro-
cesses is used in the following way (N.B., appendix A).
For each coordinate component we rewrite the first
equation in (15) as

x(t) 5 x(t 2 1) 1 (u 1 u9(t))d, (19)

where d [ dt. In a homogeneous and stationary situation
without boundaries, the associated AP-1 in (A1) has a
coefficient

d
f 5 1 2 , (20)1 (1)u

where from (A2):

21 , f , 1.1 (21)

It follows from (20) and u (1) . 0 that (21) is satisfied
for small d and f1 . 0. From (A3) and (20), the AP-
1 autocorrelation function satisfies

d
r(t 1 d) 5 1 2 r(t). (22)

(1)1 2u

After expanding in a Taylor series for d → 0, we find

|t |
21r(t) [ u9(t)u9(t 1 t)s 5 exp 2 , (23)

(1)1 2u

hence the fundamental Markov-1 parameter, u (1), can be
interpreted as the exponential timescale of the expo-

nentially decaying correlation memory. By (A7), the
AP-1 frequency power spectrum is

2 21P( f ) 5 2s [1 1 f 2 2f cos(2p fd)] ,w 1 1

0 # f # 1/2. (24)

With (20) and in the limit d → 0, we obtain
(1)2 1/u

P̃( f ) 5 (25)
(1) 2 2p [1/u ] 1 (2p f )

for the spectral power density normalized by the con-
dition:

`

P̃( f ) df 5 1. (26)E
0

Thus, the AP-1 spectrum decays as ; f 22 at high fre-
quencies, and it is flat at low frequencies.

Lateral boundaries change the system by the reflec-
tion condition (section 2), which introduces random sign
changes in u9(t). An otherwise homogeneous, stationary,
linear random process ceases to be autoregressive. In-
stead of (A1) the governing equation becomes

u9(t) 5 [f u9(t 2 d) 1 dW(t)]Z(t),1 (27)

where Z(t) 5 11 unless the implied x(t) reaches the
boundary, in which case Z(t) 5 21. From the velocity
definition:

d
2[x(t) 2 x(0)] 5 2[x(t) 2 x(0)]u(t), (28)

dt

and therefore
t

x(t) 2 x(0) 5 u(t9) dt9. (29)E
0

Rewriting (7) as sR(t 2 t9) 5 and combiningu(t)u(t9)
it with (28), we find

td
2[x(t) 2 x(0)] 5 2s R(t) dt. (30)Edt 0

By integrating over time we obtain
t

2D(t) 5 [x(t) 2 x(0)] 5 2s (t 2 t)R(t) dt. (31)E
0

Since in a bounded domain D(t) reaches a finite global
maximum at t 5 `, (31) yields two kinematic constraints
for R(t):

`

R(t) dt 5 0,E
0

`

2[x(`) 2 x(0)] 5 22s tR(t) dt. (32)E
0

From (32) it follows that the Lagrangian integral time,
TL, is zero in a bounded domain and that R(t) must
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FIG. 4. Fluid-dynamic, upper-ocean distributions of particles released in the subtropical WBC. Time
t is in days. Here N(t) is the percentage of the particles that have penetrated into the subpolar gyre. The
line in (a) shows the upper-ocean, intergyre boundary.

decay faster than ;t22 at large t for convergence of
the integral.

We illustrate the effect of boundaries on Markov-1
R(t), P̃( f ), and D(t) by calculating the trajectories of
500 particles, randomly placed in a square basin of
width L, for a time much longer than u (1). Ballistic length
scale is defined as

(1)L 5 u Ïs , (33)B

and the relative importance of boundaries is determined
by parameter

21a 5 LL .B (34)

For 5 0.4 m s21, u (1) 5 106 s ø 10 days, and LÏs
5 4 3 106 m, the value of a is 10. The numbers roughly
correspond to the upper ocean away from the bound-
aries. In the deep ocean s is smaller, hence a is larger.
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FIG. 5. The same as Fig. 4 but for the deep ocean.

Near the boundary or in a marginal basin, such as the
Mediterranean or Caribbean seas, L is smaller, and so
a is smaller (e.g., for L 5 0.4 3 106 m: a 5 1). Figure
7 shows R(t) and P̃( f ) for several values of a in the
relevant range, as well as for an unbounded domain (i.e.,
with a 5 `). Here R(t) has negative lobe due to (32),
and the amplitude of the lobe increases as a decreases.
The negative lobe implies that the power spectrum has
a maximum at an intermediate frequency and is shifted
from low to high frequencies compared to an unbounded

domain; these differences increase as a decreases. The
power maximum shifts toward higher frequencies, and
the negative autocorrelation lobe shifts toward shorter
time lags as the boundary influence increases. Even for
a as large as 10, the spectral slope (25) at high fre-
quencies is about 21.7 compared to the asymptotic val-
ue, 22. The unbounded Markov-1 model has ballistic
and diffusive asymptotic single-particle dispersion re-
gimes (Taylor 1921),

2t → 0: D(t) ; t , t → `: D(t) ; t, (35)
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FIG. 6. Distributions of fluid-dynamic, upper-ocean particles participating in (a) and (b) northward and
(c) and (d) southward intergyre fluxes. Initial and final (t 5 500 days) positions are shown in (a) and (c)
and (b) and (d), respectively. The panel labels indicate which gyre (S or N) the particles are leaving from
or coming to.

with a smooth transition between them at intermediate
times (Fig. 8). The boundaries reduce the large-time,
single-particle dispersion rate and ultimately cause sat-
uration at the level defined by (32) (Fig. 8).

b. Application to oceanic gyres

The Markov-1 model accounts for the short-time bal-
listic spreading, and, therefore, it is a better alternative
to the diffusion model, although the overall improve-
ment is not so drastic as in the Markov-2 model. In
agreement with both the local homogeneity assumption
and the implied exponential decay of R(t), is esti-(1)uii

mated as the time at which Rii(t) decays to 0.3. It is
approximately isotropic and its magnitude is about 10
days away from the swift currents and 3–5 days oth-
erwise (Fig. 9).

From the localized particle releases, we find that the
Markov-1 model is biased toward excessive spreading.
In the fluid-dynamic solution (Fig. 4), the particle PDF
has a persistent propagating front, but in the Markov-1
simulation the front is broader and less pronounced, and
it completely disappears by 2000 days (Fig. 10). The

discrepancies are even larger in the deep layers (Fig.
11). Another evident weakness of the Markov-1 model
is its failure to simulate the intergyre transport barrier:
after 1000 days, the Markov-1 simulation yields about
20% of the particles in the subpolar gyre, as opposed
to the fluid dynamic of 5%. In the deep ocean the anal-
ogous simulation also yields excessive spreading with
the corresponding leakages of 9% and 1%, respectively.
The Markov-1 intergyre fluxes, Fi(t), are three to four
times larger than the fluid-dynamic ones in the upper
ocean, and they are five times larger in the deep ocean
(Table 1). To assess the consequences of uncertainty in
estimating u (1), we vary it by 620% and find that at all
depths the intergyre flux varies proportionally to u and
by approximately the same amount, and the large-scale
spreading pattern does not change qualitatively.

Although the Markov-1 model is capable of simu-
lating short-time ballistic spreading, it is not capable of
simulating near-circular or oscillatory motion of parti-
cles in coherent structures such as eddies, intense vor-
tices, jet meanders, and planetary waves (BMB). Such
motions yield decaying and oscillating R(t) [unlike in
(23)] and associated with them intermediate-time, sub-
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FIG. 7. (a)–(c) Velocity autocorrelation functions, R(t), and (d)–(f ) the velocity frequency spectral densities
given by the Markov-1 model for (a) and (d) a 5 0.1, (b) and (e) 1.0, and (c) and (f ) 10.0. The R(t) and spectral
density for a 5 ` are shown by the dashed lines, and slope 22 is shown by the straight lines (d)–(f ).

and superdiffusive single-particle dispersion behaviors.
The missing physics of coherent structures is the main
reason for the excessive spreading and overestimation
of intergyre fluxes in the Markov-1 model. The Markov-
1 deficiencies are substantially corrected in the Markov-
2 and -3 models (sections 5 and 6), and further im-
provements are straightforward (section 7).

The Markov-1 model yields (t, x), which is small-(n,s)N i

er than the fluid-dynamic in the subpolar eastward(n,s)N i

jet and larger in the eastern basin (Figs. 13a,b). Also,
the fluid-dynamic intergyre flux has its maximum closer
to the western boundary than any of the Markov models,
perhaps due to the local inaccuracy introduced by the
local homogeneity assumption and the deficiency of the

present lateral boundary condition of perfect particle
reflection. In the Markov-1 model (Fig. 12), many of
the crossing particles originate and end up farther away
from both the intergyre boundary and WBCs than in
the fluid-dynamic solution (Fig. 6). Again this indicates
excessive spreading process.

5. The Markov-2 model

a. Formulation and properties

The most important property of the Markov-2 model
(derived in appendix C) is its capability of simulating
intermediate-time, subdiffusive behavior of D(t). In ad-
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FIG. 8. The single-particle dispersion, D(t), given by the Markov-
1 model in the unbounded (upper curve) and bounded with a 5 10
(lower curve) domains. The straight lines have slopes of 22 (ballistic)
and 21 (diffusive regime).

FIG. 9. The average fading-memory time, ( 1 )/2, in the (a) upper and (b) deep ocean (CI 5 1(1) (1)u u11 22

day).

dition to the continuous velocity, the Markov-2 model
yields a continuous acceleration, u̇. Variable g is called
pseudoacceleration, and it is only equal to u̇ in homo-
geneous and stationary situations (i.e., when ã 5 0).
The Markov-2 governing equations are

dx 5 [u (x) 1 u9]dt, du9 5 g dt 1 ã (x, u9)dt,i i i i i i

(2) 21dg 5 [2[[u (x)] ] g 1 c̃ (x, u9, g)]dti ij j i

1 b (x)dW (t),ij j (36)

where is the Markov-2 fading-memory time tensor;(2)uij

the first drift-correction term, ãi, is defined in (16); and
the second drift-correction term is

21][j ]j jmim21c̃ 5 2j [s ] u9 2 (u 1 u9) g . (37)i im mj j k k j2 ]xk

The random forcing amplitude is defined by
(2) 21b b 5 2j [[u ] ] .ij jk ij jk (38)

In a homogeneous and stationary situation without
boundaries, (36) can be written as

dW
ü 5 Au 1 Bu̇ 1 (39)

dt

for each spatial direction (dropping primes), where
2j u̇ 1

A 5 2 5 2 , B 5 2 . (40)
2 (2)s u u

For a second-order, finite-difference stencil with time
step d and centered at t 2 d, (39) is equivalent to an
AP-2 with coefficients

22 1 Ad 1 1 Bd /2
f 5 , f 5 2 . (41)1 21 2 Bd /2 1 2 Bd /2

The inverse of (41) is

2 2 2(f 1 f ) 2(f 1 1)1 2 22Ad 5 , Bd 5 . (42)
f 2 1 f 2 12 2

The sufficient conditions for AP-2 to be stationary (ap-
pendix A) are

f 1 f , 1, 21 , f 2 f , | f | , 1.1 2 1 2 2 (43)

A severer condition,

0 , f , 2,1 (44)

restricts the AP-2 so that u(t) does not change sign at
each time step. Roots of the characteristic equation (A2)
are real when

2f 1 4f $ 0.1 2 (45)

The parameters of AP-2 can be interpreted as two
fundamental timescales of the Markov-2 model,

(2) 21 (1) 21/2u 5 | B | , T 5 | A | , (46)

which are the Markov-2 fading-memory and the first
kinematic (12) timescales. The former describes mono-
tonic decay of correlation memory, and the latter de-
scribes the average circular motion of stochastic parti-
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FIG. 10. The same as Fig. 4 but for the Markov-1 model.

cles that occurs when acceleration and velocity vectors
are not aligned with each other. In Figs. 14 and 15 we
show how Markov-2 properties vary with the ratio of
the timescales,

(2)u
(1)b [ , (47)

(1)T

equal to 1, 10, and 100. [Note that b (1) → 0 recovers
the Markov-1 behavior, and even b (1) 5 1 in Fig. 14b

shows a similar D(t) to that in Fig. 8.] From (A7) the
AP-2 spectrum is

2 2P( f ) 5 2s [1 1 f 1 f 2 2(f 2 f f ) cos(2p f )w 1 2 1 1 2

212 2f cos(4p f )] .2 (48)

It has a maximum at an intermediate frequency, f max,
and it is ; f 24 at frequencies higher than 1/T (1) (Fig.
14a). From (A5) with p 5 2, the AP-2 velocity auto-
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FIG. 11. The same as Fig. 5 but for the Markov-1 model.

correlation function (A3) has its first two coefficients
satisfying

r 5 f 1 f r , r 5 f r 1 f .1 1 2 1 2 1 1 2 (49)

The AP-2 R(t) oscillates on one timescale T (1), and the
envelope of oscillation decays on the timescale u (2) (Fig.
15). Therefore, for b (1)

$ 1, the technique of measuring
u (2) as a timescale over which R(t) approaches zero (a
common practice and a safe one for Markov-1 model),
instead provides an estimate of T (1) in Markov-2. The

intermediate-time, Markov-2 D(t) is subdiffusive when
b (1) is large (Fig. 14b), and that is qualitatively more
like the fluid-dynamic D(t) in most parts of the gyres
rather than in the Markov-1 model (Fig. 8). Superdif-
fusive, single-particle dispersion, common in the gyres,
is related to the asymmetry of R(t) and is therefore
precluded in the Markov-2 model.

For the Markov-2 model in a bounded domain, the
kinematic constraints (32) are valid. So the growth in
D(t) slows down and saturates at late time; the spectral
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FIG. 12. The same as Fig. 6 but for the Markov-1 model.

TABLE 1. The mean intergyre fluxes (in Sv; Sv [ 106 m3 s21) as
calculated by the Markov-1 model. The layers are denoted by L1, L2,
and L3 with the index starting from the upper surface. The values in
brackets correspond to the fluid-dynamic solution (BMB).

t (days) L1 L2 L3

100
200
300
400
500

9.5 (3.8)
6.9 (2.2)
5.8 (1.7)
5.2 (1.4)
4.7 (1.2)

42 (16.0)
30 (9.0)
25 (6.5)
22 (5.5)
20 (4.5)

94 (27.9)
66 (14.7)
55 (10.0)
49 (8.2)
44 (6.6)

TABLE 2. The same as Table 1 but for the Markov-2 model.

t (days) L1 L2 L3

100
200
300
400
500

4.9 (3.8)
3.5 (2.2)
3.0 (1.7)
2.7 (1.4)
2.5 (1.2)

14.8 (16.0)
9.5 (9.0)
7.9 (6.5)
6.7 (5.5)
6.2 (4.5)

25.1 (27.9)
17.5 (14.7)
13.6 (10.0)
11.7 (8.2)
10.5 (6.6)

power in P( f ) shifts away from low frequencies, and
its slope becomes shallower at very high frequencies,
with P( f ) ; f 22 as a result of increased velocity ran-
domness—both as in the bounded-domain Markov-1
model—and P( f ) develops additional peaks around
2nf max, n $ 1.

b. Application to oceanic gyres

The Markov-2 model is the simplest member of the
hierarchy that accounts for the intermediate-time, sub-
diffusive spreading (a common property of the fluid-
dynamic solution) due to the presence of coherent struc-
tures. Given Ai(x, y) calculated with (40) from the ob-

served local variances, we use (42) to determine the
local relationship between f1 and f2 as

2 21f 5 1 2 f (1 1 Ad /2) .2 1 (50)

Using this we calculate D(t) for AP-2 and determine its
intermediate-time (from 20 to 200 days) slope, a, as a
function of f1. We match these to fluid-dynamic values
of aii(x, y, z) (BMB) to determine f1(x, y, z) and f2(x,
y, z) for each coordinate component. We then calculate

(x, y, z) from (42) and (46); hence (x, y) is found(2) (1)u bii i

from (47). The (x, y) (Fig. 16) is larger than unity(1)bi

almost everywhere, except near and along those bound-
aries where it is very small because u (2) is small. In the
upper-ocean eastern basin, varies from 1 to 30, and(1)bi

it is typically larger than in the deep ocean. The limit
b (1) K 1 (or T (1) k u (2)) corresponds to degeneration
of the Markov-2 to -1 model, and
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FIG. 13. Normalized distributions of the number of intergyre crossings, (t, x) in(n,s)N i

the upper ocean for t 5 100, 200, 300, 400, and 500 days: (a) fluid-dynamic, (b) Markov-
1, and (c) Markov-3 solutions. Positive and negative curves correspond to northward
and southward fluxes, respectively.

22 21f → 0, 2(f 2 1)d → A, 22d → B.2 1 (51)

Hence from (20) it follows that
(1) (1)T T

(1) (1)u 5 T 5 . (52)
(2) (1)u b

The globally averaged P( f ) and R(t) calculated from
the Markov-2 simulation of the transport in gyres are
qualitatively similar to those from the Markov-3 model
(Fig. 26), because of the dominant contribution from

the subdiffusive regions where the Markov-2 model per-
forms relatively well. The intergyre fluxes (Table 2) and
evolving particle PDFs (Fig. 17) from localized releases
suggest that the Markov-2 simulation is much closer to
the fluid-dynamic solution than the Markov-1, mainly
because it does not strongly overestimate the spreading
rates. The deep-ocean intergyre fluxes are three to four
times smaller than in the Markov-1 simulation (Tables
1 and 2) and much closer to the fluid-dynamic solution;
the upper-ocean fluxes also improve. The large-scale
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FIG. 14. (a) P̃( f ) and (b) D(t) in AP-2 for b (1) 5 1, 10, and 100. The line in (a) shows 24 slope, and the
pair of lines in (b) show 12 (ballistic) and 11 (diffusive) slopes.

particle distributions are similarly improved, but more
so in the deep ocean, where super-diffusive regions (not
simulated by the Markov-2 model) are not abundant.
The same conclusion is made from comparing the ori-
gins and destinations of the particles participating in the
intergyre transport.

6. The Markov-3 model

a. Formulation and properties

The Markov-3 model is the most general and pow-
erful transport model considered here. In addition to
retaining all capabilities of the Markov-2 model, it also
can simulate intermediate-time, superdiffusive spread-
ing process. The derivation of the Markov-3 model for
an inhomogeneous and nonstationary situation in 2D is
in appendix D. The governing equations are

dx 5 [u (x) 1 u9]dt, du9 5 [g 1 ã (x, u9)]dt,i i i i i i

dg 5 [p 1 c̃ (x, u9, g)]dt,i i i

(3) 21dp 5 [2[[u (x)] ] p 1 d̃ (x, u9, g, p)]dti ij j i

1 b (x)dW (t),ij j (53)

where ãi and c̃ i are defined in (16) and (37), and the
third drift-correction term is

21][z ]z jmim21d̃ 5 2z [j ] g 2 (u 1 u9) p . (54)i im mj j k k j2 ]xk

The random forcing amplitude is defined by
(3) 21b b 5 2z [[u ] ] ,ij jk ij jk (55)

and is the Markov-3 fading-memory time tensor.(3)uij

In a homogeneous and stationary situation without
boundaries, and for each coordinate direction, (53) may
be written as

dW
ü 5 p 1 Au, ṗ 5 Bp 1 Cu̇ 1 , (56)

dt

where the primes and tensor notations are dropped for
convenience, A is given by (40a), and the other coef-
ficients are

21 z p
B 5 2 , C 5 2 5 2 . (57)

(3) 2u j u̇

The expression for C from (57) is rearranged so that it
involves rather than : since2 2ü p

2 2p 5 (ü 2 Au) , (58)

then

2 2 2ü 2 2Auü 1 A u
C 5 2 . (59)

2u̇

The system (56) can be reduced to the single equation
for velocity fluctuation:

dW
• • •u 5 Bü 1 (A 1 C)u̇ 2 ABu 1 . (60)

dt

We define second-order, finite-difference stencils with
time step d and centered at (uk21 1 uk22)/2, for the terms
in (60),

21u 5 0.5(u 1 u ), u̇ 5 (u 2 u )d ,1 2 1 2

22ü 5 0.5(u 2 u 2 u 1 u )d ,0 1 2 3

• • • 23u 5 (u 2 3u 1 3u 2 u )d , (61)0 1 2 3

and obtain an AP-3 with the coefficients

2 33 2 Bd /2 1 (A 1 C)d 2 ABd /2
f 5 ,1 1 2 Bd /2

2 323 2 Bd /2 2 (A 1 C)d 2 ABd /2
f 5 ,2 1 2 Bd /2

1 1 Bd /2
f 5 . (62)3 1 2 Bd /2

The inverse of (62) is
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FIG. 15. The R(t) in AP-2 for b (1) equal to (a) 1 and 10 and (b)
100.

FIG. 16. The upper-layer (a) log10[ (x, y)] and (b) log10[ (x, y)], and the same for the middle(1) (1)b b1 2

layer, (c) and (d), respectively [(a) and (b) CI 5 0.25; (c) and (d) CI 5 0.5].

1 2 f 2 f 2 f 2(f 2 1)1 2 3 32Ad 5 , Bd 5 ,
f 2 1 f 1 13 3

22(1 1 f 1 f f 2 f )2 1 3 32Cd 5 . (63)
2f 2 13

For stationarity of AP-3, the roots of (A2) are con-
strained by the conditions,

f f2 1B 1 B 1 B 5 2 , B B 1 B B 1 B B 5 ,1 2 3 1 2 1 3 2 3
f f3 3

1
B B B 5 .1 2 3

f3

(64)

The roots may be written as

B 5 ĝ, B 5 â 1 ib̂, B 5 â 2 ib̂,1 2 3 (65)

and it follows that they are located outside the unit
circle if

2 2â 1 b̂ . 1, ĝ . 1, or
2 2â 1 b̂ . 1, ĝ , 21. (66)

Another condition is that the real parts of the roots are
positive,
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FIG. 17. The same as Fig. 5 but for the Markov-2 model.

â . 0, ĝ . 0; (67)

therefore, uk does not change sign at each time step.
From (66) we find that

2 2 2â 1 b̂ . 1: 2f 1 f f 1 f 1 1 . 0,3 1 3 2

ĝ . 1: 1 2 f 2 f 2 f . 0,1 2 3

ĝ , 21: 1 1 f 2 f 1 f . 0. (68)1 2 3

From (67) and the last equation of (64), it follows that

f . 0, 2f f 2 f . 0, f , 0.3 1 2 3 2 (69)

The AP-3 parameter subspace defined by (66)–(69) has
a wedgelike shape (Fig. 18), and as f3 → 0, it ap-
proaches the analogous AP-2 parameter subspace (sec-
tion 5a). The A is related to T (1) by (12), and the pa-
rameters B and C correspond to the fundamental time-
scales,

(3) 21 (2) 21/2u 5 B , T 5 | C | . (70)

The former is the Markov-3 fading-memory time, and
the latter is the second kinematic time (13), which de-
scribes the average rate of deviations from the average
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FIG. 18. The physically acceptable regime for AP-3 coefficients. The black regions in (f1, f2) are where a stationary process occurs
without sign changes in u at each time step. The panels correspond to several values of f3: (a) f3 5 0.1, (b) f3 5 0.5, and (c) f3 5 0.9.
The bounding trilateral is formed by the intersection of the curves in (68), and the interior boundary is the hyperbola in the middle equation
in (69).

FIG. 19. Illustration of the Markov-3 fit to the fluid-dynamic pa-
rameters. The solid lines show a( 1, f3) 1 1 for A 5 4.15 3 1023f̃
s22 (CI 5 0.1), and the dashed lines show C-parametric linear re-
lationship given by (73) and (74) (CI 5 2.5 3 1023 s22).

circular motion of stochastic particles (e.g., when par-
ticles circulate inside a drifting eddy). The nondimen-
sional parameters are

(2) (3) (1) (21) (2) (1)b 5 u /T , b 5 T /T . (71)

According to (68):

0 , f , 1,3 (72)

and it follows from (63) and (70) that this condition is
violated if

(3)d . 2u . (73)

This is a stability criterion that limits the time step; it
does not arise in the lower-order Markov models.

Given A and C through T (1) and T (2) in (46) and (70),
the problem of estimating the Markov-3 parameters
from the fluid-dynamic solution becomes that of finding

B to fit the intermediate-time, single-particle dispersion
power law (6). The relationship between f1 and f3 is
obtained from (63):

2Cd
f 5 (f 1 1)1 32

2 22 2 f 2 f 2 Ad (f 2 1)3 3 3
1 . (74)

1 2 f3

We introduce a variable transformation by

2 22 2 f 2 f 2 Ad (f 2 1)3 3 3 ˜f̃ 5 Ï2 f 2 1 L ,1 1[ ]1 2 f3

(75)

where L̃ is a shift of f1, and find that

˜Ï2 2L
f 5 f̃ 2 1 1 . (76)3 12 21 2Cd Cd

The power law exponent, a, is fitted over the time in-
terval from 20 to 200 days on the line (76), which gives

1 and f3. Then f1, f2, and B are given by (75) andf̃
(63). As an illustration of the parameter estimating al-
gorithm, we show a( 1, f3) with constant A, such thatf̃
T (1) ø 15.5 days (Fig. 19).

The AP-3 power spectrum from (A7) is
2 2 2P( f ) 5 2s [1 1 f 1 f 1 fw 1 2 3

2 2(f 2 f f 2 f f ) cos(2p f )1 1 2 2 3

2 2(f 2 f f ) cos(4p f )2 1 3

212 2f cos(6p f )] . (77)3

The P̃( f ) is ; f 26 at very high frequencies, and it is flat
at the low-frequency end (Fig. 20). At intermediate fre-
quencies P̃( f ) has one maximum and, unlike AP-2, one
minimum. The minimum becomes less pronounced than
the maximum and eventually disappears when b (2) →
0. The AP-3 power spectrum at low and intermediate
frequencies approaches AP-2 (Fig. 14a) when T (1) and
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FIG. 20. AP-3 power spectra, P̃( f ), for b (21) equal to (a)
0.5, (b) 1, and (c) 2. On each panel the labels 0.5, 1, and
2 are the values of b (2). The slope 26 is indicated by the
straight line.

T (2) are large compared to u (3). The AP-3 R(t) is given
by (A3) with

f 1 f f1 2 3
r 5 ,1 21 2 f 2 f f 2 f2 1 3 3

r 5 f 1 (f 1 f )r ,2 2 1 3 1

r 5 f r 1 f r 1 f , (78)3 1 2 2 1 3

obtained by substituting p 5 3 in (A5). The degree of
asymmetry in R(t) increases with decreasing b (21), and
the period of oscillation increases with b (2) (Figs. 20
and 21). If b (21) , 1, the single-particle dispersion be-
havior (Fig. 22) is approximately ballistic over a much
longer time interval than u (3), and variations of T (1) have
only a weak effect on the value of a. With b (21) . 1,
the single-particle dispersion behavior is subdiffusive
over an intermediate time interval, and a is sensitive to
T (1). The R(t) in superdiffusive regions of the gyres
(BMB) has pronounced oscillations and a moderate de-
gree of asymmetry between positive and negative lobes,
suggesting that T (1) ø T (2)

# u (3). The influences of

domain boundaries are similar in the Markov-2 and -3
models (section 5a).

According to (62), the situation when T (2) ; T (1) k

u (3) corresponds to f3 K 1, and AP-3 degenerates to
AP-2 (section 5a). If we consider the limit

f → 0,3 (79)

then (63) implies that
22 (3) 21 (3)2(1 2 f 2 f )d → A , 22d → B ,1 2

22 (3)22(1 1 f )d → C , (80)2

and B (3) is proportional to d. If f1 and f2 are considered
as belonging to the AP-2, then from (41) as d → 0,

(21)b
(2) (2)u 5 T . (81)

(2)b

b. Application to oceanic gyres

In addition to all transport properties simulated by
the models below in the hierarchy, the Markov-3 model
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FIG. 21. Velocity autocorrelation function, R(t), corresponding to
Fig. 20.

FIG. 22. The Markov-3 D(t) corresponding to Figs. 20 and 21. Each
set of curves is for b (2) 5 0.5, 1, and 2. The slopes 2 and 1 are shown
by the straight lines.

is capable of simulating intermediate-time, superdiffu-
sive spreading (a common property of the fluid-dynamic
solution) associated with persistent propagations of co-
herent structures combined with the circular or oscil-
latory motion of particles. In most of the basin, (x,(2)bi

y, z) is small (Fig. 23), and even more so in the deep
layers; thus, the degeneration of the Markov-3 to the
Markov-2 model (section 6a) is common. Large values
of u (3) (1–2 days, typically) correspond to superdiffusive
regions in the central part of the subtropical gyre and
near and along the lateral boundaries. At all depths the
Markov-3 particle PDFs from the localized releases
show overall improvement toward the fluid-dynamic
PDFs (cf. Figs. 4 and 24) from the Markov-1 and -2
simulations (sections 4b and 5b): the propagating PDF
front in the subtropical gyre retains a sharper gradient
for a longer time; the rate of particle penetration into
the subpolar gyre decreases; and after crossing into the
subpolar gyre, the particle spreads more eastward, due

to the time-mean flow, rather than northward due to the
fluctuations. In the deep ocean, the Markov-3 and -2
particle PDFs are qualitatively similar (Fig. 17), so the
former is not shown here. The less dispersive character
of the Markov-3 model is evident in its intergyre fluxes
(Table 3), which are much closer to the fluid-dynamic
fluxes than in any lower-order model (Tables 1 and 2).
The upper-ocean, intergyre boundary is not strongly su-
perdiffusive in meridional direction (BMB), but neither
do its b (2) values indicate degeneration to a lower-order
model (Figs. 23a,b), hence the Markov-3 improvements
are not limited to the pronounced superdiffusive regions.
The upper-ocean distributions of initial and later posi-
tions of particles participating in intergyre transport
(Fig. 25) and the corresponding N (n,s)(t, x) (Fig. 13b) are
also improved (see also sections 3, 4b, and 5b). The
N (n,s)(t, x) in each Markov model underestimates the
northward intergyre flux in the ;200-km-wide zone
near the western boundary. This might be due to a fail-
ure of the local homogeneity assumption or a deficiency
of the simple boundary condition (section 2). In general,
the Markov-3 over -2 improvements are more substan-
tial in the upper ocean where the superdiffusive behavior
is more pronounced.

The Markov-3 and fluid-dynamic globally averaged
frequency spectra, ^P( f )&, are each calculated from 400
randomly initialized trajectories (Fig. 26). The spectral
power at low frequencies is due to circular particle mo-
tion around the time-mean gyres. At intermediate fre-
quencies (periods of 30–40 days), there is a distinct
maximum of the Markov-3 ^P( f )& that is more pro-
nounced in the meridional rather than zonal component
(only their sum is shown in Fig. 26). These features are
in qualitative agreement with the fluid-dynamic solution
(Fig. 26), but the Markov-3 ^P( f )& maxima are much
sharper. (A similar remark can be made about the rel-
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FIG. 23. (a) and (c) Zonal and (b) and (d) meridional components of log10[ (x, y)] for the (a) and (b)(2)bi

upper and (c) and (d) deep ocean. Contours of the corresponding time-mean velocity streamfunctions are
shown with (a) and (b) CI 5 0.5 3 104 m2 s21 and (c) and (d) 0.25 3 104 m2 s21.

atively larger oscillations in the globally averaged, Mar-
kov-3 velocity autocorrelation function, ^R(t)&.) There
are additional peaks at 2n f max due to perfect reflections
from the boundaries (sections 2 and 5a); these are absent
in the fluid-dynamic spectra, indicating a more complex
near-boundary behavior. At high frequencies (up to a
period of five days), the Markov-3 spectra have an ex-
ponent close to -4, indicating the dominant contribution
of subdiffusive regions that is also found in Markov-2
^P( f )& (section 5). The fluid-dynamic power spectrum
is less steep in the upper ocean, though it steepens near
the analysis limit in f ; in the deep ocean it has an ex-
ponent close to -4, thus confirming the Markov-3 result.
The Markov-3 model differs from the fluid-dynamic so-
lution by generating fluctuations in a narrower range of
intermediate timescales, hence it simulates more oscil-
latory R(t) and D(t) (the oscillations are weakened by
spatial averaging over different regions). This type of
bias seems to us inherent in the Markov model hierarchy
and eliminating it requires a generalization of the form
of the stochasticity (e.g., by introducing realistic prob-

ability distributions instead of fixed values of the fun-
damental parameters).

7. Conclusions and discussion

The immediate goal of this paper is to formulate and
test a hierarchy of stochastic transport models for sim-
ulating material transport in the presence of coherent
structures. In the present application the hierarchy sim-
ulates eddy-induced, passive-tracer transport in oceanic
gyres. As a long-term strategy, the models from the
hierarchy can be implemented in coarse-grid GCMs as
parameterizations of transport induced by unresolved
eddies (i.e., they are potential replacements for the less
skillful but commonly used eddy-diffusion model). Each
stochastic model has its partial differential equivalent
(Fokker–Planck equation), but beyond the zeroth hier-
archical level it is, in general, technically easier to sim-
ulate the transport with the stochastic formulation. In
this case the tracer density is obtained locally by simple
coarse-graining procedure applied to the particle pop-
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FIG. 24. The same as Fig. 4 but for the Markov-3 model.

ulation. An alternative, less radical, and less accurate
approach, is to use the large-time asymptotic behaviors
of the stochastic models with locally estimated (from
observations) parameters for calculating the associated
diffusivity coefficients. Such diffusivity estimates
would account, to a certain degree, for the transport
effects introduced by coherent structures.

Performance of the hierarchy is tested against the
fluid-dynamic transport in an eddy-resolving, oceanic-
gyre solution at large Re (BMB). This implies that pa-

rameters of the hierarchy are estimated from the ob-
served statistical properties of the turbulent solution.
The fluid-dynamic transport is dominated by mesoscale
coherent structures, such as swift meandering currents,
intense vortices, eddies, and planetary waves. The trans-
port is characterized by the spreading process that is
ballistic on short times and predominantly sub- or su-
perdiffusive on intermediate times (up to few months).
On longer times this causes persistent transport barriers
between different parts of the gyres and, in particular,
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FIG. 25. The same as Fig. 6 but for the Markov-3 model.

a strong barrier to meridional transport between the
gyres.

The transport models are stochastic Markov processes
governing random motion of individual Lagrangian par-
ticles. The simplest member of the hierarchy is the ran-
dom-walk (Markov-0) model, which is equivalent to the
commonly used diffusion model. It is based on the idea
of instantaneous velocity decorrelations and therefore is
not capable of simulating nondiffusive transport asso-
ciated with coherent structures. We focus on higher-
order models (Markov-1, -2, and -3) with the stochastic
forcing acting on successively higher time derivatives
of particle positions. These models simulate some non-
diffusive transport behaviors on short and intermediate
times. For each model we derive correction terms that
guarantee important physical constraint of well-mix-
edness, and that generalizes them for inhomogeneous
and nonstationary situations as in the ocean.

The hierarchy is formulated very generally with 2D
tensor coefficients, but for initial simplicity it is eval-
uated assuming tensor diagonality and stationarity but
retaining the inhomogeneity. In addition to the time-
mean (or coarse-grid) velocity field, assumed to be
known, each subsequent level of the hierarchy intro-
duces one additional parameter, which in a homoge-
neous, stationary, and isotropic situation reduces to a

single value. The model parameters are estimated locally
from dynamical properties of the turbulence, such as
distributions of fluctuation velocity and its time deriv-
atives. In addition to the fluctuation velocity variance,
which in the Markov-1 and higher-order models may
be roughly considered as the scaling factor, the funda-
mental parameters are the fading-memory time describ-
ing monotonic loss of correlation memory and the ki-
nematic times. So far, unlike the kinematic times esti-
mated directly from the Eulerian observations, the fad-
ing-memory time is estimated specifically for each
transport model and from the Lagrangian particle (float)
data constrained by the local homogeneity assumption.
This does not mean, of course, that the fading-memory
time can not be estimated from the Eulerian observa-
tions (e.g., as an envelope decay of the Eulerian velocity
autocorrelation function), rather it means that here we
implement a shortcut that is to be reconsidered when
the models are further improved. Also, to reduce the
information required for estimating the parameters, one
has to look for a closure that relates them to the time-
mean (or coarse-grid) currents (analogous to a nonlinear
eddy diffusivity).

The Markov-1 model is capable of simulating short-
time ballistic behavior associated with exponentially de-
caying R(t). With parameters estimated from the fluid-
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FIG. 26. Globally averaged, isotropic velocity spectrum, [^P1( f )& 1 ^P2( f )&]/2, for both the fluid-dynamic and Markov-3 (labeled M3)
models in the (a) upper and (b) deep ocean. The slope 24 is shown by the straight line.

TABLE 3. The same as Table 1 but for the Markov-3 model.

t (days) L1 L2 L3

100
200
300
400
500

4.5 (3.8)
3.1 (2.2)
2.6 (1.7)
2.2 (1.4)
2.1 (1.2)

10.8 (16.0)
6.9 (9.0)
5.2 (6.5)
4.2 (5.5)
3.8 (4.5)

20.4 (27.9)
12.6 (14.7)
9.6 (10.0)
7.3 (8.2)
6.9 (6.6)

dynamic solution, it is overly dispersive at all depths,
and it overestimates the intergyre (meridional) transport
by factor of 5. The fundamental reason for this failure
is the inability of the model to simulate intermediate-
time nondiffusive behaviors associated with coherent
structures. The Markov-2 model is capable of simulating
intermediate-time, subdiffusive spreading processes as-
sociated with oscillatory R(t) (i.e., with circular or os-
cillatory motion of Lagrangian particles in coherent
structures); therefore, it shows a strong improvement
over the Markov-1 model, especially in the deep layers.
The first kinematic time contains the information about
subdiffusive behavior; it describes the average circular
motion of Lagrangian particles (floats) that occurs when
acceleration and velocity vectors are not aligned with
each other. In addition to all capabilities of the models
below it in the hierarchy, the Markov-3 model simulates
the intermediate-time, superdiffusive behavior associ-
ated with decaying, oscillatory, and asymmetric R(t);
that is, it simulates transport with sustained correlations
superimposed on near-circular behavior, like in drifting
eddies. The second kinematic time contains the infor-
mation about superdiffusive behavior; it describes the
average rate of change from the average circular motion
of Lagrangian particles. The Markov-3 shows substan-
tial improvement from the Markov-2 model, which is
not limited to the regions with pronounced superdif-
fusive behavior.

The results presented here clearly demonstrate that
higher-order stochastic transport models can represent

the tracer distributions in ocean gyres much better than
commonly used diffusion model. However, we see many
issues that need further investigation before imple-
menting the transport models in coarse-grid GCMs. The
physical assumptions (section 1a) of the two-dimen-
sionality and tracer adiabaticity can be straightforwardly
relaxed by extending the stochastic formalism to the
third dimension and by including sinks and sources of
the tracer. The assumption of the dynamical passiveness
is the most fundamental and difficult to relax, and sub-
stantially more progress is needed before we know
whether ideas presented here can be applied to dynam-
ically active tracers. Some other issues that arise from
shortcuts we have taken are the following: including
nondiagonal terms in parameter tensors; the neglect of
large-scale, low-frequency variability (i.e., nonstation-
arity); the nonuniqueness of the drift corrections; and
use of adaptive time intervals for estimating the fading-
memory parameter from intermediate-time, single-par-
ticle dispersion behavior in the higher-order models.
Other potentially important stochastic modeling issues
are more formidable to address: the use of Gaussian
noise in the stochastic models, which limits their inter-
mittency; the excessive peakedness of velocity spectra;
the realistic boundary condition; the realistic probability
distributions instead of fixed values of the fundamental
parameters; simulation of two-particle dispersion, which
describes the mixing rather than spreading process
(Batchelor 1952; Sawford 2001), and introduces the as-
sociated spatial correlations between neighboring par-
ticles; optimal measurement strategy for estimating the
parameters; and, finally, computational feasibility. We
must leave these issues for the future.
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APPENDIX A

Some Properties of Autoregressive Process

The general form of AP-p is

u9(t) 5 f u9(t 2 d) 1 f u9(t 2 2d) 1 · · ·1 2

1 f u9(t 2 pd) 1 dW(t), (A1)p

where p is the order, fn are constants, and velocities are
found at discrete successive times. The AP-p is stationary
when the roots of the characteristic equation for B,

2 p1 2 f B 2 f B 2 · · · 2 f B 5 0,1 2 p (A2)

are outside the unit circle.
Important diagnostic quantities of an AP are its var-

iance, su9, autocorrelation function, and power spec-
trum. In the discrete formulation, the autocorrelation
function (7) at time lag kd is

R(k) 5 r 5 f r 1 f r 1 · · · 1 f r ,k 1 k21 2 k22 p k2p (A3)

and it is found as a linear combination,
2k 2k 2kr 5 A B 1 A B 1 · · · 1 A B ,k 1 1 2 2 p p (A4)

of the inverse roots of (A2). The coefficients A j are
found with the normalization condition r0 5 1 and the
Yule–Walker equation,

r 5 P f , i 5 1, 2, · · · , p,j ij i

j 5 1, 2, · · · , p, (A5)

where Pij 5 ri2j, and r 2k 5 rk. (The Yule–Walker
equation is obtained by successively substituting k 5 1,
2, . . . , p into (A3).) The AP random forcing variance is

s 5 s (1 2 r f 2 r f 2 · · · 2 r f ).w u9 1 1 2 2 p p (A6)

The AP frequency power spectrum is

P( f ) 5 2s |1 2 f exp(2i2p fd)w 1

2 f exp(2i4p fd) 2 · · ·2

222 f exp(2i2ppfd)| , (A7)p

where the frequency range is 0 # f # 1/2.

APPENDIX B

Derivation of the Markov-1 Model

Deriving stochastic equations governing motion of
passive particles, we follow Thomson (1987) and Rodean
(1996). For 2D, Gaussian fluctuations, the Eulerian, un-
conditional PDF of the velocity fluctuation, u9, is

1
21 21/2 21P (u9) 5 (2p) |s | exp 2 u9[s ] u9 , (B1)E i ij j1 22

where the determinant of a matrix is indicated by sur-
rounding vertical lines, and the velocity variance tensor
(8) depends on t and x. The inverse velocity variance

tensor is defined away from the lateral boundaries
(where sij 5 0 due to the no-slip condition) as

21l (t, x, y) 5 [s ] (t, x, y),ij ij (B2)

and (B1) is rewritten as
1 1

lnP 5 2ln(2p) 1 ln|l | 2 u9l u9. (B3)E i ij j2 2

The ‘‘well-mixed state’’ of the tracer is the situation
when the conditional PDF of the Lagrangian tracer, PL[t,
x, u9 | x(0), u9(0)], is proportional to PE(t, x, u9). Phys-
ically, this means that once the tracer is uniformly dis-
tributed over the domain it stays that way. The ‘‘well-
mixed condition’’ is a criterion that constrains the choice
of the governing SDE. If the criterion is satisfied, then
the well-mixed state is one of the possible solutions of
the SDE.

The Fokker–Planck equation corresponding to the
first-order Markov model is

]P ][(u 1 u9)P]i i
1

]t ]xi

2](a P) ] 1i
5 2 1 b b P , (B4)ij jk1 2]u9 ]u9]u9 2i i k

and it governs the evolution of the probability density.
The boundary condition corresponding to the perfect
reflection of particles is ]P(t, xn)/]xn 5 0, where xn is
direction transverse to the boundary. In the stationary
situation, ]P/]t 5 0, and when the tracer is well mixed,
P ; PE ; PL. The goal is to find ai and bij such that
(B4) is satisfied when P 5 PE; that is, the well-mixed
state is a solution. Thus,

] 1
a P 5 b b P 1 f (t, x, u9), (B5)i E ij jk E i1 2]u9 2k

where

]f ]P ]i E
5 2 2 [(u 1 u9)P ], (B6)i i E

]u9 ]t ]xi i

and f i → 0 as | u9 | → `. We define the stochastic
forcing amplitude as

21b b 5 2s [u ] ,ij jk ij jk (B7)

where uij is the nonsingular, first-order, fading-memory
tensor. We differentiate (B3) and obtain

]l] 1 ] ln|l | jk
lnP 5 2 u9u9 , (B8)E j k1 2]t 2 ]t ]t

]l] 1 ] ln|l | jk
lnP 5 2 u9u9 , (B9)E j k1 2]x 2 ]x ]xi i i

]
lnP 5 2u9l . (B10)E j ij

]u9i

Given (B5) and (B10), we find that
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fi21a 5 2u9[u ] 1 ã , ã [ , (B11)i j ij i i PE

where the first term is the fading memory of Lagrangian
particles and the second term is the drift correction need-
ed to guarantee the well-mixed condition. Using the fact
that the flow is incompressible (] i/]x i 5 0), we rewriteu
(B6) as

1 ]f ] lnP ] lnPi E E
5 2 2 (u 1 u9) , (B12)i iP ]u9 ]t ]xE i i

and substitute expressions from (B8) and (B9) to obtain

1 ]f 1 ]i
5 (2ln|l | 1 u9u9l )j k jkP ]u9 2 ]tE i

]lu 1 u9 ] ln|l | jki i
5 2 1 u9u9 . (B13)j k1 22 ]x ]xi i

Next, we assume that the drift term is a quadratic
function of u9,

fi
5 a 1 b u9 1 g u9u9. (B14)i ij j ijk j kPE

From (B14) and (B10) it follows that

1 ]fi
5 b 1 g u9 1 g u9ii iik k iji jP ]u9E i

2 l u9 (a 1 b u9 1 g u9u9). (B15)im m i ij j ijk j k

The terms of the same order of u9 in (B13) and (B15)
are equated to obtain the following equations for a i, bij,
and g ijk:

1 ] ]
b 5 2 1 uii i1 22 ]t ]xi

3 ln|l |, (B16)

u9 ] ln|l |i
a l u9 2 g u9 2 g u9 5 , (B17)i im m iik k iji j 2 ]xi

u9u9j k
b l u9u9 5ij im j m 2

] ]
3 2 2 u l , (B18)i jk1 2]t ]xi

u9u9u9 ]li j k jk
g l u9u9u9 5 2 . (B19)ijk im j k m 1 22 ]xi

These equations yield multiple solutions for ai, bij,
and g ijk. Equation (B19) gives two solutions for g ijk:

]ls jkim(1)g 5 2 , (B20)ijk 2 ]xm

]ls mjim(2)g 5 2 ; (B21)ijk 2 ]xk

and the third solution, 5 2(sim/2) ]lkm/]xj, is equiv-(3)g ijk

alent to . The single solution for bij that satisfies(2)g ijk

(B16) and (B18) is

s ] ]im
b 5 2 2 u l . (B22)ij k jm1 22 ]t ]xk

In (B17) we change the summation indices (i.e., in the
lhs, m → j and k → j, and in the rhs i → j) to obtain

s ] ln|l |ij
a 5 (g 1 g )s 1 . (B23)i kkj kjk ij 2 ]xj

Thus, with (B20) and (B21) there are two solutions for
ai:

s ] ln|l |ij(1) (1) (1)a 5 (g 1 g )s 1 . (B24)i kkj kjk ij 2 ]xj

(2) (3) (3) (2)g 1 g g 1 gkkj kjk kkj kjk(2)a 5 1 si ij1 22 2

s ] ln|l |ij
1 . (B25)

2 ]xj

We use (8), the fact that sij 5 sji, and the relationships

] ]lkmln|l | 5 s , (B26)km
]x ]xj j

]l ]sjk im
2s s 5 , (B27)jm ij

]x ]xm m

to obtain

]l s ] ln|l |jk ij(1)a 5 2s s 1i jm ij
]x 2 ]xm j

s]s ] ln|l |ijim
5 1 , (B28)

]x 2 ]xm j

]l ss s ]l ] ln|l |jm ijkm km mk(2)a 5 2 2 1i 2 ]x 2 ]x 2 ]xk j j

1 ]sik
5 . (B29)

2 ]xk

In the end, we have two solutions, and any linear com-
bination of them is also acceptable (Reynolds 1998).
Other physical and mathematical conditions, in addition
to the well-mixed one, are needed to discriminate be-
tween the alternatives, but such conditions are not
known. With the assumption that the distinctions among
the alternative solutions may not be large9, we choose

9 Experiments with and show less than 1% difference in(1) (1)a gi ijk

terms of the intergyre transport and no substantial differences in terms
of the evolving tracer PDF from localized releases, so we do not
explore this alternative further.
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and . The corresponding drift correction term(2) (2)a gi ijk

becomes

f 1 ]s s ] ]i ik im
5 2 1 u l u9k jm j1 2P 2 ]x 2 ]t ]xE k k

]ls mjim
2 u9u9. (B30)j k2 ]xk

After collecting (B11) and (B30), and changing from
lij to sij, we find

1 ]s s ] ]ik im 21ã 5 2 1 u [s ] u9i k jm j1 22 ]x 2 ]t ]xk k

21][s ]s mjim
2 u9u9, (B31)j k2 ]xk

and, finally, with the additional assumption of station-
arity, we obtain the Markov-1 model, (15) and (16).

APPENDIX C

Derivation of the Markov-2 Model

The Eulerian, unconditional PDF of g and u9 is

1
22 21/2 21/2 21P (u9, g) 5 (2p) |s | |j | exp 2 u9[s ] u9E i ij j1 22

1
213 exp 2 g [j ] g ,i ij j1 22

(C1)

where the velocity and pseudoacceleration variance ten-
sors, defined in (8) and (9), depend on t and x. The
inverse pseudoacceleration variance tensor is

21m (x, y) 5 [j ] (x, y),ij ij (C2)

and (C1) is rewritten as

1 1 1
lnP 5 22 ln(2p) 1 ln|l | 1 ln|m | 2 u9l u9E i ij j2 2 2

1
2 g m g .i ij j2

(C3)

The Fokker–Planck equation corresponding to the
second-order Markov model is

]P ][(u 1 u9)P] ][(ã 1 g )P] ](c P)i i i i i
1 1 1

]t ]x ]u9 ]gi i i

2] 1
5 b b P . (C4)ij jk1 2]g ]g 2i k

We define

f (t, x, u9) 5 ã P , (C5)i i E

] 1
w (t, x, u9, g) 5 c P 2 b b P . (C6)i i E ij jk E1 2]g 2k

The constraint that the well-mixed state is a solution of
the Markov-2 model is

]w ]f ]P ]i i E
1 5 2 2 [(u 1 u9)P ]i i E

]g ]u9 ]t ]xi i i

]
2 (g P ). (C7)i E

]u9i

The stochastic forcing amplitude is defined as
21b b 5 2z [u ] ,ij jk ij jk (C8)

where the fading-memory tensor, uij, is introduced anal-
ogously with appendix B.

We differentiate (C3) and find the following rela-
tionships:

]l ]m] 1 ] ln|l | ] ln|m | jk jk
lnP 5 1 2 u9u9 2 g g ,E j k j k1 2]t 2 ]t ]t ]x ]ti

(C9)

]l ]m] 1 ] ln|l | ] ln|m | jk jk
lnP 5 1 2 u9u9 2 g g ,E j k j k1 2]x 2 ]x ]x ]x ]xi i i i i

(C10)

]
lnP 5 2u9l , (C11)E j ij

]u9i

]
lnP 5 2g m .E j ij

]gi

(C12)

Given (C6) and (C12), it follows that

wi21c 5 2g [u ] 1 . (C13)i j ij PE

We rewrite (C6) as

1 ]w 1 ]f ] lnP ] lnPi i E E
1 5 2 2 (u 1 u9)i iP ]g P ]u9 ]t ]xE i E i i

] lnPE
2 g , (C14)i

]u9i

substitute (C9)–(C12), and obtain

1 ]w 1 ]fi i
1

P ]g P ]u9E i E i

1 ]
5 (2ln|l | 2 ln|m | 1 u9u9l 1 g g m )j k jk j k jk2 ]t

u 1 u9i i
1

2

]l ]m] ln|l | ] ln|m | jk jk
3 2 2 1 u9u9 1 g gj k j k1 2]x ]x ]x ]xi i i i

1 g l u9.i ij j (C15)

We assume that the first drift correction, ãi 5 fi/PE,
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is given by (B14) and the second drift correction is a
linear function of g,

wic̃ 5 5 d 1 e g . (C16)i i ij jPE

Using (C9)–(C12), we obtain

1 ]wi
5 e 2 m g (d 1 e g ), (C17)ii im m i ij jP ]gE i

1 ]fi
5 b 1 g u9 1 g u9ii iik k iji jP ]gE i

2 l u9 (a 1 b u9 1 g u9u9). (C18)im m i ij j ijk j k

We equate terms of the same order of p, g, and u9 in
(C15), (C17), and (C18) in such a way that the results
of appendix B are recovered, and there are additional
equations:

d m g 5 2l u9g , (C19)i im m ij j i

1 ] ]
e m g g 5 2 1 u m g gij im m j i jk j k1 22 ]t ]xi

]mu9 jki
2 g g , (C20)j k2 ]xi

1 ] ]
e 5 2 1 (u 1 u9) ln|m |. (C21)ii i i[ ]2 ]t ]xi

The only solution of (C19)–(C21) is

d 5 2j l u9, (C22)i im mj j

j ] ]im
e 5 2 1 (u 1 u9) m . (C23)ij k k jm[ ]2 ]t ]xk

The first drift correction term remains as in the Markov-
1 model, and the second drift correction term is

wic̃ 5i PE

j ] ]im
5 2j l u9 2 1 (u 1 u9) m g . (C24)im mj j k k jm j[ ]2 ]t ]xk

With the additional assumption of stationarity, we obtain
(36) and (37).

In a homogeneous, stationary, and isotropic situation,
Sawford (1991) considers the fading-memory time in
the form of

21 21 21u 5 t 1 t ,1 2 (C25)

where t2 5 sm . As a result,21t1

R(t) 5 [t exp(2t /t ) 2 t exp(2t /t )]/(t 2 t )1 1 2 2 1 2

(C26)

has no oscillations, and the t-scales are related to the
Lagrangian integral time by equation

t 1 t 5 T .1 2 L (C27)

A relationship used for finding t1 and t2 is the quadratic
behavior of R(t) at small t:

2 21 3R(t) 5 1 2 t (t t ) 1 O(t ).1 2 (C28)

In the case of a strong scale separation (i.e., t2 K t1):
t1 ø TL, and t2 may be interpreted as the Lagrangian
acceleration correlation time related to the Kolmogorov
timescale (Sawford 1991; Pope 1994). In oceanic gyres,
R(t) is rarely nonoscillatory, and where it is, the t i are
not very different; therefore, this interpretation is not
appropriate in gyres.

APPENDIX D

Derivation of the Markov-3 Model

The Eulerian, unconditional PDF of p, g, and u9 is

P (u9, g, p)E

1
23 21/2 21/2 21/2 215 (2p) |s | |j | |z | exp 2 u9[s ] u9i ij j1 22

1 1
21 213 exp 2 g [j ] g exp 2 p [z ] p ,i ij j i ij j1 2 1 22 2

(D1)

where the velocity, pseudoacceleration, and pseudo-hy-
per-acceleration variance tensors are defined in (8), (9),
and (10) and depend on t and x. The inverse pseudo-
hyper-acceleration variance tensor is

21n (x, y) 5 [z ] (x, y),ij ij (D2)

and (D1) is rewritten as

1
lnP 5 23 ln(2p) 1 (ln|l | 1 ln|m | 1 ln|n |)E 2

1
2 (u9l u9 1 g m g 1 p n p ). (D3)i ij j i ij j i ij j2

The Fokker–Planck equation corresponding to the
third-order Markov model is

]P ][(u 1 u9)P] ][(ã 1 g )P] ][(c̃ 1 p )P]i i i i i i
1 1 1

]t ]x ]u9 ]gi i i

2](d P) ] 1i
1 5 b b P . (D4)ij jk1 2]p ]p ]p 2i i k

We define

f (t, x, u9) 5 ã P , (D5)i i E

w (t, x, u9, g) 5 c̃ P , (D6)i i E

] 1
c (t, x, u9, g, p) 5 d P 2 b b P . (D7)i i E ij jk E1 2]p 2k

The well-mixed constraint yields
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]f ]w ]ci i i
1 1

]u9 ]g ]pi i i

]P ] ]E
5 2 2 [(u 1 u9)P ] 2 (g P )i i E i E

]t ]x ]u9i i

]
2 (p P ). (D8)i E

]gi

The stochastic forcing amplitude is defined as

21b b 5 2z [u ] ,ij jk ij jk (D9)

where uij is the corresponding fading-memory time ten-
sor.

We differentiate (D3) and find

]l] 1 ] jk
lnP 5 (ln|l | 1 ln|m | 1 ln|n |) 2 u9u9E j k[]t 2 ]t ]t

]m ]njk jk
2 g g 2 p p , (D10)j k j k ]]t ]t

]l] 1 ] jk
lnP 5 (ln|l | 1 ln|m | 1 ln|n |) 2 u9u9E j k[]x 2 ]x ]xi i i

]m ]njk jk
2 g g 2 p p , (D11)j k j k ]]x ]xi i

]
lnP 5 2u9l , (D12)E j ij

]u9i

]
lnP 5 2g m , (D13)E j ij

]gi

]
lnP 5 2p n . (D14)E j ij

]pi

Given (D7) and (D14), it follows that

ci21d 5 2p [u ] 1 . (D15)i j ij PE

We rewrite (D8) as

1 ]f ]w ]ci i i
1 11 2P ]u9 ]g ]pE i i i

] lnP ] lnP ] lnPE E E
5 2 2 (u 1 u9) 2 gi i i

]t ]x ]u9i i

] lnPE
2 p , (D16)i

]gi

substitute the relationships (D10)–(D14), and obtain

1 ]f ]w ]ci i i
1 11 2P ]u9 ]g ]pE i i i

1 ]
5 2 (ln|l | 1 ln|m | 1 ln|n |)

2 ]t

]l ]m ]n1 jk jk jk
1 u9u9 1 g g 1 p pj k j k j k1 22 ]t ]t ]t

u 1 u9 ]i i
2 (ln|l | 1 ln|m | 1 ln|n |)

2 ]xi

]l ]m ]nu 1 u9 jk jk jki i
1 u9u9 1 g g 1 p pj k j k j k1 22 ]x ]x ]xi i i

1 g l u9 1 p m g .i ij j i ij j (D17)

We assume that the third drift correction is a linear
function of p,

cid̃ 5 5 p 1 r p , (D18)i i ij jPE

and the other drift correction terms are given by (B14)
and (C24). From (D10)–(D14) it follows that

1 ]fi
5 b 1 g u9 1 g u9ii iik k iji jP ]u9E i

2 l u9 (a 1 b u9 1 g u9u9), (D19)im m i ij j ijk j k

1 ]wi
5 e 2 m g (d 1 e g ), (D20)ii im m i ij jP ]gE i

1 ]ci
5 r 2 n p (p 1 r p ). (D21)ii im m i ij jP ]pE i

We equate terms of the same order of p, g, and u9 in
(D17) and (D19)–(D21) in such a way that the results
of appendixes B and C are recovered, and

p n p 5 2m g p , (D22)i im m ij j i

1 ] ]
r n p p 5 2 1 u n p pij im m j i jk j k1 22 ]t ]xi

]nu9 jki
2 p p , (D23)j k2 ]xi

1 ] ]
r 5 2 1 (u 1 u9) ln|n |. (D24)ii i i[ ]2 ]t ]xi

The only solution of (D22)–(D24) is

p 5 2z m g , (D25)i im mj j

z ] ]im
r 5 2 1 (u 1 u9) n . (D26)ij k k jm[ ]2 ]t ]xk

The corresponding drift correction term becomes
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ci 21d̃ 5 5 2p [u ] 2 z m gi j ij im mj jPE

z ] ]im
2 1 (u 1 u9) n p . (D27)k k jm j[ ]2 ]t ]xk

With the assumption of stationarity, we obtain (53), (54),
and (55).
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