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SUMMARY

We present an analytical form of the layer propagator matrix for the response of a
locally incompressible, layered, linear-viscoelastic sphere to an external load assuming that
the initial density strati®cation r0(r) within each layer is parametrized by Darwin's law.
From this, we show that the relaxation of a sphere consisting of locally incompressible
layers is governed by a discrete set of viscous modes. The explicit dependence of the
layer propagator matrix on the Laplace transform variable allows us to determine
the amplitudes of the viscous modes analytically. Employing Darwin's parametrization,
we construct three simpli®ed earth models with different initial density gradients that are
used to compare the effects of the local incompressibility constraint, div (r0u)=0, and
the material incompressibility constraint, div u=0, on viscoelastic relaxation. We show
that a locally incompressible earth model relaxes faster than a materially incompressible
model. This is a consequence of the fact that the perturbations of the initial density are
zero during viscoelastic relaxation of a locally incompressible medium, so that there
are no internal buoyancy forces associated with the continuous radial density gradients,
only the buoyancy forces generated by internal density discontinuities. On the other hand,
slowly decaying internal buoyancy forces in a materially incompressible earth model
cause it to reach the hydrostatic equilibrium after a considerably longer time than a
locally incompressible model. It is important to note that the approximation of local
incompressibility provides a solution for a compressible earth model that is superior to
the conventional solutions for a compressible earth with homogeneous layers because it
is based on an initial state that is consistent with the assumption of compressibility.

Key words: Darwin's law, glacial-isostatic adjustment, hydrostatic equilibrium,
incompressibility, layer propagator, viscoelasticity.

1 I N T R O D U C T I O N

The theory of the glacial-isostatic adjustment process belongs to the classical problems of solid earth geophysics and has been

developed over several decades. To make the forward and inverse problems tractable, the Earth is usually modelled as linear-

viscoelastic, self-gravitating and spherically symmetric. Particular attention has been paid to a materially incompressible Maxwell

viscoelastic ¯uid, since this is the simplest rheology that describes the short-time (elastic) and long-time (¯uid) limits of the Earth's

response correctly.

The literature dealing with the theory of gravitational viscoelastic relaxation of a materially incompressible earth model is

extensive. A short overview of the studies on incompressible earth models completed during the past two decades is as follows.

Wu & Peltier (1982) derived the analytical formulae for the response of a homogeneous Maxwell sphere. Sabadini et al. (1982)

extended this study and introduced semi-analytical solutions for the relaxation of two- and three-layer models of the Earth. Spada

et al. (1992) inverted the fundamental matrix associated with the ®eld equations using symbolic manipulation software and gave an

analytical expression for the inverse of the fundamental matrix. Wolf (1984) and Amelung & Wolf (1994) presented closed-form

solutions for the viscoelastic relaxation of an earth model composed of a viscoelastic mantle and an inviscid core or an elastic

lithosphere. Wu (1990) analysed gravitational viscoelastic perturbations of two-layer spheres with arbitrary contrasts of density,
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shear modulus and viscosity across the interfaces. Wu & Ni (1996) provided analytical solutions for the viscoelastic relaxation of two-

layer, non-gravitating spherical earth models. Vermeersen et al. (1997) studied the rotational response of the Earth to Pleistocene

deglaciation by means of a multilayered, materially incompressible earth model derived from the Preliminary Reference Earth

Model (PREM).

In contrast to this, the viscoelastic relaxation of a locally incompressible earth model has been studied less extensively. There may

be two explanations for this. First, the local incompressibility constraint reduces to the material incompressibility constraint for a

material with a homogeneous initial density distribution. Second, it is more laborious to solve the viscoelastic relaxation problem for

an initial density gradient in a locally incompressible body by an analytical method than to ®nd an analytical solution to the problem

for a constant density in a materially incompressible body. The concept of local incompressibility was introduced into the theory of

glacial-isostatic adjustment by Wolf (1991), who derived the associated incremental ®eld equations describing gravitational

viscoelastic perturbations. Recently, Wolf & Kaufmann (2000) have solved these equations for load-induced Maxwell-viscoelastic

perturbations of a non-gravitating half-space with a compressional or compositional initial density gradient. They showed that, for

local incompressibility, the elastic limit of the radial surface displacement may overshoot the hydrostatic limit for very long-

wavelength perturbations. Li & Wolf (unpublished manuscript, 2000) found the fundamental solution to the incremental ®eld

equations for local incompressibility using a self-gravitating spherical earth model and Darwin's distribution of initial density.

Nakada (1999) evaluated the effects of a non-adiabatic density gradient in the upper mantle and a non-adiabatic density jump at the

670 km discontinuity on the viscoelastic response of the Earth to a surface load.

The present study is also concerned with viscoelastic earth models with a continuous density strati®cation. We extend the work

of Li & Wolf (unpublished manuscript, 2000) and estimate the effect of local and material incompressibility on viscoelastic relaxation.

To solve the problem analytically by the propagator matrix approach, simple earth models are chosen. We thus use spherical earth

models with a distribution of the initial density according to Darwin's law that are perturbed by an axisymmetric surface load.

2 L O C A L A N D M A T E R I A L D E N S I T Y I N C R E M E N T S

For any physical quantity q, the local (Eulerian) and material (Lagrangian) increments, qE and qL, respectively, are de®ned as follows

(Wolf 1991; Dahlen & Tromp 1998, Section 3.2.1):

qE(r, t)~q(r, t){q(r, 0) , (1)

qL(x, t)~q(x, t){q(x, 0) , (2)

where t is the current time and r(x, t) is the current position of a particle located at position x at the initial time t=0. Writing the

current position r(x, t) in the form r(x, t)=x+u(x, t), where u(x, t) is the displacement, the ®rst-order relationship between the

material and local increments is

qL~qEzu . grad q(x, 0) . (3)

We have dropped the dependence of qL and qE on the position vectors x and r, respectively, since, in ®rst-order theory, it is immaterial

whether the increments qL and qE are regarded as functions of r or x.

Adopting this concept for the volume mass density r, the material and local increments in density, rL and rE, respectively, can be

expressed in the forms

%L~{%0 div u , %E~{div (%0u) , (4)

where r0=r0(x) is the initial density. The deformation is called materially and locally incompressible if the material and local density

increments, rL and rE, respectively, are equal to zero in the deformed state. Note that the constraint of the locally incompressible

deformation, div (r0u)=0, for a homogeneous initial density distribution reduces to that of the materially incompressible deformation,

div u=0. Since div u is the relative change in volume for a particle initially at x, this volume does not change for materially incompressible

deformation. The local incompressibility condition gives a rather accurate approximation of the long-period viscous behaviour of the

Earth. It has therefore been adopted for studying long-period viscous ¯ow in the mantle (e.g. Li & Yuen 1987; Wu & Yuen 1991).

3 B O U N D A R Y - V A L U E P R O B L E M F O R V I S C O E L A S T I C R E L A X A T I O N

Our intention is to study the response of a self-gravitating, Maxwell viscoelastic, locally incompressible sphere to a surface mass load.

This classical problem of solid earth geophysics can be formulated mathematically as an initial boundary-value problem. In this

section, we brie¯y recall the formulation of this problem and refer to the extensive literature for more details (e.g. Farrell 1972;

Wu & Peltier 1982; Sabadini et al. 1982; Wu 1990; Wu & Ni 1996).

Let us assume that a viscoelastic sphere B approximates the Earth with the initial volume mass density r0, the shear modulus me

and the dynamic viscosity n. Let a load, represented by the surface density s, be placed on the surface hB of the earth model B. The
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viscoelastic response of model B to the surface mass load is governed by the equation of linear momentum conservation and by

Poisson's equation for small perturbations of a hydrostatically pre-stressed and self-gravitating continuum in a non-rotating

reference frame. Their material-local forms are as follows (e.g. Wolf 1991):

div ô{%0 grad�1zdiv (%0u) grad�0{grad (%0u . grad�0)~0 in B , (5)

+2�1z4nG div (%0u)~0 in B , (6)

where t is the material (Lagrangian) increment of the Cauchy stress tensor, w1 is the sum of the local (Eulerian) increment of the initial

gravitational potential w0 and the potential w2 of the externally applied gravitational force ®eld and G is Newton's gravitational

constant. We will assume that the initial density r0 is a radially dependent function only, r0=r0(r), which implies that w0=w0(r).

The constitutive property of model B corresponds to that of an incompressible linear viscoelastic body. In the Laplace transform

domain s, the constitutive equation has the form

ô~%Izk (grad uzgradTu) in B , (7)

where P is the material (Lagrangian) increment of the pressure, I is the second-order identity tensor and the superscript T denotes

transposition. For the Maxwell viscoelasticity considered here, the s-dependent shear modulus m=m(s) has the form

k5~
kes

szke/l
: (8)

In the following, we assume that the elastic shear modulus and the viscosity are only radially variable functions, i.e. me=me(r) and

n=n(r). In addition, we assume that earth model B is locally incompressible,

div (%0u)~0 in B . (9)

This condition is a kinematic constraint that restricts possible displacements. In particular, it imposes an additional restriction on the

displacement gradient, whose components are not all independent. To take into account this dependence, the linear viscoelastic

constitutive equation for a compressible body must be modi®ed by including an additional ®eld variable, the perturbation pressure P,

in order to match the kinematic constraint (9). The pressure P enters into the minimization of the Helmholtz free energy as the

Lagrange multiplier when the constitutive equation for the locally incompressible body is formulated. For more details see e.g. Eringen

(1980, Section 5.5). Adopting constraint (9) and the identity div grad u=grad div uxrot rot u, eqs (5)±(7) can be combined to give

grad%zk (2 grad div u{rot rot u)zgrad k . (grad uzgrad Tu){%0 grad�1{grad (%0u . grad�0)~0 in B , (10)

+2�1~0 in B : (11)

On an internal discontinuity S, the interface conditions for the displacement, the traction, the perturbed gravitational potential

and the perturbed normal component of gravitation are (e.g. Dahlen 1974)

[u]z{~0 and [n . ô]z{~0 on & , (12)

[�1]z{~0 and [(grad�1z4nG%0u) . n]z{~0 on & , (13)

where n is the outward unit normal to S and the symbol [ f ]x
+ indicates the outward jump of quantity f on S. If an inviscid ¯uid core is

included, the continuity of the normal component of the displacement, n . u, the continuity of the normal component of the stress

vector, n . t . n, and the free-slip behaviour, t . nx(n . t . n)n=0, are appropriate instead of condition (12).

To complete the speci®cation of the problem, boundary conditions are prescribed on the external surface hB. We assume

that earth model B is loaded at time t=0+ by an impulsive unit point mass with the surface density s applied on the outer surface hB

such that

p~
1

a2 sin#
d(#)d(r) on LB , (14)

where q and Q are the co-latitude and the longitude, respectively, a is the radius of the sphere hB and d( . ) is the Dirac delta function.

Since the time dependence of the surface load is a delta function, the boundary conditions in the Laplace domain are independent of

the Laplace variable and are of the form (Longman 1963; Farrell 1972)

er
. ô{ . er~{g0(a)p on LB , (15)

ô{ . er{(er
. ô{ . er) er~0 on LB , (16)

[�1]z{~0 on LB , (17)

[grad�1]z{
. er{4nG%{

0 (u{ . er)~4nGp on LB , (18)
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where tx, r0
x and ux denote the stress tensor, the initial density and the displacement, respectively, on the interior side of hB, er is the

unit vector in the radial direction, and g0(r) is the initial gravitation de®ned by g0(r))dw0(r)/dr.

4 S P H E R I C A L H A R M O N I C R E P R E S E N T A T I O N

The fundamental solution to eq. (11) is given by the solid spherical harmonics rnYn(V) and rxnx1Yn(V),

�1(r, ))~
X

n

Fn(r)Yn()) , (19)

with

Fn(r)5~�1,nrnz�2,nr{n{1 (20)

and w1,n and w2,n coef®cients independent of r and V. Here, Yn(V), with V)(q, Q), q the co-latitude and Q the longitude, are scalar

spherical harmonics normalized according to Edmonds (1957) or Varshalovich et al. (1989, Chapter 5). The index n abbreviates the

pair of angular degree n and azimuthal order m. Likewise, the spherical harmonic representation of the pressure P is

%(r, ))~
X

n

%n(r)Yn()) : (21)

The displacement u can be represented in terms of spheroidal, Sn
(t1)(V), and toroidal, Sn

(0)(V), vector spherical harmonics

(see Appendix A):

u(r, ))~
X

n

[Un(r)S({1)
n ())zVn(r)S(1)

n ())]z
X

n

Wn(r)S(0)
n ())~uS(r, )�zuT(r, )) , (22)

where Un(r), Vn(r) and Wn(r) are spherical harmonic expansion coef®cients of the spheroidal part uS and toroidal part uT of u. For the

spherically symmetric viscoelastic boundary-value problem considered here and also for an axisymmetric problem, it has been

demonstrated (e.g. Martinec & Wolf 1999) that the toroidal displacement uT is equal to zero in B.

The spherical harmonic parametrizations (19)±(22) allow us to transform the partial differential equations (9)±(11) into a set of

six simultaneous ®rst-order ordinary differential equations of the form (e.g. Peltier 1974; Cathles 1975)

dy
dr

~Ay , (23)

where the elements of the vector y(r, s)=(Un, Vn, Trn, Tqn, Fn, Qn)T are the spherical harmonic coef®cients of the radial and

tangential displacements, the radial and tangential stresses, and the perturbations in gravitational potential and gravitational

potential gradient, respectively. On the assumption of local incompressibility, the 6r6 matrix A, whose elements depend on r and s,

has the form

A~

b{2

r

n(nz1)
r

0 0 0 0

{
1

r

1

r
0

1

k
0 0

4[(3{b)k{r%0g0]

r2

n(nz1)({6kzr%0g0)
r2

0
n(nz1)

r
{

(nz1)%0

r
%0

{2k(3{b)zr%0g0

r2

2k(2n2z2n{1)
r2

{
1

r
{

3

r

%0

r
0

{4nG%0 0 0 0 {
nz1

r
1

{
4nG%0(nz1)

r

4nG%0n(nz1)
r

0 0 0
n{1

r

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

, (24)

where the dimensionless function b denotes the negative radial derivative of the logarithmic density,

b(r)5~{
r

%0

d%0

dr
z : (25)
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After solving the system of equations (23), the spectral coef®cients of the perturbation pressure can be determined as follows:

%n~
2k
r

(2{b)Un{
2k n(nz1)

r
VnzTrn : (26)

5 D A R W I N ' S L A W

We now assume that earth model B is composed of N spherical layers bounded by spheres Sk of radii r1=b<r2< . . .<rN=a. The

elastic shear modulus and the viscosity are assumed to be constant in the kth layer, i.e. me=mk
e and n=nk, respectively. In contrast

to this, the initial density may change with radial distance within each layer. We will parametrize the radial dependence of the initial

density by Darwin's law (Bullen 1975, Section 6.5.3),

%0(r)~akr{bk for rz
k{1¦r¦r{

k , (27)

where ak>0 and 0jbk<3. Note that for bk<0, dr0 /dr is positive, bk=0 is the case of constant density, for bk=3 the mass of the

layer and the initial gravitation within the layer are in®nite, and for bk>3 these quantities are negative. The parameters ak and bk may

be determined from the boundary values of the initial density,

ak~%{
k r

bk

k , bk~

ln
%z

k{1

%{
k

ln
rk

rk{1

, (28)

where r+kx1 and rk
x denote the initial density on the external side of boundary Skx1 of radius r=rkx1 and on the internal side of

boundary Sk of radius r=rk, respectively. The initial gravitation within the kth layer (rkx1jrjrk, ki2) is given by

g0(r)~
4nG

r2

ak

3{bk

r3{bk z
Xk

i~2

ai{1

3{bi{1

r
3{bi{1

i{1 {
ai

3{bi

r
3{bi

i{1

� �" #
: (29)

Moreover, we assume that the central sphere (0jrjr1) is homogeneous, i.e. b1=0, and we have

g0(r)~
4nG

3
a1r : (30)

If the initial density strati®cation is attributed to the compressibility of the material only, then the initial density depends on the

initial hydrostatic pressure only and the density gradient is governed by the isochemical adiabatic isentropic Williamson±Adams

equation (Bullen 1975, Section 6.4.1; Wolf & Kaufmann 2000),

d%0

dr
~{

%2
0 g0

i
: (31)

Having prescribed the initial density by eq. (27), the bulk modulus k associated with the hydrostatically pre-stressed state can be

determined from eq. (31):

i(r)~
r%0(r)g0(r)

bk

, (32)

which holds for rkx1jrjrk.

6 L A Y E R P R O P A G A T O R

The general solution to eq. (23) can be expressed as the sum of six linearly independent fundamental solution vectors,

y(r, s)~M(r, s)c(s) , (33)

where M(r, s) is the 6r6 matrix whose columns are the six fundamental solution vectors, and c(s) is a 6r1 column vector of

arbitrary constants that are to be determined by satisfying the appropriate boundary conditions. For a viscoelastic spherical layer

with Darwin's distribution of the initial density, the fundamental solutions are constructed in Appendix B. The fundamental matrix

M can be partitioned with respect to the variables r and m into the product of three 6r6 matrices:

M(r, s)~U(r, k)VR(r, k) , (34)

where the analytical forms of the component matrices are listed in Appendix C. Note that the three fundamental solutions associated

with the second, fourth and sixth columns of matrix M are singular at the origin r=0. In order to construct the propagator

matrix for a multilayered, locally incompressible viscoelastic sphere, the inverse of matrix M must be found. The inverse of the
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matrix product (34) is

M{1(r, s)~R{1(r, k)V{1U{1(r, k) , (35)

where the analytical forms of the inverses of the component matrices are given in Appendix C.

The relation between y(r, s) on the inner boundary at rkx1 and the outer boundary at rk of the kth layer can be written in the

form (Gantmacher 1959; Gilbert & Backus 1966)

y(rk, s)~P(rk, rk{1, s) y(rk{1, s) , (36)

where the layer propagator matrix P(rk, rkx1, s) is given in terms of matrices M and Mx1 as

P(rk, rk{1, s)5~M(rk, s)M{1(rk{1, s) : (37)

Substituting for M and Mx1 from eqs (34) and (35), we obtain

P(rk, rk{1, s)~U(rk, kk)VG(rk, rk{1)V{1U{1(rk{1, kk) , (38)

where G(rk, rkx1) is de®ned by G(rk, rkx1))R(rk, mk)Rx1(rkx1, mk). Taking into account eqs (C3) and (C8), matrix G is diagonal

with the elements

G(rk, rk{1)~diag (hp
k, hq

k, hnz1
k , h{n

k , h
nz1{bk

k , h
{n{bk

k ) , (39)

where hk)rk/rkx1, bk is the second parameter in Darwin's law, and the powers s and t are de®ned by eq. (B7). Note that the

dependence of matrix R and its inverse Rx1 on the s-dependent shear modulus m has been cancelled by their multiplication, so that

the product matrix G is independent of m.

The solution in the central sphere (0jrjb) is given by eq. (33), which takes the particular form

y(r, s)~Mc(r, s)cc(s) , (40)

where Mc(r, s) is the 6r3 matrix whose columns are the ®rst, third and ®fth columns of matrixM and cc(s) is a 3r1 column vector of

constants to be determined. The solution in the kth layer then follows from the upward continuation of the solution from the central

sphere and the continuity of y(r, s) on the interfaces at r1, . . . , rN. This corresponds to the multiplication of the product of the layer

propagator matrices with the central sphere solution taken at r=b. In the kth layer, for which rkx1jrjrk, ki2, applies, we obtain

y(r, s)~L(r, b, s)y(b, s) , (41)

where

L(r, b, s)5~P�r, rk{1)P(rk{1, rk{2) . . .P(r2, b) : (42)

Substituting for y(b, s) from eq. (40), we have

y(r, s)~L(r, b, s)Mc(b, s)cc(s) : (43)

The constants in cc(s) can be determined from the surface boundary conditions (15)±(18) for an impulsive point load

(Longman 1963; Farrell 1972):

b5~

Trn(a)

T#n(a)

Qn(a)

0BBB@
1CCCA~{

������������
4n

2nz1

r (2nz1)g0(a)
4na2

0

(2nz1)G
a2

0BBBBBB@

1CCCCCCA : (44)

Taking eq. (43) on the earth's surface, r=a, we have

b~T(s)cc(s) , (45)

where T(s) is a 3r3 matrix de®ned by

T(s)5~Ë(a, b, s)Mc(b, s) , (46)

and the 3r6 matrix L corresponds to matrix L with rows one, two and ®ve deleted. Determining cc from eq. (45) and substituting the

corresponding expression into eq. (43) gives the solution in the kth layer:

y(r, s)~L(r, b, s)Mc(b, s)T{1(s)b : (47)
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Denoting the matrix of co-factors of T(s) by T{(s), this solution can be written in an alternative form,

y(r, s)~
W(r, s)
detT(s)

, (48)

where

W(r, s)5~L(r, b, s)Mc(b, s)T{(s)b : (49)

7 T I M E - D O M A I N S O L U T I O N

According to Wu (1978, 1990), Peltier (1985) and Wolf (1985), the solution in the Laplace transform domain can be expressed in the

time domain as follows:

y(r, t)~yE(r)d(t)z
X

j

yVj (r) e
sj t , (50)

where d(t) is the delta function, yE(r) is the elastic amplitude,

yE(r)~ lim
s?{?

y(r, s) , (51)

yj
V(r) is the viscous amplitude spectrum and xsj is the inverse relaxation time spectrum. The inverse relaxation times xsj can be

determined from the roots sj of the secular determinant det T(s)=0. The viscous amplitudes yj
V(r) are then obtained using the residue

theorem:

yVj (r)~
W(r, sj)

d

ds
[detT(s)]

����
s~sj

, (52)

where simple zeros sj are assumed. In Appendix D, we derive the analytical formula for the s-derivative of the secular determinant

det T(s).

8 E A R T H M O D E L S

To illustrate the signi®cance of the local incompressibility condition (9), we study the viscoelastic relaxation of three simple earth

models. All three models consists of a viscoelastic heterogeneous mantle and an inviscid homogeneous core. The parameter b inside

the core is equal to zero, which means that the conditions of local and material incompressibility coincide. The common parameter

values of the models used in our computational examples are as follows: the radius of the earth's surface a=6371 km, the radius of

the core b=3480 km, the elastic shear modulus of the mantle me=1.4519r1011 Pa, the viscosity of the mantle n=1021 Pa s, the initial

density of the core r0,c=10.9869r103 kg mx3 and Newton's gravitational constant G=6.67259r10x11 m3 kgx1 sx2.

The mantle density is parametrized according to Darwin's law (27). The parameters a and b may be determined by imposing

various constraints on the earth model such as prescribing the total mass of the model, de®ning the density jumps at the core±mantle

boundary (CMB) and at the earth's surface or prescribing the moment of inertia. In this paper, we require that the total mass of

the core and of the mantle are equal to those of the earth. These constraints guarantee the correct gravitational values at the CMB

and the earth's surface. Since the mass-conservation principle does not determine Darwin's parameters a and b completely, we add

additional constraints on the mantle density distribution. For the ®rst two-layer model (model C), we choose the mantle density at

the CMB equal to the value of the PREM model. For the second two-layer model (model S), we assume that the surface density jump

is equal to that of the PREM model. Since the density jump at the earth's surface controls the radial surface displacement in the limit

of hydrostatic equilibrium, model S can be employed to simulate the viscoelastic response of the PREM model. Finally, we

approximate the mantle density distribution of the PREM model by the four-layer model SPR with density jumps at depths of 400,

670 and 2891 km. The parameters determining the density distributions of models C, S and SPR are listed in Table 1 and the density

distributions are plotted for the mantle in Fig. 1.

9 N U M E R I C A L R E S U L T S

We now demonstrate numerically the difference between the viscoelastic relaxation of earth models with local incompressibility,

div (r0u)=0, and those with material incompressibility, div u=0. We emphasize that the initial density distribution is identical for

both types of incompressibility, so that we determine only the effects of the particular types of incompressibility on the solution. As

we have seen in the previous sections, the viscoelastic solution for a spherically symmetric earth model with the initial density

distribution according to Darwin's law and the local incompressibility condition has a discrete Laplace spectrum. This implies that
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the inverse Laplace transformation can be implemented analytically and leads to a relaxation characterized by exponentially decaying

normal modes. On the other hand, when the material incompressibility condition is assumed, the solution in the Laplace domain has

a continuous spectrum and the inverse Laplace transform can be computed only numerically, which may cause numerical problems

(Han & Wahr 1995; Hanyk et al. 1996). In this case, it is advantageous to solve the problem directly in the time domain. Recently,

Martinec (2000) has proposed the spectral ®nite element approach with an explicit time-differencing scheme for the Maxwell

rheology to model the viscoelastic relaxation of a spherical earth with a 3-D viscosity structure. Here, we will use this approach

simpli®ed for a spherically symmetric viscosity distribution in order to compute the time-domain response of an earth model with

material incompressibility and a continuous strati®cation of the mantle density.

Fig. 2 shows the relaxation times x1/sj, the elastic amplitude xy1
E(a) and the viscous amplitudes xyV

1, j (a)/sj of the radial surface

displacement as functions of the angular degree n for earth models C, S and SPR. The viscoelastic relaxation of models C and S is

carried by two buoyancy modes, M0 and C0, associated with the density discontinuities on the earth's surface and at the CMB

(e.g. Wu & Peltier 1982; Wu 1990; Wu & Ni 1996). In addition to the M0 and C0 modes, the buoyancy modes M1 and M2 associated

with the density jumps at depths of 400 and 670 km appear for model SPR (e.g. Peltier 1982; Wolf 1985; Wu 1990; Han & Wahr 1995;

Johnston et al. 1997). For small values of the angular degree n, the amplitudes of the C0 and M1 modes are close to that of the M0

mode. However, for n>10, the deformation of the CMB and of the 400 and 670 km discontinuities is insigni®cant and the total

relaxation is mainly carried by the M0 mode.
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Figure 1. The mantle density distribution of earth models C, S and SPR parametrized by Darwin's law and the density of the PREM model.

The density in model C at the CMB on the mantle side is equal to the PREM value, model S has the same density jump at the earth's surface as the

PREM model, and model SPR approximates the mantle density of PREM by three layers. The core is considered homogeneous for models C, S and

SPR. Parameter values are given in Table 1.

Table 1. The parameters a and b and the density jumps for earth models C, S and SPR.

Region Radius a b r0
bot r0

top

(km) (kg mbx3) (kg mx3) (kg mx3)

Model C

Core 0±3480 10.9869r103 0 10.9869r103 10.9869r103

Mantle 3480±6371 3.87220r107 0.587378 5.56645r103 3.90226r103

Model S

Core 0±3480 10.9869r103 0 10.9869r103 10.9869r103

Mantle 3480±6371 1.920791r1018 2.185193 9.74691r103 2.6r103

Model SPR

Core 0±3480 10.9869r103 0 10.9869r103 10.9869r103

Lower mantle 3480±5701 8.138945r106 0.482720 5.66r103 4.46r103

Upper mantle 5701±5971 1.663040r1016 1.866854 4.06r103 3.724r103

5971±6371 1.548686r1014 1.570324 3.543r103 3.2r103

Material versus local incompressibility 143

# 2001 RAS, GJI 144, 136±156

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/144/1/136/763936 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Figs 3±5 show the time evolution of the radial and horizontal surface displacements and the surface gravitational potential

perturbation for earth models C, S and SPR in the time interval 0±10 kyr. The models are loaded at time t=0+ by the second, 10th,

20th and 50th zonal spherical harmonics of the unit point mass applied at the north pole of the earth's surface as the Heaviside step

function in time. The solid and dashed lines show the time relaxation curves when the local incompressibility condition, div (r0u)=0,

and the material incompressibility condition, div u=0, are applied, respectively. It is seen that the relative differences between the

locally incompressible and materially incompressible solutions can reach 15 per cent for the radial displacement U2(a) for models C

and SPR, whereas they are about 50 per cent for models S and SPR. The differences in the gravitational potential perturbation F2(a)

are only a few per cent for models C and SPR, whereas they may reach 100 per cent for models S and SPR. The difference in

behaviour of the locally incompressible and the materially incompressible materials is even more signi®cant in the time relaxation of

the horizontal displacement Vn(a); the relaxation curves differ by several orders of magnitude and may even have opposite signs.

It is further seen that the different behaviour of the locally incompressible and materially incompressible media diminishes

with increasing angular degree n; Figs 3±5 show that there is hardly any difference in the time relaxation curves of Un(a) and Fn(a)

for angular degree n=50. This is consequence of the fact that higher-degree viscoelastic perturbations do not penetrate as deeply as
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Figure 2. The relaxation times x1/sj, the elastic amplitude xy1
E(a) and the viscous amplitudes xyV

1, j (a)/sj of the radial surface displacement as

functions of the angular degree n for earth models C, S and SPR. M0, C0, M1 and M2 denote relaxation modes and E the elastic amplitude. Results

apply to Heaviside load forcing.
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low-degree perturbations and hence they are mainly controlled by the surface density jump. Consequently, the particular type of

incompressibility becomes unimportant for higher-degree perturbations.

It is also seen that the locally incompressible material relaxes faster in time than the materially incompressible material.

The physical explanation is that the perturbation of the initial density distribution at a particular point vanishes during the

viscoelastic relaxation process for a locally incompressible medium. Thus, there are no internal buoyancy forces associated with

the continuous radial density gradient and the buoyancy forces are generated only by the internal density jumps. On the other hand,

slowly decaying internal buoyancy forces in a materially incompressible medium cause this medium to reach hydrostatic equilibrium

after a considerably longer time than a locally incompressible medium.

The ®nal hydrostatic equilibrium for the Heaviside loading history of an earth model is the sum of the elastic amplitude and the

amplitudes of all viscoelastic modes. Since there is no elastic layer in our earth models that would partly store the shear energy,

the radial displacement of the earth's surface once the ®nal hydrostatic equilibrium is attained is governed by the density jump on the

earth's surface. In addition, when the equilibrium between the external gravitational forcing and the internal buoyancy is restored,

the gravitational potential perturbation vanishes. In summary, the hydrostatic equilibrium is characterized by the equations

Un(a, t)jt??~{

������������
2nz1

4n

r
1

a2%0(a)
, Fn(a, t)jt??~0 (53)

(Wu & Peltier 1982). Fig. 6 shows the time relaxation behaviour of model C for the time interval 0±104 kyr. It is seen that a locally

incompressible material attains hydrostatic equilibrium much more quickly than a materially incompressible material.
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Figure 3. Comparison of the solutions for local incompressibility (solid lines) and material incompressibility (dashed lines) for the two-layer

model C. Time relaxation of the radial surface displacement Un(a), the horizontal surface displacement Vn(a) and the surface gravitational potential

perturbation Fn(a) are shown for various angular degrees n. Results apply to Heaviside load forcing. The physical units of Un(a) and Vn(a) are

10x20 m and that of Fn(a) is 10x20 m2 sx2.
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So far, we have considered earth models that are homogeneous with respect to the viscosity and the elastic shear modulus. We now

compare the responses of locally incompressible and materially incompressible models that have viscosities and elastic shear modulus

strati®cations. The initial density distribution of model SPRk is the same as that of model SPR but the viscosity and the elastic

shear moduli of the lower and upper mantle are chosen as follows: nLM=5.9r1021 Pa s, nUM=4.8r1020 Pa s, me
LM=2r1011 Pa

and me
UM=1.45r1011 Pa. Model SPRk also contains an elastic lithosphere of 95 km thickness with an elastic shear modulus of

me=0.67r1011 Pa. We note that this model belongs to the set of two- and three-layer models preferred by Lambeck et al. (1990) on

the basis of sea-level curves from northwest Europe.

The relaxation of model SPRk with locally incompressible strati®cation is characterized by a set of seven discrete relaxation

modes. In addition to the buoyancy modes M0, M1, M2 and C0 that characterize the response of model SPR, the viscoelastic modes

V1, V2 and L0 appear. They are associated with jumps of the viscosity and the elastic shear modulus at 670 km depth and at the base

of the lithosphere of model SPRk (e.g. Wu & Peltier 1982; Wolf 1985). As for model SPR, the condition of material incompressibility

imposed on the response of model SPRk causes the Laplace spectrum to be continuous, which complicates the inversion of the

solution in the Laplace transform domain. We therefore compute the response of model SPRk for material incompressibility directly

in the time domain using the spectral±®nite element approach (Martinec 2000).

Fig. 7 shows the time relaxation of the radial and horizontal surface displacements and the surface gravitational potential

perturbation for model SPRk during the time interval 0±10 kyr. Model SPRk is forced by the same load as models C, S and SPR,

whose relaxation is shown in Figs 3±5. Comparing Figs 5 and 7, we notice that models SPR and SPRk behave similarly for the

radial surface displacement and surface gravitational potential perturbation. The largest differences in these components occur for

angular degree n=2 and decrease with increasing degree n. The relative difference between the local incompressibility and material

incompressibility cases can reach 20 per cent for U2(a) and F2(a) and is about 2 per cent for U50(a) and F50(a). Because of the existence
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Figure 4. As for Fig. 3 but for the two-layer model S.
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of an elastic lithosphere in model SPR, the spectral amplitudes do not reach the hydrostatic limit (53). The most signi®cant difference

between the responses of models SPR and SPRk appears in the horizontal displacement Vn(a). The relaxation curves Vn(a) of model

SPRk have opposite signs compared to those of model SPR and they change the sign of the curvature with increasing time. In addition,

the relative difference between local incompressibility and material incompressibility is much smaller for model SPRk than for model

SPR. As is seen in the panels of the middle columns of Figs 5 and 7, the relaxation curves for the horizontal displacements of

model SPR may differ by several orders of magnitude, while these differences may reach 50 per cent at most for model SPRk, for

example, for the spherical component V10(a). We conclude that the viscosity and elastic shear modulus strati®cations signi®cantly

reduce the difference between the horizontal displacements of the locally incompressible and materially incompressible earth models.

The relaxation spectrum of an earth model with viscosity and elastic shear modulus strati®cations contains both the buoyancy and

the viscoelastic modes, while a model that is homogeneous with respect to viscosity and elastic shear modulus contains only the

buoyancy modes. Since the viscoelastic modes control the horizontal displacements more strongly than the buoyancy modes,

the horizontal displacement in model SPRk is not in¯uenced by the particular type of incompressibility condition as signi®cantly as it

is for model SPR.

1 0 C O N C L U S I O N S

This paper was motivated by the question raised by Wolf & Kaufmann (2000) whether the neglect of sphericity and self-gravitation in

planar viscoelastic earth modelling may affect the long-wavelength behaviour of their solution. They showed in particular that, for

local incompressibility, the elastic limit of the radial surface displacement may overshoot the hydrostatic limit for very long-

wavelength perturbations. Our modelling based on a gravitationally self-consistent spherical earth model has not con®rmed the
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Figure 5. As for Fig. 3 but for the four-layer model SPR.
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overshoot for long-wavelength perturbations. The time relaxation curves smoothly increase in magnitude and reach hydrostatic

equilibrium without overshoots during relaxation. This indicates that sphericity and self-gravitation cannot be neglected when

modelling long-wavelength viscoelastic perturbations for the case of local incompressibility.

Furthermore, we have considered two types of incompressibility conditions: the local form of incompressibility, which is based

on the principle that the local (Eulerian) perturbations of the initial density vanish during the viscoelastic relaxation process, and the

material (Lagrangian) form of incompressibility, which assumes that an elementary volume associated with a particle does not change

during its displacement. We have demonstrated that the particular type of incompressibility may in¯uence the radial surface

displacement and surface gravitational perturbation by more than 20 per cent depending on the radial gradient of the mantle density.

The larger the density gradient, the more signi®cant the type of incompressibility condition. This applies in particular to the

horizontal surface displacement, for which the differences range from 1±3 orders of magnitude. However, taking into account

viscosity and shear modulus strati®cations, the difference in horizontal displacements is signi®cantly reduced. This reduction is

effected in particular by the existence of an elastic lithosphere.
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Figure 6. Time relaxation of the radial surface displacement Un(a) and the surface gravitational potential perturbation Fn(a), n=2 and 50, for the

locally incompressible (solid lines) and materially incompressible (dashed lines) model C over the interval 0±104 kyr. The horizontal dashed lines

denote the hydrostatic limits expressed by eq. (53). Results apply to Heaviside load forcing.
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Figure 7. Comparison of the solutions for local incompressibility (solid lines) and material incompressibility (dashed lines) for the ®ve-layer model

SPRk. The initial density distribution of model SPRk is the same as that of model SPR but the viscosities and the elastic shear moduli of the lower

and upper mantle are as follows: nLM=5.9r1021 Pa s, nUM=4.8r1020 Pa s, me
LM=2r1011 Pa and me

UM=1.45r1011 Pa. Model SPRk contains an

elastic lithosphere of 95 km thickness with an elastic shear modulus of me=0.67r1011 Pa. Time relaxation of the radial surface displacement

Un(a), the horizontal surface displacement Vn(a) and the surface gravitational potential perturbation Fn(a) are shown for various angular degrees n.

Results apply to Heaviside load forcing. The physical units of Un(a) and Vn(a) are 10x20 m and that of Fn(a) is 10x20 m2 sx2.
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A P P E N D I X A : V E C T O R S P H E R I C A L H A R M O N I C S

We de®ne the vector spherical harmonics and present the results of applying the invariant differential operators on scalar and vector

spherical harmonics.

The vector spherical harmonics S(l)
nm(V), n=0, 1, . . . , m=xn, xn+1, . . . , n, l=x1, 0, 1, can be de®ned as follows

(e.g. Phinney & Burridge 1973):

S({1)
nm ())5~Ynm())er ,

S(1)
nm())5~grad )Ynm()) , (A1)

S(0)
nm())5~er|grad )Ynm()) ,

where grad V is the angular part of the gradient operator,

grad )5~e#
L
L#

zer
1

sin#
L

Lr
: (A2)

Ynm(V) are scalar spherical harmonics normalized according to Edmonds (1957) or Varshalovich et al. (1989, Chapter 5), er, eq and eQ
are spherical unit base vectors, q and Q are the co-latitude and longitude, respectively, and V)(q, Q). The vector functions Snm

(t1)(V)

and S(0)
nm(V) are called spheroidal and toroidal vector spherical harmonics, respectively. To abbreviate the notation, we follow the

usual convention in postglacial rebound studies and replace the pair of subscripts nm by subscript n only and the double summation

over n and m by summation over n (e.g. Wu & Peltier 1982).

Let us summarize the basic differential operations with vector spherical harmonics (e.g. Varshalovich et al. 1989, Chapter 7). The

gradient of the scalar function f (r)Yn(V), where f (r) is an arbitrary differentiable function of r, can be written in terms of spheroidal

vector spherical harmonics as

grad [ f (r)Yn())]~
df (r)

dr
S({1)

n ())z
f (r)

r
S(1)

n ()) ; (A3)
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the rotations of the vector spherical harmonics have the forms

rot [ f (r)S({1)
n ())]~{

f (r)
r

S(0)
n ()) ,

rot [ f (r)S(1)
n ())]~

d

dr
z

1

r

� �
f (r)S(0)

n ()) , (A4)

rot [ f (r)S(0)
n ())]~{n(nz1)

f (r)
r

S({1)
n ()){

d

dr
z

1

r

� �
f (r)S(1)

n ()) ;

and the divergences of the vector spherical harmonics are

div [ f (r)S({1)
n ())]~

d

dr
z

2

r

� �
f (r)Yn()) ,

div [ f (r)S(1)
n ())]~{n(nz1)

f (r)

r
Yn()) , (A5)

div [ f (r)S(0)
n ())]~0 :

The cross-products of the spherical base vector er with the vector spherical harmonics are

er|S({1)
n ())~0 , er|S(1)

n ())~S(0)
n ()) , er|S(0)

n ())~{S(1)
n ()) : (A6)

A P P E N D I X B : F U N D A M E N T A L S O L U T I O N F O R A L O C A L L Y I N C O M P R E S S I B L E
M O D E L W I T H I N I T I A L D E N S I T Y A C C O R D I N G T O D A R W I N ' S L A W

We derive the analytical form of the fundamental solution to the system of differential equations (9) and (10) for the special case when

the s-dependent shear modulus m is constant and the initial density r0 is described by Darwin's law (27).

To satisfy the local incompressibility condition (9), it is convenient to introduce the toroidal vector potential AT=AT(r, V) that

generates the spheroidal displacement uS. Since the rotation of a toroidal vector is a spheroidal vector and since the initial density

varies only radially, we may write

%0uS~rotAT : (B1)

To construct the fundamental solution for AT, we take the rotation of eq. (10), consider the fact that m is constant and substitute for

uS from eq. (B1). Then, using the differential identity

rot (%0 grad�1)~
d%0

dr
(er|grad�1) , (B2)

where r denotes the cross-product of vectors, we obtain a fourth-order differential equation for AT,

k rot rot rot
1

%0
rotAT

� �
~{

d%0

dr
(er|grad�1) : (B3)

Here, the gravitational potential perturbation w1 is assumed to be a known function of r and V that is given by eqs (19) and (20).

The general solution of the differential equation (B3) can be expressed as the sum of the solution Ah
T to the homogeneous

equation

rot rot rot
1

%0
rotAh

T

� �
~0 (B4)

and a particular solution Ap
T to the non-homogeneous equation (B3),

AT~Ah
TzAp

T : (B5)

It is straightforward to show that the solution to eq. (B4) for Darwin's model of the initial density, r0(r)=arxb, is

Ah
T(r, ))~ar{bz1

X
n

(A1,nrpzA2,nrqzA3,nrnz1zA4,nr{n)S(0)
n ()) , (B6)

where the coef®cients Ai,n, i=1, . . . , 4, are constants and

p

q

( )
5~

1

2
b{3+

��������������������������������������
(b{1)2z4n(nz1)

q� �
: (B7)
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Applying the operator grad to eq. (19), taking the cross-product of er and the result, and employing eqs (A3) and (A6) for the

gradient of a scalar function and the cross-products of vector er and vector spherical harmonics, respectively, the vector occurring on

the right-hand side of eq. (B3) can be expressed as

er|grad�1~
X

n

(�1,nrn{1z�2,nr{n{2)S(0)
n ()) : (B8)

This enables us to express the two particular solutions to eq. (B3) in the form

Ap
T(r, ))~

a2

k
r{2bz1

X
n

�1,n

d1
rnz1z

�2,n

d2
r{n

� �
S(0)

n ()) , (B9)

where

d15~(b{2n{1)e1 , e15~2(b{1)2z(nz1)(4{3b) , f15~b(nz2){2(2nz3) ,

d25~(bz2nz1)e2 , e25~2(b{1)2{n(4{3b) , f25~b(n{1){2(2n{1) :
(B10)

Having found the toroidal vector potential AT and using the relation (A4) for the rotation of the toroidal vector spherical

harmonics, the spheroidal displacement uS can be determined from the rotation of AT divided by r0:

uS(r, ))~
X

n

[Un(r)S({1)
n ())zVn(r)S(1)

n ())] , (B11)

where

Un(r)5~{n(nz1)(A1,nrpzA2,nrqzA3,nrnz1zA4,nr{n){n(nz1)
%0

k
�1,n

d1
rnz1z

�2,n

d2
r{n

� �
, (B12)

Vn(r)5~(qz1)A1,nrpz(pz1)A2,nrq{(n{bz3)A3,nrnz1z(nzb{2)A4,nr{n

{
%0

k
(n{2bz3)

�1,n

d1
rnz1{(nz2b{2)

�2,n

d2
r{n

� �
: (B13)

The determination of the fundamental solution for the pressure P is rather laborious. Introducing the notation

n5~%z2k div u{%0(u . grad�0) , (B14)

eq. (10) for constant m reads

grad n~%0 grad�1zk rot rot u : (B15)

Taking the divergence of the last equation, making use of the differential identity

div (%0 grad�1)~%0+2�1zgrad %0
. grad�1 (B16)

and using the Laplace equation (11) for w1, we obtain the Poisson differential equation for the pressure p,

+2n~
d%0

dr
(er

. grad�1) , (B17)

where the right-hand side is a known function of r and V.

The general solution to the differential equation (B17) can be expressed as the sum of the solution ph to the homogeneous

equation +2ph=0 and a particular solution pp to the non-homogeneous equation (B17):

n~nhznp : (B18)

The fundamental solution to the homogeneous equation is given by the solid spherical harmonics,

nh(r, ))~k
X

n

(C1,nrnzC2,nr{n{1)Yn()) , (B19)

where the s-dependent shear modulus m has been introduced for normalization. In order to derive the analytical form of the

right-hand side of eq. (B17), we take the gradient of eq. (19) and consider the scalar product of er and the result. We obtain

er
. grad�1~

X
n

(n�1,nrn{1{(nz1) �2,nr{n{2)Yn()) , (B20)

which enables us to express two particular solutions of eq. (B17) in the form

np(r, ))~ar{b
X

n

n

2nz1{b
�1,nrnz

nz1

2nz1zb
�2,nr{n{1

� �
Yn()) : (B21)
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With the help of eqs (B14), (B18), (B19) and (B21), we now have

%(r, ))~{2kdiv uz%0(u . grad�0)zk
X

n

(C1,nrnzC2,nr{n{1)Yn())

z%0

X
n

n

2nz1{b
�1,nrnz

nz1

2nz1zb
�2,nr{n{1

� �
Yn()) , (B22)

where the coef®cients C1,n and C2,n depend on the constants Ai,n, i=1, . . . , 4, via eq. (B15). After considerable algebraic

manipulation, we arrive at

C1,n~(nz1)[2(2nz3){b(nz2)]A3,n , C2,n~n[2(2n{1){b(n{1)]A4,n : (B23)

Finally, the spherical harmonic coef®cients Pn(r) of the series expansion (21) of the pressure P can be expressed in the form

%n(r)~ %0g0{
2kb

r

� �
Un(r)zk(nz1)[2(2nz3){b(nz2)]rnA3,nzk n[2(2n{1){b(n{1)]r{n{1A4,n

z%0
n

2nz1{b
�1,nrnz

nz1

2nz1zb
�2,nr{n{1

� �
: (B24)

For completeness, let us state, without detailed derivation, the formulae for the spheroidal vector components of the stress vector

Tr(r, V))er
. t, where the stress tensor t is de®ned by eq. (7):

Tr(r, ))~
X

n

[Trn(r)S({1)
n ())zT#n(r)S(1)

n ())zTrn(r)S(0)
n ())] : (B25)

The coef®cients of the spheroidal vector spherical harmonics in this equation have the form

Trn(r)5~%nz2k
dUn

dr
(B26)

~{n(nz1)
2k
r

(p{b)z%0g0

� �
rpA1,n{n(nz1)

2k
r

(q{b)z%0g0

� �
rqA2;n

{(nz1)
2k
r

n2{n{3{
n{2

2
b

� �
zn%0g0

� �
rnz1A3,nzn

2k
r

n2z3n{1z
nz3

2
b

� �
{(nz1)%0g0

� �
r{nA4,n

{
n%0

d1

1

r
[e1z2(nz1)(n{2bz1)]z

nz1

k
%0g0

� �
rnz1�1,nz

(nz1)%0

d2

1

r
[e2z2n(nz2b)]{

n

k
%0g0

� �
r{n�2,n ,

where e1 and e2 are de®ned by eq. (B10) and

T#n(r)5~k
dVn

dr
{

Vn

r
z

Un

r

� �
~{kf[n(nz1){(p{1)(qz1)]rp{1A1,nz[n(nz1){(pz1)(q{1)]rq{1A2,nzn(2n{bz4)rnA3,nz(nz1)(2nzb{2)r{n{1A4,ng

{%0

�
[n(nz1)z(n{2bz3)(n{b)]rn �1,n

d1
z[n(nz1)z(nz2b{2)(nzbz1)]r{n{1 �2,n

d2

�
: (B27)

Note that we do not give the formula for the coef®cients TQn(r) of the toroidal vector spherical harmonics, since they are not excited in

our problem. Finally, the perturbation of the gravitational potential gradient de®ned by

Qn(r)5~
dFn

dr
z

nz1

r
Fnz4nG%0Un (B28)

takes the form

Qn(r)~{4nG%0 n(nz1)(A1,nrpzA2,nrqzA3,nrnz1zA4,nr{n)z(2nz1)rn{1�1,n{n(nz1)
4nG%2

0

k
�1,n

d1
rnz1z

�2,n

d2
r{n

� �
: (B29)

A P P E N D I X C : M A T R I X O F T H E F U N D A M E N T A L S O L U T I O N A N D I T S I N V E R S E

We present the analytical forms of the component matrices U(r, m), V and R(r, m) of the fundamental matrix M(r, s) and of their

inverses Ux1(r, m), Vx1 and Rx1(r, m) as functions of the parameters of each layer. The parameters have the following meanings:

n=angular degree, N)n(n+1), r=radial distance from the centre of the earth, m(s))mes/(s+me/n)=s-dependent shear modulus of
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the layer, me=elastic shear modulus of the layer, n=dynamic viscosity of the layer, r0(r)=arxb=initial density of the layer,

a, b=density parameters, g0(r)=initial gravitation and G=Newton's gravitational constant. The symbols s, t and d1, d2, e1, e2, f1, f2

are de®ned by eqs (B7) and (B10), respectively.

The explicit forms of the component matrices are

U(r, k)5~
1

N

1 0 0 0 0 0

0 1 0 0 0 1

%0g0{
4k
r

2kN

r

2k
r

0 0
2kN

r

2k
r

{
2k
r

0
k
r

0 {
2k
r

0 0 0 0 {
k

r%0
0

4nG%0 0 0 0 0 {
k d1

r2%0

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

, (C1)

V5~

N N N N N N

{q{1 {p{1 n{bz3 {n{bz2 {n{2bz2 {n{2bz2

0 0
1

2
(nz1) f1

1

2
nf2

1

2
ne1 {

1

2
(nz1)e2

0 0 {f1 f2 e1 e2

0 0 0 0 d1 d2

0 0 0 0 2nz1 0

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
, (C2)

and R is a diagonal matrix of the form

R(r, k)5~diag rp, rq, rnz1, r{n,
%0

k
rnz1,

%0

k
r{n

� �
: (C3)

The explicit forms of the inverses of the component matrices are

U{1(r, k)~N

1 0 0 0 0 0

{
4nG%2

0r2

k d1
1 0 0 0

%0r2

k d1

2{
%0g0r

2k
{N

r

2k
0 0 0

{2 2 0
r

k
0 0

0 0 0 0 {
%0r

k
0

4nG%2
0r2

k d1
0 0 0 0 {

%0r2

k d1

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

, (C4)

V{1~D

pz1

N
1 V{1

13 V{1
14 V{1

15 V{1
16

qz1

N
1 V{1

23 V{1
24 V{1

25 V{1
26

0 0 2 {n
2nz1

2nz1zb
{

d1

2nz1zb

0 0 2 nz1 0 {e1

0 0 0 0 0 1

0 0 0 0 2nz1 {d1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

, (C5)
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where we have introduced a diagonal matrix of the form

D5~diag
1

p{q
,

1

q{p
,

1

(2nz1) f1
,

1

(2nz1) f2
,

1

2nz1
,

1

(2nz1)d2

� �
(C6)

and used the abbreviations

V{1
13 5~

2

f1 f2
[ f1z(nz4zp{b)(4{b)] ,

V{1
23 5~

2

f1 f2
[ f1z(nz4zq{b)(4{b)] ,

V{1
14 5~

1

f1 f2
[(nz1) f1z2(nz4zp{b)(3{b)] ,

V{1
24 5~

1

f1 f2
[(nz1) f1z2(nz4zq{b)(3{b)] ,

V{1
15 5~

1

e2 f1
[ f1z2(nz4zp{b)(2{b)] ,

V{1
25 5~

1

e2 f1
[ f1z2(nz4zq{b)(2{b)] ,

V{1
16 5~

1

e2 f1 f2
[ f1o16z2(nz4zp{b)(2{b)o26] ,

V{1
26 5~

1

e2 f1 f2
[ f1o16z2(nz4zq{b)(2{b)o26] ,

o165~{e1e2z(b{1)(7b{8) f2 ,

o265~{(b2{7bz8)e2z(b{1)(7b{8) f2 :

(C7)

The evaluation of the inverse of the diagonal matrix R yields

R{1(r, k)~diag r{p, r{q, r{n{1, rn,
k
%0

r{n{1,
k
%0

rn

� �
: (C8)

To compute the viscous amplitudes of the solution, the m-derivative of the matrices U(r, m), Ux1(r, m) and R(r, m) is required.

This derivative can be determined analytically by differentiating eqs (C1), (C3) and (C4) with respect to m. The result is

N(1)(r)5~
dU(r, k)

dk
~

1

N r

0 0 0 0 0 0

0 0 0 0 0 0

{4 2N 2 0 0 2N

2 {2 0 1 0 {2

0 0 0 0 {
1

%0
0

0 0 0 0 0 {
d1

r%0

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

, (C9)

N({1)(r)5~{k2 dU{1(r, k)
dk

~N r

0 0 0 0 0 0

{
4nG%2

0r

d1
0 0 0 0

%0r

d1

{
%0g0

2
0

1

2
0 0 0

0 0 0 1 0 0

0 0 0 0 {%0 0

4nG%2
0r

d1
0 0 0 0 {

%0r

d1

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

, (C10)
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N(0)(r)5~{k2 dR(r, k)
dk

~diag(0, 0, 0, 0, %0 rnz1, %0 r{n) : (C11)

A P P E N D I X D : S -DER I VAT I V E OF THE SECULAR DETERMINANT

The analytical form of the layer propagator matrix allows us to compute the s-derivative of the secular determinant det T(s) in

eq. (52) analytically. We have

d

ds
[detT(s)]~

X3

i, j~1

L[detT(s)]
LTij

dTij(s)
ds

~
X3

i, j~1

T{
ij

dTij(s)
ds

, (D1)

where T{
ij is the co-factor of Tij. The problem of ®nding an analytical s-derivative of the secular determinant thus reduces to that of

®nding analytical s-derivatives of the matrix elements Tij. Taking into account eq. (46), we can write

dT(s)
ds

~
dË(a, b, s)

ds
Mc(b, s)zË(a, b, s)

dMc(b, s)
ds

: (D2)

The derivative in the ®rst term on the right-hand side of eq. (D2) can be obtained by differentiating matrix L with respect to s and

deleting rows one, two and ®ve. Differentiating eq. (42) with respect to s yields

dL(a, b, s)
ds

~
dP(rN , rN{1)

ds
P(rN{1, rN{2) . . .P(r2, r1)

zP(rN , rN{1)
dP(rN{1, rN{2)

ds
. . .P(r2, r1)

z . . .

zP(rN , rN{1)P�rN{1, rN{2) . . .
dP(r2, r1)

ds

~
XN

k~2

L(rN , rk, s)
dP(rk, rk{1)

ds
L(rk{1, r1,s) : (D3)

Note that, for the last step, we have used de®nition (42) again and considered that L(rk, rk, s) is equal to the 6r6 unit matrix.

Differentiating also eq. (38) with respect to s yields

dP(rk, rk{1, s)
ds

~
dU(rk, kk)

dkk

VG(rk, rk{1)V{1U{1(rk{1, kk)zU(rk, kk)VG(rk, rk{1)V{1 dU{1(rk{1, kk)

dkk

� �
dkk

ds
, (D4)

where the s-derivative of the shear modulus can be obtained from eq. (8):

dkk

ds
~

k2
k

lks2
: (D5)

Substituting for the m-derivatives of matrices U(r, m) and Ux1(r, m) from eqs (C9) and (C10), eq. (D4) takes the form

dP(rk, rk{1, s)
ds

~
1

lks2
[k2

kN
(1)(rk)VG(rk, rk{1)V{1U{1(rk{1, kk){U(rk, kk)VG(rk, rk{1)V{1N({1)(rk{1)] : (D6)

The derivative in the second term on the right-hand side of eq. (D2) is similarly obtained by differentiating eq. (34) with

respect to s:

dMc(b, s)
ds

~
1

l1s2
[k2

1N
(1)(b)VR(b, k1){U(b, k1)VN(0)(b)] , (D7)

where N(0)(b) is given by eq. (C11) and the second, fourth and sixth columns of the matrix on the right-hand side have been deleted.

Substituting eqs (D3) and (D6) into eq. (D2), we ®nally obtain

dT(s)
ds

~
1

s2

XN

k~2

�
Ë(rN , rk, s)

1

lk
[k2

kN
(1)(rk)VG(rk, rk{1)V{1U{1(rk{1, kk)

{U(rk, kk)VG(rk, rk{1)V{1N({1)(rk{1)]L(rk{1, r1, s)

�
Mc�b, s�zË(a, b, s)

dMc(b, s)

ds
: (D8)

Substituting the ij element of the last expression into eq. (49) provides the analytical form of the s-derivative of the secular determinant.

156 Z. Martinec, M. Thoma and D. Wolf

# 2001 RAS, GJI 144, 136±156

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/144/1/136/763936 by U

.S. D
epartm

ent of Justice user on 16 August 2022


