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Abstract

There has been a renewed interest in column-
oriented database architectures in recent
years. For read-mostly query workloads like
those found in data warehouse and decision
support applications, “column-stores” have
been shown to perform particularly well rel-
ative to “row-stores”. In order for column-
stores to be readily adopted as a replacement
for row-stores, they must maintain the same
interface to external applications as do row-
stores. This implies that column-stores must
output row-store style tuples.

Thus, the input columns stored on disk must
be converted to rows at some point in the
query plan. The optimal point at which to
do this is not obvious. This problem can
be considered as the opposite of the projec-
tion problem in row-store systems. While
rows-stores need to determine where in query
plans to place projection operators to make
tuples narrower, column-stores need to deter-
mine when to combine single-column projec-
tions into wider tuples. This paper describes
a variety of strategies for tuple construction
and intermediate result representations, and
then provides a systematic evaluation of these
strategies.

1 Introduction

Vertical partitioning has long been recognized as a
valuable tool for increasing the performance of read-
intensive databases. Recent years have seen the emer-
gence of several database systems that take this idea
to the extreme by fully vertically partitioning database
tables and storing them as columns on disk [16, 7, 11,
1, 10, 14, 13]. Research on these column-stores has
shown that for certain read-mostly workloads, this ap-
proach can provide substantial performance benefits
over traditional row-oriented database systems. Most
column-stores choose to offer a standards-compliant
relational database interface (e.g., ODBC, JDBC, etc.)

This means they must ultimately stitch together sepa-
rate columns into tuples of data that are output. De-
termining the tuple construction point in a query plan
is the inverse of the problem of applying projections
in a row-oriented database, since rather than deciding
when to project an attribute out of an intermediate re-
sult flowing through the query plan, the system must
decide when to add it in. Lessons from when to ap-
ply projection in row-oriented databases (projections
are almost always performed as soon as an attribute
is no longer needed) suggest a natural tuple construc-
tion policy: at each point where a column is accessed,
add the column to an intermediate tuple representa-
tion if that column is needed by some later operator or
is included in the set of output columns. Then, at the
top of the query plan, these intermediate tuples can
be directly output to the user. We call this process
of adding columns to intermediate results materializa-
tion, and call the simple scheme described above early
materialization, since it seeks to form intermediate tu-
ples as early as possible.

Surprisingly, we have found that early materializa-
tion is not always the best strategy to employ in a col-
umn store. To illustrate why this is the case, consider
a simple example: suppose a query consists of three
selection operators σ1, σ2, and σ3 over three columns,
R.a, R.b, and R.c (all sorted in the same order and
stored in separate files), where σ1 is the most selec-
tive predicate and σ3 is the least selective. An early
materialization strategy could process this query as
follows: Read in a block of R.a, a block of R.b, and
a block of R.c from disk. Stitch them together into
(likely more than one) block of row-store style triples
(R.a, R.b,R.c). Apply σ1, σ2, and σ3 in turn, allowing
tuples that match the predicate to pass through.

However, there is another strategy that can be more
efficient; we call this second approach late materializa-
tion, because it doesn’t form tuples until after some
part of the plan has been processed. It works as fol-
lows: first scan R.a and output the positions (ordinal
offsets of values within the column) in R.a that satisfy
the σ1 (these positions can take the form of ranges,
lists, or a bitmap). Repeat with R.b and R.c, out-
putting positions that satisfy σ2 and σ3 respectively.



Next, use position-wise AND operations to intersect
the position lists. Finally, re-access R.a, R.b, and R.c
and extract the values of the records that satisfied all
predicates and stitch these values together into output
tuples. This late materialization approach can poten-
tially be more CPU efficient because it requires fewer
intermediate tuples to be stitched together (which is
a relatively expensive operation as it can be thought
of as a join on position) and position lists are a small,
very compressible data structure that can be operated
on directly with very little overhead. For example, 32
(or 64 depending on processor word size) positions can
be intersected at once when ANDing together two po-
sition lists represented as bit-strings. Note, however,
that one problem of this late materialization approach
is that it requires re-scanning the base columns to form
tuples, which can be slow (though they are likely to
still be in memory upon re-access if the query is prop-
erly pipelined).

In this paper, we study the use of early and late
materialization in the C-Store DBMS. We focus on
standard warehouse-style queries: read-only work-
loads, with selections, aggregations, and joins. We
study how different selectivities, compression tech-
niques, and query plans affect the trade-offs in al-
ternative materialization strategies. We run experi-
ments to determine when one approach dominates the
other, and develop an analytical model that can be
used, for example, in a query optimizer to select a
materialization strategy. Our results show that, on
some workloads, late materialization can be an order
of magnitude faster than early-materialization, while
on other workloads, early-materialization outperforms
late-materialization by an order of magnitude.

In the remainder of this paper we give a brief
overview of the C-Store query executer in Section 1.1.
We then detail the trade-offs between the two fun-
damental materialization strategies in Section 2, and
then present both pseudocode and an analytical model
for some query plans using each strategy in Section 3.
We then validate our models with experimental results
by extending C-Store to support query execution us-
ing any of the materialization strategies proposed in
Section 4. We then describe related work in Section 5
and conclude in Section 6.

1.1 The C-Store Query Executor

We now provide a brief overview of the C-Store query
executor, which is more fully described in [16, 3]
and available in an open source release [2]. The
components of the query executor relevant to the
present study are the on-disk layout of data, the ac-
cess methods provided for reading data from disk, the
data structures provided for representing data in the
DBMS, and the operators provided for manipulating
these data.

Each column is stored in a separate file on disk as

a series of 64KB blocks and can be optionally encoded
using a variety of compression techniques. In this pa-
per we experiment with column-specific compression
techniques (run-length encoding and bit-vector encod-
ing), and with uncompressed columns. In a run-length
encoded file, each block contains a series of RLE triples
(V, S, L), where V is the value, S is the start position
of the run, and L is the length of the run.

A bit-vector encoded file representing a column of
size n with k distinct values consists of k bit-strings
of length n, one per unique value, stored sequentially.
Bit-string k has a 1 in the ith position if the column it
represents has the value k in the ith position.

C-Store provides an access method (or DataSource)
for each encoding type. All C-Store data sources sup-
port two basic operations: reading positions from a
column and reading (position, value) pairs from a col-
umn (note that any given instance of a data source can
be used to read positions or (position, value) pairs, but
not both). Additionally, all C-Store data sources ac-
cept SARGable predicates [15] to restrict the set of
results returned. In order to minimize CPU overhead,
C-Store data sources and operators are block-oriented.
Data sources return data from the underlying files in
blocks of encoded data, wrapped inside a C++ class
that provides iterator-style (hasNext() and getNext()
methods) and vector-style [7] (asArray()) access to the
data in the blocks.

In the Section 3.1 we will give pseudocode for three
basic C-Store operators: DataSource (Select), AND,
and Merge. We also describe the Join operator in sec-
tion 4.3). The DataSource operator reads in a column
of data and produces the column values that pass a
predicate. AND accepts input position lists and pro-
duces an output position list representing their inter-
section. Finally, the n-ary Merge operator combines n
inputs of (position, value) pairs into a single output of
n-attribute tuples.

2 Materialization Strategy Trade-offs

In this section we present some of the trade-offs that
are made between materialization strategies. A mate-
rialization strategy needs to be in place whenever more
than one attribute from any given relation is accessed
(which is the case for most queries). Since a column-
oriented DBMS stores each attribute independently,
it must have some mechanism for stitching together
multiple attributes from the same logical tuple into a
physical tuple. Every proposed column-oriented archi-
tecture accomplishes this by attaching either physical
or virtual tuple identifiers or positions to column val-
ues. To reconstruct a tuple from multiple columns of
a relation, the DBMS simply needs to find matching
positions. Modern column-oriented systems [16, 6, 7]
store columns in position order; i.e., to reconstruct
the first tuple one needs to take the first value from
each column, the second tuple is constructed from the



second value from each column, and likewise as one
iterates down through the columns. This accelerates
the tuple reconstruction process.

As described in the introduction, tuple reconstruc-
tion can occur at different points in a query plan. Early
materialization constructs tuples as soon as (or some-
times before) tuple values are needed in the query plan.
Late materialization constructs tuples as late as pos-
sible, sometimes even at the query output. Each ap-
proach has a set of advantages.

2.1 Late Materialization Advantages

Late materialization allows the executer to operate on
positions and compressed, column-oriented data and
defer tuple construction.

2.1.1 Operating on Positions

The process of tuple construction starts to get inter-
esting as soon as predicates are applied to different
columns. The result of predicate application are dif-
ferent subsets of positions for different columns. Tuple
reconstruction thus requires a equi-join on position of
multiple columns. However, since columns are sorted
by position, this join can be performed with a rela-
tively fast merge join.

Positions can be represented using a variety of com-
pression techniques. Runs of consecutive positions can
be represented using position ranges of the form [start-
pos, endpos]. Positions can also be represented as bit-
maps using a single bit to represent every position in a
column, with a ’1’ in the bit-map entry if the tuple at
the position passed the predicate and a ’0’ otherwise.
For example, for a position range of 11-20, a bit-vector
of 0111010001 would indicate that positions 12, 13, 14,
16, and 20 contained values that passed the predicate.

It turns out that, in many cases, these position rep-
resentations can be operated on directly without using
column values. For example, an AND operation of 3
single column predicates in the WHERE clause of an
SQL query can be performed by applying each pred-
icate separately on its respective column to produce
3 sets of positions for which the predicate matched.
These 3 position lists can be intersected to create a
new position list that contains a list of all positions of
tuples that passed every predicate. This position list
can then be sent to other columns in the same relation
to retrieve additional column values from those logical
tuples, which can then be sent to parent operators in
the query plan for processing.

Position operations are highly efficient from a CPU
perspective due to the highly compressible nature of
position representations and the ease of operation on
them. For example, intersecting two position lists rep-
resented using bit-strings is requires only n/32 (or n/64
depending on processor word size) instructions (if n is
the number of positions being intersected) since 32 po-
sitions can be intersected in a single instruction. In-

tersecting a position range with a bit-string is even
faster (requiring a constant number of instructions),
as the result is equal to the subset of the same bit-
string starting at the beginning of the position range
and ending at the last position covered by the range.

Not only is the processing of positions fast, but their
creation can also be fast since in many cases the po-
sitions of tuples that pass a predicate can be derived
directly from a column index. For example, if there
is a clustered index over a column and a predicate on
a value range, the index can be accessed to find the
start and end positions that match the value range,
and these two positions can encode the entire set of
positions in that column that match the predicate.
Similarly, there might be a bit-map index on that col-
umn [12, 16, 3] in which case the positions matching
a predicate can be derived by ORing together the ap-
propriate bitmaps. In both cases, the original column
values never have to be accessed.

2.1.2 Column-Oriented Data Structures

Another advantage of late materialization is that col-
umn values can be stored together contiguously in
memory in column-oriented data structures. This has
two performance advantages: First, the column can be
kept compressed in memory using the same column-
oriented compression techniques as was used to store
the column on disk. [3] showed that techniques such as
run length encoding (RLE) of column values and bit-
vector encoding are ideally suited for column stores
and can easily be operated on directly. For exam-
ple, for RLE encoded data, an entire run length of
values can be processed in one operator loop. Tuple
construction requires decompression of run-length en-
coded data since only the values in one column tend to
repeat, not the entire tuple (i.e., a table with 5 tuples:
(2, a), (2, b), (2, c), (2, d), (2, e) can be represented in
column format as (2,5), (a,b,c,d,e) where the (2,5) in-
dicates that the value 2 repeats 5 times; however tuple
construction requires the value ’2’ to appear in each of
the five tuples in which it is contained).

Second, looping through values from a column ori-
ented data structure tends to be much faster than
looping through values using a tuple iterator inter-
face. This is attributed to two main reasons: First,
entire cache lines are filled with values from the same
column. This maximizes the efficiency of the memory
bandwidth bottleneck [4] as the cache prefetcher only
fetches relevant data. Second, high IPC (instructions-
per-cycle) vector processing code can be written for
column block access taking advantage of modern
super-scalar CPUs [6, 5, 7].

2.1.3 Construct Only Relevant Tuples

In many cases, a query outputs fewer tuples than
are actually processed. Predicates usually reduce the
number of tuples output, and aggregations combine



tuples together into summary tuples. Thus, if the ex-
ecuter waits long enough before constructing a tuple,
it might be able to avoid constructing it altogether.

2.2 Early Materialization Advantages

The fundamental problem with waiting as long as pos-
sible before tuple construction is that in some cases
columns have to be accessed more than once in a query
plan. Take, for example, the case where a column is ac-
cessed once to get positions of the column that match
a predicate and again downstream in the query plan
for its values. For the cases where the positions that
match the predicate can not be answered directly from
an index, the column values must be accessed twice. If
the query is properly pipelined, the re-access will not
have a disk cost component (the disk block will still
be in the buffer cache); however there will be a CPU
cost component of scanning through the block to find
the set of values corresponding to a given set of posi-
tions. This cost will be even higher if the positions are
not in sorted order (if, for example, they got reordered
through a join - an example of this is given in Section
4.3).

For the early materialization strategy, as soon as a
column is accessed, it’s values are added to the tuple
being constructed and the column will not need to be
reaccessed. Thus, the fundamental trade-off between
early materialization and late materialization is the
following: while late materialization enables several
performance optimizations (operating directly on posi-
tion data, only constructing relevant tuples, operating
directly on column-oriented compressed data, and high
value iteration speeds), if the column re-access cost
at tuple reconstruction time is high, a performance
penalty is paid.

3 Query Processor Design

Having described some of the fundamental trade-offs
between early and late materialization, we now give de-
tailed examples for how these materialization alterna-
tives translate into query execution plans in a column-
oriented system. We present query plans for simple
selection queries in C-Store and give both pseudocode
and an analytical model for each materialization strat-
egy.

3.1 Operator Implementation and Analysis

To better illustrate the trade-offs between early and
late materialization, in this section we present an ana-
lytical model of the two strategies. The model is com-
posed of three basic types of operators:

• Data source (DS) operators that read columns
from disk, filtering on one or more single-column
predicates or a position list as they go, and pro-
ducing vectors of positions or tuples of positions
and values.

|Ci| No. of disk blocks in Coli
||Ci|| No. of “tuples” in Coli
||POSLIST || No. of positions in POSLIST
F Fraction of pages of a column in buffer

pool
SF Selectivity factor of predicate
BIC CPU time in ms of getNext() call in

block iterator
TICTUP CPU time for getNext() call in tuple

iterator
TICCOL CPU time for getNext() call in column

iterator
FC Time for a function call
PF Prefetch size (in number of disk blocks)
SEEK Disk seek time
READ Time to read a block from disks
RL Average length of a sorted run in RLE

encoded columns (RLc) or position lists
(RLp) (equal to one if uncompressed)

Table 1: Notation used in analytical model

• AND operators that merge several filtered posi-
tion vectors or tuples with positions together into
a smaller list of positions.

• Tuple construction operators that combine nar-
row tuples of positions and values into wider
columns with positions and multiple values.

We use the notation in Table 1 to describe the costs
of the different operators.

3.2 Data Sources

In this section, we consider the cost of accessing a col-
umn on disk via a data source operator. We consider
four cases:

Case 1: A column Ci of |Ci| blocks is read from
disk and a predicate with selectivity SF is applied to
each tuple. The output is a column of positions. The
pseudocode and cost analysis of this case is shown in
Figure 1.

DS_Scan-Case1(Column C, Pred p)
1. for each block b in C
2. read b from disk
3. for each RLE tuple t in b
4. apply p to t
5. output positions from t

CPU =

|Ci| ∗BIC+ (1)

||Ci|| ∗ (TICCOL + FC)/RL+ (3, 4)

SF ∗ ||Ci|| ∗ FC (5)

IO =(
|Ci|
PF

∗ SEEK + |Ci| ∗READ) ∗ (1− F ) (2)

Figure 1: Psuedocode and cost formulas for data
sources, Case 1. Numbers in parentheses in cost for-
mula indicate corresponding steps in the pseudocode.

Case 2: A column Ci of |Ci| blocks is read from
disk and a predicate with selectivity SF is applied
to each tuple. The output is a column of (positions,
value) pairs.



The cost of Case 2 is identical to Case 1 except
for step (5) which becomes SF ∗ ||Ci|| ∗ (TICTUP +
FC). The slightly higher cost reflects the cost of gluing
positions and values together for the output.

Case 3: A column Ci of |Ci| blocks is read from
disk or memory and filtered with a list of positions,
POSLIST . The output is a column of the values cor-
responding to those positions. The pseudocode and
cost analysis of this case is shown in Figure 2.

DS_Scan-Case3(Column C, POSLIST pl)
1. for each block b in C
2. read b from disk
3. iterate through pl, for each pos. (range)
4. jump to pos (range) in b and output value(s)

CPU =

|Ci| ∗BIC+ (1)

||POSLIST ||/RLp ∗ (TICCOL)+ (3)

||POSLIST ||/RLp ∗ (TICCOL + FC) (4)

IO =(
|Ci|
PF

∗ SEEK + SF ∗ |Ci| ∗READ) ∗ (1− F ) (2)

/* F=1 and IO → 0 if col already accessed */

/* SF ∗ |Ci| is a lower bound for the number of

necessary blocks to read in. However, for highly

localized data (like the semi-sorted data we will

work with), this is a reasonable approximation*/

Figure 2: Psuedocode and cost formulas for data
sources, Case 3.

Case 4: A column Ci of |Ci| blocks is read from
disk and a set of tuples EMi of the form (pos,<
a1, . . . , an >) is input to the operator. The operator
jumps to the position pos in the column and a predi-
cate with selectivity SF is applied. Tuples that satisfy
the predicate are merged with EMi to create a tuple
of the form (pos,< a1, . . . , an, an+1 >) that contains
only the positions that were in EMi and that satis-
fied the predicate over Ci. The pseudocode and cost
analysis of this case is shown in Figure 3.

DS_Scan-Case4(Column C, Pred p, Table EM)
1. for each block b in C
2. read b from disk
3. iterate through tuples e in EM, extract pos
4. use pos to jump to correct tuple t in C

and apply predicate
5. if predicate succeeded, output <e, t>

CPU =

|Ci| ∗BIC+ (1)

||EMi|| ∗ TICTUP + (3)

||EMi|| ∗ ((FC + TICTUP ) + FC) (4)

SF ∗ ||EMi|| ∗ (TICTUP ) (5)

IO =(
|Ci|
PF

∗ SEEK + |Ci| ∗READ) ∗ (1− F ) (2)

Figure 3: Psuedocode and cost formulas for data
sources, Case 4.

3.3 Multicolumn AND

The AND operator can be thought of as taking in k po-
sition lists, inpos1 . . . inposk and producing a new list
of positions that represents the intersection of the two
input lists, outpos. This model examines two possible
representations for a list of positions: a list of ranges
of positions(e.g., 1-100, 200-250) and bit-strings with
one bit per position. The AND operator is only used
in the LM case, since EM always uses Data scan Case
4 above to construct tuples as they are read from disk.
If the positional input to AND are all ranges, then it
will output position ranges. Otherwise it will output
positions in bit-string format.

We consider three cases:
Case 1: Range inputs, Range output
In this case, each of the input position lists and the

output position list are each encoded as ranges. The
pseudocode and cost analysis for this case is shown in
Figure 4. Since this operator is a streaming operator
it incurs no I/O.

AND(POSLIST inpos 1 ... inpos k)
1. iterate through position lists
2. perform AND operations
3. produce output lists

Let M =max(||inposi||/RLpi , i ∈ 1 . . . k)

COST = X
i=1...k

(TICCOL ∗ ||inposi||/RLpi )+ (1)

M ∗ (k − 1) ∗ FC+ (2)

M ∗ TICCOL ∗ FC (3)

Figure 4: Psuedocode and cost formulas for AND,
Aase 1.

Case 2: Bit-list inputs, bit-list output
In this case each of the input position lists and the

output position lists are bit vectors. The input posi-
tion lists are ”ANDed” 32 bits at a time. The cost
formula for this case is identical to Case 1 except that
every instance of ||inposi||/RLpi in Figure 4 is replaced
with ||inposi||/32 (32 is the processor word size).

Case 3: Mix of Bit-list and range inputs, bit-
list output

In this case the input position lists to the AND
operator are a mix of range and bit lists. The output
is a bit-list. Execution occurs in three steps. First the
range lists are intersected to produce one range list.
Second, the bit-lists are anded together to produce a
single bit list. Finally, the single range and bit lists
are combined to produce the output list.

3.4 Tuple Construction Operators

The final two operators we consider are tuple construc-
tion operators. The first, the MERGE operator, takes
k sets of values V AL1 . . . V ALk and produces a set of
k-ary tuples. This operator is used to construct tuples



at the top of an LM plan. The pseudocode and cost
of this operation is shown in Figure 5.

Merge(Col s1,..., Col sk)
1. iterate through all k cols of len. ||VAL_i||
2. produce output tuples

COST =

// Access values as vector (don’t use iterator)

||V ALi|| ∗ k ∗ FC+ (1)

// Produce tuples as array (don’t use iterator)

||V ALi|| ∗ k ∗ FC) (2)

Figure 5: Psuedocode and cost formulas for Merge.

This analysis assumes that we have an iterator over
each of the input streams, that all of the input streams
are memory resident, and that only one iterator is
needed to produce the output stream.

The second tuple construction operator is the SPC
(Scan, Predicate, and Construct) operator which can
sit at the bottom of EM plans. SPC takes a set of
columns V AL1 . . . V ALk, reads them off disk, option-
ally takes a set of predicates to apply on the column
values, and constructs tuples if all predicates pass. The
pseudocode and cost of this operation is shown in Fig-
ure 6.

Merge(Col c1,..., Col ck, Pred p1,..., Pred pk)
1. for each column, ||C_i||
2. for each block b in C_i
3. read b from disk
4. check predictates
5. construct tuples and output

CPU =

|Ci| ∗BIC+ (2)

||Ci|| ∗ FC ∗
Y

j=1...(i−1)

(SFj)+ (4)

||Ck|| ∗ TICTUP ∗
Y

j=1...k

(SFj)+ (5)

IO =(
|Ci|
PF

∗ SEEK + |Ci| ∗READ) (3)

Figure 6: Psuedocode and cost formulas for SPC.

3.5 Example Query Plans

The use of these operators is illustrated in Figures 7
and 8 for the query:

SELECT shipdate, linenum
FROM lineitem
WHERE shipdate < CONST1

AND linenum < CONST2

where lineitem is a C-Store projection consisting
of the columns return flag, shipdate, linenum, and
quantity. The primary and secondary sort keys for
the lineitem projection are returnflag and shipdate,
respectively.

(a) (b)

Figure 7: Query plans for EM-piplined (a) and EM-
parallel (b) strategies

One EM query plan, shown in Figure 7(a),
uses a DS2 operator (Data Scan Case 2) operator
to scan the shipnum column, producing a stream
of (pos, shipdate) tuples that satisfy the predicate
shipdate < CONST1. This stream is used as one in-
put to a DS4 operator along with the linenum column
and the predicate linenum < CONST2 to produce a
stream of (shipnum, linenum) result tuples.

Another possible EM query plan, shown in Figure
7(b), contructs tuples at the very beginning of the plan
- merging all needed columns at the leaf node as it ap-
plies the predicates using a SPC operator. The key
difference between these early materialization strate-
gies is that while the latter strategy has to scan and
process all blocks for all input columns, the former
plan applies each predicate in turn, and will construct
a tuple incrementally, adding one attribute per opera-
tor. For non-selective predicates this is more work, but
for selective predicates only subsets of blocks need to
be processed (or in some cases the entire block can be
skipped). We call the former strategy EM-pipelined
and the latter strategy EM-parallel. The choice of
which EM plan to use depends on the selectivity of
the predicates (the former strategy likely is better if
there are highly selective predicates).

Similarly to EM, there are both pipelined and par-
allel late materialization strategies. LM-pipelined is
shown in Figure 8(a) and LM-parallel is shown in Fig-
ure 8(b). LM-parallel begins with two DS1 operators,
one for the shipnum and linenum columns. Each DS1
operator scans its column, applying the appropriate
predicate to produce a position list of those values
that satisfy the predicate. The two position lists are
streamed into an AND operator which intersects the
two lists. The output position list is then streamed
into two DS3 operators to obtain the correspond-
ing values from the shipnum and linenum columns.
As these values are obtained they are streamed into
a merge operator to produce a stream of (shipnum,
linenum) result tuples.



(a) (b)

Figure 8: Query plans for LM-piplined (a) and LM-
parallel (b) strategies

LM-pipelined works similarly to LM-parallel, ex-
cept that it applies the DS1 operators one at a time,
pipelining the positions of the shipdate values that
passed the shipdate predicate to a DS3 operator for
the linenum column which produces the column values
at these input set of positions and sends these values
to the linenum DS1 operator which only needs to ap-
ply its predicate to this value subset (rather than at
all linenum positions). As a result, the need for the
AND operator is obviated.

3.6 LM Optimization: Multi-Columns

Note that in DS Case 3, used in LM strategies to pro-
duce values from positions, the I/O cost is assumed to
be zero if the column has already been accessed ear-
lier in the plan, even if the column size is larger than
available memory. This is made possible through a
specialized data structure for representing intermedi-
ate results, designed to facilitate query pipelining, that
allows blocks of column data to remain in user mem-
ory space after the first access so that it can be easily
reaccessed again later on. We call this data structure
a multi-column.

A multi-column contains a memory-resident, hor-
izontal partition of some subset of attributes from a
particular relation. It consists of:

A covering position range indicating the virtual
start position and end position of the horizontal parti-
tion (for example, a position range could indicate that
rows numbered 1000-2000 are covered in this multi-
column).

An array of mini-columns. A mini-column is the set
corresponding values for a specified position range of
a particular attribute (MonetDB [7] calls this a vec-
tor, PAX [4] calls this a mini-page). Using the previ-
ous example, a mini-column for column X would con-
tain 1001 values - the 1000th-2000th values in this col-
umn. The degree of a multi-column is the size of the
mini-column array which is the number of included
attributes. Each mini-column is kept compressed the

same way as it was on disk.
A position descriptor indicating which positions in

the position range remain valid. Positions are made
invalid as predicates are applied on the multi-column.
The position descriptor may take one of three forms:

• Ranged positions: All positions between a speci-
fied start and end position are valid.

• Bit-mapped positions: A bit-vector of size equal to
the multi-column covering position range is given,
with a ’1’ at a corresponding position if that po-
sition is valid. For example, for a position cov-
erage of 11-20, a bit-vector of 0111010001 would
indicate that positions 12, 13, 14, 16, and 20 are
valid.

• Listed positions A list of valid positions inside the
covering position range is given. This is partic-
ularly useful when few positions inside a multi-
column are valid. Multi-columns may be collapsed
to contain only values at valid positions inside the
mini-columns, in which case the position descrip-
tor must be transformed to listed positions format
if positional information is still necessary for up-
stream operators.

When a page from a column is read from disk (say,
for example, by a DS1 operator), a mini-column is cre-
ated (which is essentially just a pointer to the page in
the buffer pool) and the position descriptor indicates
that every value begins as being valid. The DS1 op-
erator then iterates through the column, applying the
predicate to each value, and produces a new list of po-
sitions that are valid. The multi-column then replaces
its position descriptor with the new position list (the
mini-column remains untouched).

The AND operater then takes two multi-columns
with overlapping covering position ranges, and creates
a new multi-column where the covering position range
and position descriptor is equal to the intersection of
the position range and position descriptors of the input
multi-columns, and the set of mini-columns is equal
to the union of the input set of mini-columns. Thus,
ANDing multi-columns is in essence the same oper-
ation as the AND of positions shown in Section 3.3;
the only difference is that on top of performing the in-
tersection of the position lists, ANDing multi-columns
must also copy pointers to mini-columns to the output
multi-column, but this can be thought of as a zero-cost
operation.

If the AND operator produces multi-columns rather
than just positions as an input to a DS3 operator, then
the operator does not need to reaccess the column, but
rather can work directly on one multi-column block
at a time - iterating through the appropriate mini-
column to produce only those values whose positions
are valid according to the position descriptor. Single
multi-columns blocks are worked on in each operator



iteration, so that column-subsets can be pipelined up
the query tree. With this optimization, DS3 I/O cost
for a reaccessed column can be assumed to be zero.

... 

0
1
1
0
0
1
1
1
0
0
1
1
0
0
1

Position
descriptor

Start 47
End 61

LINENUM
values

(encoded)

RLE
val = 5

start = 49
len = 15

RETFLAG 
values

(encoded)

Bit-vector
1 0 0
0 1 0
0 0 0
1 0 0
0 0 1
0 0 1
1 0 0 
1 0 0
0 1 0
0 1 0
1 0 0
0 0 1
0 1 0
0 1 0
1 0 0

start = 47
values 

(65,78,82)
SHIPDATE 

values
(encoded)

Uncomp.
8040
8041
8042
8043
8044
8044
8046
8047
8048
8048
8050
8051
8052
8053
8054

Figure 9: An example MultiColumn block con-
taining values for the SHIPDATE, RETFLAG, and
LINENUM columns. The block spans positions 47 to
61; within this range, positions 48, 49, 52, 53, 54, 57,
58, and 61 are active.

3.7 Predicted versus Actual Behavior

To gauge the accuracy of the analytical model we com-
pared the predicated execution time for the selection
query above with the actual execution time obtained
using the C-Store prototype using a scale 10 version of
the LineItem projection. The results obtained are pre-
sented in Figures 10(a) and 10(b), which plot response
time as a function of the selectivity of the predicate
shipdate < CONST2 for the the late and early ma-
terialization strategies respectively. The shipnum and
linenum columns are both encoded using RLE encod-
ing. The encoded sizes of the two columns are 1 block
(3,800 tuples) and 5 blocks (26,726 tuples), respec-
tively. Table 2 contains the constant values used by
the analytical model which were obtained by running
the small segments of code that only performed the
variable in question (they were not reverse engineered
to get the model to match the experiments). Both the
model and the experiments incurred an additional cost
at the end of the query to iterate through the output
tuples (numOutTuples ∗ TICTUP ).

At this point, the important thing to observe is that
the estimated performance from the EM and LM ana-
lytical models are quite accurate at predicting the ac-
tual performance of the C-Store prototype (at least for
this query), providing a degree of reassurance regard-
ing our understanding of how the two implementations
actually work. A discussion on why the graphs look

BIC 0.020 microsecs
TICTUP 0.065 microsecs
TICCOL 0.014 microsecs
FC 0.009 microsecs
PF 1 block
SEEK 2500 microsecs
READ 1000 microsecs

Table 2: Constants used for Analytical Models

the way they do will be included in Section 4. We also
modelled the same query but did not compress the
linenum column (linenum was 60,000,000 tuples occu-
pying 916 64KB blocks) and modelled different queries
(including allowing both the shipdate and the linenum
predicates to vary). We consistently found the model
to reasonably predict our experimental results.
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Figure 10: Predicated and observed query perfor-
mance for late (a) and early (b) materialization strate-
gies on selection queries

4 Experiments

To evaluate the trade-offs between the early materi-
alization and late materialization strategies, we ran
two queries under a variety of configurations. These
queries were run over data generated from the TPC-
H dataset, a benchmark that models data typically
found in decision support and data warehousing ap-
plications. Specifically, we generated an instance of
the TPC-H data at scale 10, which yields a total
database size of approximately 10GB with the biggest
table (lineitem) containing 60,000,000 tuples. We
then created a C-Store projection (which is a sub-
set of columns from a table all sorted in the same
order) of the SHIPDATE, LINENUM, QUANTITY,
and RETURNFLAG columns; the projection was pri-
marily sorted on RETURNFLAG, secondarily sorted
on SHIPDATE, and tertiarily sorted on LINENUM.
The RETURNFLAG and SHIPDATE columns were
compressed using run-length encoding, the LINENUM



column was stored redundantly using uncompressed,
RLE, and bit-vector encodings, and the QUANTITY
column was left uncompressed..

We ran the two queries on these data. First, we ran
a simple selection query:

SELECT SHIPDATE, LINENUM
FROM LINEITEM
WHERE SHIPDATE < X AND

LINENUM < Y

where X and Y are both constants. Second, we ran
an aggregation version of this query:

SELECT SHIPDATE, SUM(LINENUM)
FROM LINEITEM
WHERE SHIPDATE < X AND

LINENUM < Y
GROUP BY SHIPDATE

again with X and Y as constants. While these queries
are simpler than those that one would expect to see in
a production environment, they are able to illustrate
from a more fundamental level the essential differences
in performance between the three strategies. We look
at joins in Section 4.3.

To explore the performance of the materialization
strategies as a function of the selectivity of the query,
we varied X across the entire shipdate domain and
kept Y constant at 7 (96% selectivity). In other ex-
periments (not presented in this paper) we varied Y
and kept X constant and observed similar results (un-
less otherwise stated).

Additionally, at each point in this sample space, we
varied the encoding of the LINENUM column among
uncompressed, RLE, and bit-vector encodings (SHIP-
DATE was always RLE encoded). We experimented
with the four different query plans described in Section
3.5: EM-pipelined, EM-parallel, LM-pipelined, and
LM-parallel. Both LM strategies were implemented
using the multi-column optimization.

Experiments were run on a Dell Optiplex GX620
DT with a 3.8 GHz Intel Pentium 4 processor 670
with HyperThreading, 2MB of cache, and a 800 Mhz
FSB. The system had 4GB of main memory installed,
of which 3.5GB were available to the operating sys-
tem. The hard drive used was a 250GB Western Dig-
ital WD2500JS-75N.

4.1 Experiment 1: Simple Selection Query

For this set of experiments, we consider the simple se-
lection query presented both in Section 3.5 and in the
introduction to this section above. Figure 11 (a), (b),
and (c) shows the total end-to-end query time for the
four materialization strategies when the LINENUM
column stored uncompressed, RLE encoded, and bit-
vector encoded respectively.

For the uncompressed LINENUM experiment (Fig-
ure 11 (a)), LM-pipelined is the clear winner at low

selectivities. This is because the pipelined algorithm
saves both I/O and CPU costs of reading in and apply-
ing the predicate to the large (250 MB) uncompressed
LINENUM column since the first predicate is so se-
lective and the matching tuples are so localized (since
the SHIPDATE column is secondarily sorted) that en-
tire LINENUM blocks can be skipped from being read
in and processed. However at high selectivities LM-
pipelined performs particularly poorly since the CPU
cost of jumping to each matching position is more ex-
pensive than iterating through the block one position
at a time if most positions will have to be jumped
to. This additional CPU cost eventually dominates
query time. At high selectivities, immediately making
complete tuples at the bottom of the query plan (EM-
parallel) is the best thing to do. EM-parallel consis-
tently outperforms LM-parallel since the LINENUM
predicate selectivity is so high (96%). In other exper-
iments (not shown), we varied the LINENUM predi-
cate across the LINENUM domain and observed that
if both the LINENUM and the SHIPDATE predicate
have medium selectivities, LM-parallel can beat EM-
parallel (this is due to the LM advantage of waiting
until the end of the query to construct tuples and thus
it can avoid creating tuples that will ultimately not be
output).

For the RLE-compressed LINENUM experiment
(Figure 11 (b)), the I/O cost for all materialization
strategies is negligible (the RLE encoded LINENUM
column occupies only three 64k blocks on disk). At low
query selectivities, the CPU cost is also minimal for all
strategies and they all perform on the order of tens to
hundreds of milliseconds. However, as the query se-
lectivity increases, we observe the difference in costs
of the strategies. Both EM strategies under-perform
the LM strategies since tuples are constructed at the
beginning of the query plan and tuple construction re-
quires the RLE-compressed data to be decompressed
(Section 2.1.2) precluding the performance advantages
of operating directly on compressed data discussed in
[3]. In fact the CPU cost of operating directly on com-
pressed data is so small that the almost the entire
query time for the LM strategies is the construction
of the tuples and subsequent iteration over the results;
hence both LM strategies perform similarly.

For the bit-vector compressed LINENUM experi-
ment (Figure 11 (c)), we show the results for only
three strategies since performing position filtering di-
rectly on bit-vector data (the DS3 operator) is not
supported (since it is impossible to know in advance
in which bit-string any particular position is located).
Further, the advantage of reducing the number of val-
ues that the predicate has to be applied to for the
LM-pipelined strategy is irrelevant for the bit-vector
compression technique (since the predicate has already
been applied a-priori as each bit-vector is a list of posi-
tions that match a particular value equality predicate
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Figure 11: Run-times for four materialization strategies on selection queries with uncompressed (a), RLE com-
pressed (b), and Bit-vector compressed (c) LINENUM column

- to apply a range predicate, the executor simply needs
to OR together the relevant bit-vectors). Thus, only
one LM algorithm is presented (LM-parallel).

Since there are only 7 unique LINENUM values,
the bit-vector compressed column is a little less than
25% of the size on disk of the uncompressed column.
Thus, the dominant cost of the query is the CPU cost
of decompressing the bit-vector data which has to be
done for both the LM and EM strategies. Hence, EM-
parallel and LM-parallel perform similarly.

4.2 Experiment 2: Aggregation Queries

For this set of experiments, we consider adding an ag-
gregation operator on top of the selection query plan
(the full query is presented in the introduction to this
section above). Figure 12 (a), (b), and (c) shows the
total end-to-end query time for the four materializa-
tion strategies when the LINENUM column stored un-
compressed, RLE encoded, and bit-vector encoded re-
spectively.

In each of these three graphs, the EM strategies per-
form similarly to their counterpart in Figure 11. This
is because the CPU cost of iterating through the query
results in Figure 11 is done by the aggregator (and the
cost to iterate through the aggregated results and to
perform the aggregation itself is minimal). However,
the LM strategies all perform significantly better. In
the uncompressed case (Figure 12(a)) this is because
waiting to construct tuples is a big win since the aggre-
gator significantly reduces the number of tuples that
need to be constructed. For the compressed cases (Fig-
ure 12(a) and (b)) the aggregator iterator cost is also
reduced since it can optimize its performance by oper-
ating directly on compressed data [3] so keeping data

compressed as long as possible is also a win.

4.3 Joins

We now look at the effect of materialization strategy
on join performance. If an early materialization strat-
egy is used relative to a join, tuples have already been
constructed before reaching the join operator, so the
join functions as it would in a standard row-store sys-
tem, with tuples being output. However, an alterna-
tive algorithm can be used if using a late materializa-
tion strategy. In this case, only columns that compose
the join predicate are input to the join. The output
of the join is set of pairs of positions in the two input
relations for which the predicate succeeded. For ex-
ample, the figure below shows the results of a join of
a column of size 5 with a column of size 3.

42
36
42
44
38

on
38
42
46

=
1 2
3 2
5 1

For most join algorithms, the output positions for
the left input relation will be sorted while the output
positions of the right input relation will not. This is
because the positions in the left column are usually
iterated through in order, while the right relation is
probed for join predicate matches. This asymmetric
nature of join positional output implies that restrict-
ing other columns from the left input relation using the
join output positions will be relatively fast (the stan-
dard merge join of positions can be used to extract col-
umn values); however, restricting other columns from
the right input relation using the join output positions
can be significantly more expensive (out of order posi-
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Figure 12: Run-times for four materialization strategies on aggregation queries with uncompressed (a), RLE
compressed (b), and Bit-vector compressed (c) LINENUM column

tions implies that a merge-join on position cannot be
used to fetch column values).

Of course, a hybrid approach can be used where
the right relation can send tuples to the join operator,
while the left relation can send the single join pred-
icate column. The join result is then a set of tuples
from the right relation and an ordered set of positions
from the left relation which can then be used to fetch
values from relevant columns in the left relation to
complete the tuple stitching process and create a sin-
gle join result tuple. This allows for the advantage of
only having to materialize values in the left relation for
tuples that passed the join predicate without paying
the penalty of an extra non-merge positional join with
the right relation.

Multi-columns give joins another option as an al-
ternative right (inner) table representation instead of
forcing input tuples to be completely constructed or
just sending the join predicate column. All relevant
columns (columns that will be materialized after the
join in addition to columns in the join predicate) are
input to the join operator and as inner table values
match the join predicate, the position of this value is
extracted and used to get the appropriate value in all of
the other relevant columns and the tuple constructed
on the fly. This hybrid technique is useful if the join
selectivity is low, and few tuples need be constructed.

To further examine the differences between these
three materialization approaches for the inner table
in a join operator (send just the unmaterialized join
predicate column, send the unmaterialized relevant
columns in a multi-column, or send materialized tu-
ples), we ran a standard star schema join query on our
TPC-H data between the orders table and customers

table on customer key (customer key is a foreign key in
the orders table and the primary key for the customers
table), varying the selectivity of an input predicate on
the orders table:

SELECT Orders.shipdate
Customer.nationcode

FROM Orders, Customer
WHERE Orders.custkey=Customer.custkey

AND Orders.custkey < X
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Figure 13: Run-times for three different materializa-
tion strategies for the inner table of a join query

Where X is varied so that a desired predicate se-
lectivity can be acquired. For TPC-H scale 10 data,
the orders table contains 15,000,000 tuples and the
customer table 1,500,000 tuples and since this is a for-
eign key-primary key join, the join result will also have
at most 15,000,000 tuples (the actual number is deter-
mined by the Orders predicate selectivity). The results
of this experiment can be found in Figure 13.



Sending early materialized tuples and multi-column
unmaterialized column data to the right-side input of
the join operator results in similar performance num-
bers since the the multi-column advantage of only ma-
terializing relevant tuples is not helpful for a foreign
key-primary key join of this type where there are ex-
actly as many join results as there are join inputs.
Sending just the join predicate column (“pure” late
materialization) performs poorly due to the extra join
of right-side positions. If the entire set of positions
were not able to be kept in memory, late materializa-
tion would have performed even worse.

We do not present results for varying the material-
ization strategy of the left-side input table to the join
operator since the issues at play are identical to the is-
sues discovered in the previous experiments: if the join
is highly selective or if the join results will be aggre-
gated, a late materialization strategy should be used.
Otherwise, EM-parallel should be used.

5 Related Work

The multi-column idea of combining chunks of columns
covering the same position range together into one
data structure is similar to the PAX [4] idea of taking a
row-store page and splitting it into multiple mini-pages
where each tuple attribute is stored contiguously. PAX
does this to improve cache performance by maximiz-
ing inter-record spatial locality within a page. Multi-
columns build on the PAX idea in the following ways:
First, multi-columns are an in-memory data structure
only and are created on the fly from different columns
stored separately on disk (where pages for the different
columns on disk do not necessarily match-up position-
wise). Second, positions are first class citizens in multi-
columns and may be accessed and processed separately
from attribute values. Finally, mini-columns are kept
compressed inside multi-columns in their native com-
pression format throughout the query plan, encapsu-
lated inside a specialized data structures that facilitate
direct operation on compressed data.

To the best of our knowledge, this paper contains
the only study of multiple tuple creation strategies
in a column-oriented system. C-Store [16] used LM-
parallel only (until we extended it with additional
strategies). Published descriptions of Sybase IQ [11]
seem to indicate that they also perform LM-parallel.
Ongoing work by Halverson et. al. [8] and Harizopou-
los et. al. [9] that further explores the trade-offs
between row- and column-stores use early material-
ization approaches for the column-store they imple-
mented (the former uses EM-parallel, the latter uses
EM-pipelined). MonetDB/X100 [7] uses late mate-
rialization implemented using a similar multi-column
approach; however their version of position descriptors
(they call them selection vectors) are kept separately
from column values and data is decompressed in the
cache, precluding the potential performance benefits

of operating directly on compressed data both on po-
sition descriptors and on column values.

Finally, we used the analytical model presented in
[8] as a starting point for the analytical model we pre-
sented in Section 3. However, we extended their model
since they look only at scanning costs of the leaf query
plan operators whereas we model the costs for the en-
tire query since the query plans for different material-
ization strategies have different costs.

6 Conclusion

The optimal point at which to perform tuple con-
struction in a column-oriented database is not obvious.
This paper provides a systematic evaluation of a vari-
ety of strategies for when tuple construction should oc-
cur. We showed that late materialization has many ad-
vantages, but potentially incurs additional costs due to
re-processing disk blocks, and hence early materializa-
tion is sometimes preferable. A good heuristic to use
is that if output data is aggregated, or if the query has
low selectivity (highly selective predicates), or if input
data is compressed using a light-weight compression
technique, a late materialization strategy should be
used. Otherwise, for high selectivity, non-aggregated,
non-compressed data, early materialization should be
used. Further, the right input table to a join should
be materialized before (or during if a multi-column is
input) the join operation. Using an analytical model
to predict query performance can facilitate material-
ization strategy decision-making.
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