458 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 4, NOVEMBER 2003

Materialized View Selection as Constrained
Evolutionary Optimization

Jeffrey Xu Yu, Xin Yaq Fellow, IEEE Chi-Hon Choi, and Gang Gou

Abstract—One of the important issues in data warehouse devel- time. Such timely manner requests the data warehouse system
opment is the selection of a set of views to materialize in order to to be able to answer OLAP (On-Line Analytical Processing)
acce.'eratTeha large number of on-line a“?'yt'.ca' proglessmg (O'-'IAP) queries efficiently, and be able to assist executives or managers
queries. The maintenance-cost view-selection problem is to select C . .
set of materialized views under certain resource constraints for the o mak? fa better and faster decision. OLAP queries can be issued
purpose of minimizing the total query processing cost. However, BY d§C|S|0n-makers |°Fa!|y or remo?ely. The outcome of OLAP
the search space for possible materialized views may be exponen-gqueries are of the statistical analysis or summarization, and the
tially large. A heuristic algorithm often has to be used tofind anear query processing time for such OLAP queries is considerably
optimal solution. In this paper, for the maintenance-cost view-se- |ong. In order to efficiently support decision-making or OLAP
lection problem, we propose a new constrained evolutionary algo- queries, a data warehouse system needs to precompute or ma-

rithm. Constraints are incorporated into the algorithm through a - . X -
stochastic ranking procedure. No penalty functions are used. our terialize some of such OLAP queries. The OLAP queries being

experimental results show that the constraint handling technique, Materialized are called materialized views, or simply views. The
i.e., stochastic ranking, can deal with constraints effectively. Our motivation is to minimize the total query processing cost for
algorithm is able to find a near-optimal feasible solution and scales all possible OLAP queries by selection of a set of materialized
with the problem size well. views under some resource constraints. It is worth noting that
it is impractical to maintain materialized views for all OLAP
I. INTRODUCTION queries due to the huge disk-space consumption and/or large
ODAY'S markets are much more competitive and dy“Pdate cost.

T namic than ever. Business enterprises prosper or failThe importantissue is how to select such a set of materialized
according to the sophistication and speed of their informatistews in order to minimize the total query processing time of
systems, and their ability to analyze and synthesize informati®AP queries with a certain constraint. The constraint can be
using those systems. A data warehouse is a subject-orientither disk-space constraint or maintenance-cost constraint. The
integrated, time-varying, nonvolatile collection of data thalisk-space constraint specifies the availability of the disk-space
is used primarily in organization decision making [1]. As ain a data warehouse, whereas the maintenance-cost constraint
emerging network service, a data warehouse system collegpecifies how long all views must be updated, because changes

data from many data sources through communication netwotkshe source data result in recomputing the materialized views
locally and internationally by adopting a update-driven agccordingly, which will be periodically done in a time window.

proach. A data warehouse system provides a solid platform of

consolidated historical data for analysis, and disseminates such®

analysis to users locally and remotely.

In addition to large volumes of data being transferred to a data
warehouse via communication networks, the amount of data
maintained in a data warehouse is huge in size, in the range of
hundreds of gigabyes or terabytes. Upon such enormous amount
of data collected from different sources, various of business de-
cisions need to be made in a few minutes, in order to cope with
the rapid change in different sectors of the market from time to

Manuscript received August 31, 2002; revised March 24, 2003. This work
was supported by a grant from the Research Grants Council of the Hong Kong
Special Administrative Region (Project CUHK4198/00E). This paper was rec-
ommended by Guest Editors W. Pedrycz and A. Vasilakos.

J. X. Yu, C.-H. Choi and G. Gou are with the Department of Systems
Engineering and Engineering Management, The Chinese University of Hong
Kong, Hong Kong (e-mail: yu@se.cuhk.edu.hk; chchoi@se.cuhk.edu.hk;
ggou@se.cuhk.edu.hk).

X. Yao is with the School of Computer Science, The University of Birm-
ingham, Edgbaston B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TSMCC.2003.818494

Disk-space Constraint Handling Most of the reported
studies [2]-[5] studied a disk-space view-selection
problem, using a disk-space constraint, as the disk con-
sumption of OLAP queries is very large. Harinaraysn

al. in [2] studied the disk-space view-selection problem
using a linear cost model. The linear cost model states that
the cost of answering a query using a view is the number
of records present in the view. Their greedy algorithm
can reach at least 63% of the benefit of the optimal
solution, in order to identify a set of materialized views
for minimizing the total query processing cost. Gupta

al. [3] extended the results reported in [2] to the selection
of views and indices in datacubes. They studied the
precomputation of indices and subcubes, and discussed a
family of one-step near-optimal algorithms under a given
disk-space constraint. Gupta [4] presented a theoretical
formulation of the general view-selection problem in a
data warehouse and generalized view selection problems
as AND, OR, and AND-OR graph problems. Shukla
et al. [5] introduced a heuristic algorithm called PBS

1094-6977/03$17.00 © 2003 IEEE

YU et al. MATERIALIZED VIEW SELECTION 459

which achieved the sam@.63 — f)1 bound as [2] but STORE S DATE
with faster running time. They introduced chunk-based

precomputation and showed that using chunks for aggre- ":;‘;D o ":::D
gate subset precomputation can make the benefit larger region datelD quarter
than the “optimal” benefit when picking aggregates. All price L year |

the above work considered a disk-space constraint and
provided greedy algorithms using the linear cost model.
Most of the greedy algorithms start from an empty set and

ITEM

select the next view with the maximum benefit per unit '::“‘"::’
space in turn. The benefit of the views which have been category
selected will be unchanged in the subsequent view-selec- |_cost |

tion processes, it is defined asonotonic propertyThe

algorithms continue to pick views until the space limit i it%mléncg‘g‘;'ggime”sm”a' data warehouse with three dimensignsire,
reached. However, the disk is cheap and the disk-space ' '

constraint becomes less important nowadays.) o))

« Maintenance-cost Constraint Handling Gupta and the stochastic ranlng is L_Jsed to solvr—;acombmatonal problem.
Mumick [6] first considered a maintenance-cost VieW_S(_J__hrough extenswe expenm_ental studies, we found that the f_ea-
lection problem where the constraint is maintenand&ible solutions can be easily found by our stochastic ranking
cost/time. This problem is more difficult than the@pproach. In addition, our new constrained evolutionary algo-
disk-space view-selection problem, because the to{ghm_explores the search space better than the other existing
maintenance cost for a set of views may decrease whlgorithms. It can scale well with the problem size.
more views are added to materialized. This is defined asThe rest of this paper is organized as follow. Section Il
nonmonotonic propertyGupta and Mumick proposedd'SFusseS the maintenance-cost wew-s_electlon problem and
an inverted-tree greedy algorithm and An-heuristic. deﬂne_s a general_ cost merI. Const_ramt h_andlmg and our
However, the quality of their algorithms depends heavi@voluhonary algorithm are discussed in Section Ill. We con-
on the initial conditions and the heuristic used. Whilduct extensive performance studies and report the results in
the A*-heuristic can find the optimal solution, it is anSection IV. We conclude the paper in Section V.
exponential algorithm in the worst case and may take a
long time to run [7]. Il. THE PRELIMINARIES

This materialized view selectior) problem is_ proven to bg A Multidimensional Data Warehouse
NP-hard [6]. For example, Baralist al. described a real o)
store chain application that only has four dimensions, namely, "€ Star-schema of am-multidimensional data ware-
Product (50 attributes), Store (20 attributes), Time (ten gt9USe consists of &ct tableand a collection oflimension
tributes) and Promotion (ten attributes) [1], [8]. However, thi@bles [1]. A fact table consists ofn dimensions, denoted
number of possible materialized views is 028f. The search D1, D2;- -+, Dy, @long with measures of interest, denofed
space for possible materialized views is extremely large. Exach value in thé); dimension of the fact table corresponds
isting algorithms can achieve an optimal solution only when tf{@ @ unique record in the correspondify dimension table,
problem size is small but cannot tackle large-scale problemswhere all the details about that dimensidh are kept. In

Computationa| inte”igence p|ays a Signiﬁcant role in supﬁ dimension table, attributes can be further Ol’ganized in a
porting the design of intelligent systems [9], [10]. Hence, confuerarchy structure. Suppose that a multidimensional data
putational intelligence is highly desirable to assist the desigffrehouse has: dimensions and théth dimension hasn;
of a data warehouse system as a network service that colledtgibutes. There arg[\" (2" + 1) possible OLAP queries
data from different remote data sources and disseminates higbQL group-by queries), or views.
quality data analysis to decision makers locally and remotely inFig. 1 shows a star-schema for a multidimensional data ware-
an efficient way. Zhangt al.[11] proposed an evolutionary ap-house of three dimensionSTORE, ITEM andDATE. There is a
proach to materialized view selection, but they did not considtact table and three dimension tables. In the fact table, it keeps
any constraints. Lee and Hammer [12] made the first attemptttee three dimension identifierstoreID, itemID anddatelID,
solve the maintenance-cost view-selection problem using evor the three dimension tables, along with the measure of in-
lutionary algorithms. They tested nine different ways to addtarest,price. The dimension tabl§TORE has two attributes,
penalty function to the original objective function. Howevercity andregion, in addition to its record identifiestoreID.
their results were less satisfactory. They did not show any resulitse dimension tabl&€TEM has three attributesame, category
for problems larger than 20 views, even though they mentionaddcost, in addition to its record identifiettemID. In a sim-
that they did try to tackle large problems. ilar fashion, the dimension tabfATE has four attributesiay,

In this paper, we propose a new constrained evolutionary abnth, quarter andyear, along with the record identifier
gorithm for the maintenance-cost view-selection problem. OdateID. These dimension tables keep the detail information
algorithm does not use any penalty functions. Instead, a nogglout the dimension. All the fact table and the three dimen-
stochastic ranking procedure is used. This is the first time thgibn tables can be joined to a large table representing a mul-

tidimensional space. The total number of OLAP queries is then

1f is the fraction available space consumed by the largest aggregate. 765 = (22 + 1) x (23 + 1) x (2* + 1).

460 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 4, NOVEMBER 2003

In a general setting, let(u, v) denote the query processing
cost of answering a queryusing a selected materialized view

v. q(u,v) is the sum of query processing costs associated with
e ° edges on the shortest path franto plus the initial data scan
° cost of the vertew, r,. If view v cannot answer query in
e < q(u,v), the raw table, the virtual vertex., will be used instead
° ° of v. Similarly, m(u, v) denotes the maintenance cost which is
° the sum of the maintenance-costs associated with the edges on
the shortest path fromto u. In [2], a linear cost model was pro-
posed. The linear cost model states that the cost of answering a

guery using a view is the number of rows present in the view.
We attempt to adopt a more general cost model than this linear

Fig. 2. Example of dependent [attice. cost model. Here, as shown by the two functigfisandm(),
we assume a general query processing cost and maintenance
B. The Maintenance-Cost View Selection Problem cost model. First, a query processing cost can be different from

Hari L2l duced a d d latt h a maintenance cost for a pair of vertices. Second, we also as-
arinarayaret al. [2] introduced a dependent lattice w OS&ume that the guery processing cost may involve other query

\éerticej are the OLAP qhueries or views and'idgtzes reprss?ntﬁ cessing costs (associated with edges) in addition to the ini-

epenaencies among the QLAP queries. Like [2], we deliN&;d table scan costs (associated with vertices). Third, there are

dependent lattice(L, <), with a set of elements (queries Ofy, inje paths from a view to a query. In our setting, we con-

views) L and a dependence relatieh(derived-from, be-com- sider selection of the shortest path

zuted-from). Given ty]:/o quengg andg;. V\ée Sayy; 'r? depeln- Let M (C V(G)) be a set of vertices to be selected as ma-
entong;, (¢; < ¢;), if ¢; can be answered using the results qfiajized views. Furthermore, lgtv, M) denote the minimum

g;. A dependent lattice can be represented as a dlr_ected aCYCUSt of answering a queny (€ V(@) in the presence of the

graphG: = (V,). HereV represents the set of queries, as Vel ¢ materialized viewsM), andm (v, M) be the minimum

tl;:ez. we ufseV(G) %?dE(szfor the set of vertices ani thedseﬁcost of maintaining a materialized view(e V(G)) in presence

° Ie .?es ora gr?jp - An edgewi — vj, efX'StS NE, ifand o the set of materialized viewg\/). The maintenance-cost

only if v; < v; and Auy(v; < v Avg X ;), forvi # vy # v;. view-selection problem is to select a set of vieWsthat mini-

Fig. 2 illustrates a simple dependent lattice of three dllﬁiZGST(G.M), where
mensions, wherg, I andD representtoreID, itemID and ’
dateID, respectively, for the example shown in Fig. 1. Here, (G, M) = Z fo - q(v, M)
we ignore all the details in the dimension tables, and only VeV (G)

consider the identifiers as representatives of the dimensions. _

A vertex in Fig. 2 represents an OLAP-query or a view. Fdfnder the constraint théf(M) < .5, where,U(M), the total

examples represents an OLAP query which is interested in tHg2intenance cost is defined as

total incor_nep;ic_:e in each store. AngI _represe.nts an OLAP U(M) = Z o - m(v, M).

guery which is interested in the total incomeice in each oot

store with each item. The edge from the veis@xo the vertex

S represents the fact that the OLAP quérgan be processed

by the OLAP querySI. Note: in Fig. 2,none represents an

OLAP query which is interested in the total incorpeice In many real applications, maintenance-cost is more likely

from all dimensions. to be the real constraint to keep the materialized views consis-
In addition, the graph representatiah = (V, E), for the de- tentwith the data in data warehouse, rather than disk-space con-

pendent lattice, has the following weights associated with vestraints. The maintenance-cost view-selection problem seems

C. The Difficulty of Maintenance-Cost View-Selection Problem

tices and edges. to be very similar to the disk-space view-selection problem.

« Three weights on a vertexe V(G): However, the maintenance-cost view-selection problem is more
— r,: initial data scan cost’ difficult. For the maintenance-cost view-selection problem, the
— f.»: query frequency; maintenance cost of the views relies on each other. Selection of
— g, update frequency. a view will affect the prior materialized views. The total mainte-

« Two weights on an edg@, u) € E(G): nance cost for a set of views may decrease when more views are
— wg, ,: query processing af usingv; added to materialize while the space occupied by a set of views
— wyy,, . updating cost of: usingwv. always increases when a new view is selected under the disk-

It is important to know that,, > 7, if v < . An additional Space constraint. Fig. 3 illustrates the difference between the
vertex,v., is introduced into the directed acyclic graph as th@isk-space view-selection problem and maintenance-cost view-
virtual root (representing the multidimensional data warehousgglection problem. Here, for a vertex;, T, andu are table
such that, for alb; € V(G), v; < v,. Note:v, ¢ V(G). The size(r,,) (for the query processing cost) and maintenance cost
data size of the virtual root,, , is the largest among all the data(w,, ,), respectively. For simplicity, we assume that the query
sizes. frequency(f,) and update frequendy,,) are the same for every

YU et al. MATERIALIZED VIEW SELECTION 461

T=1000 Algorithm 1 A*-Heuristic [6]
® Input: A graph G(V,FE) and a mainte-
luﬂoo nance-cost constraint S.
Output: a set of materialized views.
vo O T=100 1. begin

u=10 u=10 2. Create a tree Te having just the root
A. The label associated with A is (¢,).
3 L =

. Create a priority queue (heap) (A)

vz @ T=20 4: repeat
5. Remove z from L, where =z has the
u=1 u=2 lowest g(z) + h(z) value in L
T=1 6: Let the label of x be (N,.,M,), where
N, = {v1,v2,...,v4} for some d <mn.
7. if d=mn then
Fig. 3. Example of view maintenance. 8: return M,
9: end if
10: Add a successor of xz, l(z), with a

o) label (N, U {vg41}, M,) to the list L.
vertex in this example. Suppodé = {vs3, vy, v, } are material- 11. if (U(M,) < S) then

ized inan order of; andv, followed bywv,. The total disk-space 12 Add to L a successor of z, (),
used isl + 10 4 20 = 31 and the total maintenance-cost is with a label (Ny U {vg41}, My U vgpr)
1 + 100 + 100 = 201, becausey; andwv, need to be com- 13 end if

puted from the virtual root ands is answered by;. Nowcon- 14 yniil (L is empty);

sider materializingo. The total disk-space used is increased to 15 return ¢
1410+ 20+ 100 = 131, and the total maintenance costis de- 16 en(
creasedtd +10+10+100 = 121, because; andv, now can

be updated byy. This nonmonotonic property makes mainte-

. . e [ll. EVOLUTIONARY ALGORITHMS
nance-cost view-selection very difficult.

Evolutionary computation techniques have received a great
attention [13]. Some evolutionary algorithms were proposed to
D. An A*-Heuristic Algorithm solve the maintenance-cost view-selection problem, because of
its robustness. [11] first proposed an evolutionary approach to
Gupta and Mumick [6] proposed ak*-heuristic algorithm Mmaterialized view selection problem without considering any
to solve the maintenance-cost view-selection problem afg@instraints. [12] made the first attempt to solve the mainte-
claimed that the*-heuristic can guarantee to reach an optimalance-cost view-selection problem by evolutionary algorithms,
solution. The A*-heuristic is shown by Algorithm 1. The but did not show any experiments for problems larger than
A*-heuristic uses atinverse topological ordeto find a set 20 views.
of materialized views. It defines a binary tré&; whose Inthis paper, we propose a new evolutionary algorithm which
leaf vertices are the candidate solutions of this problem. fits the maintenance-cost view-selection problem well. First, a
each stage of searching*-heuristic evaluates the benefitpool of bit string genomes are generated randomly. This is the
of remaining downward branches, and selects the branchi®tial population. Each genome represents a candidate solution
the greatest benefit to go down. Each vertex in the binatg the problem to be solved. The length of this genome is the
search tree has a labéN,, M,)(M, C N,), whereM, is total number of vertices in the lattice; 1 and 0 mean that the
the set of views which have been chosen to materialize avertices need to be materialized or not respectively. A genome
considered to answer the set of queés The search space iscan be formalized agenome = (21 22 z3 --- zn), WwhereN
2lV(G)I whereV (@) is the set of vertices of the gragh They is the total number of vertices in the lattice. Herg,= 1 if
estimated the benefit of the downward branches by summing\ipw v; is selected for materialization and = 0 if view v;
two functionsg(z) andh(z). g(z) is the total query processingis not selected for materialization. For example, in Fig/3,
cost of the queries ofV,. using the selected views iW,.. h(z) is 4.genome = (1 0 1 0) means that two views;, andwvs,
is an estimated lower bound drf () which is defined as the are materialized. During the crossover and mutation processes,
remaining query cost of an optimal solution corresponding gwod candidates will survive and poor candidates will die. In
some descendant afin T [6]. the following, we will introduce penalty methods and stochastic
Although theA*-heuristic can guarantee to find an optimatanking, and give our new evolutionary algorithm.
solution, itis an exponential algorithm in the worst case and may]]] .
take a prohibitively long time to run. In this paper, we will exA. Constraint Handling: Penalty versus Stochastic Ranking
amine the quality and scalability of our algorithm in comparison Lee and Hammer in [12] used a genetic algorithm with the
with the A*-heuristic, and report our findings in Section IV. penalty method to set a static penalty coefficient, to find

462 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 4, NOVEMBER 2003

a near-optimal solution to the maintenance-cost view-selectionSubtract and Divide mode(SD)

problem. (Hereafter we called it 4€E algorithm.) In brief, f(x) = B(G, M) — Pen(z), if B(G,M,)> Pen(z)
we introduce their penalty-based approaches, and express o'us o ' T

?

concerns. = M if B(G,M,) < Pen(z)
Letz = (z1,32,---,2x), for z; = 0 or 1, andM, = Pen(x)

{vi|lz; = 1,4 = 1,2,---, N}, the original maintenance-cost and Pen(z) > 1,

view-selection problem can be formulated as follows: =B(G,M.,), if B(G,M,) < Pen(x)

and Pen(z) < 1.

Their penalty functiorisalso have three forms:
 Logarithmic penalty (LG):

This is a constrained combinatorial optimization problem. The Pen(z) = logs (1L + p- (U(M,) — S)).

common method for dealing with constrained optimization ’

problems is to introduce a penalty function to the objective * Linear penalty (LN):

function to penalize the solutions violating the constraint. Pen(z) = 1+p - (UM,) - S)).

Usually, the penalty function can be defined as

Mazimize f(z) = B(G,M,) = 7(G, ¢) — 7(G, M)
subject to: U(M,) < S.

» Exponential penalty (EX):

¢(z) = maz {U(M,) — 5,0} Pen(z) = (1+p- (UM,) — 95)))>.
Then, the original optimization problem with constraints can B&hichever of the three fitness function forms above is used in
transformed into an unconstrained one: practice, this can be considered as a penalty method of asstatic
value. We note that in theubtract modgin fact,r, = 1. In the
Mazimize f(z) = B(G, M,) — 1y - () other two modesD andS D, although no explicit, values are

shown, they are fixed. The unconstrained fitness funcfia)

wherer, is the penalty coefficient. The choice of the penalt{s composed of3(G, M,) and Pen(x), and this relation does
coefficientr, is very important [14]. A too smalt, will result not change in the whole evolutionary process. As it does in nu-
in under-penalization, namely, infeasible solutions not being p&erical function optimization problems, such a penalty method
nalized enough. So many infeasible solutions may be found.d@es not work very well in combinatorial optimization prob-
too larger,, will result in over-penalization, namely, some “benlems either. We will compare its experiment results with ours
eficial” infeasible solutions being penalized too much during tHe Section IV.

course of evolutionary optimization. The reason why some in- Since finding an optimat, value is difficult and the penalty
feasible solutions may be beneficial during the course of ev#ethods setting a static or dynamig value do not work well
lution is that, when feasible regions in the whole search spd€é the optimization problem with constraints, [14] put forward

are disjoint, some infeasible regions may act as bridges améhgew constraint handling technique, named stochastic ranking,
feasible regions. If a too large, makes such infeasible solu-t0 balance the dominance of the objective and penalty functions

tions inaccessible, then it is difficult for an evolutionary algofor constrainechumericaloptimization. The novel idea of this

rithm to jump from one feasible region to another one whictgchnique is the introduction of a probabiliy for rank-based
may have better fitness values. Thus, an overly laggeay pre- selection. During the course of ranking, We need to compare
vent a good feasible solution from being found. Because of tRairs of two adjacent individuals. If they are both feasible solu-
importance of-,, there has been much research work done onfiens, naturally, we will compare them according to the objec-
However, the setting of, has been a difficult problem. It is dif- tive function. However, when either of them is infeasible, the
ficult to find a precise value to realize the right balance betwe@#robability of comparing them according to the objective func-
the original objective function and the penalty function. Evefion is P, while the probability of comparing them according to
most dynamic setting methods, which start with a lgywalue ~the penalty function will be — P;. SinceP is a probability, it
and end with a high,, are not likely to work well for problems gives an opportunity for both the objective and penalty functions
for which the unconstrained global optimum is far away frorff rank a pair. Whe’s > 1/2, the ranking is biased toward the

its constrained one [14]. In [12], the fitness functipfr) has Objective function. Whe®; < 1/2, the ranking is biased to-
three forms: ward the penalty function. SBy can balance the objective and

Subtract mode(S) penalty functions more directly, explicitly and conveniently. By
adjusting P, we can adjust the balance between the objective

f(z) = B(G, M,)—Pen(x), if B(G,M,)—Pen(x) >0, function and the penalty function easily. Moreover, we do not
have any extra computing cost for settingvalues since we do
not use any penalty terms. In practice, we usuallyfyex 1/2
Divide mode(D) to reduce the ratio of infeasible solutions to the whole in the
final generation. For different optimization problems, we will
experiment with setting differerf?; values.

=0, otherwise.

o) =)
= B(G, M.)

if Pen(z) > 1,
2EX should really be called “polynomial”, but let us use what the authors
if Pen(z) < 1. used.

?

YU et al. MATERIALIZED VIEW SELECTION 463

B. Our New Stochastic Ranking Evolutionary Algorithm 4: t=t+1;

5. Gy(t) <+« UniformCrossover(G(t — 1));
{refer to Algorithm 3.}
Go(t) + Mutation(G(t)); {refer to

Algorithm 4.}

: S « StochasticRanking(G(¢t — 1) U Ga(t)),
which sorts G(t—1)UG,(t) to an ordered
individuals sequence S of
size 2 x P; {refer to Algorithm 5.}

G(t) < the anterior P individuals of S;

Based on our analysis in the last section, we observe that the
stochastic ranking approach will have better performance for
this problem than theEE method. Although stochastic ranking
has been used for constrained numerical optimization problems
and shown good performance using ¢) evolution strategy
[14], [15], it is unclear whether it is effective for combinatorial
optimization problems. Our paper presents the first attempt to-
ward generalizing this approach to combinatorial optimization
problems, using a operator sequence, crossover-mutation-selec- 8

tion, as used in generic algorithms. until (termination condition is
The basic framework of our evolutionary algorithm is shown 1osat|sf|§d)
© en

in Algorithm 2. Similar to most evolutionary algorithms, both
crossover and mutation are used. The crossover operator we use
is uniform crossoveras shown in Algorithm 3. It exchanges the Algorithm 3 UniformCrossover
information of two chromosomes to generate two new chromo-Input: Generation G

somes. The mutation operator we use is similar to the most usuParameter: crossover probability P,
ally used one, as shown in Algorithm 4. The probability that 1: begin

every bit of every gene will be flipped i8,,. The key differ- 2: Select a pair of individuals of G

ence from most evolutionary algorithms is the stochastic rank randomly:

procedure we used. The stochastic ranking algorithm is based g = (b1,b2,---,bn), g2 = (c1,¢2, "+, ¢N);

on [14], but modified in some places for the specific problem of 3: sample u € U(0,1);

materialized views selection, as shownin Algorithm 5. Itisused 4: if (u < P.) then

for ranking the union of new and old individuals. The ranking 5. for every bit 4 of individual do
procedure is similar to bubble-sort. In every sweepvofevery 6: sample r, either O or 1,

two adjacent individuals are compared. If there is no any change 7 if (r=1) then

of individual's rank after a sweep, then this bubble-sort-like pro- 8 the bit i of g1 = b;;

cedure can be terminated. Nof€:is the number of vertices in 9: the bit i of g = ¢
the lattice. 10: else

It is worth noting that, for dealing with numerical optimiza- 11: the bit 1 of ¢ =c;
tion problems, [14] uses a(\) evolution strategy, and set the 12: the bit 1 of g4 =b;;
truncation level ag /A = 1/7, wherey and) are the number of 13: end if

parents and the number of children, respectively. In this paper, 14: end for
we are dealing with the materialized view selection problemasa 15: else

combinatorial optimization problem using a typical operator-se- 16: ¢} = g1;
guence as used in genetic algorithms. Like most genetic algo- 17: ¢, = go

rithms, we generat& offsprings fromu parents, where = p. 18: end if
19: Repeat the above procedure P/2
IV. EXPERIMENTAL STUDIES times, which will generate P new
In this section, we present some results of our experimental 5 0'_nd2/:$ua|5;

study. All the algorithms were implemented using +. These
experiments were done on a Sun Blade/1000 workstation with a
750 MHz UltraSPARC-III CPU running Solaris 2.8. The work- Algorithm 4 Mutation

station has a total physical memory of 512 M. Input: Generation G
Parameter: mutation probability P,
A. Experimental Setup 1: begin
In order to evaluate the performance of our stochastic ranking 2: for —every individual in G do
evolutionary algorithn{EA) and the best result of the penalty- ~ 3: for every bit in the individual do
based algorithnLEE), we also implemented an algorithm for ~ 4: Mutate the bit with the probability
finding the optimal solution. To find the optimal of Pp;
5: end for
Algorithm 2 The Basic Framework of Our end for
Evolutionary Algorithm (denoted EA) end
Parameter: population size P
1: begin Algorithm 5 Stochastic Ranking
2. Generate the initial population G(0); Input: A = 2 x P individuals {Llj =

3: repeat 1,...,A}

464

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 4, NOVEMBER 2003

Parameter: balance parameter
Note: the fitness function:
B(G, M,,), the penalty function:

TABLE |
NOTATIONS AND DEFINITIONS OF THE SYSTEM PARAMETERS
USED IN EXPERIMENTS

max{ U(Mw) -8, 0}_ The N is set to be Notation | Definition (Default Values)
; N the number of vertices (16)

as .analyzeq n [14]) 0q Zipf distribution factor for query frequency (0.2)
1. for =1t N do 0., Zipf distribution factor for update frequency (0.0625)
2: for j=1to A—-1 do R, table size for a vertex v
3: sample wu € U(U, 1); Qv,u) query processing cost for a vertex u using v

. . N o) _ [maintenance-cost for a vertex u using v
4 if (¢(IJ) = ¢(IJ +1) = 0) or (u < Py) Crmin the minimum maintenance-cost constraint that allows all
then vertices to be selected as materialized views

5: if f(I;) < f(Lj41) then P; probability for stochastic ranking function (0.4)
6 sw ap(Ij- Ij+1); P, mutation probability (0.001)
7 end if
8: else .
9 it ¢(I;) > ¢(I,11) then B. Experimental Results
10: swap(Lj, Ijt1); 1) Feasibility of the Solutions¥First, we investigate the fea-
11: end if sibility of the solutions of ouEA by varying theP; value. In
12: end if Fig. 4(a)—(d), the number of vertices is 32. The results were aver-
13: end for aged over 30 independent runs of aaralgorithm. In Fig. 4(a),
14: if no swap done then the y-axis indicates the percentage of feasible solutions in the
15: break; final generation. Recall that maintenance-cost constraint has a
16: end if big effect on the result. In this testing, we try to use different
17: end for maintenance-cost constraint to see lemdeals with the main-

tenance-cost constraint. In Fig. 4(&pin(1) and Cmin(0.8)
Set of materialized views to precompute, we enumerated all psgpresent the maintenance-cost constrairtC,,,;,, ando.8 x
sible combinations of views, and find a set of views by which them», respectively. When the maintenance-cost constraint is
query processing cost is minimized. Its complexityd&?), Cmin(1), the percentage of feasible solution is always one hun-
whereN is the number of vertices. For a small number of la@red. It shows thatA can always find a feasible solution if the
tice (16 vertices), we compare amdiiy LEE, A*-heuristicand maintenance-cost constraint is large enough. When the main-
the optimal algorithm. We also report the scalability of #te tenance-cost constraint@sin(0.8), it shows thatP; can alter
algorithm using a large number of lattice up to 256 vertices. the percentage of feasible solutions very easily. Whes= 0.5,
the following,LEE is the best result given in [12]. the percentage of feasible solutions drops sharply from 100% to

Table | summarizes all the parameters together with the d®%. If maintenance-cost constraint is reduce@ o< Cy,,;,,, the
fault values used in our experiments. EA gets all Os solutions in the final generation since the mainte-
Given a dependent latticd.(<) of size N, we construct a nance-cost constraint is too low to select any vertices.

directed acyclic grapli(V, E). A vertex,v, has three weights: In Fig. 4(b)-(d), the optimal solution produced by
table sizeR,,, update frequency, and query frequency,. An A*-heuristic is chosen as the denominator to evaluate our
edge, fromw to u, has two weightsQ(,, ., andUy, .. We as- EA. In these three figures, the maintenance-cost constraint
sign these weights to the gragi(V, E) as follows. First, we is 0.8 x Cp,,. Fig. 4(b) shows the quality of the feasible
randomly generat& distinctive table size6R,). The N table solutions. The y-axis represents a ratio of the average query
sizes are randomly picked up and assigned to the vertices opracessing cost of the feasible solutions over the optimal query
condition that the table sizes of ancestors of a vertex are gregiecessing cost. As expected, whepis less than or equal to
than that of the vertex. We assume that query frequencies follw, the average query processing cost of feasible solutions is
a Zipf distribution, the high query frequencies are most likely tgreater than 1, because the query processing cost of the optimal
be assigned at the high level (close to top) by default. We alselution is the lowest among all the feasible solutions. In
assume that, when the raw table is updated, all views needctmtrast, wher’; > 0.4, the average query processing cost of
be recomputed. Thus, all vertices are assumed to have the ségasible solutions is equal to 0 as there are no feasible solutions
update frequency. Given an edge frero u, (v, u), we assume found. (Fig. 4(a) shows that the percentage of feasible solution
that the maintenance-cost@lsingv is smaller than the query is equal to 0 wher®; > 0.4.)
processing cost af usingv. We also assume that the mainte- Fig. 4(c) shows the quality of the infeasible solutions in
nance-cost is more related to the table size.on the set of the final generation. Since the infeasible solutions trade off
tests we reported in this pap€J;, ., is a number smaller than the maintenance-cost with a lower and better overall query
the table size of, (R,). U, ., is about one tenth of the tableprocessing cost, the average query processing cost of infeasible
sizeu, (R,). The maintenance-cost constraint is a crucial condelutions is less than 1. Fig. 4(d) shows the maintenance-cost
tion for the maintenance-cost view-selection problem. In our esf the infeasible solutions from the optimal maintenance cost.
periments, we assume that the minimum maintenance-cost ctirshows that in the worst case, the average maintenance-cost
straint,C,,;», is the minimum value which allows all views toof infeasible solutions is no greater than 1.3 times of the
be selected as materialized views. maintenance-cost of the optimal solution.

YU et al. MATERIALIZED VIEW SELECTION 465

S B o |7 ———
1.4 | Cmin (0.8) ——— 14 i
1.2 % 12 |
g, g
3 2
2 =
E 0.8 [g 0.8
= o
5’ os | 0.6
8
& o4 0.4
g
oz | g o2
2
o o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pt Pt
(@) (b)
1 1.4
EA e [
"
= e — |
E g | :
os | 4 32
.g w
i I S - g
£ 3
- 2
5 °° 5 08 [
2 2
2 os f
g 0.4
S
& .
= 2 o4}
S
S o2t} g’
g: £ o2}
Z
o [
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pf Pf

() (d)

Fig. 4. Feasibility of the solutions by varying tfi& value. (a)P; versus percentage of feasible solutions;®p)versus average query processing cost of feasible
solutions; (C)P; versus average query processing cost of infeasible solution(dgrsus average maintenance cost of infeasible solutions.

6000 — 25000
g S0 2 20000
i
l§ 4000 w
5
g g 15000
2 2
= 3000 =
b Z 10000 |
g 2000 | g
8
& & 5000 |
g toooy g
S =]
o o
0.7 075 0.8 085 0.9 095 1 0.6 0.85 0.7 0.75 0.8 0.85 0.9 0.95 1

Constraint Ratio Constraint Ratio

(@) (b)

Fig. 5. Optimality of solutions with different maintenance-cost constraint. (a) Query processing cost versus maintenance-cost constigasjl@yeuery
processing cost versus maintenance-cost constraint (32 vertices).

The above testings demonstrate titatgives a convenient In Fig. 5(a), we use exhaustive search to compute the optimal
way to fine-tune the algorithm. By varying tli& value,EA can solution. It shows thaA *-heuristic performs in the same way as
deal with the maintenance cost constraint well. As a result, vilee optimal. OUEA always gives a near optimal feasible solution
will chooseP; = 0.4 as the defaulP; value in the subsequentthat is very close to the optimal. On the other hand, the query
experiments. processing cost afEE is much higher than the optimal solution.

2) Optimality of Solutions:In this experimental study, we In Fig. 5(b), we compare oA andLEE with A*-heuristic. It
investigate the performance of dify, LEE, A*-heuristic and the shows that ouEA can find near optimal feasible solutions that
optimal algorithm under different maintenance-cost constraintge very closed ta*-heuristic. OuUrEA outperforms theLEE
Let the maintenance-cost constraint®e< C,,;,. In Fig. 5(a) algorithm significantly.
and (b),R varies from 0.7 to 1. (Note that whe® < 0.7, none 3) Scalability of the Algorithms:There are several existing
of the algorithms can select any views.) A largevalue implies algorithms for solving the maintenance-cost view-selection
that it is likely to select more views. Whdd = 1, it means that problem. Fig. 6 shows four algorithms, namebgE, EA
all vertices may be selected. The number of vertices is 16 aaad A*-heuristic, in addition to a greedy algorithm, called
32 respectively in Fig. 5(a) and (b). We took the average queryverted — tree [6], when the maintenance-cost constraint
processing costs of oA andLEE over 30 independent runs. is 0.8 x C,,;,. Theinverted — tree greedy uses a concept

466 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 4, NOVEMBER 2003

EA
LEE

]ii

A

£ 1400 Inverted-Tree

100
5
£ 1200 _
g EA --—eme
3 LEE —w— 10 |

1000 A ——

E Inverted-Tree ——— E’
£ L &
= 800 . 1
]
S 600 |
g’ £ 0.1 | /
@ >
8 400 [-~
&

0.01 |
§ 200 ./

o 0.001
4 6 8 10 12 14 16 4 -] 8 10 12 14 16
No. of Nodes No. of nodes

@ (b)

Fig. 6. Four algorithms. (a) Query processing cost versus number of vertices; (b) view selection time versus number of vertices.

12
000 25000
LEE

g 10000 |
3 20000 |
,?g 8000 §
- 15000 [
3 £
b= 6000 ¥
g 10000 [
g 4000 | ‘g
8 >
& 5000 [
2 2000 |
]
S
o o
o 50 100 150 200 250 300 o 50 100 150 200 250 300
No. of Nodes No. of Nodes

(@) (b)

Fig. 7. Scalability of algorithm by varying the number of vertices. (a) Query processing cost versus number of vertices; (b) view selectiongimenieesof
vertices.

called an inverted tree set. Given a vertex a directed graph, V. CONCLUSIONS

an i.nverted tree set contains the vertexand any subset of As a network service, a data warehouse system collects
vertices reac.hable from At each stage, thenverted —tree (gata from different remote data sources and disseminates
g_reedy algorithm considers aI_I inverted tree sets of views in th?gh-quality data analysis to decision makers locally and
given graph, and selects the inverted tree set that has the magiotely. In this paper, we showed that computational intel-
guery-benefit per unit eff_ectlve mamtenance-c_ost. Fig. 6 Sho‘ﬂ@ence plays a significant role in design of a data warehouse
a small-scale problem with the number of vertices from four Tgystem, and presented a new constrained evolutionary a|go_
16. As shown in Fig. 6(a)EA and A*-heuristic performs the rithm for the maintenance-cost view-selection problem.
best (the same as the optimal). Thererted — tree greedyis The algorithm is based on a novel constraint handling
inferior to EA and A*-heuristic but is superior toEE. Fig. 6(b) technique—stochastic ranking. Although stochastic ranking
shows the view-selection time. Thaverted — tree greedy has been used in numerical constrained optimization, its suit-
cannot deal with large-scale problems, due to its view selectiability for combinatorial optimization was unclear. This paper
time. demonstrates that a revised stochastic ranking scheme can be
The existing algorithms do not perform well when comapplied to constrained combinatorial optimization problems
puting a large dependent lattice. Evolutionary algorithnsuccessfully.
can explore this search space better. SiA¢eheuristic and ~ We have evaluated our new evolutionary algorithm against
inverted — tree greedy cannot deal with the lattice up tdoth heuristic and other evolutionary algorithms. Our experi-
256, we compare ouEA and LEE by varying the number of ments results show that our algorithm can provide significantly
vertices, N, from 4 to 256. The maintenance-cost constraint fetter solutions than previous algorithms in terms of minimiza-
0.8 x C,,;n. For the number of vertices from four to 64, weion of query processing cost and feasibility. In comparison with
took the average query processing cost for both algorithms o¥@¢ latest evolutionary algorithm, i.e., thet algorithm [12],
30 independent runs. When the number of vertices is grea@ff @lgorithm can avoid premature convergence and keep im-
than 128, we ran it once due to the longer execution time. R{OVing the solution, while thekE algorithm tends to get stuck
Fig. 7(a), we can see tha significantly outperforms thege &t & poor local optimum fairly early.
algorithm in terms of minimization of query processing cost.
However, ourEA took a longer time thamkE to find better ACKNOWLEDGMENT
solutions, according to Fig. 7(b). It is worth noting that @ar The authors appreciate the editors and anonymous referees
is much more likely to find feasible solutions as well wHilEE ~ for their invaluable suggestions and comments which help us
tends to get stuck at a poor solution fairly early. improve the paper’s quality and presentation.

YU et al. MATERIALIZED VIEW SELECTION 467

REFERENCES

[1] R. Kimball, The Data Warehouse Toolkit New York: Wiley, 1996.

[2] V. Harinarayan, A. Rajaraman, and J. D. Uliman, “Implementing dat
cubes efficiently,” inProc. 1996 ACM SIGMOD Int. Conf. Management
of Data, 1996, pp. 205-216.

[3] H.Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Index sele:
tion for OLAP,” in Proc. Thirteenth Int. Conf. Data Engineering997,
pp. 208-219.

[4] H. Gupta, “Selection of views to materialize in a data warehouse,”
Proc. 6th Int. Conf. Database Theqr997, pp. %8_112.‘ . . National University (ANU), Canberra, in 1990, and

[5] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized view sele&intinued his work on

. - : \ simulated annealing and evolutionary algorithms. He
g‘;?;oé:;:ggrgg ns;)orllagéi_a;gzets, Proc. 24th Int. Conf. Very Large joined the Knowledge-Based Systems Group at CSIRO Division of Building,

%onstruction and Engineering, Melbourne, Australia, in 1991, working
; oo rimarily on an industrial project on automatic inspection of sewage pipes.
Tga;;gtenan:géi(zs;oconstralnt, Broc. 7th Int. Conf. Database Theory He returned to Canberra in 1992 to take up a lectureship in the School of
(7] C-H Cpﬁm 3 X Yﬁ and G. Gou. “What difference heuristics rnakeComputer Science, Qniversity College, the University of New South Wales
M'ain.tenan’ce—'co'st vfew—seléction ’revisited "fmoc. Third Int. Conf (UNSW), the Australle}n Defence Force Aca_demy (ADFA), where he was
Web-Age Information Manageme@002 ')) ’ Iat(_er prc_)moted to _Senlor Lecturer and Associate Professor. He mov_ed to t'he
[8] E.Baralis, S. Paraboschi,and E Tenieﬁte “Materialized views selectiumversIty of Birmingham, England, as a Professor of computer science in
in' a multi’dinlwensional da’tabase; " Proc 213rd Int. Conf. Verv Large 9899. Cur_rently, he is the Director of the_ Centre of Excellgnce for Res_earch in
Data Bases1997 156165 ')) ’ y Larg Computational Intelligence and Applications (CERCIA). His research interests
ata s » PP- : include evolutionary artificial neural networks, automatic modularization of
machine learning systems, evolutionary optimization, constraint handling
techniques, computational time complexity of evolutionary algorithms, iterated
prisoner’s dilemma, and data mining.
Dr. Yao won the 2001 IEEE Donald G. Fink Prize Paper Award for his work
evolutionary artificial neural networks. He is the editor-in-chief of IEEE

Xin Yao (SM'96-F'02) received the B.Sc. degree
from the University of Science and Technology of
China (USTC), Hefei, in 1982, the M.Sc. degree
from the North China Institute of Computing

Technology, Beijing, in 1985, and the Ph.D. degree
from USTC in 1990.

He was an Associate Lecturer and Lecturer
between 1985 and 1990 at USTC while pursuing the
; ¥ ' Ph.D degree. He took up a postdoctoral fellowship
in the Computer Sciences Laboratory, Australian

[6] H. Gupta and I. S. Mumick, “Selection of views to materialize under

[9] J. C. Bezdek, “What is computational intelligence?,'Gomputational

Intelligence Imitating Life New York: IEEE Press, 1994, pp. 1-12.

[10] J. M. Zurada, R.J. M I, and C. J. Robins@pmputational Intelligence
Imitating Life. New York: IEEE Press, 1994.

[11] C. Zhang, X. Yao, and J. Yang, “An evolutionary approach to matergn

ghzset:d ’\‘;I'::’]V (s:elgglt’fnqllglaﬁata Wgé%ﬁ%‘éie :SVIFZB?:LGEEE Trans. TRANSACTIONS ONEVOLUTIONARY COMPUTATION and the Associate Editor of

[12] My Lé'e and’J ﬂamn'{er “épe’ez?ﬁg up mate’rialigéd vieW selectionind ﬁyeral otherjourngls. He chairs the; IEEE NNS Technical Commit_tee on Evo-
Wérehouses -usin a ra’ndomized algorithmt” J. Cooperative Inform 9 ionary Computation and has chalre_d/co—chalred more th_an 25 international
S 110 no % 327-353 2801 T p * conferences and workshops. He has given more than 20 invited keynote/plenary

[13] Zyilltigr?a.lewi’cz a.mcyl FIi/FID.Schoena’ ; “E. lutionary alqorithms for nspeeches at conferences and workshops world-wide. His Ph.D work on simu-

o - SCnoenauer, Evolutionary algorithms 1or CoNpyqy annealing and evolutionary algorithms was awarded the President’'s Award

strallne?(,jzpalrggéeter optimization problensyol. Comput.vol. 4, no. 1, for Outstanding Thesis by the Chinese Academy of Sciences.
pp. 1-32, .

[14] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-
tionary optimization,"EEE Trans. Evol. Compytvol. 4, pp. 284—-294,
Sept. 2000.

[15] H.-P. SchwefelEvolution and Optimum SeekingNew York: Wiley,

1005 Chi-Hon Choi received the B.Eng degree in systems engineering and engi-

neering management from the Chinese University of Hong Kong (CUHK),
where she is currently pursuing the M.Phil degree, also in systems engineering
and engineering management.

Her current research interests include design and analysis of data warehousing

))) and online analytical processing, design and implementation of database man-
Jeffl’ey Xu Yu received the B.E., M.E., and Ph.D. in computer science from t%ement systems, query processing and query optimization.
University of Tsukuba, Japan, in 1985, 1987, and 1990, respectively.

He was a Research Fellow (April 1990-March 1991) and an Assistant Pro-
fessor (April 1991-July 1992) with the Institute of Information Sciences and
Electronics, University of Tsukuba, and a Lecturer in the Department of Com-
puter Science, Australian National University, Canberra (July 1992—-June 200Bang Goureceived the B.S. degree from the Department of Computer Science
Currently, he is an Associate Professor in the Department of Systems Eragid Technology, NanKai University, China, in 2000.
neering and Engineering Management, The Chinese University of Hong KongHe is currently pursuing the M.Phil. degree in the Department of Systems
His major research interests include wireless information retrieval, data waErgineering and Engineering Management at the Chinese University of Hong
house, on-line analytical processing, query processing and optimization, dahg. His recent research focuses on data warehouse, OLAP queries, and mate-
design and implementation of database management systems. rialized view selection. He has also interests in approximate query processing,
Dr. Yu is a member of ACM and a society affiliate of IEEE Computer Societylata streams processing, and data mining.

