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Materialized View Selection as Constrained
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Abstract—One of the important issues in data warehouse devel-
opment is the selection of a set of views to materialize in order to
accelerate a large number of on-line analytical processing (OLAP)
queries. The maintenance-cost view-selection problem is to select a
set of materialized views under certain resource constraints for the
purpose of minimizing the total query processing cost. However,
the search space for possible materialized views may be exponen-
tially large. A heuristic algorithm often has to be used to find a near
optimal solution. In this paper, for the maintenance-cost view-se-
lection problem, we propose a new constrained evolutionary algo-
rithm. Constraints are incorporated into the algorithm through a
stochastic ranking procedure. No penalty functions are used. Our
experimental results show that the constraint handling technique,
i.e., stochastic ranking, can deal with constraints effectively. Our
algorithm is able to find a near-optimal feasible solution and scales
with the problem size well.

I. INTRODUCTION

T ODAY’S markets are much more competitive and dy-
namic than ever. Business enterprises prosper or fail

according to the sophistication and speed of their information
systems, and their ability to analyze and synthesize information
using those systems. A data warehouse is a subject-oriented,
integrated, time-varying, nonvolatile collection of data that
is used primarily in organization decision making [1]. As an
emerging network service, a data warehouse system collects
data from many data sources through communication networks
locally and internationally by adopting a update-driven ap-
proach. A data warehouse system provides a solid platform of
consolidated historical data for analysis, and disseminates such
analysis to users locally and remotely.

In addition to large volumes of data being transferred to a data
warehouse via communication networks, the amount of data
maintained in a data warehouse is huge in size, in the range of
hundreds of gigabyes or terabytes. Upon such enormous amount
of data collected from different sources, various of business de-
cisions need to be made in a few minutes, in order to cope with
the rapid change in different sectors of the market from time to

Manuscript received August 31, 2002; revised March 24, 2003. This work
was supported by a grant from the Research Grants Council of the Hong Kong
Special Administrative Region (Project CUHK4198/00E). This paper was rec-
ommended by Guest Editors W. Pedrycz and A. Vasilakos.

J. X. Yu, C.-H. Choi and G. Gou are with the Department of Systems
Engineering and Engineering Management, The Chinese University of Hong
Kong, Hong Kong (e-mail: yu@se.cuhk.edu.hk; chchoi@se.cuhk.edu.hk;
ggou@se.cuhk.edu.hk).

X. Yao is with the School of Computer Science, The University of Birm-
ingham, Edgbaston B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TSMCC.2003.818494

time. Such timely manner requests the data warehouse system
to be able to answer OLAP (On-Line Analytical Processing)
queries efficiently, and be able to assist executives or managers
to make a better and faster decision. OLAP queries can be issued
by decision-makers locally or remotely. The outcome of OLAP
queries are of the statistical analysis or summarization, and the
query processing time for such OLAP queries is considerably
long. In order to efficiently support decision-making or OLAP
queries, a data warehouse system needs to precompute or ma-
terialize some of such OLAP queries. The OLAP queries being
materialized are called materialized views, or simply views. The
motivation is to minimize the total query processing cost for
all possible OLAP queries by selection of a set of materialized
views under some resource constraints. It is worth noting that
it is impractical to maintain materialized views for all OLAP
queries due to the huge disk-space consumption and/or large
update cost.

The important issue is how to select such a set of materialized
views in order to minimize the total query processing time of
OLAP queries with a certain constraint. The constraint can be
either disk-space constraint or maintenance-cost constraint. The
disk-space constraint specifies the availability of the disk-space
in a data warehouse, whereas the maintenance-cost constraint
specifies how long all views must be updated, because changes
to the source data result in recomputing the materialized views
accordingly, which will be periodically done in a time window.

• Disk-space Constraint Handling: Most of the reported
studies [2]–[5] studied a disk-space view-selection
problem, using a disk-space constraint, as the disk con-
sumption of OLAP queries is very large. Harinarayanet
al. in [2] studied the disk-space view-selection problem
using a linear cost model. The linear cost model states that
the cost of answering a query using a view is the number
of records present in the view. Their greedy algorithm
can reach at least 63% of the benefit of the optimal
solution, in order to identify a set of materialized views
for minimizing the total query processing cost. Guptaet
al. [3] extended the results reported in [2] to the selection
of views and indices in datacubes. They studied the
precomputation of indices and subcubes, and discussed a
family of one-step near-optimal algorithms under a given
disk-space constraint. Gupta [4] presented a theoretical
formulation of the general view-selection problem in a
data warehouse and generalized view selection problems
as AND, OR, and AND-OR graph problems. Shukla
et al. [5] introduced a heuristic algorithm called PBS
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which achieved the same 1 bound as [2] but
with faster running time. They introduced chunk-based
precomputation and showed that using chunks for aggre-
gate subset precomputation can make the benefit larger
than the “optimal” benefit when picking aggregates. All
the above work considered a disk-space constraint and
provided greedy algorithms using the linear cost model.
Most of the greedy algorithms start from an empty set and
select the next view with the maximum benefit per unit
space in turn. The benefit of the views which have been
selected will be unchanged in the subsequent view-selec-
tion processes, it is defined asmonotonic property. The
algorithms continue to pick views until the space limit is
reached. However, the disk is cheap and the disk-space
constraint becomes less important nowadays.

• Maintenance-cost Constraint Handling: Gupta and
Mumick [6] first considered a maintenance-cost view-se-
lection problem where the constraint is maintenance
cost/time. This problem is more difficult than the
disk-space view-selection problem, because the total
maintenance cost for a set of views may decrease when
more views are added to materialized. This is defined as
nonmonotonic property. Gupta and Mumick proposed
an inverted-tree greedy algorithm and an-heuristic.
However, the quality of their algorithms depends heavily
on the initial conditions and the heuristic used. While
the -heuristic can find the optimal solution, it is an
exponential algorithm in the worst case and may take a
long time to run [7].

This materialized view selection problem is proven to be
NP-hard [6]. For example, Baraliset al. described a real
store chain application that only has four dimensions, namely,
Product (50 attributes), Store (20 attributes), Time (ten at-
tributes) and Promotion (ten attributes) [1], [8]. However, the
number of possible materialized views is over. The search
space for possible materialized views is extremely large. Ex-
isting algorithms can achieve an optimal solution only when the
problem size is small but cannot tackle large-scale problems.

Computational intelligence plays a significant role in sup-
porting the design of intelligent systems [9], [10]. Hence, com-
putational intelligence is highly desirable to assist the design
of a data warehouse system as a network service that collects
data from different remote data sources and disseminates high-
quality data analysis to decision makers locally and remotely in
an efficient way. Zhanget al. [11] proposed an evolutionary ap-
proach to materialized view selection, but they did not consider
any constraints. Lee and Hammer [12] made the first attempt to
solve the maintenance-cost view-selection problem using evo-
lutionary algorithms. They tested nine different ways to add a
penalty function to the original objective function. However,
their results were less satisfactory. They did not show any results
for problems larger than 20 views, even though they mentioned
that they did try to tackle large problems.

In this paper, we propose a new constrained evolutionary al-
gorithm for the maintenance-cost view-selection problem. Our
algorithm does not use any penalty functions. Instead, a novel
stochastic ranking procedure is used. This is the first time that

1f is the fraction available space consumed by the largest aggregate.

Fig. 1. Multidimensional data warehouse with three dimensions:Store,
Item, andDate.

the stochastic ranking is used to solve a combinatorial problem.
Through extensive experimental studies, we found that the fea-
sible solutions can be easily found by our stochastic ranking
approach. In addition, our new constrained evolutionary algo-
rithm explores the search space better than the other existing
algorithms. It can scale well with the problem size.

The rest of this paper is organized as follow. Section II
discusses the maintenance-cost view-selection problem and
defines a general cost model. Constraint handling and our
evolutionary algorithm are discussed in Section III. We con-
duct extensive performance studies and report the results in
Section IV. We conclude the paper in Section V.

II. THE PRELIMINARIES

A. A Multidimensional Data Warehouse

The star-schema of an -multidimensional data ware-
house consists of afact tableand a collection ofdimension
tables [1]. A fact table consists of dimensions, denoted

, along with measures of interest, denoted.
Each value in the dimension of the fact table corresponds
to a unique record in the corresponding dimension table,
where all the details about that dimension are kept. In
a dimension table, attributes can be further organized in a
hierarchy structure. Suppose that a multidimensional data
warehouse has dimensions and the-th dimension has
attributes. There are possible OLAP queries
(SQL group-by queries), or views.

Fig. 1 shows a star-schema for a multidimensional data ware-
house of three dimensions: , and . There is a
fact table and three dimension tables. In the fact table, it keeps
the three dimension identifiers, , and ,
for the three dimension tables, along with the measure of in-
terest, . The dimension table has two attributes,

and , in addition to its record identifier .
The dimension table has three attributes, ,
and , in addition to its record identifier . In a sim-
ilar fashion, the dimension table has four attributes, ,

, and , along with the record identifier
. These dimension tables keep the detail information

about the dimension. All the fact table and the three dimen-
sion tables can be joined to a large table representing a mul-
tidimensional space. The total number of OLAP queries is then

.
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Fig. 2. Example of dependent lattice.

B. The Maintenance-Cost View Selection Problem

Harinarayanet al. [2] introduced a dependent lattice whose
vertices are the OLAP queries or views and edges represent the
dependencies among the OLAP queries. Like [2], we define a
dependent lattice, ( , ), with a set of elements (queries or
views) and a dependence relation(derived-from, be-com-
puted-from). Given two queries and . We say is depen-
dent on , , if can be answered using the results of

. A dependent lattice can be represented as a directed acyclic
graph, . Here represents the set of queries, as ver-
tices. We use and for the set of vertices and the set
of edges of a graph . An edge, , exists in , if and
only if and , for .

Fig. 2 illustrates a simple dependent lattice of three di-
mensions, where, and represent , and

, respectively, for the example shown in Fig. 1. Here,
we ignore all the details in the dimension tables, and only
consider the identifiers as representatives of the dimensions.
A vertex in Fig. 2 represents an OLAP-query or a view. For
example, represents an OLAP query which is interested in the
total income in each store. And represents an OLAP
query which is interested in the total income in each
store with each item. The edge from the vertexto the vertex

represents the fact that the OLAP querycan be processed
by the OLAP query . Note: in Fig. 2, represents an
OLAP query which is interested in the total income
from all dimensions.

In addition, the graph representation, , for the de-
pendent lattice, has the following weights associated with ver-
tices and edges.

• Three weights on a vertex :
— : initial data scan cost’
— : query frequency;
— : update frequency.

• Two weights on an edge :
— : query processing of using ;
— : updating cost of using .

It is important to know that if . An additional
vertex, , is introduced into the directed acyclic graph as the
virtual root (representing the multidimensional data warehouse)
such that, for all , . Note: . The
data size of the virtual root, , is the largest among all the data
sizes.

In a general setting, let denote the query processing
cost of answering a queryusing a selected materialized view
. is the sum of query processing costs associated with

edges on the shortest path fromto plus the initial data scan
cost of the vertex , . If view cannot answer query in

, the raw table, the virtual vertex , will be used instead
of . Similarly, denotes the maintenance cost which is
the sum of the maintenance-costs associated with the edges on
the shortest path fromto . In [2], a linear cost model was pro-
posed. The linear cost model states that the cost of answering a
query using a view is the number of rows present in the view.
We attempt to adopt a more general cost model than this linear
cost model. Here, as shown by the two functionsand ,
we assume a general query processing cost and maintenance
cost model. First, a query processing cost can be different from
a maintenance cost for a pair of vertices. Second, we also as-
sume that the query processing cost may involve other query
processing costs (associated with edges) in addition to the ini-
tial table scan costs (associated with vertices). Third, there are
multiple paths from a view to a query. In our setting, we con-
sider selection of the shortest path.

Let be a set of vertices to be selected as ma-
terialized views. Furthermore, let denote the minimum
cost of answering a query in the presence of the
set of materialized views , and be the minimum
cost of maintaining a materialized view in presence
of the set of materialized views . The maintenance-cost
view-selection problem is to select a set of viewsthat mini-
mizes , where

under the constraint that , where, , the total
maintenance cost is defined as

C. The Difficulty of Maintenance-Cost View-Selection Problem

In many real applications, maintenance-cost is more likely
to be the real constraint to keep the materialized views consis-
tent with the data in data warehouse, rather than disk-space con-
straints. The maintenance-cost view-selection problem seems
to be very similar to the disk-space view-selection problem.
However, the maintenance-cost view-selection problem is more
difficult. For the maintenance-cost view-selection problem, the
maintenance cost of the views relies on each other. Selection of
a view will affect the prior materialized views. The total mainte-
nance cost for a set of views may decrease when more views are
added to materialize while the space occupied by a set of views
always increases when a new view is selected under the disk-
space constraint. Fig. 3 illustrates the difference between the
disk-space view-selection problem and maintenance-cost view-
selection problem. Here, for a vertex,, , and are table
size (for the query processing cost) and maintenance cost

, respectively. For simplicity, we assume that the query
frequency and update frequency are the same for every
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Fig. 3. Example of view maintenance.

vertex in this example. Suppose are material-
ized in an order of and followed by . The total disk-space
used is and the total maintenance-cost is

, because and need to be com-
puted from the virtual root and is answered by . Now con-
sider materializing . The total disk-space used is increased to

, and the total maintenance cost is de-
creased to , because and now can
be updated by . This nonmonotonic property makes mainte-
nance-cost view-selection very difficult.

D. An -Heuristic Algorithm

Gupta and Mumick [6] proposed an -heuristic algorithm
to solve the maintenance-cost view-selection problem and
claimed that the -heuristic can guarantee to reach an optimal
solution. The -heuristic is shown by Algorithm 1. The

-heuristic uses aninverse topological orderto find a set
of materialized views. It defines a binary tree whose
leaf vertices are the candidate solutions of this problem. At
each stage of searching, -heuristic evaluates the benefit
of remaining downward branches, and selects the branch of
the greatest benefit to go down. Each vertex in the binary
search tree has a label , where is
the set of views which have been chosen to materialize and
considered to answer the set of queries. The search space is

, where is the set of vertices of the graph. They
estimated the benefit of the downward branches by summing up
two functions and . is the total query processing
cost of the queries on using the selected views in .
is an estimated lower bound on which is defined as the
remaining query cost of an optimal solution corresponding to
some descendant ofin [6].

Although the -heuristic can guarantee to find an optimal
solution, it is an exponential algorithm in the worst case and may
take a prohibitively long time to run. In this paper, we will ex-
amine the quality and scalability of our algorithm in comparison
with the -heuristic, and report our findings in Section IV.

Algorithm 1 -Heuristic [6]
Input: A graph and a mainte-

nance-cost constraint .
Output: a set of materialized views.

1: begin
2: Create a tree having just the root

A. The label associated with A is .
3: Create a priority queue (heap)
4: repeat
5: Remove from , where has the

lowest value in
6: Let the label of be , where

for some .
7: if then
8: return
9: end if
10: Add a successor of , , with a

label to the list L.
11. if then
12. Add to L a successor of , ,

with a label
13. end if
14. until (L is empty);
15. return ;
16. end

III. EVOLUTIONARY ALGORITHMS

Evolutionary computation techniques have received a great
attention [13]. Some evolutionary algorithms were proposed to
solve the maintenance-cost view-selection problem, because of
its robustness. [11] first proposed an evolutionary approach to
materialized view selection problem without considering any
constraints. [12] made the first attempt to solve the mainte-
nance-cost view-selection problem by evolutionary algorithms,
but did not show any experiments for problems larger than
20 views.

In this paper, we propose a new evolutionary algorithm which
fits the maintenance-cost view-selection problem well. First, a
pool of bit string genomes are generated randomly. This is the
initial population. Each genome represents a candidate solution
to the problem to be solved. The length of this genome is the
total number of vertices in the lattice; 1 and 0 mean that the
vertices need to be materialized or not respectively. A genome
can be formalized as , where
is the total number of vertices in the lattice. Here, if
view is selected for materialization and if view
is not selected for materialization. For example, in Fig. 3,
is 4. means that two views, and ,
are materialized. During the crossover and mutation processes,
good candidates will survive and poor candidates will die. In
the following, we will introduce penalty methods and stochastic
ranking, and give our new evolutionary algorithm.

A. Constraint Handling: Penalty versus Stochastic Ranking

Lee and Hammer in [12] used a genetic algorithm with the
penalty method to set a static penalty coefficient,, to find
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a near-optimal solution to the maintenance-cost view-selection
problem. (Hereafter we called it as algorithm.) In brief,
we introduce their penalty-based approaches, and express our
concerns.

Let , for or 1, and
, the original maintenance-cost

view-selection problem can be formulated as follows:

This is a constrained combinatorial optimization problem. The
common method for dealing with constrained optimization
problems is to introduce a penalty function to the objective
function to penalize the solutions violating the constraint.
Usually, the penalty function can be defined as

Then, the original optimization problem with constraints can be
transformed into an unconstrained one:

where is the penalty coefficient. The choice of the penalty
coefficient is very important [14]. A too small will result
in under-penalization, namely, infeasible solutions not being pe-
nalized enough. So many infeasible solutions may be found. A
too large will result in over-penalization, namely, some “ben-
eficial” infeasible solutions being penalized too much during the
course of evolutionary optimization. The reason why some in-
feasible solutions may be beneficial during the course of evo-
lution is that, when feasible regions in the whole search space
are disjoint, some infeasible regions may act as bridges among
feasible regions. If a too large makes such infeasible solu-
tions inaccessible, then it is difficult for an evolutionary algo-
rithm to jump from one feasible region to another one which
may have better fitness values. Thus, an overly largemay pre-
vent a good feasible solution from being found. Because of the
importance of , there has been much research work done on it.
However, the setting of has been a difficult problem. It is dif-
ficult to find a precise value to realize the right balance between
the original objective function and the penalty function. Even
most dynamic setting methods, which start with a lowvalue
and end with a high , are not likely to work well for problems
for which the unconstrained global optimum is far away from
its constrained one [14]. In [12], the fitness function has
three forms:

Subtract mode(S)

Divide mode(D)

Subtract and Divide mode(SD)

Their penalty functions2 also have three forms:

• Logarithmic penalty (LG):

• Linear penalty (LN):

• Exponential penalty (EX):

Whichever of the three fitness function forms above is used in
practice, this can be considered as a penalty method of a static
value. We note that in thesubtract mode, in fact, . In the
other two modes, and , although no explicit values are
shown, they are fixed. The unconstrained fitness function
is composed of and , and this relation does
not change in the whole evolutionary process. As it does in nu-
merical function optimization problems, such a penalty method
does not work very well in combinatorial optimization prob-
lems either. We will compare its experiment results with ours
in Section IV.

Since finding an optimal value is difficult and the penalty
methods setting a static or dynamicvalue do not work well
for the optimization problem with constraints, [14] put forward
a new constraint handling technique, named stochastic ranking,
to balance the dominance of the objective and penalty functions
for constrainednumericaloptimization. The novel idea of this
technique is the introduction of a probability for rank-based
selection. During the course of ranking, We need to compare
pairs of two adjacent individuals. If they are both feasible solu-
tions, naturally, we will compare them according to the objec-
tive function. However, when either of them is infeasible, the
probability of comparing them according to the objective func-
tion is , while the probability of comparing them according to
the penalty function will be . Since is a probability, it
gives an opportunity for both the objective and penalty functions
to rank a pair. When , the ranking is biased toward the
objective function. When , the ranking is biased to-
ward the penalty function. So can balance the objective and
penalty functions more directly, explicitly and conveniently. By
adjusting , we can adjust the balance between the objective
function and the penalty function easily. Moreover, we do not
have any extra computing cost for settingvalues since we do
not use any penalty terms. In practice, we usually set
to reduce the ratio of infeasible solutions to the whole in the
final generation. For different optimization problems, we will
experiment with setting different values.

2EX should really be called “polynomial”, but let us use what the authors
used.
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B. Our New Stochastic Ranking Evolutionary Algorithm

Based on our analysis in the last section, we observe that the
stochastic ranking approach will have better performance for
this problem than the method. Although stochastic ranking
has been used for constrained numerical optimization problems
and shown good performance using (, ) evolution strategy
[14], [15], it is unclear whether it is effective for combinatorial
optimization problems. Our paper presents the first attempt to-
ward generalizing this approach to combinatorial optimization
problems, using a operator sequence, crossover-mutation-selec-
tion, as used in generic algorithms.

The basic framework of our evolutionary algorithm is shown
in Algorithm 2. Similar to most evolutionary algorithms, both
crossover and mutation are used. The crossover operator we use
is uniform crossover, as shown in Algorithm 3. It exchanges the
information of two chromosomes to generate two new chromo-
somes. The mutation operator we use is similar to the most usu-
ally used one, as shown in Algorithm 4. The probability that
every bit of every gene will be flipped is . The key differ-
ence from most evolutionary algorithms is the stochastic rank
procedure we used. The stochastic ranking algorithm is based
on [14], but modified in some places for the specific problem of
materialized views selection, as shown in Algorithm 5. It is used
for ranking the union of new and old individuals. The ranking
procedure is similar to bubble-sort. In every sweep of, every
two adjacent individuals are compared. If there is no any change
of individual’s rank after a sweep, then this bubble-sort-like pro-
cedure can be terminated. Note:is the number of vertices in
the lattice.

It is worth noting that, for dealing with numerical optimiza-
tion problems, [14] uses a (, ) evolution strategy, and set the
truncation level as , where and are the number of
parents and the number of children, respectively. In this paper,
we are dealing with the materialized view selection problem as a
combinatorial optimization problem using a typical operator-se-
quence as used in genetic algorithms. Like most genetic algo-
rithms, we generate offsprings from parents, where .

IV. EXPERIMENTAL STUDIES

In this section, we present some results of our experimental
study. All the algorithms were implemented using . These
experiments were done on a Sun Blade/1000 workstation with a
750 MHz UltraSPARC-III CPU running Solaris 2.8. The work-
station has a total physical memory of 512 M.

A. Experimental Setup

In order to evaluate the performance of our stochastic ranking
evolutionary algorithm and the best result of the penalty-
based algorithm , we also implemented an algorithm for
finding the optimal solution. To find the optimal

Algorithm 2 The Basic Framework of Our
Evolutionary Algorithm (denoted )
Parameter: population size

1: begin
2: Generate the initial population ;
3: repeat

4: ;
5: ;

{refer to Algorithm 3.}
6: ; {refer to

Algorithm 4.}
7: ,

which sorts to an ordered
individuals sequence of
size ; {refer to Algorithm 5.}

8: ;
9: until (termination condition is

satisfied)
10: end

Algorithm 3 UniformCrossover
Input: Generation G
Parameter: crossover probability

1: begin
2: Select a pair of individuals of G

randomly:
, ;

3: sample ;
4: if then
5: for every bit of individual do
6: sample , either 0 or 1;
7: if then
8: the bit of ;
9: the bit of ;
10: else
11: the bit of ;
12: the bit of ;
13: end if
14: end for
15: else
16: ;
17:
18: end if
19: Repeat the above procedure

times, which will generate new
individuals;

20: end

Algorithm 4 Mutation
Input: Generation G
Parameter: mutation probability

1: begin
2: for every individual in do
3: for every bit in the individual do
4: Mutate the bit with the probability

of ;
5: end for
end for
end

Algorithm 5 Stochastic Ranking
Input: individuals
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Parameter: balance parameter
Note: the fitness function:

, the penalty function:
. The is set to be

as analyzed in [14] .
1: for to do
2: for to do
3: sample ;
4: if or

then
5: if then
6: ;
7: end if
8: else
9: if then
10: ;
11: end if
12: end if
13: end for
14: if no swap done then
15: break;
16: end if
17: end for

Set of materialized views to precompute, we enumerated all pos-
sible combinations of views, and find a set of views by which the
query processing cost is minimized. Its complexity is ,
where is the number of vertices. For a small number of lat-
tice (16 vertices), we compare among, , -heuristic and
the optimal algorithm. We also report the scalability of the
algorithm using a large number of lattice up to 256 vertices. In
the following, is the best result given in [12].

Table I summarizes all the parameters together with the de-
fault values used in our experiments.

Given a dependent lattice (, ) of size , we construct a
directed acyclic graph . A vertex, , has three weights:
table size , update frequency and query frequency . An
edge, from to , has two weights: and . We as-
sign these weights to the graph as follows. First, we
randomly generate distinctive table sizes . The table
sizes are randomly picked up and assigned to the vertices on a
condition that the table sizes of ancestors of a vertex are greater
than that of the vertex. We assume that query frequencies follow
a Zipf distribution, the high query frequencies are most likely to
be assigned at the high level (close to top) by default. We also
assume that, when the raw table is updated, all views need to
be recomputed. Thus, all vertices are assumed to have the same
update frequency. Given an edge fromto , ( , ), we assume
that the maintenance-cost ofusing is smaller than the query
processing cost of using . We also assume that the mainte-
nance-cost is more related to the table size of. In the set of
tests we reported in this paper, is a number smaller than
the table size of , . is about one tenth of the table
size , . The maintenance-cost constraint is a crucial condi-
tion for the maintenance-cost view-selection problem. In our ex-
periments, we assume that the minimum maintenance-cost con-
straint, , is the minimum value which allows all views to
be selected as materialized views.

TABLE I
NOTATIONS AND DEFINITIONS OF THE SYSTEM PARAMETERS

USED IN EXPERIMENTS

B. Experimental Results

1) Feasibility of the Solutions:First, we investigate the fea-
sibility of the solutions of our by varying the value. In
Fig. 4(a)–(d), the number of vertices is 32. The results were aver-
aged over 30 independent runs of ouralgorithm. In Fig. 4(a),
the y-axis indicates the percentage of feasible solutions in the
final generation. Recall that maintenance-cost constraint has a
big effect on the result. In this testing, we try to use different
maintenance-cost constraint to see howdeals with the main-
tenance-cost constraint. In Fig. 4(a), and
represent the maintenance-cost constraint and

, respectively. When the maintenance-cost constraint is
, the percentage of feasible solution is always one hun-

dred. It shows that can always find a feasible solution if the
maintenance-cost constraint is large enough. When the main-
tenance-cost constraint is , it shows that can alter
the percentage of feasible solutions very easily. When ,
the percentage of feasible solutions drops sharply from 100% to
0%. If maintenance-cost constraint is reduced to , the

gets all 0s solutions in the final generation since the mainte-
nance-cost constraint is too low to select any vertices.

In Fig. 4(b)–(d), the optimal solution produced by
-heuristic is chosen as the denominator to evaluate our
. In these three figures, the maintenance-cost constraint

is . Fig. 4(b) shows the quality of the feasible
solutions. The y-axis represents a ratio of the average query
processing cost of the feasible solutions over the optimal query
processing cost. As expected, when is less than or equal to
0.4, the average query processing cost of feasible solutions is
greater than 1, because the query processing cost of the optimal
solution is the lowest among all the feasible solutions. In
contrast, when , the average query processing cost of
feasible solutions is equal to 0 as there are no feasible solutions
found. (Fig. 4(a) shows that the percentage of feasible solution
is equal to 0 when .)

Fig. 4(c) shows the quality of the infeasible solutions in
the final generation. Since the infeasible solutions trade off
the maintenance-cost with a lower and better overall query
processing cost, the average query processing cost of infeasible
solutions is less than 1. Fig. 4(d) shows the maintenance-cost
of the infeasible solutions from the optimal maintenance cost.
It shows that in the worst case, the average maintenance-cost
of infeasible solutions is no greater than 1.3 times of the
maintenance-cost of the optimal solution.
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(a) (b)

(c) (d)

Fig. 4. Feasibility of the solutions by varying theP value. (a)P versus percentage of feasible solutions; (b)P versus average query processing cost of feasible
solutions; (c)P versus average query processing cost of infeasible solutions; (d)P versus average maintenance cost of infeasible solutions.

(a) (b)

Fig. 5. Optimality of solutions with different maintenance-cost constraint. (a) Query processing cost versus maintenance-cost constraint (16 vertices); (b) query
processing cost versus maintenance-cost constraint (32 vertices).

The above testings demonstrate thatgives a convenient
way to fine-tune the algorithm. By varying the value, can
deal with the maintenance cost constraint well. As a result, we
will choose as the default value in the subsequent
experiments.

2) Optimality of Solutions:In this experimental study, we
investigate the performance of our, , -heuristic and the
optimal algorithm under different maintenance-cost constraints.
Let the maintenance-cost constraint be . In Fig. 5(a)
and (b), varies from 0.7 to 1. (Note that when , none
of the algorithms can select any views.) A largervalue implies
that it is likely to select more views. When , it means that
all vertices may be selected. The number of vertices is 16 and
32 respectively in Fig. 5(a) and (b). We took the average query
processing costs of our and over 30 independent runs.

In Fig. 5(a), we use exhaustive search to compute the optimal
solution. It shows that -heuristic performs in the same way as
the optimal. Our always gives a near optimal feasible solution
that is very close to the optimal. On the other hand, the query
processing cost of is much higher than the optimal solution.

In Fig. 5(b), we compare our and with -heuristic. It
shows that our can find near optimal feasible solutions that
are very closed to -heuristic. Our outperforms the
algorithm significantly.

3) Scalability of the Algorithms:There are several existing
algorithms for solving the maintenance-cost view-selection
problem. Fig. 6 shows four algorithms, namely, ,
and -heuristic, in addition to a greedy algorithm, called

[6], when the maintenance-cost constraint
is . The greedy uses a concept
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(a) (b)

Fig. 6. Four algorithms. (a) Query processing cost versus number of vertices; (b) view selection time versus number of vertices.

(a) (b)

Fig. 7. Scalability of algorithm by varying the number of vertices. (a) Query processing cost versus number of vertices; (b) view selection time versus number of
vertices.

called an inverted tree set. Given a vertexin a directed graph,
an inverted tree set contains the vertexand any subset of
vertices reachable from. At each stage, the
greedy algorithm considers all inverted tree sets of views in the
given graph, and selects the inverted tree set that has the most
query-benefit per unit effective maintenance-cost. Fig. 6 shows
a small-scale problem with the number of vertices from four to
16. As shown in Fig. 6(a), and -heuristic performs the
best (the same as the optimal). The greedy is
inferior to and -heuristic but is superior to . Fig. 6(b)
shows the view-selection time. The greedy
cannot deal with large-scale problems, due to its view selection
time.

The existing algorithms do not perform well when com-
puting a large dependent lattice. Evolutionary algorithms
can explore this search space better. Since-heuristic and

greedy cannot deal with the lattice up to
256, we compare our and by varying the number of
vertices, , from 4 to 256. The maintenance-cost constraint is

. For the number of vertices from four to 64, we
took the average query processing cost for both algorithms over
30 independent runs. When the number of vertices is greater
than 128, we ran it once due to the longer execution time. In
Fig. 7(a), we can see that significantly outperforms the
algorithm in terms of minimization of query processing cost.
However, our took a longer time than to find better
solutions, according to Fig. 7(b). It is worth noting that our
is much more likely to find feasible solutions as well while
tends to get stuck at a poor solution fairly early.

V. CONCLUSIONS

As a network service, a data warehouse system collects
data from different remote data sources and disseminates
high-quality data analysis to decision makers locally and
remotely. In this paper, we showed that computational intel-
ligence plays a significant role in design of a data warehouse
system, and presented a new constrained evolutionary algo-
rithm for the maintenance-cost view-selection problem.

The algorithm is based on a novel constraint handling
technique—stochastic ranking. Although stochastic ranking
has been used in numerical constrained optimization, its suit-
ability for combinatorial optimization was unclear. This paper
demonstrates that a revised stochastic ranking scheme can be
applied to constrained combinatorial optimization problems
successfully.

We have evaluated our new evolutionary algorithm against
both heuristic and other evolutionary algorithms. Our experi-
ments results show that our algorithm can provide significantly
better solutions than previous algorithms in terms of minimiza-
tion of query processing cost and feasibility. In comparison with
the latest evolutionary algorithm, i.e., the algorithm [12],
our algorithm can avoid premature convergence and keep im-
proving the solution, while the algorithm tends to get stuck
at a poor local optimum fairly early.
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