Materialized View Selection
for Multi-cube Data Models

Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

{amit,pmd,naughton}@cs.wisc.edu
University of Wisconsin - Madison, Madison WI 53706, USA

Abstract. OLAP applications use precomputation of aggregate data to
improve query response time. While this problem has been well-studied
in the recent database literature, to our knowledge all previous work has
focussed on the special case in which all aggregates are computed from a
single cube (in a star schema, this corresponds to there being a single fact
table). This is unfortunate, because many real world applications require
aggregates over multiple fact tables. In this paper, we attempt to fill this
lack of discussion about the issues arising in multi-cube data models by
analyzing these issues. Then we examine performance issues by studying
the precomputation problem for multi-cube systems. We show that this
problem is significantly more complex than the single cube precomputation
problem, and that algorithms and cost models developed for single cube
precomputation must be extended to deal well with the multi-cube case.
Our results from a prototype implementation show that for multi-cube
workloads substantial performance improvements can be realized by using
the multi-cube algorithms.

1 Introduction

Online Analytical Processing (OLAP) systems use the multidimensional model,
which expands the row and column approach of the relational model into multiple
categories of data called dimensions. Dimensions such as time, product, line item,
and geography categorize and summarize facts, like unit sales. We refer to this
summarization as aggregation. Array arithmetic can be used to efficiently access
cells and slices of the data. This results in support for complex analytical queries
and applications. Other functionality supported by OLAP servers include functions
that analyze, forecast, model, and answer “what if” questions about the data. They
also have built-in functions for mathematical, financial, statistical, and time-series
manipulation.

OLAP systems require fast interactive multidimensional data analysis of ag-
gregates. To fulfill this requirement, database systems frequently statically pre-
compute aggregate views on some subset of dimensions and their corresponding
hierarchies. Virtually all OLAP products resort to some degree of precomputation
of these aggregates. In order to understand the issues involved in precomputa-
tion, let us first look at how multidimensional data providers structure their data
model. The most common approach used by OLAP products is called the multi-
cube structure [§]. In this approach, the application designer segments the database
into a set of multidimensional structures each of which is composed of a subset
of the overall number of dimensions in the database. Products such as Oracle Ex-
press, Microstrategy DSS Suite, Informix Metacube and Microsoft OLAP services

C. Zaniolo et al. (Eds.): EDBT 2000, LNCS 1777, pp. 269-B84] 2000.
© Springer-Verlag Berlin Heidelberg 2000

270 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

all use the multi-cube approach. Unfortunately, to date, the research community
has virtually ignored the precomputation problem over multi-cubes, concentrating
instead on the simpler single-cube model. To our knowledge, this is the first pa-
per to address the precomputation problem in the context of multi-cube domains.
Thus, queries which access multiple cubes are not taken into account when making
a decision of what group bys to precompute.

The goal of this paper is twofold. First, to understand the ramifications of
having a multi-cube data model, and second to understand the precomputation
problem when there are queries which access multiple cubes. We examine exist-
ing techniques, and propose new techniques which can be utilized to solve this
problem. We show that the multi-cube aggregate selection problem is significantly
more complex than the single cube computation problem, and that algorithms
and cost models developed for single cube precomputation must be extended to
deal well with the multi-cube case. Our results show that for multi-cube work-
loads substantial performance improvements can be realized by using multi-cube
algorithms instead of previously proposed single cube algorithms.

1.1 An Example Schema

In this paper, for clarity of exposition we will assume a Relational approach to
OLAP. This means that each “cube” of a multi-cube model corresponds to a fact
table. However, the material presented in this paper is not restricted to the relation
model.

Consider a schema which consists of three dimensions, CustID, ProdID, and
TimeID. They identify a customer, a product, and the time (in months). The
schema has three fact tables. The first is Sales, a row of which captures the dollar
sales and unit sales of a particular product by a certain store in some month. The
second fact table is ProdCost, and it captures the cost of products on a month
by month basis. The third table captures the shipping cost of products to various
customers, and is called ShipCost.

Sales(ProdID, CustID, TimelID, Sales, UnitsSold)
ProdCost(ProdID, TimelD, PCost)
ShipCost(CustID, TimelD, SCost)

A user can specify “derived” or computed metrics, which are formed as a combi-
nation of other metrics. If the component metrics belong to different fact tables,
then a join is required to generate the derived metric. For example, a “derived
metric” called Profit = (Sales - UnitsSold * (PCost + SCost)), which is obtained
from the natural join of the ProdCost and Sales tables along the ProdID, TimelD
dimensions. Any queries which involve the Profit metric will require a join to
be performed, unless the join is precomputed. For example, the following query
requires a join:

SELECT Sales.CustID, SUM(Sales - UnitsSold * (PCost + SCost))

FROM ProdCost, ShipCost, Sales

WHERE ProdCost.ProdID = Sales.ProdID AND ProdCost.TimeID = Sales.TimelD

AND ShipCost.CustID = Sales.CustID AND ProdCost.TimelD = Sales.TimelD

GROUP BY Sales.CustID

1.2 Related Work

To find a set of aggregates to materialize, [[] proposes a greedy algorithm that
attempts to maximize the benefit per unit space. They prove that if the largest
aggregate view occupies a fraction f of the space available for precomputation,

Materialized View Selection for Multi-cube Data Models 271

then the aggregates picked by the greedy algorithm have a benefit at least (0.63— f)
times the benefit of the optimal set of views for the same amount of space. The
greedy algorithm restricts itself to a single cube data model.

Other related work includes [T0] where the authors explore efficient algorithms
for aggregate selection for single cube schemas. In [5], the authors consider the
selection of views and indexes together. [6] presents a theoretical framework for
the view-selection problem, and proposes a general algorithm and several heuris-
tics. [I3] surveys techniques proposed for determining what aggregates should be
precomputed. When lattices are so large that even scanning them once is expen-
sive, a different approach to precomputation is needed. [2] examine lattices with
103 aggregate views. For such lattices, they provide heuristics to determine what
views should be precomputed based a set of views the user supplies. All these pa-
pers ([I3/5612]) examine the aggregate selection problem in the context of a single
cube. Finally, Shukla discusses aggregate selection algorithms in detail in [IT].

1.3 Paper Organization

In section 2 we describe the lattice framework and cost model for the aggregate
selection problem. We also describe an existing aggregate selection algorithm. Sec-
tion [discusses the issues that arise when joining multiple cubes and precomput-
ing their joins. Section Hl presents greedy algorithms for aggregate selection for
multi-cube schemas. We carry out an experimental evaluation of the different pre-
computation algorithms in Section Bl and present insights into the problem of
aggregate selection. Section [6] presents our conclusions.

2 Previous Work on Precomputation

In this section we first discuss the lattice framework for multidimensional datasets.
This framework was first proposed by Harinarayan et al. [7]. Next we present the
cost model for single cube schemas proposed by [7], and used in subsequent re-
search [T3IBJ2JT0]. In order to handle multi-cube schemas, we extend the single
cube cost model to account for join costs required to compute derived metrics.
Shukla et al. [10] had proposed an average query cost metric which makes visual-
ization of the “goodness” of the aggregate set selected for precomputation easier.
We repeat a description of average query cost in Section 24

2.1 Lattice Framework for Multidimensional Datasets

Queries on multidimensional datasets can be modeled by the data cube operator.
For distributive function such as sum, min, max, etc., some group bys can be
computed from the precomputed result of another group by. In the example Sales
table of Section [l the aggregate on (ProdID, CustID) can be used to answer a
query on (ProdID). This relation between aggregate views can be used to place
them within a lattice framework as proposed in [7]. Aggregates are vertices of
an n-dimensional cube. The following properties define a hypercube lattice £ of
aggregates.

(a) There exists a partial order < between aggregate views in the lattice. For
aggregate views v and v, v =X w if and only if v can be answered using the
results of u by itself.

272 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

(b) There is a base view in the lattice, upon which every view is dependent. The
base view is the database.

(c) There is a completely aggregated view “ALL”, which can be computed from
any other view in the lattice.

The aggregate selection problem is equivalent to selecting vertices from the under-
lying hypercube lattice. For example, the lattice £ in Figure[l represents the cube
of the schema described in Section [Tl The three dimensions ProdID, CustID,
TimelD are represented by P, C, T respectively, and an aggregate view is labeled
using the names of the attributes it is aggregated on. For example, view PC is
aggregated on attributes ProdID and CustID. In Figure [if an edge connects
two views, then the higher view can be used to precompute the other view. For
example, there is an edge between PC and P. This means that PC can be used
to compute P. If there is no precomputation, a query on P (ProdID) has to be
answered using the base data, PCT (Sales table). When there are multiple cubes,
we have a collection of lattices from which aggregates have to be picked for pre-
computation.

= () (=)
[XX
02
(9
Fig. 1. The hypercube lattice corresponding to the example in Section [[Z].

2.2 The Cost Model

We use the cost model proposed by [7], in which the cost of answering a query (time
of execution) is assumed to be equal to the number of tuples in the aggregate used
to answer the query. An experimental validation of this cost model is provided in
[7], where the authors used experiments on TPC-D Benchmark data. They found
that there is an almost linear relationship between size and running time of a
query. In summary, we assume that the cost of answering a query q is equal to the
number of tuples read to return the answer.

2.3 The Benefit Metric

Informally, the benefit of an aggregate view v is computed by adding up the savings
in query cost for each view w (including v), over answering it from the base view.
If a set S of aggregate views is chosen for materialization, the benefit of S is the
sum of the benefits of all views in S. This is similar to the metric used by [1].

We now formally define the benefit of an aggregate view. If S is a set of aggre-
gates that have already been selected for precomputation, the benefit of a view v is
concerned with how materializing v improves the cost of computing other views,
including itself. Let C(v) be the cost of computing another view from v. Looking
back to our cost model, C(v) is the number of tuples in v. The benefit of v with
respect to the S, B(v,S), is defined below.

Materialized View Selection for Multi-cube Data Models 273

1. For each aggregate view u =< v, B, is defined as:
1.1 Let w be the least cost view in S such that u < w
1.2 If C(v) < C(w), then B, = C(w) — C(v), else B, =0
2. Bv,S)=>_, -, Bu

In short, for each view u that is a descendant of v, we check to see if computing u
from v is cheaper than computing u from any other view in the set S. If this is the
case, then precomputing v benefits u. Since all aggregates can be computed from
the (unaggregated) base data, in step 1.1 we can always find a least cost aggregate
view w (the base data in the worst case).

u=v

Definition 1. The benefit per unit space of a view v is defined as:

B(v,S)
|v]

Bs(v,S) =

, where |v] is the size of v

2.4 Average Query Cost

Next, consider a set of lattices £ with n views, v1, ..., v,. There are n different tem-
plates for queries, one for each view: Q1, Qs, ..., Q,. Let there be a set S of aggre-
gate views precomputed, so that a query of view v; can be most cheaply answered
from a view u;, u; € S. Let queries on § occur with probabilities p1,pa, ..., pn,
then the average query cost is defined as:

>), 1)

where C(u;) is the cost of answering a query Q; on a view v;. In [10], we show that
maximizing the benefit of a set S of aggregate views is the same as minimizing
their average query cost.

2.5 Aggregate Selection

PickAggregates is a greedy algorithm proposed by Ullman etal. [7] to select ag-
gregates for precomputation based on the above benefit model. The inputs to
PickAggregates are: space — the amount of space available for precomputation,
and A, a set initially containing all aggregates in the lattice, except the base ta-
ble. The output is S, the set of aggregates to be precomputed. The algorithm is
as follows:

Algorithm PickAggregates

WHILE (space > 0) DO
w = aggregate having the maximum benefit per unit space in A
IF (space — |w| > 0) THEN
space = space — |w|

S=SuUw

A=A—-w
"ELSE

space =0

‘Update the benefit of affected nodes in the lattice
S is the set of aggregates picked by BPUS

274 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

The notion of benefit used by the above algorithm was described in Section [2.3
PickAggregates attempts to maximize the benefit of the set of aggregates picked.
The authors prove that if the largest aggregate view occupies a fraction f of the
space available for precomputation, then the aggregates picked by BPUS have a
benefit at least (0.63 — f) times the benefit of the optimal set of views for the same
amount of space.

3 Issues in Multi-cube Models

In order to discuss precomputation for multi-cube data models, it is necessary to
define the semantics of queries over multi-cube models. For concreteness, in this
section we discuss the issues that arise in queries over multi-cube models, and
state the conventions we will follow when dealing with queries over multi-cubes.
We start by looking at the semantics of multidimensional queries.

3.1 Multidimensional Query Semantics

The multidimensional model expands the row and column approach of the rela-
tional model into multiple categories of data called dimensions. Dimensions such
as time, product, line item, and geography categorize and summarize facts, like
unit sales. Users can ask analytical queries using a multidimensional query tool.
A multidimensional query consists of the dimensions of interest (such as time,
product), the fact to be summarized (like unit sales), and conditions (such as time
equals january 1999). If the query accesses multiple cubes, then the data model
implicitly specifies the procedure to join the two cubes. Therefore, in this paper
we adopt standard multidimensional semantics [12], which state that one should
join on all the dimensions common to the cubes being joined.

Definition 2. The columns used to join two fact tables are called their “join di-
mensions”. The join dimensions between two tables include all their common di-
mensions.

For example, from the schema of section [[.I] the join dimensions between Sales
and ProdCost are ProdID, TimelD. Based on this definition of join dimensions,
we can define our notation for uniquely identifying a group by.

Definition 3. Let D; represent a dimension, F; represent a distributive aggrega-
tion function such as sum, min, max, and My, represent a metric. Then the results
of the queryget Dy,..., Dy, F1(My),..., F.(M,), can be represented compactly as
(D1, ..., Dn)p (ay),.... (M)

For example using this definition, the query: get ProdID, CustID, SUM(Sales) will
be represented by (ProdID, CustID)SUM(Sales) In order to blmphfy the notation,
we assume that if the aggregation function is not specified, then it is SUM. There—
fore, the above query can be rewritten as (ProdID, CustID)gales- A corollary of
this assumption by multidimensional query tools is that multidimensional queries
are restricted to a subset of SQL in that one cannot express different ways of
joining two fact tables - one always has to join on all the common dimensions.

3.2 Precomputed Joins

Let us look at the benefits of precomputing aggregates that result from joining
multiple cubes. Our goal is to investigate the approach of computing the join of
all the cubes. Precomputing the join of all the cubes creates a single large table

Materialized View Selection for Multi-cube Data Models 275

that is in effect the “universal relation” [14], of which the multiple fact tables
are projections. We scrutinize this approach to understand if it will enable us to
apply single-table aggregate selection algorithms immediately. We show that this
approach is fraught with hazards.

Consider the tables from the schema of Section [l At a first glance, it seems
as if we can extend the idea of precomputation of aggregates formed from a single
fact table to precomputing aggregates formed from joins between fact tables. If
we perform an equi-join between the two tables ShipCost and Sales,

SELECT Sales.CustID, Sales.ProdID, Sales.TimeID, SUM (Sales), SUM (SCost)
FROM Sales, ShipCost

WHERE Sales.CustID = ShipCost.CustID

AND Sales.TimeID = ShipCost.TimelD

GROUP BY Sales.CustID, Sales.ProdID, Sales. TimelD

to obtain a new table T, with the schema T (CustID, ProdID, TimeID, S_Sales,
S_SCost). This new table T, can be precomputed and materialized in the database.
However, T, can be used only by queries which require a join of Sales and ShipCost.
That is, T, cannot be used to answer queries which access only one of the joined
tables. This leads us to examine whether we can use full outer joins between tables
to solve this problem.

When we perform the natural join between two tables ShipCost and Sales,
only tuples from ShipCost that have matching tuples in Sales — and vice versa —
appear in the result. Hence, tuples without a “related tuple” are eliminated from
the result. Outer joins [3] were proposed to be used when one wants to retain
all tuples from both tables being joined. In our example, an outer join between
ShipCost and Sales would include tuples from both tables that join with each other
as well as tuples that belong to only ShipCost, and only Sales, whether or not they
have matching tuples in the other relation. Now, suppose that we perform a full
outer join between the ShipCost and Sales tables.

SELECT Sales.CustID, Sales.ProdID, Sales.TimeID, SUM (Sales), SUM (SCost)

FROM Sales, ShipCost

WHERE Sales.ProdID(+) = ShipCost.ProdID(+)

AND Sales.TimelD(+) = ShipCost.TimeID(+)

GROUP BY Sales.CustID, Sales.ProdID, Sales. TimelD
In the above SQL, the (4) notation is used to denote an outer join. The outer join
results in a new table T, with the schema T,(CustID, ProdID, TimeID, S_Sales,
S_SCost). The queries (TimelD)gcost and (TimelD)gaes can be answered using
the following SQL statements:

SELECT TimelD, SUM (SCost)

FROM T,

WHERE SCost is NOT NULL

GROUP BY TimelD

SELECT TimelD, SUM (Sales)
FROM T,

WHERE Sales is NOT NULL
GROUP BY TimelD

On the other hand, to answer a query on (CustID, TimeID)gajes requires the SQL.

SELECT CustID, TimeID, SUM (Sales)
FROM T,

WHERE Sales is NOT NULL

AND SCost is NOT NULL

GROUP BY CustID, TimelID

276 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

For one derived metric, there are three possible aggregates which can be queried.
Let us look at what happens when we join in a third table, ProdCost to T,
using an outer join. The aggregates which can be queried are: (TimelD)gajes,
(TimeID)SQIES,SCOSta (TimeID)PCosta (TimeID)SCOSt,PCostv (TimeID)SCost,Salesa and
(TimeID)pcost,Sales, (TimeID)scost,PCost,Sales- 1f We try to precompute aggregates
from T,, it is not clear which aggregate should be precomputed. The table used
by (TimeID)gales cannot be used to answer (TimelD)gales scost- Hence both ag-
gregates have to considered separately by an aggregate selection algorithm for
precomputation. This negates the advantage of having a single lattice. Besides,
this goes against the data model design, which splits this one table into multiple
tables for reasons of efficient storage, and to avoid the various anomalies associated
with denormalized schemas. Clearly, it makes sense to precompute the natural join
and compute the derived metric. In the above example, we would precompute Ty
= T.(CustID, ProdID, TimelD, Profit), where Profit = (Sales - UnitsSold(SCost
- PCost)). This avoids the repetition of SCost for each ProdID, and repeating the
PCost for each CustID.

From this discussion it is clear that the single universal relation like table ap-
proach is fraught with difficulty. This single table must be materialized from a full
multi-way outer join. It is likely to be very large, and to contain a lot of redundant
information. Finally, mapping multidimensional queries to this single table is likely
to be inefficient because each aggregate requires a slightly different NULL value
filtering, and the NULL filtering itself must be performed. Accordingly, we look
for alternative approaches to speeding up OLAP queries using precomputation in
section Hl

3.3 Multi-cube Join Quirks

Let us look at the various issues that arise when multiple-cubes are joined, and
their join is precomputed. The basis of star schema data modelling is that the
dimensions determine the measures and there are no other dependencies. That is,
the metrics in a table are functionally dependent on the dimensions. If the base
data consists of aggregate views of some base schema, then we cannot synthesize
a lost dimension using joins. Let us assume that the following functional depen-
dencies exist: CPT — Sales; PT — PCost, where C, P, and T stand for CustID,
ProdID, and TimelD respectively. But if the tables in the database are actually:

SalesNoTime(ProdID, CustID, Sales, UnitsSold)
ProdCost(ProdID, TimeID, PCost)

Then, one cannot join the two tables to get (TimelD)gajes. We call such an aggre-
gate a “phantom” table since it can be obtained from the original data, but not
from the derived view.

Another interesting quirk arises when performing a join between two tables;
one cannot aggregate out a join column before performing the join. This leads to
a lossy join in the sense that we lose the ability to distinguish which tuple should
be in the result. For example, in the following schema,

Sales(ProdID, CustID, TimelD, Sales, UnitsSold)

CustCost(ProdID, CustID, TimelD, Cost)

with the functional dependencies CPT — Sales, PTC — Cost, if the join columns
are ProdID (P), CustID (C), and TimeID (T), then we cannot join the aggregate
(CustID, ProdID)gajes with (ProdID, CustID, TimelD)cost to compute the result
of a query. This importance of the need for this discussion will become clearer
when we consider join benefits of aggregate nodes in a lattice.

Materialized View Selection for Multi-cube Data Models 277

3.4 The Subset Assumption

Now we discuss the subset assumption, and show how query semantics can be
ambiguous without it. Consider a query which joins the ProdCost and ShipCost
tables from the schema described in Section [Tl The functional dependencies are:
PT — PCost, CT — SCost. Neither of these two fact tables is contained in the
other. This leads to interesting queries such as (Customer)pcoss which are ambigu-
ous since they can be obtained using either of the following two SQL statements.

SELECT ShipCost.Customer, SUM (PCost)
FROM ShipCost, ProdCost

WHERE ShipCost.Time = ProdCost.Time
GROUP BY ShipCost.Customer

SELECT ShipCost.Customer, T1.Sum_PCost
FROM ShipCost, (SELECT SUM(PCost) AS Sum_PCost FROM ProdCost) T1

The first SQL query joins the two tables on their join dimensions, which leads to
an answer which may not have any meaning. The second SQL query computes the
total product cost and repeats it for each customer. This might be more accurate
in capturing what the user wants since the product cost is not dependent on the
Customer attribute. We define “dimensional containment”, which makes it easier
to define what joins will result in meaningful results.

Definition 4. When the dimensions of one fact table Ty are a subset of the di-
mensions of another fact table Ts, then Ty is said to dimensionally contain T;.
Since query semantics are ambiguous without it, we assume that when two or
more tables are joined, one of the tables dimensionally contains the others. For
example, from Section [[LT] the Sales table dimensionally contains both ShipCost
and ProdCost. Tables dimensionally contained by the Sales table can be joined
through it to answer queries. For example, a query such as (CustID)pcost can be
unambiguously answered using the following SQL:

SELECT Sales.CustID, SUM (ProdCost.PCost)
FROM Sales, ProdCost

WHERE Sales.Product = ProdCost.Product
AND Sales.Time = ProdCost.Time

GROUP BY Sales.CustID

Next we examine the precomputation problem for multi-cube systems. We start
with a framework for multidimensional datasets.

4 New Aggregate Selection Techniques for Multi-cubes

In this section we first extend the cost model to account for the benefits of ag-
gregates arising from the existence of multiple cubes. Then, we propose aggregate
selection algorithms based on the new benefit model.

4.1 Benefits across Multiple Cubes

Let us look at the lattices £1, Lo for two cubes with schemas T;(A,B,M;) and
T2(A,B,C, M), where A, B, C are the dimensions, and M;, My are the measures.
To obtain an aggregate containing a derived metric composed of metrics from both
cubes, we have to join the two tables. In the multi-cube scenario, each precomputed
aggregate can potentially have a join benefit in addition to the simple benefit

278 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

O e
olo °‘5° ROG

v 0‘}0 c‘e 0

Fig. 2. Lattice £1 Fig. 3. Lattice L Fig. 4. Lattice Liq

described in section Z3. The benefit of the aggregate L£o(A,B) is larger because
any aggregate which required the join of £1(A,B) with £2(A,B,C) can now be
obtained by joining £1(A,B) with £2(A,B). Thus, the precomputation of £o(A,B)
has a benefit to its children in Lo, and a benefit to the aggregates having derived
metrics which result from a join. Let us quantify this join benefit.

We assume that joins are performed using a hash join based algorithm. So,
if nodes £1(A,B) and L£2(A,B) are joined to answer the query, then we assume
that each node is scanned and partitioned on the join dimensions, and written
to disk. Then these partition are read in to perform the join. Therefore, counting
only I/O costs (as we have been doing so far), the join cost is approximately
equal to 2(|£1(A, B)| + |£2(A, B)|). The derived metric results in a virtual lattice
Ly (see Figures 2 Bl and @l). The aggregate L2(A,B) benefits L.4(A,B) and all
its descendants. The cost savings from precomputing £2(A,B) (ie, the benefit of
L2(A,B)) are computed as follows: 2(|L1(A, B)| + |L2(A, B,C)|) —2(|£1 (A4, B)| +
|£2(A, B)|) which is equal to 2(|£2(A4, B, C)| — |£2(A, B)|). The benefit per unit
space of £2(A,B) increases by

2(|£2(A, B, C)| — |£2(A, B)|)
[£2(A, B))

Js(L2(A,B),S) = *(# benefited nodes in other lat.)

where J; denotes the join benefit of £L5(A, B), and S is the set of aggregates already
selected for precomputation. In addition, the number of nodes in £; benefited
by the precomputation of L3(A, B) is 4 (namely, £1(A, B), £1(A), £1(B), and
L1(ALL). From the discussion in section about multi-cube join semantics, one
should note however that the number of benefitted join nodes can be zero. For
example, neither £1(A) nor £2(A) have any join benefit since joining either node
with a node in the other lattice does not lead to a semantically valid answer. Thus
we can define the total benefit of Lo(A, B) as: Bs(L2(A, B),S) + Js(L2(A, B),S)
We define the principal lattice as the lattice that dimensionally dominates all the
other tables in the join. For example, Lo is the principal lattice for the derived
metric obtained by joining L£5(A4, B, C) with £1(A, B) (see Figure B). Aggregates
from lattice £; cannot be used in a join to obtain any nodes in L as it violates
the rule that one cannot aggregate out a join column before performing the join
(see section B.3). Thus, only aggregates from the principal lattice can be used, and
the dimensions of the least aggregated node of the principal node must contain
the join dimensions. For example, the least aggregated node of Lo than can be
used is (A,B).

Materialized View Selection for Multi-cube Data Models 279

Cost Model

Simple Complex

Local M —

Space Allocation

Global M M

Fig. 5. The different multi-cube algorithm strategies
4.2 Aggregate Selection for Multi-cubes

Now we present three algorithms that pick aggregates for schemas having multi-
cube data models. There are two different parameters that we vary to obtain
different algorithms for aggregate selection. The first is the space allocation strat-
egy, which can be either local or global. Local space allocation means that the
available space for precomputation is divided up among the cubes, and aggregate
selection algorithms are then run on each cube. Global space allocation means that
space is not divided among the cubes, and aggregate selection algorithms pick the
best aggregates from all cubes simultaneously. The second parameter is the cost
model. The cost model can be simple (as described in section [2:3] which doesn’t
consider derived metrics and virtual cubes, or complez (as described in section [4.1]
which accounts for the benefit arising from the joins required by derived metrics.
The complex cost model was described in Section[ZIl The algorithms which result
from varying these two parameters can be classified using the grid in Figure [l
We will refer to the four algorithms by combining the type of cost model fol-
lowed by the space allocation strategy. For example, ComplexGlobal refers to the
algorithm which uses the complex cost model and a global space allocation strat-
egy. The algorithm which results from using the complex cost model and a local
space allocation strategy doesn’t make sense since the cost model captures benefits
across cubes, but the space allocation is local to each cube. Therefore, we don’t
discuss the ComplezLocal algorithm. We will study the SimpleLocal, SimpleGlobal,
and ComplexGlobal algorithms. The experimental studies will compare the Sim-
ple and Complex cost models to quantify the improvement in query response time
obtained by using the complex cost model.
The algorithm SimpleLocal works by dividing the space among the cubes, and
then executing the algorithm PickAggregates on each cube. The inputs to Pick-
Aggregates are: space — the amount of space available for precomputation, and A,
a set initially containing all aggregates in the lattice, except the base table. The
output is S, the set of aggregates to be precomputed. The algorithm is as follows:

Algorithm PickAggregates

WHILE (space > 0) DO
w = aggregate having the maximum simple benefit per unit space in A
IF (space — |w| > 0) THEN
space = space — |w|
S=SUw
A=A—-w
‘ELSE
space = 0
"Update the benefit of affected nodes in the lattice
S is the set of aggregates picked by BPUS

280 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

SimpleGlobal differs from SimpleLocal in that the set of aggregates it has to choose
from is the union of the sets of aggregates from each cube. Therefore, for Simple-
Global, A, is a set initially containing all aggregates in all the lattices, except the
base tables of those lattices. ComplexGlobal differs from SimpleGlobal only in the
second step of the algorithm.

w = aggregate having the maximum complex benefit per unit space in A

The series of steps required to update the benefits of the aggregates in the lattices
for ComplexGlobal is interesting. Thus a brief description is presented next.

Algorithm UpdateBenefits

IF the aggregate is picked from a virtual lattice
Update aggregates in the virtual lattice
A node in the Principal lattice has a reduced benefit
ELSE
Update aggregates in the lattice
Update the cheapest parent for any affected Virtual lattices
also update the benefit of the previous cheapest parent.

Let us examine these steps in a little more detail. At each step the greedy algorithm
picks the aggregate with the highest benefit. If the aggregate v with the maximum
benefit is from a virtual lattice, then we have to first update all descendants of v
to see if they can now be computed less expensively using v. The benefit of all the
ancestors of v also has to be reduced since they no longer benefit the computation
of v or any of its descendants which were updated. Now the benefits of the nodes
which benefited v in the principal lattice have to be reduced because they no longer
benefit v or its descendants.

On the other hand, if the aggregate u is picked from a non-virtual cube, then
its descendants have to be updated since it might be cheaper to compute them
using u. Ancestors of u also have to be updated to reduce their benefit (if any) to
u. If u belongs to the cube P, then aggregates in a virtual cube V), for which P is
the principal lattice, also have to be updated. Any aggregates v in V for which it
is now cheaper to use u should be updated to reflect this information. In addition,
the benefit of the previous aggregate used to compute v should be reduced if it is
cheaper to compute v using u.

We can show that the greedy algorithm never performs too badly. In fact, if f
is the ratio of the size of the largest aggregate to the amount of space available for
precomputation, it can be shown that the benefit of the greedy algorithm is at least
(0.63— f) of the benefit of the optimal algorithm. (0.63 arises from (e—1)/e, where
e is the base of the natural logarithm). The proof is very similar to that presented
for the greedy algorithm in [7], so we do not present it here. The algorithm PBS
proposed in [I0] can be used for lattices which are SR-hypercube (see [10]). In
addition, the lattice must not be the principal lattice for some derived metric.

5 Experimental Evaluation

In this section we quantify the improvement in average query cost (average query
response time) that can be achieved by the use of the complex cost model. We

Materialized View Selection for Multi-cube Data Models 281

Fact Table|Size (Tuples)|Component Dimensions Metrics

Budget 250,000 Prod, Cust, Scenario, Time UnitSales, DollarSales
Inv 50,000 Prod, Cust, Channel, Time Inventory

ProdCost {221,000 Prod, Scenario, Time ProductCost

Sales 146,000 Prod, Cust, Channel, Scenario, Time|UnitSales, DollarSales
ShipCost {64,000 Cust, Scenario, Time ShippingCost

Table 1. The APB-1 benchmark schema

70 T T T T T T T
S SL-T —-—

19

SL-T —— |

8¢ SL-C — 60 L Steg=—
17t SG o | SG
CG - cG
50 [

16
15
14 ¢
13 ¢
12
11 ¢
10
9

40

30

20

10

Average Query Cost (x 10,000 tuples scanned)
Average Query Cost (x 10,000 tuples scanne

0
0 0

5 6 7 8 9 5 6 7 8 9
Space for precomputation (x 100,000 tuples) Space for precomputation (x 100,000 tuples)

Fig. 6. The average query cost as Fig. 7. The average query cost as
space is varied for experiment 1 (2 space is varied for experiment 2 (3
tables, no derived metrics). tables, 1 derived metric).

used the schema for the APB-1 benchmark [I]. APB-1 is the industry standard
benchmark defined by the OLAP council [I], which has most of the major OLAP
vendors as members. The APB-1 benchmark database consists of five dimensions,
Product, Customer, Channel, Scenario, and Time. The Product, Customer, and
Time dimensions have 6, 2, and 3 level hierarchies defined on them respectively,
while the channel and scenario dimensions don’t have any hierarchies (only 1
level). The dimensions and their levels followed by the number of distinct values in
parenthesis are described next. The Product dimension has 6 levels: Code (9000),
Class (900), Group (100), Family (20), Line (7), and Division (2). The Customer
dimension has 2 levels: Store (900) and Region (100). The Channel and Scenario
dimensions have 1 level each (no hierarchy), and 10, 3 distinct values respectively.
The Time dimension has three levels, Month (24), Quarter (8), and Year (2).
There are five fact tables, Budget, Inv, ProdCost, Sales, and ShipCost. The Budget
table contains the budgeted (scenario = ‘Budget’) UnitSales, and DollarSales of a
product to a customer in a given month. The inventory is stored in the Inv table
by product, customer, sales channel, and time. The ProdCost table stores product
costs by product, scenario, and time, while ShipCost stores the shipping cost by
customer, scenario and time. Lastly, the Sales table contains the actual sales of a
product to a customer using some channel in some month. The five fact tables,
their dimensions, and their sizes (in tuples) are shown in Table [dl. We used the
analytical formulas presented in [9] to estimate the size of aggregates formed by
the cube operator. For example, consider a relation R having attributes A, B, C
and D. Suppose we want to estimate the size of the group by on attributes A and
B. If the number of distinct values of A is n4 and that of B is ng, then the number
of elements in A x B is ne = nanp. Let |D| be the number of tuples in the fact
table. Using these values and an assumption that tuples are uniformly distributed,

282 Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

the number of elements in the group by on A and B is: n, —n.(1—1/n.)IP!. This is
similar to what is done in relational group by size estimation. All the experiments
vary the amount of space used for precomputation, and plot the average query
cost as a function of the amount of space.

The two derived metrics are Profit, and Sales increase. Profit is computed by
joining the Sales, ProdCost and ShipCost tables along their common dimensions,
with Profit = DollarSales - UnitsSold * (ProductCost + ShippingCost). Sales in-
crease is computed by joining the Sales and the Budget tables along their common
dimensions, and subtracting Budget.DollarSales from Sales.DollarSales.

We ran four experiments on the APB schema by restricting the precomputation
to specific tables, and specific derived metrics. We also restricted the measurement
of the average query cost to those tables. The graphs show the change in average
query cost as the space available for precomputation is increased. We explored two
different strategies for splitting space for the SimpleLocal (SL) algorithm, SL-T
where the space is split in the ratio of the fact table sizes, and SL-C where the
split is in the ratio of the cube sizes. The experiments are:

5 g

2 80 — 13 70 . .

g SL-T —— g S SL-T —~—

@ 70 P Slp-rsms b 60 t SLCE-]

3 SG = 2 SG o

R cG R cG

2» 50 91 40 +

e X

Pt 40 | “ P 30 |

3 3

() (¢}

> 30 > 20 r

o [

] ‘ &

° 20 * ® 10

& g

o 10 o 0

< 0 5 6 7 8 9 10 < 0 2 4 8 10 14 16
Space for precomputation (x 100,000 tuples) Space for precomputation (x 100,000 tuples)

Fig. 8. The average query cost as Fig. 9. The average query cost as

space is varied for experiment 3 (4 space is varied for experiment 4 (5

tables, 2 derived metrics). tables, 2 derived metrics).

— Expt 1: The schema contains the Sales, Budget tables, and no derived metrics.
This experiment studies the effect of multiple fact table without any derived
metrics. Since there are no derived metrics, SimpleGlobal and ComplexGlobal
pick the same set of aggregates. The graph is shown in Figure[G.

— Expt 2: The schema contains the Sales, ShipCost, ProdCost tables, and one
derived metric (Profit). In this experiment we study the effect of a derived
metrics formed from three fact tables. The graph is shown in Figure [d.

— Expt 3: The schemas consists of the Sales, ShipCost, ProdCost, Budget tables,
and two derived metrics (Profit and Sales increase). In this experiment we
study the effect of having two derived metrics. The graph is shown in Figure

— Expt 4: This schema consists of the entire APB-1 database, and contains all
five fact tables, and two derived metrics (Profit and Sales increase). The graph
is shown in Figure [0

In plotting these graphs we have assumed that queries uniformly access all aggre-
gates in all lattices. The graphs show that as the space is increased, the average

Materialized View Selection for Multi-cube Data Models 283

query cost reduces rather rapidly at first, and then the rate of decrease of aver-
age query cost reduces significantly. We can see that ComplexGlobal outperforms
any of the other algorithms because it precomputes nodes in the lattice resulting
from the virtual fact table having the derived metrics. For example, let us look
at Figure [l The sudden reduction in average query cost when the space changes
from 100,000 to 200,000 tuples occurs because a detailed level aggregate of the
virtual lattice now fits and is picked for precomputation. This results in a large
decrease in the average query cost since queries on a large number of aggregates in
the virtual lattice can now be computed using the detailed level aggregate instead
of performing a join. The reduction in the average query cost is not as dramatic
in Figures Bl and @ because there are two virtual lattices, and there are actually
two drops in the average query cost corresponding to the picking of detailed level
aggregates from the two virtual lattices. As we can see from Figure[d, the average
query cost of the set of aggregates picked using the simple cost model can be four
times the average query cost of the set of aggregates picked using ComplexGlobal.

6 Conclusions

Precomputing aggregates on some subsets of dimensions and their corresponding
hierarchies can substantially reduce the response time of a query. While this prob-
lem has been well-studied in the recent database literature, to our knowledge we
are the first to study aggregate selection for multi-cube data models which compute
aggregates over multiple cubes. In this paper, we analyzed the multi-cube precom-
putation problem in detail. We showed that this problem is significantly more
complex than the single cube precomputation problem, and that algorithms and
cost models developed for single cube precomputation must be extended to deal
well with the multi-cube case. We proposed three different algorithms, SimpleLo-
cal, SimpleGlobal, and ComplexGlobal which pick aggregates for precomputation
from multi-cube schemas. Our results from a prototype implementation show that
for multi-cube workloads substantial performance improvements can be realized
by using multi-cube algorithms instead of the previously proposed single cube al-
gorithms. In particular, the complex cost model considers join costs, leading to a
much better set of aggregates picked for aggregation.

To conclude, we discuss which algorithm is appropriate for a given schema.
The algorithm of choice will depend on the existence of derived metrics which
require fact table joins to be performed. In the absense of derived metrics, the
complex cost model reduces to the simple cost model. Further, if the lattice is a
SR-hypercube lattice [10], the algorithm PBS proposed by [10] can be used. For
non-SR-hypercube lattices, either SimpleLocal or SimpleGlobal can be used. If the
schema contains derived metrics, ComplexGlobal should be used.

References

1. APB-1 Benchmark, Release II, November 1998. Available from
http://www.olapcouncil.org/research/bmarkly.htm.

2. E. Baralis, S. Paraboschi, E. Teniente. Materialized View Selection in a Multidimen-
sional Database, Proc. of the 23rd Int. VLDB Conf., 1997.

3. R. Elmasri, S. Navathe, Fundamentals of Database Systems, The Ben-
jamin/Cummings Publishing Company, Inc., 1989.

284

4.

10.

11.

12.

13.

14.

Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton

J. Gray, A. Bosworth, A. Layman, H. Pirahesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals, Proc. of the 12th Int.
Conf. on Data Engg., pp 152-159, 1996.

H. Gupta, V. Harinarayan, A. Rajaraman, J.D. Ullman. Index Selection for OLAP.
Proc. of the 13th ICDE, 208-219, 1997.

H. Gupta. Selection of Views to Materialize in a Data Warehouse. Proc. of the Sixth
ICDT, 98-112, 1997.

. V. Harinarayan, A. Rajaraman, J.D. Ullman. Implementing Data Cubes Efficiently,

Proc. ACM SIGMOD Int. Conf. on Man. of Data, 205-227, 1996.

Nigel Pendse and Richard Creeth, The Olap Report. Information available from
http://www.olapreport.com/.

A. Shukla, P.M. Deshpande, J.F. Naughton, K. Ramasamy, Storage Estimation for
Multidimensional Aggregates in the Presence of Hierarchies, Proc. of the 22nd Int.
VLDB Conf., 522-531, 1996.

A. Shukla, P.M. Deshpande, J.F. Naughton, Materialized View Selection for Multi-
dimensional Datasets, Proc. of the 24th Int. VLDB Conf., 1998.

A. Shukla, Materialized View Selection for Multidimensional Datasets, Ph.D. Dis-
sertation, University of Wisconsin - Madison, 1999.

Erik Thomsen, Olap Solutions : Building Multidimensional Information Systems,
John Wiley & Sons, 1997.

J.D. Ullman, Efficient Implementation of Data Cubes Via Materialized Views A
survey of the field for the 1996 KDD conference.

J.D. Ullman, Principles of Database and Knowledge—base Systems, Volume II, Com-
puter Science Press, 1988.

	Introduction
	An Example Schema
	Related Work
	Paper Organization

	Previous Work on Precomputation
	Lattice Framework for Multidimensional Datasets
	The Cost Model
	The Benefit Metric
	Average Query Cost
	Aggregate Selection

	Issues in Multi-cube Models
	Multidimensional Query Semantics
	Precomputed Joins
	Multi-cube Join Quirks
	The Subset Assumption

	New Aggregate Selection Techniques for Multi-cubes
	Benefits across Multiple Cubes
	Aggregate Selection for Multi-cubes

	Experimental Evaluation
	Conclusions

