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Energy is a requisite factor for technological advancement and the economic
development of any society. Currently, global energy demand and supply largely
rely on fossil fuels. The use of fossil fuels as a source of energy has caused severe
environmental pollution and global warming. To salvage the dire situation,
research effort is geared toward the utilization of clean, renewable and
sustainable energy sources and the hydrogen energy economy is among the
most preferred choices. Hydrogen energy economy, which includes hydrogen
production, storage and conversion has gained wide consideration as an
ecofriendly future energy solution with a fuel cell as its conversion device. Fuel
cells, especially, the proton exchange membrane category, present a promising
technology that converts hydrogen directly into electricity with great efficiency
and no hazardous emissions. Unfortunately, the current generation of proton
exchange membrane fuel cells faces some drawbacks that prevent them from
large-scale market adoption. These challenges include the high costs and
durability concerns of catalyst materials. The main source of high cost in fuel
cells is the platinum catalyst used in the electrodes, particularly at the cathode
where the sluggish oxygen reduction reaction kinetics require high loading of
precious metals. Many research efforts on proton exchange membrane fuel cells
are directed to reduce the device cost by reducing or completely replacing the
platinum metal loading using alternative low-cost materials with “platinum-like”
catalytic behaviour while maintaining high power performance and durability.
Consequently, this review attempts to highlight recent research efforts to replace
platinum and carbon support with other cost-effective and durable materials in
proton exchange membrane fuel cell electrocatalysts. Overview of promising
materials such as alloy-based (binary, ternary, quaternary and high-entropy alloys),
single atom and metal-free electrocatalysts were discussed, as the research areas
are still in their infancy and havemany open questions that need to be answered to
gain insight into their intrinsic requirements that will inform the recommendation
for outlook in selecting them as electrocatalysts for oxygen reduction reaction in
proton exchange membrane fuel cell.
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1 Introduction

The ability of any society to evolve technologically and develop
economically depends on the availability and effective utilisation of
energy. The current global energy consumption mainly relies on
fossil fuels (Abbasi et al., 2022; Shamoon et al., 2022). This state of
global energy demand and supply is not sustainable considering the
growth in global population, fast exhaustion of fossil fuel deposits
and the environmental effects of using fossil fuels on the fragile
ecosystem (Bogdanov et al., 2021; Schwanitz andWierling, 2022). In
addition, the increasing rate of fossil fuel utilization threatens to
destabilise the environment because of the worsening greenhouse
gas emissions and global warming that might result in
unprecedented changes to human lives if nothing is done to
prevent it (Chen et al., 2022a; Icaza-Alvarez et al., 2022). To
address the situation, research effort is focused on utilising clean,
renewable and sustainable energy sources and the hydrogen energy
economy is among the most preferred choices.

The idea of a hydrogen economy was initiated by John Bockris in
the 1970s. It was a dream to generate hydrogen via water electrolysis
and channel it through pipelines to factories, homes, and fuelling
stations where it would be harnessed and converted to other forms
of energy (Oliveira et al., 2021). However, many challenges still need
to be overcome in hydrogen production, storage and conversion to
realise Bockris’ dream of a global transition to a hydrogen economy.
Such challenges include the high cost and poor reliability of the
hydrogen energy conversion device known as the fuel cell. A fuel cell
is an electrochemical device that converts chemical energy directly
into electricity with great efficiency and no hazardous emissions
(Wang and Jiang, 2017; Ioroi et al., 2019). It is a thermodynamic
system that operates based on electrochemical reactions, which
consumes reactants from external source (Rahaman and Islam,
2019). The fuel cell combines the best features of combustion
engines and batteries. It can work continuously without any
intermediate mechanical energy conversion if fuel is supplied
constantly and also shows the characteristics of battery under
load condition (Manoharan et al., 2019). Fuel cells are usually
classified according to the electrolyte, fuel used, operating
conditions, required load or the application for which they are
used (Abdelkareem et al., 2021b). Diverse kinds of fuel cells are
presented in Table 1 Although these fuel cells use different
electrolytes and fuels, they all operate on a similar redox reaction
principle and platinum (Pt) is the catalyst widely used for the
cathodic and anodic redox reaction in proton exchange
membrane fuel cell (PEMFC).

The PEMFC is promising for large-scale commercialisation
because of its dynamic response, high efficiency, low operating
temperature (60°C—80°C), high power density and quick start-up
when compared with other fuel cells (Lucia, 2014; Jiao et al., 2021).

Despite the potential of PEMFC for widespread
commercialisation, it needs to meet certain criteria about cost
and reliability to gain end-user acceptance and compete
favourably with other commercial energy conversion devices such
as internal combustion engines and batteries (Wang et al., 2018a).
The high cost of active electrocatalyst materials and their poor
durability at PEMFC operation conditions are the major challenges
facing the large-scale commercialisation of PEMFC (Borup et al.,
2020). In addition, it has been reported that the membrane electrode

assembly parameters have significant impact on the efficiency of the
PEMFC stack (Majlan et al., 2018; Madheswaran and Jayakumar,
2021). Hence, improving the efficiency of PEMFC by rational
selection of cost-effective materials is essential to achieve the
hydrogen economy potential as an alternative to fossil fuel in
electricity generation, fuel for vehicles and industrial processes
(Egeland-Eriksen et al., 2021).

These could be achieved by deliberate attempt to improve the
state-of-the-art electrocatalysts in PEMFC. The electrocatalyst is a
vital component that performs a significant role in reaction kinetics
involved in the effective functioning of PEMFC. It has to do with the
surface adsorption of reactants, breaking the reactants bonds and
formation of new bonds of intermediates and desorption of products
(Figure 1) (Wacławek et al., 2018; Madheswaran and Jayakumar,
2021). The electrocatalyst in the PEMFC works as the cathode and
anode, which conventionally uses Pt particles on carbon support
(Wang et al., 2020b). Unfortunately, Pt-based electrocatalysts
account for about half of the cost of the PEMFC stack and suffer
degradation during prolonged PEMFC operation (Xie et al., 2020;
Fan et al., 2022). The main degradation mechanisms have been
identified as dissolution, migration and agglomeration of metal
particles and carbon support corrosion that results in a loss in
the electrochemical surface area (ECSA) (Wei et al., 2021b). In
addition, Pt-based electrocatalysts are susceptible to carbon
monoxide poisoning and requires highly active material loading
at the cathode because of the cathodic sluggish oxygen reduction
reaction kinetics. To address these challenges, two routes have been
widely investigated to achieve low-cost electrocatalysts; which are
lowering the loading of Pt and looking for substitutes (Ding et al.,
2020b).

PEMFC energy conversion is achieved through hydrogen
oxidation reaction (HOR) and oxygen reduction reaction (ORR)
(Figure 2) (Cruz-Martínez et al., 2021). These reactions involve the
transfer of charge (electrons) between an electrocatalyst and a
chemical species. During the HOR, an external circuit transports
electrons to the cathode while protons are transferred across the
polymer exchange membrane. Meanwhile, ORR involves oxygen
reduction with electrons and hydrogen protons at the cathode,
leaving only water and heat as by-products (Cruz-Martínez et al.,
2019). Research interest focus more on ORR because of its sluggish
kinetics that is 4–6 times slower in order of magnitude when
compared with HOR (Wang et al., 2018b; Wan et al., 2020).

The slow rate of ORR remains a major challenge in PEMFC
(Kong et al., 2023). Significant progress has been made globally
towards improving the-state-of-the-art electrocatalysts for ORR. As
a result of these research efforts, commercial Pt/C remains the most
widely used electrocatalyst among others because of its
comprehensive evaluation and the superior activity of the Pt
surface to other oxygen reducing surfaces (Ma et al., 2020a; Liu
et al., 2022; Li et al., 2023). However, Pt high cost, scarcity and poor
durability during prolong PEMFC operation hinder the widespread
commercialisation of PEMFC, as the frequent cost of the
replacement of the electrocatalyst significantly affects the overall
cost of the fuel cell (Lv et al., 2019b; Meng et al., 2021; Xia, 2021). To
this end, addressing the stability challenges, particularly at the
cathode where the sluggish ORR kinetics require high loading of
precious metal is imperative for its practical employment in PEMFC
(Zhao et al., 2022). To overcome these challenges, research efforts
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TABLE 1 Types of fuel cells.

Type of fuel cell Advantages Disadvantages References

Proton exchange membrane
fuel cell

o Promising for large scale commercialisation o Sluggish oxygen reduction kinetics Abdelkareem et al. (2021a)

o High efficiency o Carbon monoxide poisoning

o Dynamic response o Poor heat and water management

o Low operating temperature 40°C – 80 °C o Costly catalysts

o Quick start-up

o High energy density

Alkaline fuel cell o Operates at low temperature 27°C – 70 °C o Carbon dioxide intolerance Ferriday and Middleton (2021)

o Quick start-up

o High efficiency

o Low cost

o Good heat management

o Fast oxygen reduction kinetics

o High activity

o Can resist carbon monoxide poisoning

Direct methanol fuel cell o Quick start-up o Fuel crossover that causes cathode poisoning Alias et al. (2020)

o Fuel can be obtained from wastes

o Cost effective o Costly catalysts

o High energy density

Phosphoric acid fuel cell o High tolerance to carbon monoxide poisoning o High cost of Pt catalysts Stonehart and Wheeler (2005)

o Comparatively lower Pt catalyst demand o Sluggish start-up

o High activity o Low ionic conductivity

o Good heat management

Molten carbonate fuel cell o High efficiency o Susceptible to high temperature corrosion Antolini (2011)

o Can use carbon dioxide as oxidant o Sluggish start-up

o Cost effective as its does not require precious
metal catalyst

o Difficulty in handling molten carbonate

Solid oxide fuel cell o High efficiency o Requires high temperature materials for effective
functioning

Yang et al. (2020)

o Good heat management

o Can function without precious metal catalysts

o Has long operational time

o Can use different types of fuels

Reversible fuel cell o Can operate both as fuel cell and water
electrolyser

o Comparatively not cost effective Wang et al. (2016), Lim et al.
(2021)

o High specific energy o Relatively low efficiency

o Has energy storage capacity

Direct ammonia fuel cell o Runs at lower temperature o Susceptible to ammonia crossover Jeerh et al. (2021)

o Cost effective o Has low cell efficiency and power density

o Requires low-cost electrolyte and electrocatalyst

(Continued on following page)
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are on-going to develop durable electrocatalysts that are highly
active and cheap (Batchelor et al., 2019).

1.1 Pt/C electrocatalyst degradation
mechanism

Pt particles dispersed on carbon support remain the most
widely used commercial electrocatalyst for PEMFC (He et al.,
2022). This is due to the advance conductivity, flexibility and
wide range of operable potentials that Pt offers for PEMFC
application (Abbas et al., 2020). Unfortunately, under PEMFC
operation conditions, Pt dissolves and breaks up and the carbon
support also corrodes leading to the deterioration of the
performance of the fuel cell (Kregar et al., 2020). The major
degradation mechanisms were identified as dissolution,
migration and agglomeration of metal particles and carbon
support corrosion that results in a loss in the ECSA which
causes overall decrease in the performance of PEMFC (Wang
et al., 2021a; Wei et al., 2021b). Several studies have been
conducted to investigate the degradation mechanism of Pt/C
in PEMFC (Weber et al., 2018; Labata et al., 2021; Fan et al.,
2022). The studies were aimed at understanding the degradation
mechanism of Pt-based electrocatalyst to help researchers in
developing mitigation strategies that could significantly reduce
the cost of PEMFC (Lopes et al., 2020; Hersbach et al., 2021).
Different perspectives exist in the literature on the cause of Pt-
based electrocatalyst disintegration. Some researchers argued
that Pt disintegrate due to change in cell potential, other
researchers asserted that the discrepancy in anodic and
cathodic charges is the cause of the disintegration (Okonkwo
et al., 2021). With the disparity in the potential ranges at which Pt
disintegration occurs in PEMFC operation, factors such as
particles size and morphology play important role in the
disintegration of Pt (Lopes et al., 2020; Hussain et al., 2022).
To address these challenges, promising strategies (Figure 3) such
as alloying Pt with transition metals has been suggested as an
effective method to reduce the usage of the scarce and expensive

precious metal as electrocatalyst without loss in its performance
(Bhoyate et al., 2023). In addition, the use of mixed phases has
been recommended as an effective strategy to optimise
electrocatalysts activity and stability, thereby encouraging the
development of electrocatalysts from binary, ternary, quaternary
and high entropy alloys (Li et al., 2020c; Prabhu et al., 2020; Li
et al., 2021; Du et al., 2022). The desired electrocatalyst activity
and stability optimisation in alloy electrocatalysts is achieved by
alloy compositional, morphological and particles size control
(Zhang et al., 2021a; Loffler et al., 2021).

It is noteworthy that other electrocatalyst design strategies
such as Pt-free alloys, single atom and metal-free electrocatalysts
have been investigated (Bhatt and Lee, 2020; Han et al., 2020;
Zhang and Guan, 2020; Wei et al., 2021a; Muhyuddin et al.,
2021). Efforts have also been directed toward the development of
other durable catalyst-support materials. Consequently, this
review summarises recent research efforts to enhance or
replace Pt and carbon support with other cost-effective and
durable materials in PEMFC electrocatalysts application
(Table 2). Overview of design strategies in developing
alternative electrocatalyst using other cost-effective and
durable materials to replace platinum and carbon support are
highlighted with the activity and stability of various
electrocatalysts for oxygen reduction reaction in PEMFC.

TABLE 1 (Continued) Types of fuel cells.

Type of fuel cell Advantages Disadvantages References

Direct propane fuel cell o Low-cost o Generates carbon dioxide as reaction product Mohammed et al. (2019)

o Can be easily handle

o Requires simple infrastructure

o Has relatively higher power density

o Has the potential to work with low-cost
membrane

Microbial fuel cell o Converts wastes to electricity o Low power density Do et al. (2018)

o Can be used in wastewater treatment o Current instability

oCan be used as biosensor o Uses costly materials

o High internal resistance

FIGURE 1
Schematic representation of electrocatalyst surface.
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2 An overview of materials used as
electrocatalysts in PEMFC

Herein research progress on electrocatalyst design strategies to
address the drawbacks associated with the state-of-the-art Pt/C
electrocatalyst for PEMFC were summarised. Pt-based
electrocatalyst were discussed followed by alloy electrocatalysts.
Emerging electrocatalysts such as high-entropy alloys, single
atom and metal-free electrocatalysts were also highlighted.

2.1 Platinum-based electrocatalysts

Pt/C electrocatalyst remains the state-of-the-art catalyst for
ORR in PEMFC because of its effectiveness in ORR kinetics
(Tian et al., 2017; Huang et al., 2021; Kong et al., 2021).
However, due to its high cost and durability concerns, research
to enhance its performance and reduce its high Pt particle loading
are on-going (Shao et al., 2018; Lopes et al., 2020; Kishida et al.,
2021). According to Etesami et al. (2021), there are three major
research areas for Pt-based catalysts, which are 1) reducing the
particle size of Pt and increasing its dispersion in the carbon support
in order to increase its active sites surface area 2) producing Pt-based
catalysts with particles surface oriented in a specific direction and 3)
dispersing Pt into other metals especially transition metals or
modified carbon supports to form alloys or mixtures. Efforts
have also been directed toward the development of other durable
catalyst-support materials such as transition metal-based
compounds (carbides, nitrides, oxides and chalcogenides) (Shang
et al., 2020), carbon-based materials (carbon nanotube and
graphene) (Liu et al., 2018), nitrogen doped carbon (Chen et al.,
2021) and metal-organic-framework to address the carbon support
corrosion challenge. On the other hand, Mukherjee et al. (2022)

asserted that electrocatalysts that use only micro-sized Pt particles as
their actives sites are no longer the state-of-the-art catalysts for fuel
cell application. The authors claimed that high cost of
electrocatalysts due to unrealistic Pt loading requirements and Pt
particle susceptibility to carbon monoxide poisoning are the key
reasons for the assertion. Along this line, research have evolved from
usingmicro sized Pt on carbon supports to using Pt nanoparticles, Pt
nanowires, introduction of porosity to increase catalysts surface area
and bimetallic Pt electrocatalysts with other metals (Table 3) (Gilroy
et al., 2016; Li and Sun, 2019; Shao et al., 2019; Xiao et al., 2021a).

2.2 Platinum-free electrocatalysts

To reduce the overall cost of PEMFC, researchers focus on the
reduction or substitution of Pt in Pt-based electrocatalyst. Thus,
research efforts have been directed towards the development of non-
Pt-based electrocatalysts. Other Pt group metal-based
electrocatalysts such as Pd-C, Ir-C, Rh-C electrocatalysts have
been reported (Wang et al., 2022). Several Pt-free electrocatalysts
have been developed using non-precious metals because of their
low-cost, availability and abundance in nature (Etesami et al., 2021).
Non-precious metal-based electrocatalysts have been widely
investigated because of their excellent catalytic performance,
durability and cost-effectiveness (Etesami et al., 2020). Such
electrocatalysts include transition metal-nitrogen-carbon
electrocatalysts, nitrides, carbides, chalcogenides and transition
metal oxides (Gewirth et al., 2018; Xiao et al., 2021a). To achieve
a Pt metal group-free electrocatalyst for PEMFC application Sanad
et al. (2021) synthesised a non-precious metals Co-Cu metal organic
framework bimetallic electrocatalyst by low-temperature
hydrothermal strategy. The catalytic activity of the electrocatalyst
was tuned by varying Co/Cu molar ratios. It was observed that the

FIGURE 2
Representation of the role of electrocatalyst in HOR and ORR in PEMFC.
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metal organic framework bimetallic electrocatalyst outperformed
the electrocatalytic activity of commercial Pt–C catalyst for ORR in
alkaline environment. It exhibited onset potential of 1.06V, half
wave potential of 0.95 V and electrochemical stability of 30 mV after
1000 ORR cycles in 1.0 M sodium hydroxide solution. Chandran
et al. (2018) adopted a single-step synthesis approach to develop Pd-
Co alloy supported on reduced graphene oxide doped with nitrogen.
The ORR activity of the electrocatalyst proceeded through the four-
electron reaction pathway. The electrocatalyst showed 1.6 times
enhanced mass activity when compared to the Pd-reduced graphene
oxide doped with nitrogen. The electrocatalyst also recorded of
power density of 68 mWcm– 2 with metal loading of 0.5 mg cm– 2 at
60°C without any back pressure.

2.3 Alloy-based electrocatalysts

2.3.1 Bimetallic alloy electrocatalysts
Research findings have shown that alloying Pt with the d-block

metals to form a bimetallic electrocatalyst could positively influence
the stability and activity of Pt-C electrocatalyst in ORR of PEMFC
(Seh et al., 2017; Sui et al., 2017). Literature also showed that the
addition of a second metal to Pt-based electrocatalyst can prevent
the adsorption of carbon-monoxide on the electrocatalyst’s surface
(Molochas and Tsiakaras, 2021; Lee et al., 2022b). In addition, such
secondary metal addition could re-expose blocked sites on a
poisoned Pt surface by oxidising the carbon monoxide thereby
speeding up ORR kinetics (Zhang et al., 2021b; Lu and Elam,
2022). Owing to these characteristics, bimetallic electrocatalysts
have been reported to exhibit comparatively better efficiency than
Pt-C electrocatalyst due to their highly exposed surfaces (Bai, 2018;
Huang et al., 2018; Wang and Spendelow, 2021). Guterman et al.
(2018) prepared CuxPt-C electrocatalyst by successive deposition of
copper and Pt on carbon support. The electrochemical performance

of the CuxPt-C electrocatalyst was studied at ambient temperature in
a three-electrode electrochemical cell with the help of CV using a
rotating-disk as the working electrode. The results obtained were
compared with that of commercial Pt-C catalyst. The study showed
that the bimetallic electrocatalyst exhibited a combination of higher
stability and mass activity values when compared with the
commercial Pt-C catalyst with the same Pt loading. Ying et al.
(2018) also developed a metal-organic framework Pt-Co bimetallic
nanoparticles supported by hollow porous carbon capsules that were
doped with nitrogen as highly active and durable electrocatalyst for
ORR. The bimetallic catalyst was synthesised by wet chemistry
method and was found to demonstrate outstanding ORR
performance, with a mass activity that was 5.5 and 13.5 times
better than those of commercial Pt/C and Pt/black catalysts
respectively. Moreover, the catalyst exhibited better durability in
terms of ECSA and mass activity when compared with commercial
catalysts. The exceptional ORR performance of the catalyst was
ascribed to the large surface area of bimetallic Pt-Co nanoparticles
and hollow porous structure of nitrogen-doped carbon capsules.
Although Pt has been widely alloyed with many transition metals
and of recent lanthanides to form bimetallic electrocatalysts, they
have not gain wide adoption for commercial application in fuel cell
(Martínez-Hincapié and Čolić, 2022). However, it was reported that
Pt-Co bimetallic electrocatalyst was recently use in commercial
electric vehicle (Toyota Mirai) (Wang and Spendelow, 2021). The
poor commercial patronage of Pt-based bimetallic electrocatalysts
could be attributed to their susceptibility to poisoning by formic acid
electrooxidation and dissolution into strong acids in working
electrolytes, which lead to the loss of integrity of electrocatalysts
and result in deterioration of catalytic performance. As a result,
different electrochemical reaction pathways have different electronic
structure requirements (Zhang et al., 2018; Mukherjee et al., 2022).

2.3.2 Trimetallic/ternary alloy electrocatalysts
To benefit from synergistic effect that can result from using

three elements in trimetallic alloys, researchers have attempted to
develop ternary alloy electrocatalysts for ORR in PEMFC (Wang
et al., 2019c; Wang et al., 2020a; Zhu et al., 2020a). The introduction
of a third element has proven to improve the lifespan of the parent
bimetallic electrocatalyst at PEMFC operating conditions (Zhang
et al., 2017). Hu et al. (2021) synthesised ternary platinum-based
electrocatalyst using co-doping strategy. Cu and Co were co-doped
into Pt-C to modulate the electronic structure of Pt in order to
weaken the adsorption of deoxygenated species by Pt thereby
enhancing the ORR kinetics. It was found that the trimetallic
electrocatalyst exhibited better mass activity of 0.52 A mgpt

−1

and power density 1.15 Wcm−2. Moreover, the mass activity of
the ternary electrocatalyst only reduced by 8.3% after 30,000 cycles
indicating comparatively good durability. Xiao et al. (2021b)
reported a facile synthesis of carbon supported Pt-Cu-Fe
nanoparticles trimetallic electrocatalyst for ORR in PEMFC. The
authors found that the trimetallic electrocatalyst recorded a
significant 0.99 A mgpt

−1 ORR activity at 0.9V potential and
enhanced stability, losing only 7.6% of mass activity after
5000 durability cycles. Ma et al. (2022) developed a Pt-Ru-Te
ternary electrocatalyst with only 11 at% of Pt for HOR in fuel
cell. The electrocatalyst showed a current density of 30.6 mAcm– 2

at 50 mV and exchange current density of 0.426 mAcm– 2.

FIGURE 3
Electrocatalyst design strategies.
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Furthermore, the electrocatalyst exhibited excellent stability with
5% loss in activity after 2000 durability circle.

The literature showed improvement in performance of ternary
electrocatalysts in fuel cell application over their bimetallic
counterparts, establishing the significance of ternary platinum
based electrocatalyst in improving electrocatalytic performance.
However, ternary electrocatalysts are also faced with the
challenges of metal dissolution, agglomeration and carbon
support corrosion. In addition, it is uncertain if the
electrocatalyst will be able to replicate their excellent
experimental activities in actual fuel cell operating conditions
(Mukherjee et al., 2022).

2.3.3 Quaternary alloy electrocatalysts
Quaternary alloy has the potential to offer additional options

that could improve electrocatalytic performance and durability than
binary and ternary alloy electrocatalysts. However, it remains the
least reported alloy-based electrocatalysts in literature (Du et al.,
2022). Wang et al. (2019a) developed a quaternary structurally
ordered Pt(Fe,Co,Ni) alloy electrocatalyst with equal proportion
of constituent elements via a facile synthesis method that requires
spray dehydration on a solid surface followed by annealing
procedure. The electrocatalyst showed improved electrocatalytic
performance towards ORR with mass activity 6.6 fold higher
than that of commercial Pt/C with only 17% attenuation after
10,000 potential cycles at 0.9 V. Hornberger et al. (2022)
synthesised an octahedral quaternary PtNi(RhMo) alloy
electrocatalyst. The alloy electrocatalyst was prepared to control
the shape of PtNi by co-doping it with Rh and Mo using
solvothermal process. The electrocatalysts exhibited remarkable
mass activity of 1.53 mgpt

– 1.

2.3.4 High-entropy alloy electrocatalysts
For centuries, alloying has been employed to impart desired

material properties. It usually entails the addition of comparatively
small quantities of secondary elements to the parent metal. However,
for the past two decades, a new alloying approach has been in vogue
that entails the combination of several key elements in high
concentrations to create novel materials called high entropy alloys
(HEAs) (George et al., 2019). HEAs have two definitions that are
based on composition and configuration entropy, respectively. They
are alloys that contain a minimum of five primary elements having
respective atomic weight percentage between 5 and 35 based on
composition. The entropic definition states that HEAs are alloys
having configurational entropies at a random state greater than 1.5R,
whether they are single or multiphase at ambient temperature; where
R is gas constant (Yeh and Lin, 2018). HEAs have been recently used
in catalysis because of their exceptional benefits, which include high
tolerance, complex surface and adjustable composition (Li and Chen,
2021). They have gained wide acceptance as catalysts in
electrochemical reactions due to their ability to catalyse different
reactions. Such reactions include but are not limited to nitrogen
reduction reaction (NRR), alcohol oxidation reaction (AOR), oxygen
reduction reaction (ORR), hydrogen evolution reaction (HER),
oxygen evolution reaction (OER) and carbon dioxide reduction
reaction (CO2 RR) (Zhang et al., 2022). HEA catalysts
characteristics that distinguished them from other catalysts have
been highlighted as their multiple combinations of elements
located next to each other, which results in tailorable active sites.
In addition, it was emphasised that their non-typical electrochemical
behaviour made them a distinctive class of catalyst materials that are
promising as a better alternative to other catalysts (Lo€ffler et al., 2019).
The application of HEAs in ORR is being researched to improve the

TABLE 2 Activities and durabilities of different electrocatalysts.

Electrocatalyst Mass activity (A g – 1) Durability (Mass activity loss) References

Commercial Pt/C 0.1 80% loss after 30,000 cycles Liang et al. (2019)

Nanoparticle Pt/C 0.87 NA Garlyyev et al. (2019)

Pt26Cu74 nanocrystals 0.74 21.2% after 1000 cycles Huang et al. (2019)

Gallium-doped PtNi/C nanoparticles 1.24 12% after 15,000 cycles Lim et al. (2018)

Pt supported on Mo-doped titanium nanotubes 0.10 No loss after 2000 cycles Esfahani et al. (2018)

Nanoparticles Pt/TiO2@CNT 0.36 No loss after 10,000 cycles Kong et al. (2020)

Ir23Pd77/C 0.17 NA Nguyen and Shim (2018)

Pt-Pd/C 0.15 Negligible loss after 10,000 cycles Wu et al. (2019)

Cu0.75Fe0.25@Pt/C core-shell structure 0.91 11% loss after 10,000 cycles Cao et al. (2020)

PtNiCo nanocage 1.03 NA Ma et al. (2021)

PtNiRh nanowires 2.51 12.8% loss after 10,000 cycles Li et al. (2018b)

AgCoCu oxides on reduced graphene oxide 0.04 No loss after 10,000 cycles Madakannu et al. (2022)

Pd59Cu30Co11 nanoalloy 1.01 No loss after 10,000 cycles Li et al. (2018a)

Nanoparticle AlCuNiPtMn 3.47 No loss after 30,000 cycles Li et al. (2020b)

Nanoparticle PtRuCuOsIr 0.86 50% loss after 15,000 cycles Chen et al. (2015)

Nanoparticle PtPdCuNiCoAl 2.24 7.5% loss after 10,000 cycles Qiu et al. (2019)
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cathodic sluggish kinetics that limits the reliability of PEMFC. This is
because HEAs emerged as materials that are capable of overcoming
the limitation of Pt and Pt group metals (PGM) catalysts (Martínez-
Hincapié and Čolić, 2022). Wu et al. (2020) studied the catalytic
behaviour of the six PGM as self-supported HEA catalyst synthesised
by wet chemistry method for ethanol oxidation reaction and found
that the HEA exhibited variety of adsorption sites on its surface, which
can catalyse many complex reactions. The PGM HEA catalyst’s
intrinsic mass activity was also compared with those of
commercial palladium-C, palladium-black and Pt-C catalysts and
found to be 2.5, 6.1 and 12.8 times higher than the intrinsic mass
activity of the commercial catalysts, respectively. Lee et al. (2022a)
synthesised IrPtPdRuRh HEA electrocatalyst by plasma ionic liquid
reduction and showed excellent hydrogen evolution reaction catalytic
performance with overpotential of 60 mV at a current density of
10 mAcm−2. The electrocatalyst also recorded a Tafel slope of 42 mV
dec−1 in alkaline electrolyte and demonstrated good stability for 6 h at
a high constant current density of 100 mAcm−2 without appreciable
decay. The HEA nanoparticles were deposited on a carbon support.
Qiu et al. (2019) synthesised senary AlNiCuPtPdAu octonary

AlNiCuPtPdAuCoFe and senary all-non-noble metal
AlNiCuMoCoFe nanoporous HEAs using a route that combined
bulk melting and fast cooling followed by dealloying. The nanoporous
HEA with low Pt loading exhibited 10 times mass activity when
compared with commercial Pt-C catalyst for ORR and maintained
92.5% of its initial activity after 100,000 electrochemical cycles. It was
also discovered that, unlike binary alloy system, HEAs exhibited high
stability under electrochemical cycling conditions. An attribute that
made them promising electrocatalysts for PEMFC. Furthermore, to
explore catalytic potentials of PGM–free HEAs in ORR, Nandan et al.
(2022) reported a facile method that combines wet chemistry and
pyrolysis to synthesise FeCoNiMnCr HEA nanoparticles grafted on
nitrogen-doped carbon nanotubes. The electrocatalyst designed for
electrochemical ORR utilised the synergy between nitrogen-doped
carbon nanotubes and HEA nanoparticles to promote improved
performance in the ohmic polarization region of fuel cells when
compared with commercial Pt-C electrocatalyst. Moreover, the
FeCoNiMnCr-based catalysts exhibited better ORR performance
compared to various newly reported transition metal-based
conventional catalysts. In another research, Liu et al. (2021)

TABLE 3 Summary of recent works on Pt-based electrocatalysts for ORR.

Electrocatalyst Research aim Activity (A mg – 1) Durability Reference

Au@Pt nanoparticles Development of nanoparticles Au@Pt core-shell
structure to mitigate the instability of Pt
nanoparticles electrocatalyst used in ORR.

0.35 Less than 5% loss after
10,000 potential cycles

Chung et al.
(2020)

Pt/TiO2@CNT
nanoparticles

Synergistic combination of the high surface area
of carbon nanotube, excellent conductivity and
stability of TiO2 nanoparticles and high activity
of dispersed Pt nanoparticles for ORR.

0.36 No loss in activity after
10,000 potential cycles

Kong et al.
(2020)

Pt/SnO2-C nanocomposite Modification of the electronic properties of Pt
nanoparticles by selectively depositing it on
SnO2 nanoclusters formed on carbon surface

0.07 No loss after 2000 potential
cycles

Hussain et al.
(2019)

Pt@COF (covalent organic
framework)

Development of Pt nanoparticles anchored on
nitrogen-rich covalent organic framework
for ORR.

Onset potential of 1.04V and half-
wave potential of 0.89V

Current density drops by 4% of
its initial values after 50 h of
operation

Zhai et al.
(2020)

Pt-N-S-pCNFs hybrid Preparation of ultrafine Pt nanoparticles
supported on sulphur and nitrogen codoped
porous carbon nanonanofibers as electrocatalyst
for ORR, OER and HER.

Recorded onset potential of 1.02 eV
and half-wave potential of 0.83 eV

10.5% loss in current density
after 10,000 s

Chen et al.
(2022b)

PtM3/C ordered
intermetallic M = Fe, Co, Ni

Development of low-Pt ordered intermetallic on
carbon support electrocatalyst

PtCo3 exhibited mass activity of
0.74 A mg – 1

9% loss in mass activity after
10,000 potential cycles

Wang et al.
(2019b)

Pt@CNT Determination of effect of different particle sizes
of Pt (1.5nm, 3nm and 6 nm) on the
performance of Pt supported on carbon
nanotubes electrocatalyst for HER and ORR.

The electrocatalyst with 3 nm particle
size showed optimal ORR mass
activity of 0.03 A g – 1

16% loss in initial value of
current density after 15000s test

Ma et al.
(2020b)

Pt/C nanoparticles Investigation of effect of mesoporous carbon
support on ORR activity and stability of
nanosized Pt/C electrocatalyst

0.15 10.9% loss of ECSA in half cell
test

Xie et al.
(2022)

Pt/C nanoparticles Study the effect of Pt(100) and Pt(111)
orientations on the ORR properties of different
nanosized Pt/C electrocatalyst (3 – 7 nm)

4.6 nm with Pt(100) crystallographic
orientation exhibited the optimum
ORR of 0.05 Ag – 1

NA Erikson et al.
(2022)

Pt3Ni nanowires Development of 1 nm thick bimetallic alloy
nanowire as durable electrocatalyst for ORR.

0.55 67% mass activity loss after
50,000 potential cycles

Gong et al.
(2019)

Pt3Co-Mo nanowires Preparation of Molybdenum doped Pt-cobalt
bimetallic alloy nanowire as efficient
electrocatalyst for ORR.

0.84 24% loss in mass activity after
50,000 potential cycles

Deng et al.
(2022)
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synthesised CoCrFeMnNi HEA nanoparticle-activated carbon
nanocomposites electrocatalyst. The electrocatalyst was fabricated
by impregnation–adsorption method of precursor salt solution
followed by calcination. The HEA-activated carbon electrocatalyst
performed excellently in the degradation of methylene blue at a
comparable rate with those of other catalysts. The exceptional
efficiency was because of the coupling effects of the solid-solution
structure of HEA nanoparticles and the large specific surface area and
considerable reaction channels of the activated carbon. In addition,
HEA nanoparticles embedded in distinctive porous structure
accelerated the mass transport and the electron transfer as
nanoscale galvanic cells in the active bond splitting of methylene blue.

Most conventional alloys are made up of a single element with
various alloying elements added to improve the properties of the
principal element, forming an alloy family based on the principal
element (Tsai and Yeh, 2014). HEAs were thought to be complex
because they contained more than four primary elements and
complex phase diagram systems that are often unavailable. As a
result, the majority of HEAs earlier reported were created using
the traditional trial-and-error method (Zhang et al., 2012).
However, as the design of high entropy alloys progresses,
several design routes have emerged which include the use of
alloys design principles of materials science, building on
promising binary or ternary alloy systems, the use of
combinatorial material synthesis technique, Taguchi
optimisation method and material science computational
methods such as finite element, molecular dynamics,
simulation, phase computation (PHACOMP) and calculation
of phase diagram (CALPHAD) (Yeh, 2013). Wen et al. (2019)
used material design strategy that combines machine learning
model and experimental algorithms to determine high entropy
alloys with high hardness in AlCoCrCuFeNi alloy system. Several
alloys with hardness values that are 10% higher than the best
original data set were fabricated using only seven experiments. In
another study, Floriano et al. (2020) designed equiatomic
TiZrNbFeNi and non-equiatomic Ti20Zr20Nb5Fe40Ni15 high
entropy alloys via thermodynamic calculations using
CALPHAD. The alloys were fabricated by arc melting
technique and showed small amount of cubic phases and
C14 laves phases with (Zr,Ti)1, (Fe,Ni,Nb, Ti)2 constitution.

2.3.4.1 High-entropy alloy-based composites
HEA composites are emerging advanced materials that are

produced by dispersing reinforcing phases (usually ceramics,
whiskers or fibers) in multi-principal element metal matrix to
improve their desired properties from the standpoint of
dispersion strengthening mechanism (Liu et al., 2019; Zhu
et al., 2020b; Wang et al., 2021b; Wang et al., 2021c). The
reinforcing phase may be coated to prevent its chemical
reaction with the matrix (Sharma et al., 2020). It is
noteworthy that the use of HEAs as matrix in metal-based
composites is still in the early stage (Sun et al., 2022). HEAs
usually contain multi-principal elements in high concentration,
thereby hindering their industrial application as bulk materials
because of their higher cost compared to the conventional alloys
(Fu et al., 2017; Wang et al., 2021b). However, their application as
coatings have received considerable research interest because of
the wide field of application and relatively cheaper cost of thin

films (Li et al., 2018c). However, the hardness of HEAs coatings is
usually relatively low, hence, their application as coatings
requires enhanced hardness and wear resistance, which could
be achieved by the addition of hard phases (Wang et al., 2021b;
Guan et al., 2021). Wang et al. (2021b) prepared a HEA
composite coating from titanium powder, C3N4 powder and
Cr20Cu20Fe20Ni20Al20 by plasma transfer arc cladding
technique and studied the hardness, wear properties and
microstructural features of the HEA composite coating using
microhardness tester, dry wear test multifunctional tribometer,
SEM, TEM and EDS. The results showed that the microhardness
of the composite coating was 3.33 and 127.4 times higher than
those of the Q235 steel substrate and the unreinforced HEA. The
wear resistance of the composite coatings was 3.03 and 8.06 times
greater than the monolithic HEA and the Q235 steel substrate.
The coating exhibited good interfacial bonding with the
substrate. Microstructural examination revealed that the
coating contains body-centred cubic matrix grains with
intergranular cuboidal nanoprecipitates that have face-centred
cubic Ti(C, N) particles distributed along its grain boundary and
a small quantity of face-centred cubic Cu–rich phase around the
intergranular nanoprecipitate. A core-shell structure was
observed in the nanoprecipitates, with the core rich in
nitrogen and the shell found to be carbon-rich. Along the
same line, Zhu et al. (2020b) developed TiN and Al2O3

reinforced CoCrFeNiMn HEA composite through the plasma
cladding method. The reinforcements were prepared from high
purity commercial Al, TiO2 and BN precursors. The
microstructure, chemical composition, hardness and wear
properties were determined using field emission scanning
electron microscopy, EDS, XRD, Vicker hardness tester and
multi-functional tribometer. The microstructural examination
revealed that the as-developed coating has a single face-centred
cubic phase with TiN–Al2O3 as crystal dendrites associated with
the Cr-B rich interdendritic phase. The hardness and wear
resistance of the HEA composite coating were compared with
those of the pure HEA and found to be 17.6% and 12.5% better. It
was found that the reinforcing phases play significant roles in
restricting the adhesive wear and encouraged the steady-state
friction of the HEA composite coating throughout the sliding
process. Cui et al. (2022) produced a corrosion resistance CeO2

reinforced FeCoNiCrMo HEA composite coating by laser
cladding technique. The composite coating was developed for
TC4 titanium alloy surface coating. The morphology,
microhardness and corrosion resistance of the composite
coating were investigated using XRD, EDS, SEM, Vickers
hardness tester and electrochemical workstation. The result
revealed that the introduction of the CeO2 powder to the HEA
matrix reduced the coating sensitivity to crack. In addition, the
introduction of the reinforcing phase to the HEA matrix did not
change its body-centred cubic phase structure. Moreover, the
microstructural examination showed that the CeO2 was evenly
distributed at the grain boundary, thereby refining the grains.
This phenomenon improved the strength and toughness of the
HEA composite coating. Due to this improvement, the
microhardness of the coating increased 2.7 times than that of
the TC4 titanium alloy substrate. The corrosion behaviour of the
substrate, pure HEA and composite coating were examined, and
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it was found that corrosion products were deposited on the
TC4 titanium substrate. Pitting corrosion was observed in the
pure HEA, however, the addition of CeO2 enhanced the
formation of higher density of stable passive film that
significantly inhibited the pitting corrosion.

The use of HEA composites as coatings has been considerably
explored, however, their application for catalytic purposes which are
equally a surface phenomenon have not been well investigated. Hence,
the authors of this review are currently investigating the potentials of
HEA composites as self-supported electrocatalysts for ORR in PEMFC.

TABLE 4 Alloy-based electrocatalyst and their composites.

Electrocatalyst Research aim Fabrication
method

Activity Durability Reference

CoNi@N-GCNT Production of transition metal-based
CoNi alloy supported on nitrogen-
doped graphite carbon nanotube

Freeze drying Onset potential of
0.9V and half-wave
potential of 0.84V

No loss in current density after
10,000 potential cycles

Niu et al.
(2021)

Ti4O7/Mxene Development of non-precious metal-
based nanocomposite electrocatalyst

Hydrothermal followed
by carbothermal
reaction

Onset potential of
0.91V and half-wave
potential of 0.72V

35% loss in current density after
80,000 s

Wei et al.
(2023)

PdNi nanowire Synthesis of untrathin PdNi nanowire as
electrocatalyst for ORR.

Hydrothermal reaction Exhibited half-wave
potential of 0.95V

29% ECSA loss after
200,000 potential cycles

Sahoo et al.
(2022)

PdBP Preparation of ternary alloy nanosphere
as electrocatalyst for ORR.

Soft templating
synthesis

Recorded mass
activity of
1.45 mgpd

– 1

32.1% loss in mass activity after
cycling for 5000s

Lv et al. (2019a)

MnO/CoMn@N-doped
graphite composite

Fabrication of CoMn alloy coated with
nitrogen doped carbon and MnO as
composite electrocatalyst for OER
and ORR.

Annealing of prusian
blue analogue

Onset potential of
0.91V and half-wave
potential of 0.76V

16% loss of its initial current
density after continuous
operation for 40000s

Deng et al.
(2019)

Fe2Co2Ni2/N-CNT Development of ternary transition metal
alloy embedded nitrogen doped carbon
nanotube as electrocatalysts for ORR.

Solvothermal synthesis 0nset potential of
0.81V and half-wave
0.75V

4.5% loss in current density
after 25000s cyclic test

Wang et al.
(2021d)

Rh2.6Fe3Co2.6@NG Synthesis of bifunctional rhodium, iron
and cobalt alloy nanoparticles
electrocatalyst anchored on nitrogen
doped graphene for HER and ORR.

Sequential annealing
and substitution
reaction

Onset potential of
0.98V and half-wave
potential of 0.82V

Positive shift in half-wave
potential by 9 mV after
5000 cycles

Jiang et al.
(2021)

Pt(Fe,Co,Ni)3/C Production of low Pt structurally
ordered quaternary alloy electrocatalyst
for ORR.

Spray dehydration and
annealing process

Exhibited mass
activity of 3.189 mA
µgPt

– 1

17% loss in mass activity after
10,000 potential cycles

Wang et al.
(2019a)

PtNiRhMo nanoalloy Preparation of octahedral shaped PtNi
doped with rhodium and molybdenum
as electrocatalyst for ORR.

Solvothermal synthesis Recorded mass
activity of 1.53 A
gpt

– 1

NA Hornberger
et al. (2022)

PtFe/Pt intermetallic
compound

Preparation of atomically ordered Pt-
based intermetallic compound as
electrocatalyst for ORR.

Wet impregnation
method

Exhibited mass
activity of 0.92 A
mgpt

– 1

24% loss in mass activity after
10,000 potential cycles

Song et al.
(2022)

FeNi3@NC intermetallic
compound

Development of intermetallic compound
embedded in nitrogen doped carbon as
bifunctional electrocatalyst for OER
and ORR.

Freeze drying followed
by annealing

Recorded 0.86V half-
wave potential

Positive shift in half-wave
potential by 6 mV after
3000 cycles

Chen et al.
(2020)

Pt5La intermetallic
compound

Alloying Pt with early transition metal to
produce intermetallic compound as
durable electrocatalyst for ORR.

Solvothermal method Exhibited mass
activity of 0.49 A
mgpt

– 1

Loss 6.1% of initial value of
mass activity after
30,000 potential cycles

Zhu et al.
(2022)

FeCoNiMnCr@N-CNT Development of FeCoNiMnCr HEA
nanoparticles grafted on nitrogen-doped
carbon nanotubes as efficient
electrocatalyst for ORR.

Solvothermal method Onset potential of
0.95V and half-wave
potential of 0.8V

10% loss in initial value of
current density after 14 h of
continuous operation

Nandan et al.
(2022)

FeCoNiCuMn/NCNS Utilization of the synergistic effect of
HEA nanoparticles formed on nitrogen
doped carbon nanosheet as bifunctional
electrocatalyst of nitrite sensing
and ORR.

Confinement growth
method

Half-wave potential
of 0.87V

Negligible loss in initial value of
current density after
3000 potential cycles

Gao et al.
(2022)

AlCuNiPtMn
nanoparticles

Fabrication of self-supported
AlCuNiPtMn nanoparticles HEA as
durable electrocatalyst for ORR.

De-alloying method Exhibited mass
activity of 3.5 A
mg – 1

No loss in mass activity after
30,000 potential cycles

Li et al. (2020b)
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Table 4 summarises alloy-based electrocatalysts and their
composites.

2.4 Single-atom electrocatalysts

This is a novel brand of electrocatalyst represented by the
acronym M-N-C, where M is usually a transition metal and N-C
is carbonaceous material doped with nitrogen (Xu et al., 2018). The
electrocatalyst has shown promising optimum atomic efficiency,
outstanding intrinsic activity, high electrical conductivity, large
surface area, well-defined structure with composition and
configuration that can serve as an alternative substitute to the
pricy precious metal-based electrocatalyst for ORR in PEMFC
(Han et al., 2020; Zhang et al., 2020; Zhang and Guan, 2020;
Chen et al., 2021). Single-atom electrocatalyst is synthesised by
the pyrolysis of transitionmetal with doped-carbonaceous materials,
a process that covalently anchors well dispersed metal particles at an
atomic scale on suitable support. The resulting electrocatalyst
thereby exhibit exceptional activity and stability for specific
reaction (Hou et al., 2020a). The multiscale tunability of a single
atom electrocatalyst facilitates increasing active sites density with
enhanced activity, stability, anti-poisoning properties and ultra-high
affinity for oxygen (Zhu et al., 2018). (Yang et al., 2019) synthesised
two-dimensional conjugated single atom electrocatalyst consisting
of 10 wt% iron and 0.73 wt% cobalt atoms anchored on
phthalocyanine macrocycles. The electrocatalyst was synthesised
by pyrolysis-free one step ball milling of polyphthalocyanine and
showed excellent ORR mass activity of 47 mAmg – 1 that was
6.4 times superior to that of commercial Pt/C with no
appreciable loss in stability after 100 h of operation. Ding et al.
(2020a) designed and synthesised an atomically dispersed Fe-N4/C
single atom electrocatalyst via an organic solution esterification
process followed by melamine treatment to introduce nitrogen
and restrict the migration of metal particles. ORR test was
conducted on the single atom electrocatalyst and revealed a half-
wave potential of 0.78 V. The electrocatalyst also showed a 17% loss
in current density after 7 h of continuous polarization in acidic
condition. (Xu et al., 2021). developed a single atom copper
anchored on graphite foam doped with sulphur and nitrogen
synthesised through underpotential deposition strategy. The
single atom electrocatalyst showed outstanding ORR activity
recording half wave potential of 0.862 V with calculated mass
activity of 5.71 AmgCu

– 1. The stability test revealed that the
electrocatalyst retains 98% of its initial current density after
20,000s under continuous potential of 0.85 V. Chen et al. (2020)
reported a single atom tungsten dispersed on nitrogen doped carbon
nanosheet produced by modulated pyrolysis method. The
electrocatalyst showed notable electrocatalytic activity with half
wave potential of 0.88 V and mass activity of 0.63 Amg−1 at
0.9 V. The electrocatalyst only loss 13.9% of its mass activity
after 10,000 sweeping cycles of cyclic voltammetry durability test.
Wan et al. (2019) developed a concave Fe–N–C single-atom catalyst
possessing an enhanced external surface area and porosity. The
Concave-shaped Fe–N–C electrocatalyst was synthesised by
preheating mesoporous SiO2-coated ZIF-8 (Z8) metal-organic
framework at 650°C under argon-controlled atmosphere, the
silica layer was etched off to form a concave-shaped host having

a negative zeta potential and larger micropores. The electrocatalysts
displayed high current density of 0.047 A cm – 2 at 0.88 V under
1.0 bar H2–O2 that stems from the high density of active sites, which
was achieved by exposing Fe–N4 moieties and enhanced mass
transportation of the mesoporous electrocatalyst. Furthermore,
Zhu et al. (2021) reported a nitrogen doped carbon embedded
rare-earth single-cerium-atom metal–organic framework
electrocatalyst. The electrocatalyst was synthesised via
hard–template approach and showed comparable ORR activity
but inadequate stability to that of commercial Pt–C catalyst in
PEMFC application. The result of the study revealed half-wave
potential of 0.862 V in ORR and 0.525 W cm – 2 power density
under 2.0 bar hydrogen–oxygen in fuel cell test.

2.5 Metal-free electrocatalysts

Heteroatom-doped carbon materials have demonstrated
excellent ORR activity that is comparable or even better than
that of commercial Pt-C electrocatalyst because of their
extraordinary large specific surface area, good electrical
conductivity and excellent durability under unfavourable
conditions (Hu and Dai, 2019; Ma et al., 2019). Research
progress have been made in developing highly stable and
durable heteroatom-doped advanced carbon electrocatalysts
such as iodine-doped graphene (Marinoiu et al., 2018), boron-
doped carbon nanotube or graphene (Sawant et al., 2022), sulphur-
doped graphene (Garino et al., 2021) and phosphorus-doped
graphite layers (Shimoyama et al., 2015). It was also observed
that doping advanced carbon materials with more than one
heteroatom showed better ORR activity (Gao et al., 2019). For
instance, Sun et al. (2018) co-doped carbon nanomaterial with
boron and nitrogen to produce a very active, stable and inexpensive
metal-free bifunctional electrocatalyst for ORR and OER. The
catalyst was prepared by pyrolysis of precursors under ammonia
atmosphere and exhibited excellent activity and stability for both
ORR and OER. The catalyst showed an onset potential of 0.98 V for
ORR in alkaline medium, which is similar to that of Pt-C catalysts.
On the other hand, the onset potential recorded in acidic medium
was 0.81 V for a 4–electron transfer process. The outstanding
performance of the catalyst was attributed to the joint positive
effect of rich carbon defects and the heteroatomic co-dopants.
Duraisamy et al. (2022) synthesised a nitrogen-sulphur dual
heteroatom doped mesoporous carbon electrocatalyst using 2D
amorphous silica as support material and L-cysteine as nitrogen
and sulphur precursor. The electrocatalyst showed high
concentration of defective sites on the surface of the
mesoporous carbon that favours improved ORR performance
with onset potential of 0.78 V, half-wave potential of 0.68 V and
current density of 2.8 mAcm– 2. Li et al. (2020a) co-doped porous
carbon with nitrogen and sulphur for ORR and CO2RR catalytic
applications. The electrocatalyst was prepared by pyrolysis of
glucosamine hydrochloride and thiocyanuric acid precursors
using hard silica dioxide templates. The co-doped carbon
electrocatalyst showed enhanced activity and selectivity with the
porous structure exposing abundant active sites to reaction species
which resulted in increased activity of the electrocatalyst. The
authors reported that the electrocatalyst exhibited excellent ORR
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activities in both acidic and alkaline media and is suitable for
PEMFC application.

Despite the significant research progress in developing advanced
carbon based electrocatalysts, the fundamental understanding of the
doping effects and structural diversity of such catalysts remain
unclear, particularly in terms of the molecular structures of active
sites and the specific doping effects that control electrocatalytic
reactions (Zhu et al., 2020c; Wu et al., 2021; Chattopadhyay et al.,
2022). Many factors hinder the understanding of these phenomena,
which include the sophistication of reactions at electrochemical
interfaces; a lack of efficient strategies for precisely controlling the
structures of active sites for directing catalytic reactions; and
troubles inspecting and understanding the electrode-electrolyte
interfaces through direct in situ observations. (Hu and Dai, 2019;
Lai et al., 2022).

2.6 Catalyst supports

Most electrocatalysts used in fuel cell rely on support materials
for mass transfer and water management (Ziv et al., 2018). Loading
the electrocatalyst on high surface area support enhanced its
catalytic activity and durability by increasing its electrochemical
surface area (Hou et al., 2020b). Many carbon-based materials such
as graphene, carbon nanotube, carbon black and mesoporous
carbon have been used as catalyst supports due to their high
surface area and electrical conductivity (Qiao et al., 2019).
However, due to carbon corrosion that leads to the loss of ECSA,
other electrocatalysts support materials such as transition metal
oxides, carbides and nitrides have been adopted because of their
excellent stability in harsh conditions (Samad et al., 2018). The
presence of surface functional groups that promote catalyst support
interaction, corrosion resistance, low surface poisoning,
electrochemical stability, high electrical conductivity, a large
surface area and a porous structure that improves the triple
phase boundary are the characteristics of a good catalyst support
material (Fashedemi et al., 2022). Asset et al. (2018) attempted to
improve the ORR kinetics by investigating the effect of carbon
supports’ structure, texture and chemistry on the morphological
properties, stability, and ORR activity of porous hollow Pt-Ni
nanoparticles carbon black, carbon nanotubes, graphene
nanosheets, and carbon xerogel. The nanomaterials had varying
degrees of graphitisation, surface areas, and surface
functionalisation. The inner and outer diameters of the supported
porous hollow Pt-Ni/C nanoparticles were found to decrease as the
surface area of the carbon mesopore increased. Despite their
differences, the nanomaterials demonstrated comparable
morphological properties and electrocatalytic activities for the
ORR. The simulated electrochemical potential of PEMFC was
used to evaluate the stability of the synthesised electrocatalysts.
Identical location transition electron microscopy (IL-TEM) and
electrochemical method showed that degradation in carbon
nanotube, carbon xerogel and graphene nanosheet were by
carbon corrosion to carbon dioxide while carbon black showed
carbon surface oxidation to carbon monoxide. Souza et al. (2018)
added niobium pentoxide (Nb2O5) and tungsten carbide (WC)
separately to Pt/C electrocatalyst by impregnation method
followed by heat treatment to modify its carbon content for

improved stability. Both modified electrocatalysts were analysed
by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy
(EDS), IL-TEM and cyclic voltammetry (CV). Results of the analyses
were compared with those of commercial Pt/C electrocatalyst. The
authors found two phenomena that led to ECSA loss in the
electrocatalysts; which are Pt particle agglomeration and the loss
of catalyst materials due to the degradation of carbon support. It was
observed that WC addition increased the electrocatalyst particles’
corrosion and detachment, however, the addition of Nb2O5 was
more effective in improving the Pt/C electrocatalyst stability. More
so, Yuan et al. (2022) synthesised a dandelion-like structured
titanium nitride nanospheres as a non-carbon-based catalyst
support for Pt nanoparticles, which were deposited on the
dendritic structured titanium nitride by an electrochemical pulse
deposition method. The catalyst recorded ORR mass and specific
activity of 0.44 mA g – 1 and 0.33 mA cm – 2 at 0.9 V. At similar test
conditions, the catalysts demonstrated superior stability to the
commercial Pt/C catalysts recording 61% of the initial activity
after 3000 repeated runs. In another study, Islam et al. (2019)
attempted to address the carbon corrosion problem by
developing a silica-coated carbon nanofibers catalyst support for
Pt particles. Platelet-type carbon nanofibers were uniformly coated
with silica using the hydrolysis method. Thereafter, the Pt was then
deposited on the silica coating rather than carbon nanofibers.
Accelerated degradation test was conducted on the silica-coated
carbon nanofibers Pt catalyst and the result showed that the silica
coated catalyst was more durable than Pt/C nanofibers catalyst
under potential cycling. After 30,000 potential cycles, it was
observed that silica coated carbon nanofiber catalyst lost 11% of
its ECSA, while the loss of ECSA recorded by its uncoated Pt/C
nanofiber counterpart was 21%.

3 Conclusion and recommendation

This review clearly showed that various authors asserted that the
state-of-the-art Pt/C electrocatalyst typically impose cost
ineffectiveness on PEMFC. In addition, Pt/C electrocatalyst
suffers from rapid degradation during prolonged PEMFC
operation, thereby, posing significant reliability challenge of the
device. The rapid degradation is attributed to the dissolution,
migration or aggregation of Pt as well as the carbon support
corrosion leading to ECSA loss of the electrocatalysts and the
eventual deterioration of electrocatalyst’s activity during long-
term operation. Many studies have been conducted to unveil
other low-cost materials that can serve as active catalyst
constituents to augment or replace the precious metal loading in
the state-of-the-art electrocatalyst used in PEMFC. Efforts have also
been made to modify or replace the carbon support with other
corrosion resistance and highly stable materials. In the light of these,
the following recommendations are made for further research in
various emerging electrocatalysts:

1. Bimetallic, ternary and quarterly alloys electrocatalysts serve a
pivotal role as emerging electrocatalysts for ORR in PEMFC.
Significant progress has been made in the fabrication and
characterisation of these alloys. However, the effective control
of their composition, morphology and particle sizes could pave a
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way for their commercial application in PEMFC. An
understanding of the tunability of elemental composition,
morphology and particles size could be used to control these
alloys’ microstructures thereby positively influencing their
activity and stability towards ORR in PEMFC. Tuning alloy
electrocatalyst composition has significant effect on its ORR
activity and stability. Consequently, effect of elemental
composition and ratios on various alloy electrocatalyst could
be investigated. Some researchers have asserted that the ORR
mass activity of alloy-based electrocatalyst is inversely
proportional to its particle size, therefore, advancing design
strategy to fabricate nanostructured alloy electrocatalysts could
expose more active sites thereby improving catalytic mass
activity. To investigate the assertion that alloy electrocatalyst
activity has direct correlation to its particles shape, the effect of
different particle shapes on various alloy electrocatalyst could be
studied. In addition, considering a preferred crystallographic
orientation for alloy particles in electrocatalyst can be a
promising strategy for achieving its high performance for
ORR in PEMFC.

2. HEA electrocatalysts have been suggested to be promising
candidates that will address the existing limitations in the
state-of-the-art electrocatalyst. However, their complex
catalysts’ structure-activity relationship still needs to be
unravelled. In addition, only a small portion of the
compositional space of HEAs has been investigated, therefore,
there exist a vast possibility of HEA electrocatalysts to be
explored. Understanding elemental interactions in HEAs is
also necessary in order to predict suitable elemental
combinations for PEMFC catalytic application. Research is
required to determine the compositional limits of elemental
choices needed for specific phase formation in HEA
electrocatalysts. The effect of each element on the stability of
HEA electrocatalysts need to be studied, as well as how to tune
each element to achieve physical or chemical stability.
Furthermore, the synergistic interactions between HEA and
emerging electrocatalyst support materials can be investigated
by developing their self-supported HEA-based composite
electrocatalysts. More so, heteroatoms such as nitrogen, boron,
sulphur and phosphorus could be introduced into the interstices
of transition metals based high entropy alloys to offer the
advantages of a self-supported electrocatalysts with surface
that enhances accelerated electron transfer, high activity and
stability that can meet PEMFC performance requirements at
low cost.

3. Single atom electrocatalysts have the potential of offering high
density of active sites that could speed up the sluggish kinetics of
ORR in PEMFC. However, the research progress of this emerging
electrocatalyst still needs to be consolidated in the areas of its
synthesis and characterisation to achieve its commercial
application in PEMFC. Synthesis of single atom
electrocatalysts require expensive precursors and equipment,
hence, there is a need to find alternative low-cost precursors
and facile synthesis method for the large-scale commercialisation
of the electrocatalyst. In addition, developing porous support
materials that will enhance accessibility to single atom actives
sites could greatly enhance the electrocatalysts activity and
stability. More so, the support materials should possess high

conductivity and corrosion resistance to address the undesired
Fenton reaction that characterises single atom electrocatalyst in
acidic medium. Designing and synthesising single atom
electrocatalyst with dual adjacent metal atoms could result in
synergistic effect that significantly improve the ORR activity and
stability. Lastly, there is a need for in situ characterisation
techniques for single atom electrocatalyst to identify and
understand the central metal interactions with oxygen
containing species at electrocatalyst working potential
conditions.

4. The catalytic properties of metal-free electrocatalyst is based on
doping carbonaceous materials with heteroatoms which serve as
defects that enhance promising catalytic performance. Developing
metal-free electrocatalyst with hierarchical porous structure could be
beneficial in providing multiple active sites, however, there is a need
for facile fabrication techniques for this structure due to the
uncontrollability of the pyrolysis process currently used in its
synthesis. Further research is required to understand the nature
of the active sites in the emerging electrocatalyst to facilitate its future
large-scale commercialisation and catalytic application in PEMFC.
Sophisticated operando characterisation techniques such as the use
of in situ equipment or on-line monitoring are required to unravel
the nature of the active sites in this electrocatalyst in order to gain
insight on the requirements for its structure-activity and stability
correlations and the improvement strategies that will engender its
commercial application in PEMFC.
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