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Materials informatics for the screening
of multi-principal elements and high-entropy alloys
J.M. Rickman1,2, H.M. Chan2, M.P. Harmer2, J.A. Smeltzer2, C.J. Marvel2, A. Roy3 & G. Balasubramanian3

The field of multi-principal element or (single-phase) high-entropy (HE) alloys has recently

seen exponential growth as these systems represent a paradigm shift in alloy development, in

some cases exhibiting unexpected structures and superior mechanical properties. However,

the identification of promising HE alloys presents a daunting challenge given the associated

vastness of the chemistry/composition space. We describe here a supervised learning

strategy for the efficient screening of HE alloys that combines two complementary tools,

namely: (1) a multiple regression analysis and its generalization, a canonical-correlation

analysis (CCA) and (2) a genetic algorithm (GA) with a CCA-inspired fitness function. These

tools permit the identification of promising multi-principal element alloys. We implement this

procedure using a database for which mechanical property information exists and highlight

new alloys having high hardnesses. Our methodology is validated by comparing predicted

hardnesses with alloys fabricated by arc-melting, identifying alloys having very high mea-

sured hardnesses.
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T
he study of high-entropy (HE) (or multi-principal element)
alloys, typically comprising five or more elements, is a
relatively new area of materials research that has attracted

intense interest in recent years1–6 as, in many cases, these systems
possess unexpected and superior mechanical properties relative
to those of conventional alloys7–10 as well as enhanced oxidation
resistance and magnetic properties11,12. In general, these alloys
exhibit crystal structures and phases that are believed to be
entropically stabilized due to the large number of elements pre-
sent. In this regard, the early work by Yeh and co-workers6,13

revealed that a veritable cocktail of metallic elements resulted in a
far greater degree of solid–solid solubility than is achievable in
mixtures comprising fewer components. Despite substantial
progress in this area, however, there remain significant challenges
in understanding the origin of these superior properties from a
fundamental point of view14. For example, the role of complex
strengthening mechanisms, including solid–solution strengthen-
ing, in determining measured alloy hardness is still a subject of
vigorous debate.

It is therefore of considerable interest to identify element
combinations and associated compositions leading to high-
strength, high-hardness alloys. However, given a large palette of
possible elements, the number of potential HE alloys that may be
fabricated is exceedingly large. Unfortunately, only a relatively
small subset of these alloys is expected to have desirable prop-
erties. Thus, to obviate fruitless experimentation in the search
for this desirable subset, it is imperative to identify, a priori,
candidate systems that are likely to have a high degree of
solid–solid solubility and enhanced thermomechanical properties.

In recent years, several groups have devised computational
strategies to identify and characterize HE alloys15–17. For
example, Troparevsky et al.17 used “high-throughput” density-
functional theory calculations of formation energies to predict
which combination of elements is likely to form an HE alloy.
In addition, Senkov et al.18 employed a calculated phase diagram
(CALPHAD)-based combinatorial approach to screen computa-
tionally a large number of candidate metal alloys for those
forming only solid–solution phases. Beyond these studies, other
workers have formulated predictive metrics, such as average
melting temperature and average valence electron concentration,
to characterize relatively simple correlations between the
metrics and the propensity to form HE alloys. Most recently,
Sarker et al. proposed using a new descriptor, the entropy-
forming ability, to predict HE alloys having high hardnesses
and validated its use by combining first-principles and experi-
mental synthesis19. While quite useful, these methods have not
really explored the complex inter-relationships among many
metrics and the thermomechanical properties of HE alloys nor
the use of this information to accelerate alloy design.

With this in mind, we describe here the use of data analytics
to accelerate the discovery of new, useful multi-component
alloys by determining maximal correlations among metrics and
alloy properties in experimental databases and the exploitation
of this information to search for and identify promising HE
alloy candidates. In particular, by combining a multiple regres-
sion analysis or its generalization, a canonical correlation
analysis (CCA), with a genetic algorithm (GA) optimization
strategy, we will explore systematically the HE alloy chemistry/
composition space to highlight those alloys that have beneficial
mechanical properties (e.g., high hardness). A CCA is a very
general technique for quantifying relationships between two sets
of variables, most parametric tests of significance being essentially
special cases of CCA20, and it has been used recently to: explore,
for example, correlations between ceramic powder chemistry
and the resulting microstructure of a dense, sintered ceramic21,22.
In this context, a GA is employed to construct many virtual

candidate alloys that evolve from one generation to the next by
processes that mimic reproduction and mutation, and in which
survival to the next generation is dependent upon a measure of
fitness. The fitness measure governing alloy selection will be
determined from the aforementioned multiple regression/CCA
results. This computational approach allows one to screen
hypothetical alloys relatively quickly, thereby accelerating the
identification and design of new alloy systems. We implement
this procedure using a database comprising 82 HE alloys for
which reliable mechanical property information is available to
highlight new alloys having potentially high hardnesses.

Results
Metrics. We began by compiling a list of M= 82 experimentally
fabricated HE alloys for which there are measured (Vicker’s)
hardnesses8,10,13,23–35. For each system, we also used (or com-
puted) the values of alloy metrics that have been employed in
previous studies to predict the potential for high solid solubility.
In particular, for each element i having an atomic radius of ri,
melting temperature, (Tm)i, Young’s modulus, Ei, and valence
electron concentration, VECi, we considered the following
quantities calculated in terms of the molar compositions, ci, for
each of the N constituent elements:

Radius asymmetry, δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ci 1�

ri
�r

� �2
q

Enthalpy of mixing, ΔHmix ¼ 4
PN

i¼1;j≠i ðΔHmixÞijcicj

Ideal entropy of mixing, ΔSmix ¼ �R
PN

i¼1 ci ln ci

Mean melting temperature, Tm ¼
PN

i¼1 ciðTmÞi

Entropy/enthalpy ratio, Ω ¼ TmΔSmix

jΔHmixj

Young’s modulus asymmetry, ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ci 1� Ei

�E

� �2
r

Valence electron concentration, VEC ¼
PN

i¼1 ciVECi

In these expressions, the bar denotes the composition-weighted
mean, (ΔHmix)ij is the regular solution enthalpy of mixing
associated with elements i and j calculated from Miedema’s
model36, and R is the gas constant.

Parallel coordinate plot and correlation analysis. It is of
interest to identify significant relationships between the alloy
metrics (i.e., predictor variables) and the corresponding ther-
momechanical properties (i.e., outcome variables) of the alloy.
For this purpose, four such outcomes were examined, namely:
(1) the presence of body-centered cubic (bcc) solid solution(s)
only, (2) the presence of face-centered cubic (fcc) solid solution(s)
only, and (3) the presence of intermetallic (IM) phase(s), and
(4) the Vicker’s hardness (H). To establish a basis for comparison,
it is useful to relate both predictor and outcome variables to
those of a reference alloy, conveniently chosen here to be
CoCrFeNiCu, and to denote the ratio of a given variable to that of
a reference variable with a prime. This choice was made given
that the reference alloy is relatively well studied. Figure 1 sum-
marizes these normalized metrics and outcomes for the 82 HE
alloys in the form of a parallel coordinate plot. This type of
plot replaces the conventional d-dimensional orthogonal Carte-
sian axes by a set of d parallel axes, with each d-dimensional point
represented by a polyline in parallel coordinates, and is very
useful for displaying high-dimensional data37–39 and identifying
some global trends. As is evident from the figure, there does not
appear to be any strong correlation between phase behavior
and hardness, whereas, for a subset of alloys, there is some cor-
relation between valence electron concentration and hardness.
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To be more quantitative, we employ a multiple regression
analysis to assess the relative importance of various materials
characteristics whose complex interplay dictates properties. Our
analysis begins with a vector of predictor variables, x, and
outcome variables, y, taken as

x¼ fδ′;ΔH′

mix;ΔS
′

mix;T
′

m;Ω
′; ε′;VEC′g;

y ¼ fH′g;
ð1Þ

where y consists of only H′ for a multiple regression. (A more
general CCA analysis that is useful when there are additional
outcome variables in y is described below in the “Discussion”
section). It should be noted that correlations, some of which are
significant, exist among the predictor variables as can be seen by
inspection of a color map of the correlation matrix (Fig. 2) given
below.

From this analysis, the correlation coefficient was found to be
0.79 ± 0.07 with p ≈ 0. An examination of the resulting canonical
weights (i.e., the αi summarized in Table 1) reveals that three
of the predictor variables, namely ΔS′mix, ΔH′mix, and VEC′, are
especially relevant in determining the hardness.

More specifically, from Table 1 it can be seen that ΔS′mix are
positively correlated with the H, suggesting that compositional
disorder enhances the hardness. By contrast, ΔH′mix and VEC′

are negatively correlated with the hardness, suggesting in the first
case that phase separation is associated with lower hardness
values (HV). In the latter case, the negative correlation of VEC′

with hardness is consistent with recent findings that a low VEC
is associated with an improvement in strength via the promotion
of a bcc phase40.

Finally, one may ask whether the three principal metrics,
ΔS′mix, ΔH′mix, and VEC′, embody most of the physics that
determines the hardness. If so, one would expect that an analysis
based only on this reduced set of variables would satisfactorily
predict the hardness. To assess the adequacy of this (null)
hypothesis, we conducted a correlation analysis of this reduced
model and computed the resulting F-statistic that compares
the sum-of-squares errors for the reduced and full models41. The
resulting p-value of 0.81 suggests that the reduced model is
indeed adequate. It should be emphasized, though, that further
microstructural (and possibly computational) analysis is needed
to confirm these statistical insights.
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Fig. 1 Parallel coordinate plot. A parallel coordinate plot displaying both normalized metrics and property data for a set of high-entropy (HE) alloys.

The phase behavior of the alloys is summarized in the variable single phase (SP) (unnormalized), with SP= 1 indicating alloys comprising a single,

solid–solution (either fcc or bcc) and SP= 0 otherwise. Solid–solution alloys are shown in blue, with the remaining alloys having intermediate phases, etc.,

shown in red
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Figure 3 shows the values for the correlated variates, V(1) and
W(1)= (H′− 〈H′〉)/σ, for each of the M alloys and, in addition, a
regression line that highlights the relationship between the
variates. (The prime here denotes a value normalized by the
reference alloy, the angle brackets denote an average over a
dataset comprising the M= 82 HE alloys, and σ denotes the
standard deviation in H′ over the dataset). Despite the adequacy
of the reduced model, for greater accuracy the multiple regression
analysis for the full model will be used below to identify
promising alloys.

Alloy identification using a GA. Having obtained canonical
variates from the above analysis, the variate V(1) was used as a
fitness function in a GA to find candidate alloys having high
hardness. While it may be possible to narrow the search space to
some degree by analytical optimization, the non-linear depen-
dence of some of the alloy metrics on composition suggested a
numerical solution using all of the metrics. More specifically, to
construct candidate, 5-element alloys, a 16-element palette and 16
molar compositions per element were employed to represent
16
5

� �

ð16Þ5 independent alloys. The alloys in this palette are Co,

Cr, Fe, Ni, Al, Cu, Mn, Ti, Mo, Nb, Ta, V, W, Zr, Zn and Sn.
The calculation began with Nc= 500 randomly selected

chromosomes, each a 40-bit string encoding the chemistry and
composition of an alloy having distinct elements, with the ith
chromosome having a fitness fi. Successive generations were
produced with a series of evolutionary processes, including fitness
selection, recombination, and mutation. In particular, from each

generation, Nc chromosomes were selected with probability pi ¼

fi=
P

j fj for the ith chromosome. (Thus a given chromosome may

be, and often is, chosen more than once.) These selected
chromosomes were then subjected to a recombination process
in which pairs are chosen with probability pr= 0.05, and then,
upon randomly selecting bits, chromosomal strands are
exchanged between a given pair. Finally, a mutation process
was modeled in which randomly selected bits, chosen with
probability pm= 0.001, were changed from 0 to 1, or vice versa. If
any of these processes resulted in a chromosome with one or
more repeated elements, a new chromosome comprising distinct
elements was generated. It should be noted that some tuning of
the parameters pr and pm was required to create an algorithm in
which successive generations have markedly improved fitness
distributions. In practice, one observes the evolution of the fitness
function over successive generations and then adjusts the
parameters so that there is substantial improvement over many
generations. Multiple trials consisting of at least 1000 generations
were used to identify superior alloys.

The utility of these may also depend, at least in part, on their
ductility. Given the inherent tradeoff between hardness and
ductility in most systems, it is useful to also screen for ductility in
this procedure. This may be accomplished via the implementation
of a multi-objective (Pareto) optimization GA in which a
composite objective function is formulated from a weighted
sum of two objective functions, namely, one for the hardness
(as obtained from the canonical variate calculation) and one
for the ductility42. As a proxy for ductility measurements, it is
useful to employ the empirical Pugh criterion43 that correlates
ductility with the ratio P= μ/B, where in this context μ is the
composition-weighted mean shear modulus and B is the
corresponding bulk modulus. Ductile behavior is then associated
with P < 0.5. In this work, we have chosen to simply evaluate P
for promising candidates, as summarized below.

Figure 4 displays the cumulative distribution of fitnesses both
at the beginning of the GA and after 1000 generations. As is
evident from the figure, the population of alloys better matches
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lines delimit a shaded 90% (single observation) prediction band. Also
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alloys (5 orange squares, with the 2 alloys having hardnesses in excess

of 1000 hardness values (HV) in yellow.) The error bars were estimated
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Fig. 2 Correlation matrix map. A color map of the correlation matrix, with
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Table 1 The standardized canonical weights found in the

CCA with hardness as the sole output variable

δ′ ΔH′mix ΔS′mix T′m Ω′ ε′ VEC′

−0.047 −0.553 0.285 −0.095 −0.108 0.057 −0.476

CCA canonical correlation analysis, VEC valence electron concentration
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the hardness criterion after many iterations. From these
simulations, we identified those alloys that are associated with
the largest fitness values as candidates for high-hardness alloys.

Comparison with synthesized alloys. To assess the predictive
capability of our methodology, we fabricated and hardness tested
seven candidate alloys that were identified as promising from the
aforementioned GA. Given that the GA produces an extremely fit
population of high-hardness alloys that represent at optimality an
extreme extrapolation from the M= 82 dataset, we conservatively
select from this population a subset of alloys whose predicted
hardnesses are somewhat beyond the range of the existing dataset
(i.e., having fitness values that are about 10–15% greater than the
maximum found with the multiple regression). Our view is that,
used in this way, the GA systematically creates a large pool of
potential candidates having relatively high hardnesses for a range
of fitness values that represents a conservative extrapolation of
the data. Parameter tuning in the GA is then performed to create
this large pool. This extrapolation can be tested step by step, and
if desired, the new alloys discovered in this way may be then
added to the existing data to bootstrap the extrapolation. The
candidate HE alloys were synthesized by arc-melting compressed
pellets of elemental, high-purity powders (Sigma-Aldrich, purity
≥99.9%). (Powdered metals were used to limit the occurrence of
macro-segregation of elements and to improve homogeneity.
Also, arc-melted pellets were remelted four times to ensure
homogeneity.) The resulting as-cast, solid pieces were then sub-
jected to micro-hardness testing with a 100 g load to determine
their respective Vicker’s HV, the values taken to be the mean of
20 independent tests per piece.

The resulting scaled hardnesses are also displayed in Fig. 3 as a
function of the canonical variate, V(1). It can be seen from the
figure that about 5 out of 7 of the hardnesses are within the
pictured 90% prediction interval. The highest measured hard-
nesses were found for Co33 W07 Al33 Nb24 Cr03 (1084 ± 37 HV)
and Ti18 Ni24 Ta12 Cr22 Co24 (1011 ± 20 HV) that have
corresponding Pugh ductility ratios of P= 0.38 and P= 0.47,
respectively (For comparison, the Vicker’s HV for alloys such as
Ti-5Al, Ti-5V, and 75Au-7Cu-13Ag-5Co (wt. %) are 532.3, 429.3
and 128, respectively44,45). Indeed, for each of the 7 candidate
alloys identified here, P < 0.5. (However, for the hardest alloy a
close inspection of the hardness indentations did reveal some
degree of brittleness as cracking occurred near indentation
corners in addition to observable cooling cracks.) The HV for
the 7 synthesized alloys are summarized in the table below.

In summary, given the number of candidate alloys considered
here and the inherent scatter in the original data, this analysis
provides a convenient means to predict alloys with enhanced
hardness with 90% confidence.

Microstructural and microchemical characterization. To
understand better the observed plastic response of the synthesized
alloys, the microstructure of the samples with compositions Co33
W07 Al33 Nb24 Cr03 and Ti39 W04 Nb31 Ta04 Co22, the alloys
having the highest and lowest HV (see Table 2), respectively, were
examined using scanning electron microscopy (SEM). Figures 5
and 6 depict the microstructure of Co33 W07 Al33 Nb24 Cr03 using
secondary electron intensity, as well as the associated composi-
tional maps of the constituent elements obtained by X-ray
energy-dispersive spectroscopy (EDS). It can be seen that the
microstructure is dendritic (which is consistent with a cast alloy),
with a relatively small volume fraction (13 vol. %) of inter-
dendritic phase. The EDS data show that the dendritic phase is
enriched in Nb and W. Given that there is no obvious parti-
tioning of the Nb and W, it is assumed that they form a solid
solution. This behavior would not be unexpected given that both
Nb and W are bcc and exhibit complete solid solubility46. The
SEM also reveals that the inter-dendritic phase exhibits a two-
phase, eutectic-like morphology. Of the two phases, one is Nb
rich,whereas the other contains higher proportions of Al, Co, and
Cr, with little Nb. Unlike for the case of the dendrite body, it does
not appear that there is strong preferential association of the W
with the Nb-rich component.

Table 2 The Vicker’s hardness values (in HV) for the

synthesized alloys

Alloy Hardness (HV) Hardness (HV)

predicted

Co33 W07 Al33 Nb24 Cr03 1084 ± 37 825

Ti18 Ni24 Ta12 Cr22 Co24 1011 ± 20 677

Co6 W9 Al36 Mo38 Ni11 725 ± 47 618

Ni47 Co02 Ta12 Ti9 Nb30 815 ± 43 702

Ti44 Ni02 Nb21 Cr21 Co12 422 ± 13 656

Ti32 Nb9 Ta01 Cr19 Co39 856 ± 29 673

Ti39 W04 Nb31 Ta04 Co22 277 ± 12 697

10 μm

Fig. 5 Micrograph of a hard alloy. A scanning electron microscopic

micrograph in a region near a microhardness indent in the Co33 W07 Al33

Nb24 Cr03 sample that was synthesized by arc-melting. The figure evinces a

dendritic microstructure with eutectic-like inter-dendritic regions
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The corresponding images for the softest alloy are shown in
Figs 7 and 8. This microstructure of Ti39 W04 Nb31 Ta04 Co22 is
also dendritic, but the volume fraction of inter-dentritic material
is much higher here (53 vol. %). In this alloy, the dendrites are
enriched in Nb, Ta, and W, whereas the inter-dendritic regions
contain a greater proportion of Co and Ti. In the SEM image

(Fig. 7), the slight differences in contrast at the edges of the
dendrites suggest the possibility of coring. This observation is
confirmed by the compositional maps where it can be seen that,
for a given dendrite structure, the spatial extent of Nb and Ta
enrichment is the greatest while W is confined to the dendrite
inner core (see, in particular, Fig. 8g). Thus one infers that,
although all three elements are present in the dendritic regions,
the spatial distribution is inhomogeneous.

The marked difference in hardness between the two alloys is very
interesting, particularly given that the compositional make-ups of
the dendritic phases are not that dissimilar. In both cases, there is a
significant component of Nb and W. In the case of the softest alloy,
Ta is also present. One possible explanation is that the high hardness
of Co33 W07 Al33 Nb24 Cr03 is attributable to the significant volume
fraction of the Nb–W phase, which is solid solution strengthened.
One could suggest that the same degree of strengthening is not
present in Ti39 W04 Nb31 Ta04 Co22 either due to the non-uniform
distribution of the elements or the additional presence of Ta. Of
course, the potential contribution of alloying elements present at
relatively low concentrations cannot be excluded.

Finally, we have also assessed the ductility of each synthesized
alloys by optical microscopic inspection of the (20) microhardness
indentations per alloy for signs of cracks at the corners of the
indentations. It was found that 2 of the 7 systems showed moderate
to considerable ductility (i.e., ⪆50% of the indentations without
cracks), including the relatively hard alloys Ti32 Nb9 Ta01 Cr19 Co39
and Co6 W9 Al36 Mo38 Ni11, while the hard alloy Ti18 Ni24 Ta12
Cr22 Co24 showed limited ductility (i.e., ≈15–20% of the
indentations without cracks). In addition, the relatively low
hardness alloys, Ti39 W04 Nb31 Ta04 Co22 and Ti44 Ni02 Nb21
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Fig. 6 Energy-dispersive spectroscopic (EDS) map of a hard alloy. An X-ray EDS map of the as-cast microstructure of Co33 W07 Al33 Nb24 Cr03.

a Secondary electron image and X-ray intensity maps produced by integrating b Al Kα, c Co Kα, d Cr Kα, e Nb Lα, and f W Lα X-ray signals. The color

scale represents the relative intensity based on the number of counts per pixel. The map suggests that the dendritic region of the microstructure is rich

in Nb and W while the eutectic inter-dendritic region comprises two phases, one rich in Nb and the other primarily composed of Al, Co, and Cr

10 μm

Fig. 7 Micrograph of a soft alloy. A scanning electron microscopic

micrograph in a region near a microhardness indent in Ti39 W04 Nb31 Ta04

Co22 in a sample that was synthesized by arc-melting. The figure shows a

dendritic microstructure similar to that of traditionally cast alloys
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Cr21 Co12, were found to be quite ductile (i.e., ⪆95% of the
indentations without cracks), which is generally consistent with
observations that Group IV element additions, such as Ti, are often
associated with increased ductility47. The remaining alloys were
found to be brittle. Given the empirical nature of the Pugh criterion,
it is perhaps unsurprising that it is a rough predictor of ductility in

this context. Nevertheless, with this methodology we have identified
several alloys that are both hard and relatively ductile.

Discussion
We present here a data analytics approach to screen efficiently
multi-principal component alloys using a multiple regression
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Fig. 8 Energy-dispersive spectroscopic (EDS) map of a soft alloy. An EDS map of the as-cast microstructure of Ti39 W04 Nb31 Ta04 Co22 and evidence of

coring. a Secondary electron image and X-ray intensity maps produced by integrating b Ti Kα, c Co Kα, d Nb Lα, e Ta Lα, and f W Lα X-ray signals. The
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dendritic phase is composed primarily of Co and Ti. Evidence of dendrite coring can be seen in g, a line profile showing the normalized intensity of W Lα, Ta

Lα, and Nb Lα X-ray signals taken from the box in a with an arrow indicating the direction of the line profile from left to right
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analysis and a GA. Our methodology permits the exploration of the
multi-dimensional chemistry/composition space that is associated
with these alloys and thereby the identification of alloys having
beneficial mechanical properties. In particular, two alloys were
discovered with extremely high HV in excess of 1000 HV, and these
predictions were validated by micro-hardness testing of alloys that
were fabricated via arc-melting. The most promising alloys were
also screened to ensure that they possessed reasonable ductility.

Given the analysis described above, it is intriguing to consider
the role of minor elements in determining alloy hardness, espe-
cially for Co33 W07 Al33 Nb24 Cr03. Our methodology permits a
detailed investigation of the impact of small composition changes
in a reduced parameter space containing, for example, these
minor elements. We therefore examined the behavior of the fit-
ness function obtained from the regression for small changes in
either Cr alone or W alone. It was found that the maximum
hardness occurred for a Cr composition close to 0.07 and for a W
composition close to 0.04. Thus, for experimental guidance, it is
possible to fine tune the predictions made here by considering
small compositional perturbations.

The methodology summarized here can, of course, be
employed to examine the influence of the predictor set on
hardness and phase behavior, as summarized in Eq. (2) below.
This analysis is useful if one wishes to obtain hard alloys that
are also likely to be a single solid solution. To perform this
analysis, one employs a CCA with an extended set of output
variables,~y, (see below) for the calculations of canonical weights
and variates. Moreover, the CCA and GA methodologies are
quite general and can therefore be applied to properties other
than hardness. As noted in the “Introduction” section, a CCA and
its relative, a Monte Carlo CCA, have been used in a very dif-
ferent context to establish correlations between ceramic powder
chemistry and the resulting microstructure of a dense, sintered
ceramic. A similar CCA analysis has also been used to relate
the microstructure to the optoelectronic properties of thin-film
solar cells22. Thus, in this context, the CCA can also be gen-
eralized to identify alloys having other useful thermomechanical
and kinetic properties (e.g., yield strength, electrical conductivity,
corrosion resistance) or, as described above, to Pareto-optimize
multiple properties simultaneously using a multi-objective GA.
Moreover, this approach can also be employed to investigate
the impact of processing on property measurements. For exam-
ple, recent work suggests that a nominally single-phase, HE
alloy, namely, Mo25 Nb25 Ta25 W25, synthesized by mechanical
alloying comprised, in fact, multiple phases. Its associated com-
plex microstructure, along with any subsequent annealing of
the system, may dictate, at least in part, its measured mechanical
properties (Smeltzer, J. A. unpublished work (2018)). The
investigation of such processing/property correlations is the
subject of ongoing work.

Finally, to illustrate the use of the CCA to examine multiple
output variables, we consider the following set of predictor
(x) and output (y) variables, respectively, for the HE alloy
example.

x¼ fδ′;ΔH′mix;ΔS′mix;T′m;Ω′; ε′;VEC′g;

y ¼ ffcc; bcc; IM;H′g;
ð2Þ

where fcc, bcc, and IM denote the presence of a fcc solid solution,
a bcc solid solution, or intermediate phase(s), respectively. One
then finds linear combinations (known as canonical variates) V ¼
P

i αixi and W ¼
P

i βiyi, where the coefficients αi and βi are
called canonical weights, such that these combinations are
maximally correlated. For this purpose, one constructs the asso-
ciated correlation (or covariance) matrix, Σ, and defines the

operators σ1 and σ2 from the blocks of Σ as48,49

σ1 ¼ Σ
�1
~x~x Σ~x~y Σ

�1
~y~y Σ~y~x;

σ2 ¼ Σ
�1
~y~y Σ~y~x Σ

�1
~x~x Σ~x~y:

ð3Þ

The use of the correlation matrix here implies that one is
examining relationships among standardized variables48. The
square roots of the eigenvalues of σ1 and σ2 are the canonical
correlations. Moreover, the eigenvectors corresponding to the
maximum eigenvalue are the desired canonical variates that max-
imize the correlation. We note that the CCA methodology has been
extended to identify non-linear variable combinations that are
highly correlated22,50,51.

We performed a CCA using the HE alloy dataset described
above. From this analysis, one finds three significant pairs of
canonical variates having correlation coefficients 0.82, 0.63 and
0.53, respectively, with associated errors of approximately ±0.06.
The significance of these results is determined by employing a
hypothesis test in which one tests the null hypothesis that a given
pair of variates is uncorrelated via the construction of an
appropriate statistic, such as Wilks lambda52. The small calcu-
lated p-values found here are each <0.001, indicating that a cor-
relation between variates exists. From this investigation, one can
identify cases in which high hardness is associated with solid
solution behavior and other cases in which high hardness is
associated with the presence of IM phases. An examination of
the variates indicates that the first variate (i.e., the one having
the largest correlation coefficient) is most associated with
the hardness and accounts for nearly 50% of the variability. The
remaining variates primarily reveal associations between the
alloy metrics and the phase behavior variables with only a weak
dependence on hardness. Thus this general CCA links the alloy
metrics with both properties and phase information and is
especially useful to workers who distinguish between HE alloys
and multi-principal element alloys based on whether the system is
a solid solution.

Methods
Data analytics. We employ here a multiple regression analysis and its general-
ization, a supervised learning strategy known as CCA, and then use the output
from this analysis to construct a fitness function as an input to a GA. The aim of
the CCA is to identify those linear combinations of predictor variables that are
maximally correlated with the outcome variables. This is accomplished by con-
structing from products of blocks of the correlation (or covariance) matrix an
operator whose eigenvalues (λi, where i runs from 1 to the number of variates pairs,
nv) capture the degree of correlation between combinations of predictor and
outcome variables and whose eigenvectors determined the relative weights of
the variables20,22,48. The correlation coefficient associated with a given variate i is

ffiffiffiffi

λi
p

and the associated variability is λi=
Pnv

j¼1 λj . In this context, a GA is a fitness

function optimizer that begins with a random distribution of chromosomes (i.e.,
alloys) represented as fixed-length bit strings and, via evolutionary processes,
produces successive generations that are better trial solutions to the problem (i.e.,
having good mechanical properties), as determined from the fitness function53–55.
Some tuning is required with respect to the frequency of these evolutionary pro-
cesses, such as recombination and mutation, to achieve a well-functioning
algorithm.

Microstructural and microchemical characterization. Microstructural char-
acterization was conducted using SEM. Secondary electron imaging and X-ray EDS
were performed on a FEI Scios Dual Beam FIB/SEM operated at an accelerating
voltage of 20 kV and beam current of 13 nA. Secondary electron images were
collected using an Everhart-Thornley detector. X-ray EDS maps were collected
using an EDAX Octane Elite detector and exported via the EDAX Team software.

Hardness testing. Vicker’s indentation hardness testing was conducted on each
as-cast alloy using a LECO LM 248AT model hardness tester. Each indent was
performed on a polished surface, and a 100 g load was applied for 10 s. At least
20 indents were conducted for each alloy using a 2 × 10 array, and the error was
calculated to reflect 95% certainty using the Student’s t distribution.
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