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Abstract

The use of advanced data analytics and applications of statistical and machine learning approaches 

(‘AI’) to materials science is experiencing explosive growth recently. In this prospective, we 

review recent work focusing on generation and application of libraries from both experiment and 

theoretical tools, across length scales. The available library data both enables classical correlative 

machine learning, and also opens the pathway for exploration of underlying causative physical 

behaviors. We highlight the key advances facilitated by this approach, and illustrate how modeling, 

macroscopic experiments and atomic-scale imaging can be combined to dramatically accelerate 

understanding and development of new material systems via a statistical physics framework. These 

developments point towards a data driven future wherein knowledge can be aggregated and used 

collectively, accelerating the advancement of materials science.

Introduction

The use of statistical and machine learning algorithms (broadly characterized as ‘Artificial 

Intelligence’ herein) within the materials science community has experienced a resurgence 

in recent years.1 However, AI applications to material science have ebbed and flowed 

through the past few decades.2–7 For instance, Volume 700 of the Materials Research 
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Society’s Symposium Proceedings was entitled “Combinatorial and Artificial Intelligence 

Methods in Materials Science,” more than 15 years ago,8 and expounds on much of the same 

topics as those at present, with examples including high-throughput screening, application of 

neural networks to accelerate particle simulations, and use of genetic algorithms to find 

ground states. One may ask the question as to what makes this resurgence different, and 

whether the current trends can be sustainable. In some ways this mirrors the rises and falls of 

the field of AI, which has had several bursts of intense progress followed by ‘AI winters’.
9, 10 The initial interest was sparked in 1956,11 where the term was first coined, and although 

interest and funding was available, computational power was simply too limited. A 

rekindling began in the late 1980s, as more algorithms (such as backpropagation for neural 

networks,12 or the kernel method for classification13) were utilized. The recent spike has 

been driven in large part by the success of deep learning,14 with the parallel rise in GPU and 

general computational power.15, 16 The question becomes whether the current, dramatic 

progress in AI can translate to the materials science community. In fact, the key enabling 

component of any AI application is the availability of large volumes of structured labeled 

data – which we term in this prospective “libraries.” The available library data both enables 

classical correlative machine learning, and also opens a pathway for exploration of 

underlying causative physical behaviors. We argue in this prospective that, when done in the 

appropriate manner, AI can be transformative not only in that it can allow for acceleration of 

scientific discoveries, but also that it can change the way materials science is conducted.

The recent acceleration of adoption of AI/machine learning-based approaches in materials 

science can be traced back to a few key factors. Perhaps most pertinent is the Materials 

Genome Initiative, which was launched in 2011 with an objective to transform 

manufacturing via accelerating materials discovery and deployment.17 This required the 

advancement of high-throughput approaches to both experiments and calculations, and the 

formation of online, accessible repositories to facilitate learning. Such databases have by 

now have become largely mainstream with successful examples of databases including 

Automatic Flow for Materials Discovery (AFLOWLIB),18 Joint Automated Repository for 

Various Integrated Simulations (JARVIS-DFT),19 Polymer Genome,20 Citrination,21 

Materials Innovation Network,22 etc. that host hundreds of thousands of datapoints from 

both calculations as well as experiments. The timing of the initiative coincided with a rapid 

increase in machine learning across commercial spaces, largely driven by the sudden and 

dramatic improvement in computer vision, courtesy of deep neural networks, and the 

availability of free packages in R or python (e.g., scikit-learn23) to apply common machine 

learning methods on acquired datasets. This availability of tools, combined with access to 

computational resources (e.g., through cloud-based services, or internally at large 

institutions) was also involved. It can be argued that one of the main driving forces within 

the materials science community was an acknowledgement that many grand challenges, such 

as the materials design inverse problem, were not going to be solved with conventional 

approaches. Moreover, the quantities of data that were being acquired, particularly at user 

facilities such as synchrotrons or microscopy centers, was accelerating exponentially, 

rendering traditional analysis methods that relied heavily on human input unworkable. In the 

face of the data avalanche, it was perhaps inevitable that scientists would turn to the methods 

provided via data science and machine learning.24–26 Please note commercial software is 
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identified to specify procedures. Such identification does not imply recommendation by the 

National Institute of Standards and Technology.

Thus, the question becomes, how can these newly found computational capabilities and ‘big’ 

data be leveraged to gain new insights and predictions for materials? There are already some 

answers. For example, the torrent of data from first principles simulations has been used for 

high throughput screening of candidate materials, with notable successes.27–29 Naturally, 

one asks the question as to what insights can be gained from similar databases based not on 

theory, but on experimental data, e.g. of atomically resolved structures, along with their 

functional properties. Of course, microstructures have long been optimized in alloy design.
21, 30 Having libraries (equivalently, databases) of these structures, with explicit mentioning 

of their processing history, can be extremely beneficial not just for alloys but for many other 

material systems, including soft matter.31 These databases can be used for e.g. utilizing 

known knowledge of similar systems to accelerate the synthesis optimization process, to 

train models to automatically classifying structures and defects, and to identify materials 

with similar behaviors that are exhibited, potentially allowing underlying causal 

relationships to be established.

In this prospective, we focus on the key areas of library generation of material structures and 

properties, through both simulations/theory, and imaging. High-throughput approaches 

enable both simulation and experimental databases to be compiled, with the data used to 

build models that enable property prediction, determine feature importance, and guide 

experimental design. In contrast, imaging provides the necessary view of microstates 

enabling the development of statistical mechanical models that incorporate both simulations 

and macroscopic characterization to improve predictions and determine underlying driving 

forces. Combining the available experimental and theoretical libraries in a physics-based 

framework can accelerate materials discoveries, and lead to lasting transformations of the 

way materials science research is approached worldwide.

Databases, Libraries and Integration

This prospective will focus on theory-led initiatives for database generation (and subsequent 

machine learning to predict properties and accelerate material discovery) and contrast them 

with the equally pressing need for their experimental counterparts. While the theory libraries 

are well ahead, substantial progress in materials science will rely on experimental validation 

of theoretical predictions and a tight feedback between data-driven models, first principles 

and thermodynamic modeling, and experimental outcomes. It is also important to note that 

theoretical databases and libraries operate with an idealized representation, where all inputs 

and outputs are known and hence of interest are processes such as data compression, 

determination of reduced descriptors, and integration into analysis workflows. However, the 

validity and precision of theoretical models is always evolving. In comparison, experimental 

data will be characterized by the large number of latent or unknown degrees of freedom that 

may or may not be relevant to specific phenomena.

Experimental libraries can be created from combinatorial experiments to rapidly map the 

composition space and complemented with atomic- and functional imaging to generate 
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libraries that can map local structure to functionality. The broad vision is summarized in 

Figure 1. The success of any of these individual areas on their own will be limited; 

experimentally, the search space is much too large to iterate; computationally, prediction of 

certain properties or the role of defects in e.g. correlated systems remains extremely 

challenging, and models still need experimental validation. From the imaging standpoint, 

much work remains to be done in automating the generation of atomic-scale defect libraries, 

although computer vision and deep-learning based approaches are showing tremendous 

promise.32, 33 These data, from theory and experiment, across length scales, can then be 

combined either directly in data-driven models (machine learning), or through more formal 

methods that consider uncertainty, such as Bayesian methods. This can also be achieved 

using statistical mechanical models that are refined and fit based on theoretical and 

experimental data at multiple length scales, allowing understanding of the driving forces for 

materials behavior, and enabling feedback to experiment and first principles theory.

Our roadmap for this prospective is as follows. We begin with an overview of databases of 

theoretical calculations, which in many ways catalyzed this field, and which are the most 

well-established in this area. We then branch from high throughput computations to high 

throughput experiments, that can be used to generate experimental realizations in rapid time. 

These are beneficial for exploring macroscopic structure-property relationships. 

Complementing the macroscopic studies is the need for local imaging libraries, which 

compare the local atomic or mesoscopic structure with the local functional property. We 

discuss recent works to address this issue, which has been less well explored, but which are 

critical for understanding of disordered systems with strong localization. Finally, we explain 

how these libraries can be utilized in concert and incorporated into a statistical mechanical 

framework for predictive modeling with quantified uncertainty. We end with a discussion on 

the challenges at the individual, group and department level, and describe our outlook for 

material science under this new paradigm.

Theory-based library generation

Whereas for most of humanity materials discovery was largely Edisonian in approach, in the 

modern era materials design can be facilitated via first principles (and other) simulations that 

can rapidly explore different candidates in-silico. Computational methods are usually 

classified in term of length scale, going from quantum atomistic to continuum; however, 

irrespective of their scale, they all are constrained by the scale of a simulation (length and 

time), accuracy and transferability. For instance, quantum-based methods, such as density 

functional theory (DFT), have been phenomenally successful in discovering new materials 

with important technological applications, such as those used in solid-state batteries,34, 35 

dopants for effective strengthening of alloys,36 or 2D materials.37, 38 These methods also 

aided in explaining physical phenomena such as diffusion mechanisms,39 experimental 

spectra,40 etc. More recently, DFT41 based high-throughput (HT) approaches have led to the 

creation of open-source large material property databases such as MaterialsProject,42 

AFLOWLIB,18 Open Quantum Materials Database (OQMD),43 Automated Interactive 

Infrastructure and Database for Computational Science (AiiDA),44 JARVIS-DFT,45 Organic 

Materials Database (OMDB)46 QM9,47etc. However, DFT is heavily limited by the 

simulation size to something on the order of a few hundred atoms. Empirical potentials48 
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help overcome the size issue, as they can simulate millions of atoms. However, they require 

rigorous potential fitting to simulate reasonable behavior.49, 50 Larger scale methods, such as 

finite element method and phase field, are limited by depending on critical inputs from 

experimental data and atomistic simulations.51 Fortunately, machine learning (ML) for 

materials has evolved to become a promising alternative in solving some of the 

computational materials science problems mentioned above.52

There are four main components in successfully applying ML to materials: a) acquiring 

large enough datasets, b) designing feature vectors that can appropriately describe the 

material, c) implementing a validation strategy for the models, and d) interpreting the 

machine-learning model where applicable. The first step (a) is facilitated by the generation 

of the large datasets mentioned above. Step (b) is more complicated: while the databases 

provide a consistent set of target data, conversion of core material science knowledge to 

computers require feature vector generation of all those materials in the databases. Chemical 

descriptors based on elemental properties (for instance, the average of electronegativity and 

ionization potentials in a compound) have been successfully applied in fields such as alloy-

formation53 and have led to for various computational discoveries.53 Nevertheless, this 

approach is not appropriate when modeling different structure-prototypes with the same 

composition because ignoring structural information doesn’t allow to differentiate between 

them. Structural features as descriptors have been recently proposed based on Coulomb 

matrix,54, 55 partial radial distribution function,56 Voronoi tessellation,57 Fourier-series58 and 

several others in recent works.59 Features such as classical force-field inspired descriptors 

(CFID)60 and fragment descriptors61 allow combing structural and chemical descriptors in 

one unified framework. These are generally a fixed size descriptor of all the samples in the 

dataset. For example, MagPie53 gives 145 features, while CFID60 gives 1557 descriptors.

A conceptually different way to obtain feature vectors is to generate them automatically 

using approaches like convolution neural networks,62 SchNet63 and Crystal Graph 

Convolutional Neural Networks (CGCNN)64 for instance, which extracts the important 

features by themselves taking advantage of a deep neural network architecture. Most of 

these methods are applied to specific classes of materials because of presence or absence of 

periodicity in one or more crystallographic directions, such as crystalline inorganic solids, 

molecules or proteins, but features such as Coulomb-matrix,54 CFID,60 SchNet,65 MegNet66 

and GCNN62, 67 hold a generalized appeal for all classes of materials. Luckily, some of 

these feature-generators are available in general ML-framework code such as Matminer.68 A 

comprehensive set of feature vector types, their applications and corresponding resource 

links are provided in Table 1. The validation strategy consists of reporting accuracy metrics 

such as the mean absolute error, root mean square error, and R2. Importantly, plots like 

learning curves and cross-validation plots are standard ways of testing ML models from the 

data science perspective. Although these are some of the common data-science metrics, 

physics-inspired validation strategies such as integrating evolutionary approaches with 

machine learning to map a generalized energy landscape,60, 69 or testing energy-volume 

curve beyond the training set70 have recently drawn much attention.

The correlation-based ML models perform well in interpolation but poorly for extrapolation 

tasks. When combined with the non-differentiability of chemical spaces, it limits the 
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application of classical ML in materials science. An alternative is offered physics-inspired 

ML, where the extrapolation and interpolation is performed along manifolds corresponding 

to physically-possible atomic configurations and satisfying basic physical laws and 

constraints. However, although there has been a lot of work in developing databases and 

feature vectors, coming up with strategies for physics-based ML models71 still needs much 

detailed work. Additionally, the interpretability of a model can be vitally important from a 

scientific understanding perspective. This is motivated by a relatively new area in AI: so-

called “Explainable AI”.72 The explainability and the interpretability of the model mainly 

depend on the type of machine learning algorithm. For example, in refs.60, 61 feature 

importance plots revealed some of the important machine learning descriptors that guide the 

model. In models such as graph networks, elemental embeddings can reveal chemical 

similarity.64, 66

Presently ML models have been primarily used for screening of materials. This is because 

an ML model for a physical quantity allows to estimate such a quantity much faster than 

computing it. This allows to probe a much larger space of materials than possible when 

performing actual calculations, and it is true for any type of computational methodology 

(DFT, phase field, and continuum modelling, for instance). Once ML has identified the sub-

space of materials that likely have the desired property, then those, and only those, are 

probed using the computational technique of choice, DFT, for instance. In this sense, if 

traditional methods, such as DFT, have been used as a screening tool for experiments, then 

ML can act as the screening tool for DFT methods (standard DFT options as well as its 

hybrid-functional or higher-order corrections). Some of these material screening applications 

are drug-discovery,73 finding new binary compounds,74 new perovskites,75 full-Heusler 

compounds,76 ternary oxides,77 hard materials,78 inorganic solid electrolytes,79 high photo-

conversion efficiency (PCE) materials,80 2D-materials,60 and superconducting materials.81 

Some material science-related ML tools (GBML,78 AFLOW-ML,61 JARVIS-ML60 and 

OMDB,82 for instance) allow web-based prediction of static properties to further accelerate 

material screening.

A second, major application of ML techniques to material science is in the realm of 

developing interatomic potentials, aka force-fields, to simulate the dynamics of a system or 

to run Monte-Carlo simulations. In this instance, ML is used to determine the parameters 

used in the phenomenological expression of the energy. Such expressions for the energy are 

then used to derive all other properties. Finding the right parameters (i.e. fitting the 

potential) is usually a computationally expensive task because of the very large 

configurational and parameter multi-dimensional spaces that need to be probed 

simultaneously while respecting all relevant physical constraints. Some of the atomistic 

potentials developed using ML are: Atomistic Machine-learning Package (AMP),83 

Physically-informed artificial neural networks (PINN),70 Gaussian Approximation 

Potentials (GAP),84 Agni85 and spectral neighbor analysis potential (SNAP).86 These 

potentials are shown to surpass conventional interatomic potentials both in accuracy and 

versatility.87 These models are mainly developed for elemental solids, such as Ta, Mo, W, Al 

etc., or for few binaries, such as Ni-Mo. Developing force fields for multicomponent 

systems is still limited due to an exponential increase in the number of ML parameters. 

However, unlike conventional fitting, these parameters can be optimized in a relatively more 
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systematic way. Importantly, a standard force-field evaluation work-flow, like JARVIS-

forcefield (JARVIS-FF)49, 50, still needs to be developed for such ML based force-fields, to 

understand their generalizability. In fact, verification and validation of these ML-based 

models is a critical challenge of the field.

Combinatorial libraries and high throughput experimentation

Complementing the theoretical libraries listed above requires experimental libraries that map 

structures, processing and compositions to functionality. By now numerous outlets exist 

including Polymer Genome,20 Citrination,21 Dark Reactions,98 Materials Data Facility99 and 

Materials Innovation Network.22 This again needs to be accomplished at different length 

scales: microscopic, to better understand the links between microstructure or atomic 

configurations and macroscopic properties, as well as through macroscopic experiments that 

explore large regions of the composition space to rapidly map functional phase diagrams. 

The latter is made possible through high throughput experimentation (HTE).

High throughput experimentation (HTE) and AI tools have been linked since HTE was re-

discovered in the early 1990’s. The origins of HTE can be traced back to the early 20th 

century with the discovery of the Haber-Bosch catalyst100 and the Hanak multi-sample 

concept.101 In both cases, the investigators realized that the search for new materials with 

outstanding properties and new mechanisms required a broader search through composition-

processing-structure-property space than could be afforded by conventional one-sample-at-a-

time techniques. At the time automation and computational resources were limited and so 

liberal usage of “elbow grease” was required both for performing the experiments and data 

analysis. It took several decades, the publication of the landmark HTE paper by Xiang et. al.
102, and the ready availability of personal computers for this methodology to gain significant 

traction within the materials community. There have been a number of recent reviews103–106 

on the topic and today HTE is largely considered to be a mature field with significant efforts 

(and discoveries) spanning a large number of fields including catalysis,107 dielectric 

materials,104 and polymers.108

The creation and deployment of HTE workflows necessarily leads to a bottleneck centered 

around the need to interpret large (sometimes thousands) of materials data correlated in 

composition, processing, and microstructure from a single experiment.109, 110 By the early 

2000s a single HTE sample containing hundreds of individual samples could be made and 

measured for a range of characteristics within a week, but the subsequent knowledge 

extraction of composition, structure, properties of interest, and figure of merit (FOM) often 

took weeks to months. There were several early international efforts to standardize data 

formats and create data analysis and interpretation tools for large scale data sets.111 These 

efforts touched on using AI to enable experimental planning112, 113 and data analysis and 

visualization.114–117

An unexpectedly difficult exemplar for the field is the mapping of non-equilibrium phase 

maps through the collection of spectral data as a function of composition and processing, so 

called “phase mapping.” A great deal of effort has been expended in working with computer 

scientists to better understand how to effectively correlate diffraction spectra of limited 
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range to phase composition for a given sample. The problem is further exacerbated by peak 

shift due to alloying, the presence of non-equilibrium phases and distortion of peak 

intensities due to preferred orientation of crystallites (texturing). The overwhelming majority 

of this work has focused on using unsupervised techniques such as hierarchical clustering,
122 wavelet transformations,123 non-negative matrix factorization124 and constraint 

programming paired with kernel methods.125 Comparatively little work has been devoted to 

the use of supervised or semi-supervised techniques.126, 127 A recent review article is 

available for the interested reader.128 Fully unsupervised techniques face challenges not only 

from noisy and limited range of experimental data, but also from highly non-linear scaling 

of the computational resources with number of observations in the dataset. More recent work 

in the field has sought to impose locality (e.g. that neighboring compositions are likely to 

include the same phases) into creating the phase map through the use of segmentation 

techniques129 or by attempting to deconvolve peak shift through the application of 

convolution nonnegative matrix factorization.130 A common theme for all of these efforts 

has been the importance of working to translate materials science problems into more 

general problems that are of interest to computer scientists. These new approaches appear to 

operate sufficiently rapidly as to permit on-the-fly analysis of diffraction data as it is being 

taken.131

Once knowledge extraction catches up to HTE synthesis, and characterization, the limit to 

rate of new materials discovery becomes that of decision making, i.e., what materials to 

pursue next given the knowledge of materials discovered so far (and processing conditions 

needed to make them). HTE groups have long worked with theoreticians to identify 

interesting materials to pursue.132–134 More recently in an effort to decrease the turnover 

time several HTE groups have turned to the use of AI for hypothesis or lead generation.
81, 135, 136 One example of such a AI platform is the Materials-Agnostic Platform for 

Informatics and Exploration developed at Northwestern, which transforms compositional 

data into a set of chemical descriptors that can be used to train a ML model that targets a 

particular property such as the band gap or an alloy’s metallic glass forming capability.53 

One additional benefit of HTE experiments is that they produce negative and positive results 

simultaneously without any additional cost. Thus, the models can use both negative and 

positive results from HTE experiments to produce less biased models than those based on 

traditional material discovery campaigns.

A recent example illustrated the power of combining HTE with machine learning models by 

demonstrating a nearly 1000x acceleration in the rate of the discovery of novel amorphous 

alloys.136 Amorphous alloys are a particularly apt system to be predicted by ML, as 

traditional computational approaches like DFT are not particularly effective. From this study 

several interesting new phenomena were observed. The most notable of which was that the 

formation of amorphous alloys via physical vapor deposition was more strongly correlated 

with the presence of complex ordered intermetallic structures than on the traditional 

presence of deep eutectics. Moreover, the predictions of stability can be coupled with 

predictions of physical properties (e.g., modulus) and can then be used to guide the 

discovery of novel high modulus metallic glasses as in Figure 2.
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More recently, the pairing of supervised learning with active learning137–141 – the machine 

learning implementation of optimal experiment design, has been used to address the dual 

challenges of hypothesis generation and testing. First a supervised learning method is 

selected, one that provides uncertainty quantification along with prediction estimates. The 

output estimate and uncertainty are then exploited by active learning to identify the next 

experiment to perform that will most rapidy optimize a given objective, e.g., hone in on a 

material that maximizes or minimizes a functional property. Bayesian optimization, the 

subset of active learning methods focused on local function optimization, has been used by a 

number of groups to accelerate the discovery of advanced materials. In these projects, 

machine learning identifies the material synthesis and fabrication parameter values to 

investigate next. These values are then used to guide experimentalists in synthesis and 

characterization and the resulting data is fed back into the machine learning model to select 

the subsequent experiment. Accelerated materials discovery has been demonstrated for low 

thermal hysteresis shape memory alloys,71 piezoelectrics with high piezoelectric coupling 

coefficients,137 and high temperature superconductors.142

Advising systems were the stepping stone to the next level of high throughput 

experimentation - autonomous systems143, where machine learning is placed in control of 

the full experiment cycle through direct interfacing with material synthesis and 

characterization tools. Rather than using a pre-defined grid over which to explore, it would 

be beneficial to explore the materials space in a more informed manner. Autonomous 

systems hold great potential, not just in accelerating the experimental cycle by reducing 

laborious tasks, but also by potentially reducing the amount of prior knowledge and 

expertise required in synthesis, characterization, and data analysis. Autonomous Research 

System (ARES) is such a system, capable of optimizing carbon nanotube growth 

parameters144. ChemOS is another such system, capable of exploring chemical mixtures to 

achieve a desired optical spectra.145 These systems seek to find the material which optimizes 

some given properties – a challenge of local optimization. Autonomous systems can also be 

used for global optimization challenges, e.g. to maximize knowledge gained from a 

sequence of experiments, as demonstrated by a set of systems capable of autonomous 

determination of non-equilibrium phase maps across composition and temperature space.
146, 147 A similar fusion in chemistry may be the merging chemical robotics systems148 with 

reaction network models such as CHematica.149

Significant challenges remain before autonomous systems become commonplace. One key 

challenge is the integration of uncertainty from data collection through machine learning 

predictions and experiment design. Additionally, many application areas have a wealth of 

knowledge stored in the literature which can be exploited to accelerate materials exploration 

and optimization. Extracting this knowledge and making it searchable is another key 

challenge. Furthermore, researchers are investigating methods for incorporating prior 

knowledge of materials physics into machine learning frameworks to ensure that predictions 

are physically realizable. Physical research systems are also susceptible to multiple modes of 

failure resulting in anomalous data. Anomaly detection and mitigation is thus also required. 

Integration of physical synthesis and characterization instruments into autonomous 

platforms is currently restricted by disparate communication protocols and a lack of 
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scriptable interfaces. Accordingly, there is also a need for a data and software platform 

capable of managing and incorporating diverse data types and communication protocols.

Local structure libraries and functional imaging

The combinatorial libraries above allow rapid scanning of the compositional space. 

However, for many materials of interest, responses are highly inhomogeneous, for example 

in materials such as manganites, filamentary superconductors, relaxor ferroelectrics and 

multiferroic oxides. Due to strong correlations and competing orders, the local atomic and 

mesoscopic structures, distribution and type of defects and their dynamics are all critically 

linked to the functionality of these disordered materials. Furthermore, for progress to be 

made on both understanding the driving forces for their functions, as well as to optimize 

them for applications, libraries of local atomic-scale structures and ordering are required to 

complement the macroscopic libraries generated through traditional high throughput 

experimentation. It should be noted that local imaging studies can provide more evidence as 

to the structure-property relationships that are of importance. Below, we review some 

advances in how libraries of atomic-scale defects can be generated using a deep learning 

approach,24 as well as advances in functional imaging that enable high-throughput local 

characterization.

Libraries of local structures

Perhaps the most important and least available (at this point) libraries are of atomic-scale 

structures (configurations) and defects, even in commonly studied materials such as 

graphene or other 2D materials. This is in comparison to, for instance, libraries of 

microstructures of alloys, which have been available for years.150 From the statistical 

physics perspective, access to these microstates should, in principle, enable predictions to be 

made of the system’s properties as the thermodynamic conditions are varied. Practically, 

atomic-scale imaging has only become widespread and near routine over the past decade, 

due in large part due to the proliferation of aberration corrected scanning transmission 

electron microscopy. Nonetheless, even if atomic scale images are acquired, it is still 

difficult to manually identify the atomic configurations and classify the types of defects. 

Indeed, most of the existing “classical” methods of analyzing microscopy data are slow, 

inefficient and require frequent manual input. Recently, it was demonstrated that deep neural 

networks151 (aka deep learning) can be trained to perform fast and automated identification 

of atomic/molecular type and position as well as to spot point-like structural irregularities 

(atomic defects) in the lattice in static and dynamic scanning transmission electron and 

scanning tunneling microscopy (STEM and STM) data with varying levels of noise.
33, 152, 153 The deep learning approach, and, more generally, machine learning, allows one to 

generalize from the available labeled images (training set) to make accurate image-level 

and/or pixel level classification of previously unseen data samples. The training data may 

come from theoretical simulations, such as a Multislice algorithm154 for electron 

microscopy or from a (semi-)manual labelling of experimental images by or under a 

supervision of domain experts.
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Fully convolutional neural networks (FCNN),156 which are trained to output a pixel-wise 

classification maps showing a probability of each pixel in the input image belonging to a 

certain type of atom and/or atomic defect were shown to be well-suited for the analysis of 

atomically resolved experimental images. Ziatdinov et al.152 demonstrated that FCNN 

trained on simulated STEM data of graphene can accurately identify atoms and certain 

atomic defects in noisy experimental STEM data from a graphene monolayer, including 

identification of atoms in the regions of the lattice with topological reconstructions that were 

not a part of the training set. Indeed, these models are eminently transferable. For example, a 

model based on graphene can perform well on other 2D materials with similar structure, 

usually without any need for further training. This is particularly important when generating 

libraries, as continual model training on every system would impede rapid progress.

Furthermore, for the quasi-2D atomic systems, the FCNN output can be mapped onto a 

graph representing the classical chemical bonding picture, which allows making a transition 

from classification based on image pixels to classification based on specific chemistry 

parameters of atomic defects such as bond lengths and bond angles. In such a graph 

representation, the graph nodes represent the FCNN-predicted atoms of different type, while 

the graph edges represent bonds between atoms and are constructed using known chemistry 

constraints, including maximum and minimum allowed bond length between the 

corresponding pairs of atoms. This FCNN-graphs approach was applied to the analysis of 

experimental STEM data from a monolayer graphene with Si impurities allowing 

construction of a library of Si-C atomic defect complexes.155 The FCNNs can also aid 

studies of solid state reactions on the atomic level observed in dynamic STEM experiments.
157 In this case, an FCNN is used in combination with a Gaussian mixture model to extract 

atomic coordinates and trajectories, and to create a library of the structural descriptors from 

noisy experimental STEM movies. The associated transition probabilities are then analyzed 

via a Markov approach to gain insight into the atomistic mechanisms of beam-induced 

transformations. This was demonstrated for transition probabilities associated with coupling 

between Mo substitutions and S vacancies in WS2
157 and between different Si-C 

configurations at the edge and in the bulk of graphene.158

While learning the structural properties of atomic defects in materials at the atomic scale is 

important by itself, it is also critical to understand how the observed structural peculiarities 

affect electronic and magnetic functionalities at the nanoscale. From the experimental point 

of view, this requires us to be able to perform both structural (STEM) and functional 

imaging (STM in the case of electronic properties) on the same sample. Then the goal is to 

identify the same atomic structures and defects from STEM and STM experiments and to 

correlate the observed structural properties to measured electronic properties, namely, local 

density of electronic states at/around the structure of interests. This was recently 

demonstrated155 via a combined experimental-theoretical approach, where the atomic 

defects identified via deep learning in STEM structural imaging on graphene with Si dopants 

were then identified by their density functional theory-calculated electronic fingerprints in 

the scanning tunneling microscopy measurements of local electronic density of states on the 

same sample. This work, summarized in Figure 3, shows a realistic path toward the creation 

of comprehensive libraries of structure-property relationships of atomic defects based on 

experimental observations from multiple atomically-resolved probes. Such libraries can 

Vasudevan et al. Page 11

MRS Commun. Author manuscript; available in PMC 2020 March 12.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



significantly aid the future theoretical calculations by confining the region of the chemical 

space that needed to be explored, i.e. by focusing the effort on the experimentally observed 

atomic defect structures instead of all those that are possible in principle.

The current challenges include improvement of infrastructure for cross-platform 

measurements (sample transfer, automated location of the same nanoscale regions on 

different platforms) as well as absence of a standard data format for storing and processing 

these libraries, which is accepted and used by the entire community. There is also the need 

to collate data across existing platforms, and thus searchability to find the relevant data is 

another major issue that will need to be addressed.

Functional libraries facilitated with rapid functional imaging

A similar argument can be made for the need for functional property libraries derived from 

local measurements. Due to the varying local structure in disordered materials, this requires 

the mesoscopic functionalities to be mapped across the sample, which then facilitates 

learning the microstructural features that are associated with the observed response. Multiple 

examples of the imaging techniques that can be applied for these applications are versions of 

scanning probe microscopy for mapping elastic and electromechanical properties,159 

chemical imaging via microRaman160 and time of flight secondary ion mass spectroscopy 

(ToF-SIMS)161, and nano X ray methods.162, 163 Critical for these applications becomes the 

issues of physics-based data curation, i.e. the transition from the measured microscope 

signal to material-specific information. In certain techniques such as Piezoresponse Force 

Microscopy (PFM), the measured signal is fundamentally quantitative, and with the proper 

calibrating of the measurement signal can be used as a material-specific descriptor.164, 165 In 

other techniques such as scanning probe microscopy (SPM)-based elastic measurements or 

scanning tunneling microscopy the measured signal is a linear or non-linear convolution of 

the probe and material’s properties, and quantification of materials’ behaviors represents a 

significantly more complex problem.166 Similarly of interest is the combination of 

information from multiple sources, realized in multimodal imaging. Here, once the data is 

converted from microscope-dependent to material dependent, and multiple information 

sources are spatially aligned, the joint data sets can be mined to extract structure-property 

relationships.167–169

However, performing experiments is time and labor intensive, and more automated methods 

of exploring the space and recognizing important areas (such as extended defects, or domain 

junctions) are necessary. For reducing the labor-intensive portion, ML has been shown to be 

of substantial utility. For instance, in SPM, an ML-utilizing workflow for a bacterial 

classification task was originally proposed by Nikiforov et al.4 There, the authors used the 

measured PFM signal and trained a neural network to enable automatic recognition of 

bacteria classes, as distinguished by their electromechanical (i.e., PFM) response. Beyond 

simple classification tasks, the ML methods in SPM have also been useful to extract fitting 

parameters from noisy hysteresis loop data,170 to enable better functional fits,171 and for 

phase diagram generation.172, 173 These tools greatly reduce the labor component of 

acquiring functional imaging, although much work remains.
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Still, despite the increasing speed and utility of ML methods in this space, much of the local 

functional property measurements are inherently time-intensive. For example, traditional 

spectroscopic methods in SPM, even for seemingly straightforward properties such as the 

local electrical resistance R(V) where V is the applied voltage to the probe, or the electric-

field induced strain S(E) where E is the applied electric field, can take several hours to 

acquire with conventional atomic force microscopy methods. How can one gain efficiency in 

this step? One method is to instead collect low-resolution datasets and attempt to reconstruct 

the high-resolution version with data-fusion methods.174 Recently, large efficiency gains 

were made via the use of the so-called “General mode” (G-Mode) platform175 in a range of 

functional imaging by SPM methods. The success of this approach lies largely in the 

simplicity. The G-mode platform is built on the foundation of complete data acquisition 

from available sensors, filtering the data via machine learning or statistical methods and 

subsequent analysis to extract the relevant material parameters. It has since been applied to a 

raft of SPM modes including current-voltage (I-V) curve acquisition,176 piezoresponse force 

microscopy175 and spectroscopy,177 and Kelvin Probe force microscopy.178

Consider also the acquisition of local hysteresis loops in ferroelectric materials, typically 

accomplished via piezoresponse force spectroscopy. Fundamental ferroelectric switching is 

extremely fast (≈ GHz), and photodetectors can easily operate at ≈ 4 to 10MHz, but 

heterodyne detection methods average data over time, leading to captures at much lower 

rates, and typically acquiring one hysteresis loop per second. The reason is that detection 

and excitation are decoupled, and each excitation is followed by a long (few ms) wave 

packet for the detection. This problem can be circumvented by using a dynamic mode, 

where the deflection of the cantilever is continually monitored and stored as a large 

excitation is applied at a rapid rate (e.g., 10 kHz) to the tip (see Figure 4(a)). If the voltage 

applied locally exceeds the local coercive voltage of the ferroelectric material, then 

polarization switching occurs, leading to switching at the excitation frequency. 

Reconstruction of the signal via signal filtering methods enables generation of the hysteresis 

loop, as shown in Fig. 4(b). This technique enables acquisition of hysteresis loops while 

scanning, and ultimately, in a ~1000x increase in throughput, in addition to providing much 

more statistics on the process.

As another point, consider the situation for obtaining the resistance R(V) spectra from a 

single point on a sample in typical scanning tunneling microscopy or atomic force 

microscopy. Traditionally, the waveform applied to the tip (or sample) is stepped, and a 

delay time is added after each step to minimize the parasitic capacitance contribution to the 

measured current. This scheme is shown in Figure 5(a). This is remarkably effective, but 

also dramatically limits the acquisition speed to ≈ 1 to 2 curves per second for realistic 

instrument bias waveforms. However, current amplifiers that are used can operate at several 

kHz without hindrance, suggesting that the fundamental limits lie much higher. Indeed, if 

one captures an I-V curve by applying a sine wave at several hundred Hz (and measures the 

raw current from the amplifier at the full bandwidth), it is possible to obtain I-V traces that, 

although beset with a capacitance contribution, still contain the relevant information. Given 

that the circuit can be modeled, Bayesian inference can then be used to determine the 

capacitance contribution and provide the reconstructed resistance curves as a function of 

voltage, with uncertainty as shown in Fig. 5(b). The reconstructed traces can then be 
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analyzed further, for example to gauge the disorder in the polarization switching within each 

capacitor (as in Fig. 5(c)), or to analyze the local capacitance contribution. The advantage of 

this method is not only that it enables functional imaging of electrical properties at hundreds 

of times the current state of the art; but it also allows to do so with greater spectral and 

spatial resolution.

Reiterating, the idea in these experiments is to produce libraries of functionality that can be 

used synergistically with libraries of the atomic or mesoscopic structures. One can imagine, 

for example, libraries of defects in 2D materials with corresponding functional property 

mapping of the opto-electronic properties of the same materials. The challenge is that many 

of the techniques for functionality mapping with scanning probe are also not necessarily 

amenable to high-speed and require substantial calibration efforts (e.g., to obtain quantitative 

maps of the converse piezoelectric coefficient179), but those need either advances in 

instrumentation180 or automated characterization systems, if large-scale libraries with local 

functional properties are to be built.

Another major challenge which arises in the formation of these libraries is the choice of 

format. This is a major topic that is not a portion of this prospective, but which is 

undoubtedly important and needs mentioning. We envision that the most likely scenario is 

multiple databases specialized around the specific type of data being housed, e.g. theory 

calculations, crystallography, mechanical properties, imaging studies, and so forth. 

Regardless, in all cases we note that it is important to have open, well-documented and 

standardized data models, to enable better integration.

From libraries to integrated knowledge

Integration of the experiments and simulations across scales is obviously not a simple 

endeavor, and no universal solution is likely. Numerous efforts have been made in this 

regard, including for example the very extensive work on microstructural modeling and 

optimization,182–184 as well as efforts to combine theory and experiment to rationally design 

new polymers with specific functional properties.185 One can also combine information 

from multiple sources within a Bayesian framework, to guide experimental design and 

reduce the time (number of experimental or simulation iterations) to arrive at an optimal 

result (under uncertainty).140, 186, 187 These methods typically use some objectives based on 

a desired property of interest. Methods such as transfer learning188 can be useful to combine 

computational and experimental data, when the data is scarce. Similarly, augmentation can 

be a useful strategy, as has recently been show for x-ray datasets.189

There is also an alternative view, which is to consider that structure defines all properties, 

and that imaging and macroscopic experiments can be combined to constrain generative 

models based on statistical physics. The key to this pathway lies in theory-experiment 

matching, which should be done in a way that respects the local statistical fluctuations, 

which contain information about the system’s response to external perturbations. Recently, 

we have formulated a statistical distance framework that enables this task.190–192 The 

optimization drives the model to produce data statistically indistinguishable from the 
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experiment, taking into account the inherent sampling uncertainty. The resulting model then 

allows predicting behavior beyond the measured thermodynamic conditions.

For example, consider a material of a certain composition that has been characterized 

macroscopically, so that its composition and crystal structure are known. If atomically 

resolved imaging data is available, then the next step becomes to identify the atomic 

configurations present, i.e., practically the position and chemical identity of the surface 

atoms. Chemical identification of atomic elements in scanning tunneling microscopy images 

can be complicated, but first principles calculations can help guide the classification. Deep 

convolutional neural networks trained on simulated images from the DFT can then be run on 

the experimentally observed images to perform the automated atomic identification. From 

here, local crystallography193 tools can be used to map the local distortions present, and to 

determine the configurations of nearest and next-nearest neighbors (and higher if need be) of 

each atom in the image, to produce an atomic configurations histogram. This can then be 

used to constrain a simple statistical mechanical model (e.g., lattice model) with easily 

interpretable parameters in the form of effective interaction energies (note this can also be 

guided by first principles theory). The histograms produced from experiment and theory can 

be computed and the model can be optimized via minimization of the statistical distance (see 

Figure 6(a)) between the histograms. As an example, this concept has recently been used to 

explore phase separation in an FeSe0.45Te0.55 superconductor, for which atomically resolved 

imaging was available. The image is shown in Fig. 6(b), with red (Te) and blue (Se) atoms 

determined via a threshold that would preserve the nominal composition of the sample. A 

simple lattice model that considered the interactions between the Te and Se atoms was setup 

and optimized based on the statistical distance minimization approach. As can be seen in the 

histograms of atomic configurations in Fig. 6(d), the model closely matches the observed 

statistics from experiment. This optimized model can then be used to sample configurations 

at different temperatures, as shown in Fig. 6(e).

It is important here to highlight the key points of this approach. The main idea is that by 

knowing the atomic configurations, we can learn the underpinning physics as these 

configurations present a detailed probe into the system’s partition function. This can be 

compared with e.g. time-based spectroscopies, where observations of fluctuations enables 

mapping the full potential energy surface, as has been done for biomolecules.194 Here, 

instead of dealing with fluctuations in time, we observe the spatial fluctuations that are 

quenched within the solid. At the same time, given that the models are physics-based, they 

are generalizable and should be predictive, thus enabling extrapolation rather than simply 

interpolation. This may be especially useful for systems where the order parameter is not 

easily defined, such as relaxors,195 where the goal would be to determine how the statistics 

of atomic configurations (in particular, the relevant distortions) evolve through phase 

transitions. The combination of local structure and functional information, macroscopic 

characterization and first principles theory can therefore be used within this framework to 

integrate our knowledge and build predictive models that can guide materials discovery and 

experimental design.

Challenges remain in the areas of uncertainty quantification (how reliable are the predictions 

as the thermodynamic conditions diverge from those in experiment), as well as how best to 
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choose the appropriate complexity of the model. Moreover, there are challenges associated 

with non-equilibrium systems that need to be addressed. Practically, there is also much 

difficulty in actually determining where to retrieve the necessary data, given that it is likely 

to be strewn across multiple databases. Ideally, these models could be incorporated at the 

experimental site (e.g., at the microscope) for enabling real-time predictions of sample 

properties, and guiding the experimenter to maximize information gain, thereby creating 

efficiencies, whilst automatically adding to the available library. However, this is still a work 

in progress.

Community Response

Finally, it is worth mentioning that the vision laid out in this prospective requires efforts of 

individuals, groups and the wider materials community to be successful. Whilst in principle 

this is no different to the incremental, community-driven progress that has characterized 

modern science in decades past, there are distinct challenges that deserve attention. One 

aspect is the sharing of codes and datasets through online repositories, which should be 

encouraged. Creating curated datasets and well-documented codes takes time, and this 

should be recognized via appropriate incentives. Sharing codes can be done via use of tools 

such as Jupyter notebooks run on the cloud. Ensuring that data formats within individual 

laboratories and organizations are open, documented and standardized requires much work, 

but pays off in terms of efficiency gains in the long term. Towards this aim, a subset of the 

authors has created the universal spectral imaging data model (USID181), while the 

crystallography community is well-versed with the CIF format.196 Logging the correct meta-

data with each experiment is critical, and lab notebooks can be digitized to enable 

searchability and indexing. Perhaps most importantly, teaching and educating the next 

generation of scientists to be well-versed in data, in addition to machine learning, is 

essential.

Outlook

The methods outlined in this prospective offer the potential to accelerate materials 

development via an integrated approach combining high throughput computation and 

experimentation, imaging libraries and statistical physics-based modeling. In the future, 

autonomous systems that can utilize this knowledge and perform on the fly optimization 

(e.g., using reinforcement learning) may become feasible. This would result in ever 

increasing sizes of the libraries, but also more efficient search and optimization. But perhaps 

less acknowledged is that given the large libraries that are expected to be built, the chance to 

learn causal laws197 from this data becomes a reality. Indeed, this is likely to be easier in the 

case of physics or materials science than in other domains due to the availability of models. 

In all cases, the availability of such databases and coupling with theoretical and ML methods 

offers the potential to substantially alter how materials science is approached.
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Figure 1: 
Progress in materials science requires understanding driving forces governing phenomena, 

so that materials can be both discovered and optimized for applications. Fundamentally, 

accessing the knowledge space to accelerate this cycle requires availability of data from 

simulations and experiment for materials synthesized under different conditions. Imaging 

provides a window into local configurations and provides a critical link for understanding 

the driving forces of observed behavior. Machine learning tools enable the generation of 

these databases and facilitate rapid prediction of properties from data-driven models. 

Similarly, the data can be synthesized together in a Bayesian formulation, or using statistical 

mechanical models, to agglomerate all available sources of information to produce more 

accurate predictions. Ideally, the knowledge gained will be transferable, enabling more 

efficient design cycles for similar material systems. These tools all require community 

efforts for availability of code, data, and workflows, that is critical to realizing this new 

future.
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Figure 2: 
Illustrating the glass forming ability of a novel Co-V-Zr alloy (left) and its predicted elastic 

modulus (right).
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Figure 3: Creating local imaging libraries.
(a) Scanning transmission electron microscopy imaging of Si impurities in graphene 

monolayer. (b) Categorization of defects in (a) based on the number/type of chemical 

species in their first coordination sphere via deep learning (DL) based approach. (c) The 

extracted 2d atomic coordinates of these defects are then used as an input into density 

functional theory (DFT) calculations to obtain a fully-relaxed 3d structure and calculate 

electronic properties (in this case, the local density of electronic states for the bands below 

(EV) and above (EC) the Fermi level). (d) The DFT-calculated data can be then used to 

search for the specific type of defects in the scanning tunneling microscopy (STM) data 

from the same sample, which measures the local density of states. The search can be 

performed manually (if the number of STM images is small) or automatically by training a 

new machine learning (ML) classifier for categorizing the STM data. Image adapted from 

Ziatdinov et al.155
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Figure 4: 
(a) General-mode acquisition (G-mode) differs from a standard measurement, in that the raw 

data is stored without pre-processing such as use of a lock-in amplifier. (b) The raw response 

of the cantilever deflection signal is Fourier transformed and processed using a band-pass 

filter and a user-defined noise floor threshold. The cleaned data is then transformed back to 

the time domain to reconstruct the hysteresis loops. Since many hysteresis loops are 

captured, the data is better represented as a 2D histogram (bottom right). This enables rapid 

mapping of relevant material parameters, such as the coercive voltage. This can in principle 

be stored along with global (macroscopic) characterization to populate libraries of materials 

behavior. Figure is adapted from Somnath et al.177
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Figure 5: G-IV for rapid mapping of local electronic conductance.
(a) Typical I-V measurements on SPM platforms utilize a regimen where after the voltage is 

stepped to the new value, a delay time is introduced before the current is averaged, as shown 

in the inset. On the other hand, the G-IV mode utilizes sinusoidal excitation at high 

frequency (200 Hz in this case), with results shown for a single point on a ferroelectric 

PbZr0.2Ti0.8O3 (PZT) nanocapacitor in (b). The raw current (Imeas), the reconstructed 

current (Irec) given the resistance-capacitance (RC) circuit model, and the inferred current 

without the capacitance contribution (IBayes) are plotted. This method also allows the 

uncertainty in the inferred resistance traces to be determined, as shown in the respective 

plots of R(V) with the standard deviation shaded. White space indicates areas where the 

resistance is too high to be accurately determined. Reconstructing the current after the 

measurement can facilitate rapid mapping of switching disorder in the nanocapacitors, with 

the computed parameter for disorder mapped in (c). Figure is adapted from Somnath et al.176
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Figure 6: Statistical Distance Framework
(a) Statistical distance between a model P and a target Q is defined as a distance in 

probability space of the local configurations. This metric enables estimation of the ability to 

distinguish samples arising from thermodynamic systems (under equilibrium 

considerations). (b) Scanning tunneling microscopy image of FeSe0.45Te0.55 system with Se 

atoms (dark contrast) and Te atoms (bright contrast). The structure of the unit cell is shown 

in (c). (d) Atomic configurations histogram from both the data and the optimized model in 

blue and teal colors, as well as from a model that has no interactions (i.e., is random) plotted 

in red. Once the generative model is optimized, it can be run sampled for different 

temperatures, as in (e). Note that reduced T units are utilized. Reprinted (adapted) with 

permission from Vlcek et al.192 Copyright (2017) American Chemical Society.
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Table 1:

Examples of AI based material-property predictions for different types of materials. The types of materials 

consist of A) 3D inorganic crystalline solids, B) Stable 3D inorganic crystalline solids, C) 2D materials/

surfaces, D) Molecules, E) 3D Organic crystals and F) Crystalline polymers.

Models Properties trained Materials 
(datapoints)

Links

ML based materials screening

AFLOW-ML61 Bandgaps, Bulk and shear modulus, 
Debye temperature, Specific heat, thermal 
expansion coefficient

A (26,674) http://aflow.org/aflow-ml/

GBML78 Bulk and shear modulus A (1940) https://github.com/materialsproject/gbml

MagPie53 Volume, band gap energy and formation 
energy

B (228676) https://bitbucket.org/wolverton/magpie

Matminer68 Formation energies A (>3938) https://hackingmaterials.github.io/matminer, 
https://github.com/hackingmaterials/matminer

JARVIS-ML60 Formation energies, bandgaps, static 
refractive indices, magnetic moment, 
modulus of elasticity and exfoliation 
energies

A (24549), C (647) https://www.ctcms.nist.gov/jarvisml, https://
github.com/usnistgov/jarvis

GCNN62,67 Zero-point vibrational energy, dipole 
moment, internal energy, formation 
energies, bandgaps, elastic properties, etc.

C (20000) https://github.com/deepchem/deepchem

CGCNN64 Formation and absolute energies, bandgap, 
Fermi energy, bulk and shear mod, 
Poisson ratio

A (28046) https://github.com/txie-93/cgcnn

MegNet66 Zero-point vibrational energy, dipole 
moment, internal energy, formation 
energies, bandgaps, elastic properties, etc.

A, C https://github.com/materialsvirtuallab/megnet

Coulomb-matrix54 Atomization Energies D (7000) http://quantum-machine.org/

SchNet65 Zero-point vibrational energy, dipole 
moment, internal energy, formation 
energies, bandgaps, elastic properties, etc.

A, C https://github.com/atomistic-machine-learning/
schnetpack

CVAE82 logP, Quantitative Estimation of Drug-
likeness (QED), Highest Occupied 
Molecular Orbital (HOMO), Lowest 
Unoccupied Molecular Orbital (LUMO), 
bandgap

D (>108000) https://github.com/aspuru-guzik-group/
chemical_vae

OMDB88 Bandgap E (12500) https://omdb.mathub.io/

KHAZANA89 Bandgap, dielectric constant (electronic 
and ionic)

F(284) https://www.polymergenome.org

MolML90 Atomization energy C https://github.com/crcollins/molml

QML91 Atomization energy C https://github.com/qmlcode/qml

ElemNet Formation energy B https://github.com/dipendra009/ElemNet

ML based atomistic potential

AMP83 Energy and force A, C, D https://amp.readthedocs.io/en/latest/

PINN70 Energy A

GAP84 Energy and force A https://github.com/libAtoms/QUIP

AGNI85 Energy and force A https://lammps.sandia.gov/doc/pair_agni.html
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Models Properties trained Materials 
(datapoints)

Links

SNAP86 Energy and force A, C https://lammps.sandia.gov/doc/pair_snap.html, 
https://github.com/materialsvirtuallab/snap

PROPhet92 Energy, force, charge-density A https://github.com/biklooost/PROPhet

TensorMol93 Energy and force C https://github.com/jparkhill/TensorMol

ANI94 Energy and force A https://github.com/isayev/ASE_ANI

AENET69 Energy and force A http://ann.atomistic.net/

DeePMD-kit95 Energy and force A https://github.com/deepmodeling/deepmd-kit

sGDML96 Energy and force A https://github.com/stefanch/sGDML

VAMPnet97 Energy and force A https://github.com/markovmodel/deeptime
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