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              Introduction 
 Data-intensive science has been described as the “fourth para-

digm” for scientifi c exploration, with the fi rst three being 

experiments, theory, and simulation.  1   While the value of data-

intensive research approaches are becoming more apparent, 

the fi eld of materials science has not yet experienced the same 

widespread adoption of these methods (as has occurred in bio-

sciences,  2   astronomy,  3   and particle physics  4  ). Nonetheless, the 

potential impact of data-driven materials science is tremendous: 

Materials informatics could reduce the typical 10–20 year 

development and commercialization cycle  5   for new materials. 

We see plentiful opportunities to use data and data science to 

radically reduce this timeline and generally advance materials 

research and development (R&D) and manufacturing. 

 In this article, we discuss the current state of affairs with 

respect to data and data analytics in the materials community, 

with a particular emphasis on thorny challenges and promis-

ing initiatives that exist in the fi eld. We conclude with a set of 

near-term recommendations for materials-data stakeholders. 

Our goal is to demystify data analytics and give readers from 

any subdiscipline within materials research enough informa-

tion to understand how informatics techniques could apply to 

their own workfl ows.   

 Challenges surrounding data: The status quo in 
materials 
 There are fi ve principal barriers to broader data sharing 

and large-scale meta-analysis within the fi eld of materials 

science. This section enumerates and discusses the follow-

ing barriers in depth: (1) opaque buzzwords in materials 

informatics, which prevent a typical materials scientist from 

readily seeing how data-driven methods could apply to their 

work; (2) idiosyncrasies in individual researchers’ preferred 

data workfl ows; (3) a wide variety of stakeholders, who often 

have confl icting goals, hailing from corresponding diverse 

research areas; (4) limited availability of structured data and 

agreed-upon data standards; and (5) a lack of clear incen-

tives to share data.  

 Proliferation of buzzwords 
 Like many areas of science, materials informatics is unfor-

tunately hamstrung by the proliferation of buzzwords whose 

meanings are not clear to researchers in the broader materials 

community. To a fi rst approximation, machine learning, data 

mining, and artifi cial intelligence are roughly interchangeable 

and refer to the use of algorithms to approximately model patterns 

in data. Materials informatics, in analogy to bioinformatics, 
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refers to developing an understanding of materials using data 

and algorithms. Thus, machine learning is a key tool for 

researchers in the materials informatics domain. 

 While “big data” has become a fashionable term in the 

materials informatics and broader materials communities, 

the reality is that very few materials researchers outside 

of large user facilities and some specialized communities 

such as tomography and combinatorial chemistry generate 

data that meet the traditional “3V’s” big-data defi nition of 

high volume, velocity, and variety.  6   Real-world examples 

of big data include YouTube streaming four billion hours 

of video per month (which is over six exabytes, or six bil-

lion gigabytes, at 1080p resolution), and Twitter receiving 

about half a million tweets per minute during the Brazil–

Germany soccer match in the 2014 World Cup. To give a 

contrasting example from materials science, performing 

100,000 density functional simulations to predict the elec-

tronic structures of many known crystalline materials—while 

scientifi cally very useful—is not the domain of big data. To 

store all of the meaningful scientifi c outputs of the simula-

tions would not require more than a few terabytes of stor-

age, which fi ts easily on a single hard drive (considered low 

volume); the simulations fi nish relatively slowly (i.e., low 

velocity—completed calculations arrive at the rate of a few 

results per hour, perhaps, and not thousands of results per 

second); and the output data are all completely uniform 

(i.e., no variety by defi nition). YouTube, Twitter, Google, and 

Facebook deal with big data; most materials researchers do 

not, although that fact takes nothing away from the unique 

data challenges facing the materials community. 

 We also wish to draw a clear distinction between com-

putational materials science and materials informatics. The 

former generally refers to using physics-based tools, such 

as density functional theory (DFT), molecular dynamics, 

or phase-fi eld simulations, to model behavior of materials. 

In contrast, models developed by materials informatics are 

data based, not physics based (i.e., there is 

no underlying governing equation, such as 

the Schrödinger equation), nor is informatics 

specifi c to “computational” researchers. For 

example, experimentalists performing tomo-

graphic or high-throughput x-ray diffraction 

studies generate tremendous quantities of data 

and may thus turn to algorithmic approaches 

to process and understand these data at scale. 

We would designate such activities as materi-

als informatics. 

 Finally, many researchers, especially those 

who study structural metals, may be familiar 

with the subdiscipline of computational mate-

rials science called integrated computational 

materials engineering (ICME).  7   This framework 

involves connecting physics-based models at 

various length scales (e.g., atomistic simula-

tion, dislocation modeling, thermodynamic 

modeling, continuum modeling) to predictively model alloy 

systems. Materials informatics can complement ICME in two 

ways: (1) by predictively supplying key materials property 

parameters for underlying ICME models, if those parameters 

are not known  a priori ; and (2) by integrating the outputs 

of an ICME workfl ow into higher-level machine learning-

based models of materials behavior.   

 Idiosyncratic data work� ows 
 Data workfl ows in materials vary considerably and depend 

on a number of factors, such as specifi c research focus, data-

acquisition techniques, and individual researcher’s personal 

preferences. While materials researchers have long been 

producing a wealth of knowledge relating to the processing–

structure–properties–performance relationships of materials, 

this information is generated, analyzed, and disseminated in 

such a wide variety of ways that researchers face tremendous 

diffi culties in reusing and repurposing others’ data. We have 

found in the course of software usability interviews with 

materials researchers at universities and companies that vir-

tually every individual makes a unique set of choices among 

characterization or simulation tools, data warehousing meth-

ods, data analysis methods, and data reporting avenues. This 

fragmentation among workfl ows makes centralization and 

standardization of materials data far more challenging; we 

visualize the situation in   Figure 1  .       

 Wide variety of stakeholders and research areas 
 Materials science is a broad and interdisciplinary fi eld in which 

progress emerges from complex interactions between pro-

ducers of data (i.e., researchers at universities, government 

labs, and industry), funding agencies, makers of equipment 

and software, and distributors of research results (often 

journal publishers). These stakeholders are all instrumental 

in the materials fi eld, but often do not share aligned incentives 

when it comes to making materials data broadly available. 

  

 Figure 1.      Flowchart illustrating only a fraction of the tremendous variety in how 

materials researchers generate, manipulate, write about, distribute, and discover 

data. Note: USB, universal serial bus; PC, personal computer.    
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 For example, researchers may wish to keep particularly excit-

ing results private for extended periods to avoid the risk of others 

publishing those results, and they even withhold negative results 

from publication altogether; industrial researchers generally 

withhold their most interesting results as trade secrets; character-

ization equipment-makers often design proprietary data formats 

in an effort to differentiate their tools through software; and pub-

lishers have the incentive to generate revenue from controlling 

access to materials publications and data, for example, by offer-

ing for-pay databases.  8 , 9     Figure 2   lists some of the stakehold-

ers in the materials-data landscape, broken down by category.       

 Data decentralization, limited access to structured 
data, and missing data standards  
 Decentralization 

 The substantial diversity among subdisciplines within materi-

als science and engineering is often cited as a reason why a 

unifi ed data infrastructure for materials research is impractical; 

instead, the community will be forced to adopt a federated sys-

tem of smaller databases.  10   One can make the counterargument, 

however, that enabling cross-pollination among different areas 

of materials and creating a “one-stop-shop,” comprehensive 

data clearinghouse is crucial to the advancement of materials 

research, and hence, we should focus on building such a system 

in spite of the inherent challenges of doing so. The National 

Institute of Standards and Technology (NIST) Materials 

Data Curation System  11   and Citrine Informatics’ Citrination 

platform  12   are two such very broad materials-data infrastruc-

tures whose goal is to structure and store a wide variety of 

materials research data. 

 The current materials data landscape is a highly fragmented 

patchwork quilt of smaller databases, each customized to 

present information from a specifi c subdiscipline. We have 

created an extensive, yet inevitably incomplete, list of materials-

data resources (see   Table I  ).       

 Limited access to structured data 

 The vast majority of materials-data resources available 

today are optimized for “low-throughput” human consump-

tion (e.g., via a graphical interface). Modern data analyt-

ics techniques, however, rely on systematic computational 

access to very large stores of data through an application 

programming interface (API).  13 , 14   While systematic access 

to large data sets is widespread (e.g., the genomics com-

munity),  15   the current status quo in materials data is fun-

damentally incompatible with state-of-the-art methods of 

computationally extracting insights from data. In  Table I , 

we note that the vast majority of data resources are not bulk 

downloadable, which essentially renders them unavailable 

to data analytics unless they are fi rst scraped or extracted by 

other software methods. For example, the Inorganic Crystal 

Structure Database (ICSD)  16   is an invaluable, authoritative 

collection of crystallographic data on tens of thousands of 

materials; because it is not bulk downloadable, however, 

researchers face signifi cant barriers to analyzing its con-

tents in aggregate.   

 Missing data standards 

 Data standards are another key to revolutionizing the 

materials data landscape. Data decentralization in materials 

has led to a wide variety of choices in terms of data storage 

techniques. Most of the data resources in  Table I  employ 

idiosyncratic data formats under the hood, and the materi-

als community has few widely adopted data standards (the 

Crystallographic Information File, or CIF, is a notable excep-

tion; it is the gold standard for representing crystal structure 

data).  17   There are general repositories, such as Dryad and 

Figshare, that store data from a large number of unrelated sci-

entifi c fi elds.  18 , 19   Repositories such as these allow data to be 

uploaded in any format. While this broadens public access to 

raw scientifi c data, it does not necessarily facilitate reuse and 

analytics, as the information is often format-

ted in such a way that other researchers would 

have tremendous diffi culty interpreting it. 

 The lack of data standards in materials greatly 

complicates the task of gaining useful insight 

from large-scale materials data. Flexible, uni-

form, computer-readable data standards should 

be established to enable data to be shared and 

systematically mined. Task forces and working 

groups have been convened to address this issue, 

but achieving broad agreement on data standards 

among diverse stakeholders has proven chal-

lenging. Citrine Informatics is working to nucle-

ate grassroots support for a fl exible JavaScript 

Object Notation (JSON)-based materials-data 

format  20   that provides a semistructured means 

to represent a wide range of materials data, but 

success with this initiative will depend strongly 

on uptake by the materials community at large. 

We provide a more detailed overview of some 

  

 Figure 2.      A partial list of the hundreds of organizations that all play important roles in the 

generation, distribution, and storage of materials data. Note: AFLOW, Automatic-FLOW for 

Materials Discovery; APS, American Physical Society; ACS, American Chemical Society; 

MRS, Materials Research Society; TMS, The Minerals, Metals and Materials Society; 

ASM, American Society for Metals; NIMS, National Institute for Materials Science; 

ICSD, Inorganic Crystal Structure Database; AFLOWLIB, Repository associated with 

the AFLOW project.    
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 Table I.      A list of some notable materials-data resources.  

Name  URL Category Free/Non-Free  

3D Materials Atlas   cosmicweb.mse.iastate.edu/wiki/display/home/
Materials+Atlas+Home 

3D Characterization Free 

AFLOWLIB  afl owlib.org Computational Free 

AIST Research Information Databases  www.aist.go.jp/aist_e/list/database/riodb General Materials Data Free 

American Mineralogist Crystal Structure Database  rruff.geo.arizona.edu/AMS/amcsd.phP Minerals Free 

ASM Alloy Center Database  mio.asminternational.org/ac Alloys Non-Free 

ASM Phase Diagrams  www1.asminternational.org/AsmEnterprise/APD Thermodynamics Non-Free 

CALPHAD databases (e.g., Thermocalc SGTE)  www.thermocalc.com/products-services/
databases/thermodynamic 

Thermodynamics Non-Free 

Cambridge Crystallographic Data Centre  www.ccdc.cam.ac.uk/pages/Home.aspx Crystallography Non-Free 

CatApp  suncat.stanford.edu/catapp Catalysts Free 

Chemspider  www.chemspider.com Chemical data Free 

CINDAS High-Performance Alloys Database  cindasdata.com/products/hpad Alloys Non-Free 

Citrination  citrination.com General Materials Data Free 

Computational Materials Repository  cmr.fysik.dtu.dk Computational Free 

CRC Handbook  www.hbcpnetbase.com General Materials Data Non-Free 

CrystMet  cds.dl.ac.uk/cgi-bin/news/disp?crystmet Crystallography Non-Free 

Crystallography Open Database  http://www.crystallography.net Crystallography Free 

DOE Hydrogen Storage Materials Database  www.hydrogenmaterialssearch.govtools.us Hydrogen Storage Free 

Granta CES Selector  www.grantadesign.com/products/ces General Materials Data Non-Free 

Handbook of Optical Constants of Solids, Palik N/A Hard-Copy Sources Non-Free 

Harvard Clean Energy Project  cepdb.molecularspace.org Computational Free 

Inorganic Crystal Structure Database  cds.dl.ac.uk/cds/datasets/crys/icsd/llicsd.html Crystallography Non-Free 

International Glass Database System  www.newglass.jp/interglad_n/gaiyo/info_e.html Glass Non-Free 

Knovel  app.knovel.com/web/browse.v General Materials Data Non-Free 

Matbase  www.matbase.com General Materials Data Free 

MatDat  www.matdat.com General Materials Data Non-Free 

Materials Project  www.materialsproject.org Computational Free 

MatNavi (NIMS)  mits.nims.go.jp/index_en.html General Materials Data Free 

MatWeb  www.matweb.com General Materials Data Free 

Mindat  www.mindat.org Minerals Free 

NanoHUB  nanohub.org Nanomaterials Free 

Nanomaterials Registry  www.nanomaterialregistry.org Nanomaterials Free 

NIST Materials Data Repository (DSpace)  materialsdata.nist.gov/dspace/xmlui General Materials Data Free 

NIST Interatomic Potentials Repository  www.ctcms.nist.gov/potentials Computational Free 

NIST Standard Reference Data  www.nist.gov/srd/dblistpcdatabases.cfm General Materials Data Non-Free 

NIST Standard Reference Data  www.nist.gov/srd/onlinelist.cfm General Materials Data Free 

NoMaD  nomad-repository.eu/cms Computational Free 

Open Knowledge Database of Interatomic Models 
(Open KIM) 

 openkim.org Computational Free 

Open Quantum Materials Database  oqmd.org Computational Free 
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existing standards in our recommendations for key next steps. 

Here, we simply note that organizations such as IEEE and W3C 

are potential hardware, software, and Internet-focused models for 

promulgating data standards in materials.  

  Lack of incentives 

 The typical materials researcher today experiences mini-

mal incentive for sharing data. Other research communi-

ties, such as biological sciences and astronomy, are often 

used as exemplars of data-dissemination practices; how-

ever, these groups have unique sets of data sharing require-

ments, norms, and incentives that may not directly transfer 

to materials.  21   In the materials community specifi cally, it is 

not clear that making one’s research data broadly available 

will lead to any of the following: (1) enhanced impact and 

more citations for one’s work; (2) improved funding oppor-

tunities; or (3) improved chances at professional advance-

ment and promotion. The National Science Foundation (NSF) 

and US Department of Energy (DOE) are two major fund-

ing agencies that now require a data management plan for 

funded research,  22 , 23   though it is not clear what the conse-

quences might be for researchers who do not make a good-

faith effort to deliver on these plans. Going forward, it will 

be vital for funding agencies and journal publishers to encour-

age data sharing by rewarding researchers who offer their 

data to the community or by prescribing data warehousing 

practices as does the National Institutes of Health and many 

biological sciences journals. 

 Not only does the materials community lack incentives 

for data sharing, it also lacks an obvious forcing function that 

necessitates a culture of structured data access and advanced 

analytics. In genomics, for example, the volumes of data pro-

duced even in routine laboratory experiments are so great that 

data-driven approaches are essential in the fi eld. In contrast, 

many materials science and engineering researchers have been 

able to continue using traditional “small data” generation and 

analysis approaches, in spite of the potential advantages of 

harnessing large-scale data analytics techniques to inform 

research in many sub-fi elds. 

 The situation is gradually changing. We believe that research-

ers who adopt data standards and make their research widely 

available via data repositories will win in several important 

ways by: (1) getting ahead of competitors by integrating 

machine learning and data analytics in their workfl ows; 

(2) making their research more discoverable—on the Citrine 

Informatics’ Citrination materials data platform, for example, 

a highly accessed data set from the Open Quantum Materials 

Database  24   can attract 50–100 views per week (see   Figure 3  ), 

comparable engagement to a high-profi le paper in a reputed 

journal two to three months after publication; and (3) saving 

time in fi nding and analyzing data by taking advantage of 

automation and software. McKinsey estimated that know-

ledge workers, which include materials scientists, spend about 

20% of their time looking for information;  25   establishing a 

materials data infrastructure can help reduce this overhead 

time burden.         

 New thinking around materials data 
 Having outlined the very real barriers facing widespread 

adoption of data-driven materials science, we now take a more 

Table I. A list of some notable materials-data resources.

Name  URL Category Free/Non-Free  

Pauling File  paulingfi le.com General Materials Data Non-Free 

Pearson’s Handbook: Crystallographic Data N/A Hard-Copy Sources Non-Free 

Powder Diffraction File (PDF)  www.icdd.com/products/index.htm Crystallography Non-Free 

PubChem  pubchem.ncbi.nlm.nih.gov Chemical data Free 

Reaxys  www.elsevier.com/solutions/reaxys Chemical data Non-Free 

Scifi nder/ChemAbstracts  scifi nder.cas.org Chemical data Non-Free 

SciGlass  www.sciglass.info Glass Non-Free 

SpringerMaterials  materials.springer.com General Materials Data Non-Free 

Metallurgical Thermochemistry, Kubaschewski N/A Hard-Copy Sources Non-Free 

TEDesignLab  www.tedesignlab.org Thermoelectrics Free 

Total Materia  www.totalmateria.com General Materials Data Non-Free 

UCSB-MRL thermoelectric database  www.mrl.ucsb.edu:8080/datamine/
thermoelectric.jsp 

Thermoelectrics Free  

    Note: AFLOWLIB, Automatic-FLOW for Materials Discovery; AIST, National Institute of Advanced Industrial Science and Technology (Japan); ASM, American 
Society for Metals; CALPHAD, CALculation of PHAse Diagrams; SGTE, Scientifi c Group Thermodata Europe; CINDAS, Center for Information and Numerical 
Data Analysis and Synthesis; CRC, Chemical Rubber Company; DOE, US Department of Energy; CES, Cambridge Engineering Selector; NIMS, National Institute 
for Materials Science; NIST, National Institute of Standards and Technology; KIM, Knowledge Database of Interatomic Models; UCSB MRL, University of 
California, Santa Barbara Materials Research Laboratory.    
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encouraging tone: the data status quo in materials science is 

changing for the better. Specifi cally, more data and research 

outputs are becoming available as open-access content; fund-

ing agencies are acknowledging meta-analyses of data as key 

to progress in materials research; several notable projects have 

emerged to unite software, data, and web infrastructure for the 

benefi t of the materials community; and industrial stakehold-

ers are beginning to recognize that a pressing need exists for 

open manufacturing data.  

 Open-access movement 
 The open-access (OA) paradigm, in which readers are able to 

view and (sometimes) repurpose published research at no cost, 

is gaining traction as key stakeholders jump on board. More 

publishers are adopting OA models, and increasing numbers 

of papers are appearing under a creative commons license, 

which makes content and data freely available. The Nature 

Publishing Group, for example, launched the journal  Scientifi c 

Data  in 2014, which is OA and dedicated specifi cally to redis-

tributing important scientifi c data sets. Unfortunately, among 

the journal’s 60+ recommended repositories, fewer than fi ve 

are dedicated to materials and chemical data, illustrating just 

how badly materials is lagging other disciplines in terms of 

data warehousing. By contrast, the biological sciences have 

over 40 approved repositories across subdomains ranging 

from omics to taxonomy. 

 Governments around the world are intensifying their efforts 

to make research data more widely available. In the United 

Kingdom, the Royal Society has outlined recommendations 

that address the issues surrounding data sharing within the 

scientifi c community. They believe research data should be 

accessible, intelligible, assessable, and usable.  26   The United 

Kingdom and Ireland have also committed to improve copy-

right law to facilitate text and data mining (TDM), as they 

recognize it as an important technique for extracting insight 

from existing data.  27   In June 2014, the UK parliament passed 

a law that allows TDM of copyrighted materials for noncom-

mercial purposes, as long as suffi cient reference is made to the 

original work. The US White House’s Offi ce of Science and 

Technology Policy in 2013 directed national research agencies 

to prepare to make federally funded research outputs publicly 

accessible, and since 2012, the European 

Commission has been pushing for broader 

access to government-funded research. Thus, 

many agencies directly involved in fi nancing 

the research enterprise are advancing initia-

tives to encourage wider dissemination of 

scientifi c data. 

  Data as a critical materials R&D enabler 

 Data-intensive approaches are proving to 

be valuable for materials discovery, reduc-

ing the time needed to search for new mate-

rials with desirable properties by shortlisting 

promising candidates. Recently, stakehold-

ers have shown an interest in promoting activities that 

encourage the use of modern data-centric approaches to 

solve materials problems.  28 , 29   One notable example is the 

US Materials Genome Initiative (MGI), launched in 2011, 

to accelerate materials development and commercializa-

tion.  30   –   32   Specifi cally, the MGI aims to halve the time and 

money needed to shepherd novel materials from the labora-

tory to widespread commercial deployment. In a similar 

vein, in 2015, the US Air Force Research Laboratory, NIST, 

and NSF launched a Materials Science and Engineering 

Data Challenge to encourage the use of publicly available 

data to discover or model new material properties. 29  The 

purpose of this challenge is to demonstrate that researchers 

can extract entirely novel insights from already-published 

materials data sets; the challenge submission period ended 

in March 2016, and the winners will present their results at 

the Materials Science and Technology 2016 Conference in 

Salt Lake City.   

  Using data to scale from the laboratory to 
manufacturing 
 The goal of accelerating materials development and deploy-

ment, as expressed by the US MGI, does not end with fund-

amental materials discovery. Reliably manufacturing those 

materials at scale is frequently an even greater challenge, and 

both industry and government see opportunities for data to 

accelerate materials scale-up to manufacturing. Numerous 

efforts to address this challenge have emerged, from the 

Advanced Manufacturing Plan 2.0 report by the President’s 

Council on Science and Technology  33   to the National Network 

for Manufacturing Innovation (NNMI) funded by several US 

government agencies.  34   While manufacturing broadly has 

always been a data-intensive endeavor, given that data-historian 

software has been ubiquitous in the manufacturing environ-

ment to log process data for at least two decades, modern 

analytics can now crunch these data to identify more complex 

relationships between environmental conditions, process-

ing parameters, product quality, materials wear and life-

time characteristics, and many other metrics. Optimizing 

these parameters promises to yield more product, at lower cost, 

using less energy. 

  

 Figure 3.      Access statistics (page views/month) for the Open Quantum Materials Database 

(OQMD) paper after it appeared on the Citrination platform. The spike in August 2015 

resulted from Google indexing the OQMD data set on Citrination.    
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 While manufacturing faces some of the same challenges 

as the materials R&D community, it also suffers from a 

unique and severe constraint: lack of publicly available data. 

Proprietary data exist in abundance, but many producers 

of materials carefully guard their manufacturing data as trade 

secrets; so while the nascent open-access movement grows, the 

sharing of manufacturing data lags substantially. To combat 

this, consortia are forming around precompetitive research in 

effi cient, smart manufacturing. Three examples of these are the 

Smart Manufacturing Leadership Coalition at the University 

of Texas, the Digital Manufacturing node of the NNMI 

system, and the recent call for proposals for a Manufacturing 

Innovation Institute on Smart Manufacturing.  35   –   37   Critically, 

each of these includes substantial industrial involvement 

and sponsorship, ensuring that the tools and methods devel-

oped within them are relevant to real-world manufacturing 

challenges.    

 Case studies: Demonstrating the potential of 
materials data and analytics  
 Materials Project 
 The Materials Project  38 , 39   was instituted at Lawrence Berkeley 

National Laboratory in 2011 with the goal to create an 

open, collaborative, and data-rich ecosystem for acceler-

ated materials design. The Project uses high-performance 

computing within a sophisticated integrated infrastructure 

comprising an open-source python-based analysis library, 

pymatgen,  40   a document-based schema-less database, and 

automated open-source workfl ow software, Fireworks,  41 , 42   

to determine structural, thermodynamic, electronic, and 

mechanical properties of over 65,000 inorganic compounds 

by means of high-throughput  ab initio  calculations. More 

compounds and properties (e.g., elastic tensors, band struc-

tures, dielectric tensors, x-ray diffraction, piezoelectric 

constants, etc.)  43 , 44   are being added on a daily basis. The 

Materials Project, and related data-driven  ab initio  screening 

efforts, have led to a number of advances in energy materials 

discovery.  45   

 A series of web applications provide users with the capabil-

ity to perform advanced searches and useful analyses (e.g., 

phase diagrams, reaction-energy computations, band-structure 

decomposition, novel structure prediction, Pourbaix dia-

grams).  38 , 40 , 46   The calculated results and analysis tools are 

freely disseminated to the public via a searchable online 

web application, and the data are easily accessed and down-

loaded through the fi rst implemented Materials Application 

Programming Interface (Materials API).  14   A high-level inter-

face to the Materials API has been built into the pymatgen 

analysis library that provides a powerful way for users to 

programmatically query and analyze large quantities of mate-

rials information. While most of the available data are com-

puted and produced in-house, the Project recently launched 

MPComplete, which allows Project users to submit desired 

structures to be simulated within DFT and MPContribs,  47 , 48   

a software framework within which users may upload external 

materials data—either computed or measured—and develop 

apps within the Project’s infrastructure. Today, the Project has 

more than 18,000 registered users and attracts 300+ distinct 

users every day to the site, spanning industry, academia, 

and government.  38     

 The Open Quantum Materials Database 
 The Open Quantum Materials Database (OQMD)  24 , 49   is a 

high-throughput database currently consisting of  ∼ 400,000 

DFT total energy calculations of compounds from the ICSD 

and decorations of commonly occurring crystal structures. 

OQMD is open (without restrictions) and is online.  50 , 51   Users 

can (1) search for materials by composition, (2) create phase 

diagrams ( T  = 0K), (3) determine ground-state compositions, 

(4) determine whether equilibrium (any two-phase tie line) 

exists between any two phases, (5) visualize crystal struc-

tures, or (6) download the entire database for their own use. 

The OQMD has been used to perform high-throughput com-

putational screening of many types of materials, such as struc-

tural metal alloys,  52   Li battery materials,  53   and high-effi ciency 

nanostructured thermoelectrics.  54   Much of the software and 

tooling surrounding the OQMD is open source and available 

for anyone to use and build upon.   

 Expert-led database building from literature 
 The practice and effectiveness of aggregation of experimental 

data is exemplifi ed in two widely used databases of crystal 

structures. The ICSD, hosted by the Fachinformationszentrum 

(FIZ) Karlsruhe in Germany contains over 180,000 entries 

on the crystal structures of minerals, metals, and other 

extended solid–inorganic compounds.  16   The older Cambridge 

Crystallography Data Centre in the United Kingdom com-

piles and distributes the Cambridge Structural Database 

(CSD), a repository of experimentally determined organic 

and metal–organic crystal structures that currently exceeds 

800,000 entries.  55   Both of these databases owe their success 

to some combination of early and widespread adoption, 

encouragement from journal publishers, and the clarity and 

utility of the .cif crystal structure format.  17 , 56   A third example 

of a careful and useful compilation of structural data is the 

Protein DataBank.  57   In materials science, the recent prolif-

eration of computationally generated databases of materi-

als structures and some of their computed properties have 

all been rooted in the ICSD. 

 Similar searchable online databases of materials proper-

ties, particularly those related to functional materials, are not 

as readily available. For example, no repository exists even 

for something as simple as the magnetic or ferroic ordering 

temperatures of inorganic compounds. Perhaps the resource 

that comes closest to what is required is the Landolt–Börnstein 

handbook series, which dates to the late 19th century and is 

now available electronically at the for-pay SpringerMaterials 

database. 

 Going forward, it is clear that the impetus for the creation 

of such databases must be associated with journal-mandated 
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requirements for the deposition of relevant property data, 

appropriately curated and formatted, in precisely the same 

manner that is mandated for crystal structure information. 

Recognizing the need and utility of such databases, there 

have been recent attempts to physically mine the literature to 

better understand the landscape of thermoelectric materials  58   

and lithium- and lithium-ion-battery materials (  Figure 4  ).  59   

The process involves gathering appropriate publications, 

deciding the key data in the publications, and then employing 

a combination of students and postdoctoral fellows to perform 

data extractions. Quantitative experimental and simulation 

results reported in publications must be physically entered 

into a text fi le, frequently through the process of manually 

digitizing plots in the publications by using freeware tools 

such as DataThief. At this stage, metadata such as the unit-cell 

volume of the compound being measured, the elemental abun-

dance of the constituents, or the preparation method are also 

entered. Finally, the text fi le is read into web-based visualiza-

tion suites using software such as HighCharts, which is freely 

available for use to academic, not-for-profi t entities.     

 The data, once available for visualization, can be highly 

useful for further prediction,  60   including through machine 

learning.  61   The insight that can be gained simply by looking 

at the data, appropriately plotted, cannot be overstated. As an 

example, the previous exercise as applied to thermoelectric 

materials quickly illustrates the large regions of parameter 

space where searching for new high-performing materials 

would be futile.   

  Citrination materials-data analytics platform 
 Citrination  12   is a materials data platform that extracts 

new insights from large-scale materials data. The platform 

ingests messy materials data sources, such as papers, pat-

ents, or existing databases, and extracts clean, structured 

facts from these fi les (e.g.,  
2m,H O
= 0°CT   , where  

2m,H O
T    is the 

melting temperature of water). The resulting data can be 

used to train machine learning models of materials behav-

ior, which Citrine deploys as web apps to accelerate R&D, 

manufacturing, and sales efforts in the materials industry. 

Citrination also represents one of the world’s largest collec-

tions of completely free and open materials data, usable by 

any researcher worldwide, with over three million records and 

counting.  12 , 62 , 63   

 Two forms of data exist within Citrination: (1) struc-

tured data, which contain clearly defi ned and formatted data 

points, and (2) unstructured data, which include images, 

PDFs, and documents in other formats. The data represent 

a collection of information from a wide variety of sources, 

both experimental and computational, and have been added 

either by the company or by the site’s users themselves. 

The platform supports a wide variety of materials metadata, 

using an underlying hierarchical data standard. This makes 

it easy for data to be understood, evaluated, and cited. The 

structured data is searchable and can be programmatically 

accessed using the site’s API. Thus, Citrination makes it 

easier for researchers to access and analyze materials data 

at a scale that has not been previously possible.  

  Key next steps  
 Nucleation around data standards 
 The amount of data in the materials commu-

nity, as in many other areas of science and 

human endeavor, is increasing exponentially, 

making data management an urgent priority. 

To enable seamless data sharing and increase 

the usability of published data, data standards 

are required. Historically, efforts to create stan-

dards for materials data storage have focused 

on XML schemas. Over a decade ago, NIST 

developed MatML for storing materials data.  64   

Other examples of XML schema, developed 

specifi cally for materials data storage, are 

MatDB and NMC-MatDB.  65   However, none of 

these has achieved wide adoption in the fi eld.  66   

We hypothesize that the greatest barrier to adop-

tion to any proposed new data standard is that 

users do not see the value in adopting a stan-

dard that is not already widespread. “Seeding” 

a new data standard with a large quantity of 

useful materials data could help mitigate this 

problem. 

 JSON  67   has emerged alongside XML as a 

preferred fi le format for hierarchical data format-

ting, and JSON is now used for asynchronous 

  

 Figure 4.      Screenshot of a battery data-mining resource,  72   displaying the average 

potential of the electrode as a function of the calculated discharge capacity after 

the 25th cycle. Such visualizations make it easier for materials scientists to identify 

important patterns in very large data sets. The symbol size is proportional to the 

percentage capacity that is retained after 25 cycles (larger is better), and the color 

indicates the crystal structure type of the active electrode material. Hovering the 

mouse over data points allows metadata to be read, and clicking on the points takes 

the reader to the original literature.  73   For thermoelectrics, see Reference  71 . Note: CB, 

carbon black; PVDF&DMP, poly(vinylidene � uoride) & dimethyl phthalate; EC, ethylene 

carbonate; DMC, dimethyl carbonate;  C , charge rate.    
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browser/server communication among other applications. The 

JSON format is similar to XML in many ways and provides 

good fl exibility in terms of the scope of data that can be struc-

tured in this format. Most modern computer programming lan-

guages provide native parsing and generation of JSON fi les. 

This makes it a good candidate to be used to store materials 

data of varying types and for various purposes. The Materials 

Information File (MIF) is an open JSON-based fi le format, 

created by Citrine Informatics, to store diverse materials data 

ranging from standard entropy curves to x-ray diffraction pat-

terns to DFT simulation outputs.  20   A number of key objects 

have already been defi ned to encompass common materials 

concepts (e.g., materials, measurements, phases, phase dia-

grams), and new objects can be readily created as needed.  20   

The MIF format can thus evolve to accommodate materials 

data from every subdiscipline of materials. With this potential 

fl exibility and ability to store various types of data, Citrine’s 

goal is to build broad support for the MIF as a data standard 

within the materials community, and has been tackling the 

data standards problem by generating millions of MIF records 

and making them publicly available.   

 Data consolidation 
 Given the inherently diverse nature of materials data, consoli-

dation is a major challenge. At present, most data repositories 

focus on a specifi c subset of materials data, and while this allows 

them to specialize, it means that it is often diffi cult to extract 

value across numerous data resources. In addition, different 

repositories structure data idiosyncratically, and the ease of 

access is highly variable; a single unifi ed infrastructure would 

greatly streamline data analysis.   

 Data-intensive visualization 
 Data visualization is a key research activity that conveys infor-

mation effi ciently. Visualizations assist with highlighting pat-

terns within data and identifying useful and important trends. 

  

 Figure 5.      An Ashby plot auto-generated using structured data accessed via the Citrination API. Programmatic data access allows for the 

construction of key materials data visualizations, such as Ashby plots, without tens of hours of manual data entry. Note: AISI, American Iron 

and Steel Institute; GFRP, glass-� ber-reinforced plastic; CFRP, carbon-� ber-reinforced plastic.    

Some classic examples of materials-related visualizations are 

Ashby plots, relating density and modulus across classes of 

materials, and Pettifor maps  68   of intermetallic crystal structures. 

We believe that improved systematic access to materials data 

will dramatically enhance the community’s ability to generate 

such information-rich visualizations.   Figure 5   illustrates how 

a Python script can be used to programmatically generate 

an Ashby plot using public data from the Citrination platform.       

 Better software 
 Generally, materials informatics is only accessible to those 

who have deep experience in computer programming and 

data science. This is because the most currently available infor-

matics tools rely on some degree of programming ability 

to analyze and manipulate data. As there are many materials 

scientists without such a background, it is vital that materi-

als informatics are democratized in order to allow widespread 

access to the benefi ts of large-scale materials data analysis. 

For this to become a reality, software must be developed that 

will be intuitive and easy to use for materials experts who do 

not also possess training in computer science or data science. 

Such a goal requires the development of sophisticated user 

interfaces that expose the power of materials data without 

miring the user in jargon, arcane tuning parameters, or unfa-

miliar syntax. Such tools are just now emerging for wide-

spread consumption by the materials community; examples 

include Citrine’s thermoelectric materials recommendation 

engine,  61 , 69   Materials Project’s Pourbaix diagram generator,  46   

OQMD’s grand canonical linear programming-based  70   phase 

stability evaluator, and the University of California, Santa 

Barbara Materials Research Laboratory and The University 

of Utah’s thermoelectric data visualizer.  58      

 Summary 
 This article discusses the challenges and opportunities associ-

ated with data-intensive materials research. With respect to 
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its integration of large-scale data analysis, materials science 

lags behind other scientifi c disciplines; however, the situa-

tion is rapidly changing for the better. In particular, funding 

agencies, journal publishers, industry, government labs, and 

university researchers are aligning to make materials research 

data more accessible and useful to the community. We high-

lighted four specifi c efforts within the materials research 

community—Materials Project,  39   Open Quantum Materials 

Database,  50   expert database curation at the University of 

California, Santa Barbara and The University of Utah,  71   and 

the Citrination platform—  12   all of which involve aggregating, 

analyzing, or visualizing large quantities of materials research 

data at no cost to users. We expect these and related efforts to 

gather momentum as materials research continues to benefi t 

from broader access to large data sets.     
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