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ABSTRACT

This paper is concerned with the choice of the materials to minimise the deformation of
mechanical components caused by extraneous thermal and vibrational inputs.  First, material
‘performance indices’ (combinations of material properties) are derived for systems
subjected to low frequency sinusoidal vibration inputs and for systems subjected to broad–
band excitation.  A methodology is developed for optimising the choice of material to
minimise deformation due to vibration in such systems.  Second, materials selection to
minimise distortion caused by spurious thermal fluxes is discussed and a performance index
which captures the relevant material property combinations is derived.  Finally, a technique
for reconciling the conflicting design goals of vibration and thermal distortion is considered.

The material selection procedure makes use of ‘materials selection charts’ - a new way of
displaying material property data.  When combined with the performance indices these allow
a number of novel optimisation procedures.  Section shape can be included, allowing the
optimum selection of both material and shape.  The method is illustrated through a case study
involving selection of a material for the frame of an Atomic Force Microscope with sub–
nanometre resolution.
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1 INTRODUCTION

1.1 Design goals

Mechanical design often involves mechanical or thermal inputs which vary with time.  Sometimes
the goal is to minimise their influence: to evolve a design in which the response of the device to
distortion caused by vibration or external heat fluxes is as small as possible.  Sometimes the goal is
the opposite: to maximise the response, or the speed of response.  Often it is both: to maximise the
response to one input but minimise that to others.  An example is the design of mechanical
transducers for precision instrumentation like atomic force microscopes.  Here the design
requirements are fast response-time and low susceptibility to disturbing signals.  Similar
requirements, though with differing emphasis, occur in the design of computer disk-drives, inertial
guidance systems, mechanical testing equipment and even vehicle suspensions.

The requirement of minimising the vibration or thermal distortion of a critical component can be
achieved either by isolating the component from the source of vibration or heat, or by designing the
component and selecting its material so that it responds as little as possible to the inputs.  The latter
approach is the subject of this paper.  A methodology is presented for selecting the best material for
minimising the vibration of mechanical components and for minimising their distortion by thermal
fluxes.  The choice depends on the function and shape of the component and on the mode of
loading.  The methodology leads to a selection, from the full ‘menu’ of materials available to the
engineer, of the material (or group of materials) with the optimum combination of properties to
achieve one or the other of these goals.  The materials chosen for minimum vibration and minimum
thermal distortion are usually, different.  General methods for reconciling these conflicting design
goals are discussed in the last part of the paper.

1.2 Materials selection methodology

The method of selecting materials for each  requirement  has three ingredients.  The first is the idea
of a materials-performance index  (M):  a combination of material properties which, if
maximised, maximises one aspect of the performance of the component.  A familiar example is the
specific stiffness:

M1  =  E/ρ, (1)

where  E  is Young’s modulus and  ρ  is the density.  Materials with large values of  M1  are good
for light, stiff structures.  In later sections of this paper performance indices for the design goals
listed above will be developed.  They involve various combinations of Young's modulus  E,  shear
modulus G,  density  ρ,  yield or fracture strength  σf,  loss coefficient  η,  thermal conductivity  λ,
and thermal expansion coefficient  α.

The second ingredient in the selection methodology is the idea of a materials-selection chart.  At
its simplest, a materials-selection chart is a diagram with a pair of material properties as axes, for
example  E  and  ρ  as shown in Figure 1.  The scales are logarithmic and can, if desired, span a
range so wide that all available materials can be included.  When data for a given material class
such as metals are plotted on these axes, it is found that they often occupy a characteristic field
which can be enclosed in a ‘balloon’.  Ceramics also occupy a field, and so do polymers,
elastomers, composites, and so on.  The fields may overlap, but are nonetheless distinct.
Individual materials or sub–classes (like steels in the metals field, or polypropylenes (PP) in that
for polymers) appear as little ‘bubbles’ which define the ranges of their properties.  All of the
bubbles for one class of material are enclosed in a balloon:  the metals–balloon, the polymers–
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balloon, and so on.  Almost always, further information can be plotted onto the chart.  The
longitudinal wave speed vl (longitudinal speed of sound in the material) is plotted on Figure 1:

vl = E
ρ

. (2)

Because of the logarithmic scales, contours of constant wave speed are a family of parallel lines of
slope 1.

Fig. 1 A materials selection chart of Young’s modulus  E  plotted against Density ρ.  The
logarithmic scales allow performance indices to be plotted as straight lines.  The
longitudinal wave speed  (E/ρ)1/2  appears as a set of diagonal contours.

Material selection charts can be used in conjunction with performance indices to optimise the choice
of material.  Consider the performance index  M1  defined by equation 1.  Taking logarithms of
both sides, it can be seen that contours of constant  M1  are lines of slope 1 on the chart - as were
those for v1.  Materials with higher values of  M1  lie towards the top left corner of the chart.  The
grid of lines shows that these are ceramics like diamond (C) and silicon carbide (SiC), beryllium
(Be) and Carbon Fibre Reinforced Plastic (CFRP).  Figure 1 illustrates one of the simplest material
selection charts.  Many others are presented in [1].  Other charts can have combinations of
materials properties as axes, and some of these are presented later.
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The third ingredient in the selection methodology is that of characterising cross-sectional shape by
a shape factor  φ.  Hollow tubular beams are lighter than solid ones for the same bending stiffness;
box–section beams may be better still.  The efficient shape gives extra stiffness for the same mass,
as characterised by the second moment of area I.  A convenient way to describe section-shape in
stiffness-limited design is to define a dimensionless ‘shape–factor’,  φB

e
  (B means ‘bending’, e

means ‘elastic’) [2]:

φB
e
  =  4 π I

A2
. (3)

where A is the area of the cross–section.  φB
e

  is dimensionless, and characterises the shape of the
cross-section, independent of scale. The factor of  4π  is included so that  φB

e
 = 1  for a solid

circular section.  Solid equiaxed sections (circles, squares, hexagons etc) all have values close to 1.
Efficient shapes like thin–walled tubes or I–sections can have shape factors of 50 or more.  The
physical limit to  φB

e  is  usually set by local buckling of the component.  The maximum shape
factor can be considered to be a material property and used profitably in the selection of materials.
Other shape factors can be defined for design against yield or fracture (instead of stiffness) and for
torsion as well as bending.  Details of the methodology, with worked examples for static loading,
can be found in [1, 2, 3].

1.3 Materials selection software

The procedure for materials selection, outlined above and detailed in the following sections has
been implemented in a computer package called the Cambridge Materials Selector (CMS) which
utilizes a database containing information about all classes of materials:  metals, ceramics, glasses,
polymers, composites and natural materials like wood.  To select a material, the user performs a
series of selection stages in which a pair of material properties of interest (or user-defined functions
of material properties, like E/ρ) is specified.  The program presents a graph or chart with these
properties as the axes.  All materials contained in the database with applicable data entries are
plotted on each graph.  The area of each graph which satisfies the selection criteria is specified by
the user and the materials which lie in that area are considered to have ‘passed’ the selection stage.
Up to six independent selection stages can be performed.  The program stores the results of each
selection stage and these can be examined at any time.  CMS is described in [4].  Use of the
software enables materials to be selected using complex charts which could not otherwise be
plotted easily by hand.  Materials selection charts generated by CMS are used to illustrate case
studies later in this paper.

2 MATERIALS TO MINIMISE VIBRATION

Consider the problem of minimising the vibration of an item of very precise measuring or
manufacturing equipment (a ‘machine’), subject to vibration of its support.  Accuracy problems are
usually caused by relative dynamic deflection of some critical dimension of the machine, rather
than absolute motion of the machine on its support.  The design goal is, therefore, to minimise
relative dynamic deflection of the machine.  This can be achieved in two ways: (i) by isolating the
machine from the excitation which causes it to vibrate [5], or (ii) by designing it to respond as little
as possible to such inputs.  Materials selection plays an important part in the second approach.

The analysis given below leads to two different types of performance index.  The first applies
when the lowest natural frequency of the system is much greater than that of the input.  These
indices generally involve the Young's modulus  E  the density  ρ,  and perhaps a shape factor φ.
The second type of index applies when the excitation contains frequency components that coincide
with natural frequencies of the system.  Then the loss coefficient  η   (material damping) is
important as well.
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2.1 Performance indices for materials to resist sinusoidal inputs.

The first mode of vibration of such a machine can be modelled as a linear single degree–of–
freedom oscillator with displacement input of its base  x  and relative displacement  y,  as shown in
Figure 2a.  (The machine may, in turn, be isolated from the vibrating input by a resilient isolator,
but this does not affect the outcome of the following analysis.)  Assume that the base of the
machine vibrates at a single angular frequency  ω,  with input amplitude  X,  so that  x = Xeiωt.
The relative deflection  y = Yeiωt  of a critical dimension of the machine is then given by the
transfer function H(iω):

H(iω)  =  Y
X

   =  

ω
ω1

2

1 –  ω
ω1

2
  +  i 2 ζ1 ω

ω1

, (4)

where  ω1  is the undamped natural frequency and  ζ1  is the damping ratio.

The magnitude of  H(iω)  is shown schematically in Figure 2b.  It is apparent that minimum
relative vibration is obtained at low excitation frequencies,  since for small values of  ω/ω1,

Y ≈ ω
ω1

2
 X ,               ω

ω1
 << 1. (5)

In order to minimise relative vibration of the machine for a sinusoidal input, it is therefore
necessary to maximise the first natural frequency  ω1.  Real machines, of course, have many
modes of vibration, with complicated mode shapes, but the general conclusion of requiring
maximum  ω1  is unaffected by this.  Furthermore, the same conclusion is reached if it is assumed
that the input to the system is an oscillating force applied to the mass, rather than a seismic
displacement input applied to the base.  Thus ω1 is the quantity to be maximised: it is the objective
function, in the language of optimisation theory.

(a) (b)

Y
X

1

ω/ω11

Mass

Spring Viscous
Damper

x = X e iωt

y = Y e iωt

Fig. 2 (a)  Single degree of freedom oscillator subject to displacement input  x  at frequency ω.
(b)  Magnitude of the transfer function of the relative displacement  y.
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2.2 Example: performance index for undamped beam vibration

Consider, as an example, the derivation of a performance index for maximising  ω1  for a beam as
shown in figure 3.  Suppose that the beam is required to have a length  L  and a stiffness  S,  both
specified by the functional requirements of the design, and it is to have the highest possible natural
frequencies.  The natural frequencies of flexural vibration of an Euler beam with cross–section area
A,  second moment of area  I,  Young’s modulus  E,  and density  ρ,  are given by

ωn = an E I
ρ A L4

,        n = 1, 2, 3 . . . (6)

where  n  is the mode number and  an  is a constant that depends on the support conditions.  For
the simply supported beam shown in figure 3,

an = n2π2,          n = 1, 2, 3 . . . (7)

Other support conditions change  an,  but not the other terms in equation 6.

A, I

E,  ρ

L

Fig. 3 Euler beam with length L, cross–section area A, second moment of area I, Young’s
modulus E and density ρ.

The stiffness of the beam is given by

S = C1EI

L3
, (8)

where  C1  is a constant, like  an,  that depends only on the boundary conditions and loads.  For
the simply supported beam (carrying a central load) in figure 3,  C1 = 48.  Other boundary
conditions change  C1  but nothing else in equation 8.

The cross–section area  A  and the second moment of area  I  are ‘free’ variables:  we wish to
choose  A  and  I  so as to maximise the natural frequencies, while meeting the constraints imposed
on  L  and  S.  Replacing  A  in equation 6 with the use of the shape factor in equation 3, and
eliminating  I  with equation 8 gives:

ωn =  S1 4    
an

4π L5 C1
1 4   EφB

e

ρ
.
1 2

 (9)

The various terms have been grouped in brackets.  The first bracket  contains the functional
requirement  F  and the second contains the geometry  G,  both of which are specified by the
design.  The third bracket contains the material properties  M.  (It is usual that the result of a
modelling exercise to isolate a performance index can be separated is this way [6].)  The flexural
vibration frequencies of the beam can therefore be maximised by seeking the material with the
largest value of

EφB
e

ρ

1 2.
.  Hence the performance index is   M2 =   

EφB
e

ρ
. (10)
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This selection is independent of the magnitude of the specified stiffness  S,  and of the length  L,
and of the details of the boundary conditions and loads contained in  C1  and  an.  The same
material choice gives the maximum flexural vibration frequencies for all Euler beams.

Figure 4 shows a materials selection chart of  EφB
e
  vs  ρ  generated by CMS.  Each material is

plotted as a bubble which represents the range of its two properties.  A selection line has been
drawn at   M2 = 15.8 GPa1/2/(Mg/m3).  Unlike figure 1, this chart accounts for cross–section
shape.  As a result, light alloys such as those of aluminium and magnesium perform well because
they can be manufactured with cross–sections that have large shape factors.  The clear winner,
however, is beryllium and its alloys, followed closely by unidirectional CFRP.

Balsa wood and foamed polymers could be used to make beams with high flexural vibration
frequencies, but they may not be a suitable, because their cross sections  A  would have to be very
large in order to provide sufficient stiffness.  This can be shown by combining equations 3 and 8
to eliminate  I,  and solving for the ‘free’ variable  A:

A  =  4πL3S
C1

 1
φB

e
E

 . (11)

The term in brackets is fixed by the geometry and functional constraints.  Therefore  A  is inversely
proportional to EφB

e
.  If the maximum acceptable value of  A  is limited by a space constraint

(A ≤ Alim), then this limiting value can be substituted into equation 11 and plotted as a horizontal
line on the selection chart, as shown on figure 4.  Beams made from materials lying below the
horizontal line would have a value of  A  larger than the limiting size (in order to have a stiffness of
S),  and would therefore be unsuitable.

If it was not possible to manufacture the beam with a large value of the shape factor  φB
e
,  then the

best materials would be found by plotting a line of slope 2 on the  E–ρ  chart shown in figure 1.
The best materials would then be ceramics such as diamond, silicon carbides, silicon nitrides,
aluminas and pure silicon.  Other possibilities are beryllium, or CFRP uniply.  Aluminiums and
magnesiums perform less well because they no longer have the advantage of the large shape
factors.
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Fig. 4 Materials selection chart of  EφB
e
  vs  ρ  generated by the Cambridge Materials Selector

(CMS).  Shaded materials are those that have ‘passed’ the selection stage.  Beryllium
alloys are the best choice for beams with high flexural vibration frequencies.

Table 1 contains performance indices  Mu  for maximising the lowest undamped vibration
frequencies  ω1  of a variety of standard components:  beams, plates, membranes etc.  Most are
functions of the Young’s modulus  E  and density  ρ, and sometimes a shape factor  φ.  When the
price of the component is important, the cost per kg of the material  CR  enters into the performance
index.  This accounts only for the cost of the raw material, and not the added cost of manufacture.
For taut strings and membranes, the natural frequency depends on the applied tension, the
maximum value of which depends on the failure strength  σf  of the material.
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Component Specified

Stiffness Mass Cost

Beam
Bending vibration.
Length fixed, section shape free.

E φB
e

ρ

1/2 E φB
e

ρ
E φB

e

ρ2 CR

1/2

Plate
Bending vibration.  Length & width
specified, thickness free.

E1/3
ρ

1/2 E
ρ3

1/2 E1/2

ρ3/2 CR

Rod
Axial vibration.
Length specified, section area to be
minimised.

E
ρ

1/2

and E

E
ρ

1/2

and 1/ρ

E
ρ

1/2

and 1/ρCR

Shaft
Torsional vibration.
Length specified, section area to be
minimised.

G
ρ

1/2

and G

G
ρ

1/2

and 1/ρ

G
ρ

1/2

and 1/ρCR

Ring
Extensional vibration.
Radius specified, section area free to
be minimised.

E
ρ

1/2

and E

E
ρ

1/2

and 1/ρ

E
ρ

1/2

and 1/ρCR

Ring
Bending vibration in or out of
plane.
Radius specified, section shape free.

E φB
e

ρ

1/2 E φB
e

ρ
E φB

e

ρ2 CR

1/2

Ring
Torsional vibration.
Radius specified, section shape free.

E
ρ

 
φB

e

φT
e

1/2

and E

E
ρ

 
φB

e

φT
e

1/2

and 1/ρ

E
ρ

 
φB

e

φT
e

1/2

and 1/ρCR

Taut string or membrane
Transverse vibration.
Length (width) specified,
tension free.

σf
ρ

1/2

and E

σf
ρ

1/2

and 1/ρ

σf
ρ

1/2

and 1/ρCR

E = Young’s modulus G = Shear modulus
ρ = Density CR = Cost per kg of raw material
φB

e
= Bending shape factor φT

e
= Torsion shape factor

σf = Failure strength.

Table 1 Performance indices  Mu  for maximising the lowest undamped vibration frequencies  ω1
of standard components, for specified stiffness, mass or cost.

Note that the performance indices in Table 1 are sometimes raised to a power (like the ‘1/2’ in the
first part of equation 10).  Although these additional powers have no effect on selection charts like
figure 4 (because they scale both axes of the selection chart equally), we will see later that they
must be retained for material selections when the system is subject to broad–band excitation.

2.3 Material damping

All materials dissipate some energy during cyclic deformation, through intrinsic material damping
and hysteresis.  Damping becomes important when a component is subject to input excitation at or
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near its resonant frequencies.  This is the case when the excitation is ‘broad–band’ – that is, it
covers a wide frequency range.  Energy dissipation caused by friction in joints and air resistance
are also important, but these are not considered here.  This section discusses material damping.
Material performance indices that incorporate damping are discussed in the next section.

There are several ways to characterise material damping.  In this paper, we use the loss coefficient
η   which is a dimensionless number defined in terms of energy dissipation as follows.  If a
material is loaded elastically to a stress  σmax  with corresponding strain  εmax  (see figure  5) it
stores elastic strain energy per unit volume  u,  where

u = σ dε
0

σmax

  =  1
2

 E εmax
2 , (12)

and E is the Young’s modulus.

σ

ε

Area = u

Area = ∆u

σmax

εmax

Fig. 5 Energy dissipated in a stress–strain cycle.

If the material is loaded and then unloaded, it dissipates energy equal to the area of the hysteresis
loop shown in figure 5, given by

∆u = σ dε. (13)

The loss coefficient  η  is the energy loss per radian divided by the maximum elastic strain energy
(or the total vibrational energy):

η = ∆u
2π u

. (14)

The value of  η  usually depends on the frequency of cycling, the temperature, and the amplitude of
the applied stress or strain.

Other measures of damping include the proportional energy loss per cycle  D = ∆u/u,  the damping
ratio  ζ,  the logarithmic decrement  δ,  the loss angle  ψ, and the quality factor  Q  [7].  When
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damping is small (η < 0.01) and the system is excited near to resonance, these measures are related
by [7]:

η = D
2π

 = 2ζ = δ
π

 = tan ψ = 1
Q

. (15)

They are not equivalent when damping is large.

Figure 6 is a material property chart of the loss coefficient  η  at 30 ˚C, plotted against the Young’s
modulus E.  As a general rule, there is an inverse correlation between damping and modulus.
Dense ceramics, and highly alloyed metals, have low damping because the dislocations they
contain are strongly pinned.  A few metals show anomalously high damping because of internal
twinning (the Mn-Cu alloys, and perhaps magnesium).  Other materials have high damping
because they contain cracks which slide and dissipate energy due to friction (porous ceramics, cast
irons).  Polymers, when above their glass temperatures, show exceptionally high damping because
molecular chains can slide;  those below their glass temperature are still fairly lossy, because of the
relative ease with which side-groups on the molecular chains can rearrange.  This accounts for the
obvious inverse dependence of  η  on  E  for polymers in figure 6.  Indeed to a first approximation,
η  = 0.1/E,  with E in GPa.  (See Nashif et al [8] for further information about damping
mechanisms.)

Fig. 6 Loss coefficient  η  plotted against Young’s modulus E.
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2.4 Performance indices for materials to resist broad band inputs

Now consider the vibration of a component that is excited over a wide frequency range, so that
most of its response occurs around resonant frequencies, where damping is important.

Assume that the input  x  to the oscillator shown in figure 2a is stationary, random and broad–
band, given by the generalised mean square (‘power’) spectral density  Sx(ω), where

Sx(ω) = S0 ω
ω0

–k
. (16)

S0,  ω0  and  k  are constants, and  k  typically has a value greater than 2.

It is shown in the Appendix, that minimising the root mean square (RMS) deflection of the
machine  σy  requires maximising the objective function

g(ω1, ζ) = ζ ω1
k–1. (17)

where  ω1  is the first natural frequency of vibration, and  ζ  is the damping ratio which is assumed
to be the same for all natural modes.

Now the loss coefficient and damping ratio are related by  η = 2ζ  (equation 15) and the first
natural frequency  ω1  is proportional to the performance index for undamped vibration  Mu,  listed
for various cases in Table 1.  Thus the performance index for broad–band damped vibration is

Md = η Mu
k–1. (18)

The selection to maximise  Md  can be performed by plotting a materials selection chart with  log η
on the x–axis and  log Μu  on the y–axis, and then plotting a selection line of slope  1/(1–k).  The
concept is shown schematically in Figure 7.

Loss coefficient    log η

P
er

fo
rm

an
ce

 in
de

x 
fo

r 
un

da
m

pe
d 

vi
br

at
io

n

White
velocity

White
acceleration

Lower
frequency
content

Input spectrum

k = 2

k = 4

k = 6
–1/5

–1/3

–1

k = ∞

log Mu

'Passed'

'Failed'

Fig. 7 Schematic diagram of a materials selection chart for minimising the RMS deflection of a
component subject to an input with spectral density  S0(ω/ω0)−k.  The performance index
for undamped vibration  Mu  can be found in Table 1 for some standard cases.
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If k = 0, the spectrum of input displacement is constant, corresponding to a ‘white noise’ input.
This is generally not a practical case, because it implies infinite power input to the system.  If
k = 2, the spectrum of the input velocity is constant (or white), which just gives finite power.  In
this case the slope of the selection line (on the log–log plot) is –1.  For k > 2, the input becomes
more concentrated at low frequencies, and the selection line is less steep.  When  k → ∞,  the
selection line becomes horizontal and the selection task becomes one of choosing materials with the
highest value of  Μu,  exactly as for the undamped (sinusoidal input) case.  Plotting the selection
graph and performing the selection is difficult by hand, but straightforward using the CMS
software described in section 1.3.  A case study example follows.

2.5 Case study: materials for sub–nanometre displacement measuring devices

Figure 8 shows schematically, two precision measuring devices.  The micrometer on the left
illustrates the essential features of such a device:  an actuator, a sensor, and a stiff force loop which
supports the weight and provides a fixed reference.  The Atomic Force Microscope (AFM) on the
right has the same basic components (actuator, sensor, and force loop), however the sensor is a
microscopic cantilever with an atomically sharp tip that is scanned across the surface of the sample.
Deflection of the tip is measured by detecting the position of the reflected laser beam (sensor).  A
feedback control system maintains the deflection of the cantilever constant by moving the specimen
up and down with a piezo–electric crystal (actuator).  The signal controlling the crystal is therefore
related to the profile of the surface.  AFMs can achieve atomic resolution, better than 0.2nm [9].

We aim to choose materials for the frame (force loop) of the AFM.  Strength is not a limiting
factor, and the stiffness of the force loop is specified by functional constraints.  The two important
sources of error that we will consider in this paper are deflections of the force loop due to vibration
and distortion caused by temperature fluctuations and thermal gradients.

          

Piezoelectric
Translator

Sample

Cantilever and 
scanning tip

Laser Detector

Rigid frame

30 mm

(a) (b)

Fig. 8 A schematic diagram of two precision measuring devices.
(a)  Micrometer (b) Atomic Force Microscope.
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It is assumed that vibration of the force loop (frame) of the AFM is dominated by bending motion
and that it can be modelled as an Euler beam (or as a combination of beams).  In this case the
performance index for undamped vibration is therefore  Mu = M2

1 2  as defined by equations 9 and
10.  The power of  1/2  is retained because  ω1  is proportional to  M2

1 2  (see eq. 9 and Table 1).

The performance index for damped vibration of the AFM (from equation 18) is then:

M3 = η Mu
k–1 = η M2

(k–1) 2  =  η 
EφB

e 1 2

ρ

 (k–1) 2

. (19)

The spectral density of ambient vibration applied to the base of an AFM depends on many factors,
in particular the sources of excitation (eg traffic on nearby roads, human movement and machinery
in the building), vibration transmission paths through the building, and the foundation
characteristics of the instrument.  A reasonable assumption in the frequency range of interest
(supported by measurements in the Cavendish Laboratory in Cambridge) is that the foundation
vibrates with a ‘white velocity’ spectrum, (displacement proportional to ω–2).

A precision instrument like an AFM is normally mounted on an isolation table with a soft
suspension to isolate it from the ambient vibration.  If the suspension is undamped and well
designed, it (theoretically) behaves like a second order filter at high frequencies, in the range of
vibration of the AFM frame.  However, if any viscous damping is present in the suspension, to
prevent large amplitude excursions (at low frequencies), the isolation table behaves like a first
order filter at high frequencies.  In this case the magnitude of the transfer function between
foundation displacement and table displacement at high frequencies is  2ζsωs/ω, where  ζs  is the
damping ratio of the isolation table and  ωs  is its natural frequency.  This is a more realistic case
and will be assumed here.

The vibration spectrum input to the AFM at high frequencies can be calculated by combining the
ground vibration input spectrum with the square of the transfer function of the isolation table,
using random vibration theory (ie equation A1).

This gives:

Sx(ω) = S0 ω
ω0

–4
     ω >> ωs, (20)

where the value of  S0 ω0
4  depends on the ground vibration input spectrum, and the damping  ζs

and natural frequency  ωs  of the vibration isolation system.  It is concluded that a suitable value for
k in equation 16 is  k = 4.

A materials selection chart of  Mu  vs  η   is shown in figure 9.  The selection line has slope
1/(1–k) = –1/3, as required by equation 18.  Among the metals, magnesium and its alloys have
the best performance because of their high internal damping and relatively high values of  Mu.
Although beryllium has a very high value of  Mu  it has low damping and therefore does not
perform as well as magnesium.  Cast irons (CI) perform approximately as well as berylliums,
despite their low natural frequencies, because of their very high damping.  Another possible choice
is CFRP,  although it may be difficult to form into an accurate shape in this application.  Various
polymers have good vibration performance, however they would require components with large
cross sections to provide sufficient stiffness  S  (equation 11),  and are therefore unsuitable.  (The
thermal properties of polymers are also unsuitable, as shown in the next section.)
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Fig. 9 Materials selection chart from CMS for damped vibration of the AFM frame.  Among the
metals, magnesium and its alloys are the clear winners.

3 MATERIALS TO MINIMISE THERMAL DISTORTION

Consider next a second source of inaccuracy: that caused by thermal distortion.  In normal use, all
mechanical devices encounter heat inputs caused by power dissipation in electronics, by human
handling, thermal radiation and so on.  Corrections to cope with thermal expansion are
straightforward, provided the device is at a uniform temperature.  Thermal gradients are the real
problem: they cause a change of shape (distortion) of the device, for which compensation is not
possible.  Thus, in precision instrument design, it is permissible to allow expansion, provided
distortion does not occur [10].

3.1 Performance indices for materials to resist thermal distortion

The essential ideas are captured by the following simple model.  Consider a simply supported
beam of length  L  and thickness  h,  one face of which is exposed to a fluctuating heat flux of
intensity  q  (J/m2s), see figure 10.  The heat flux sets up a temperature gradient  dT/dy,  across
the beam.  If the period of the fluctuations in  q  is greater than the thermal response time of the
beam  h2/2a (where  a = λ/ρCp  is the thermal diffusivity,  λ  the thermal conductivity,  ρ  the
density and  Cp  is the specific heat capacity),  then a steady state is reached with a temperature
gradient given by Fourier’s Law:

q = – λdT
dy

. (21)
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Heat flux  q  (J/m  s) 2
y

To

λ, αh

L

u(x)

x dx

δ

Fig. 10 A simply supported beam with a heat flux incident on one surface.

The thermal strain is related to temperature by

ε = α (T0 – T), (22)

where  α   is the coefficient of thermal expansion and  T0  is the ambient temperature.  A
temperature gradient creates a strain-gradient  dε/dy  in the beam, causing it, if unconstrained, to
take up a constant curvature  Κ  such that:

K = d
2u

dx2
 = dε

dy
 = α dT

dy
 = α

λ
 q, (23)

where  u  is the transverse deflection of the beam.  Integrating along the beam, accounting for the
boundary conditions, gives the central deflection  δ:

δ = C2 L2 q α
λ

, (24)

where  C2  is a constant like  C1,  which depends only on the thermal loads and boundary
conditions.  For the simply supported beam in figure 10,  C2 = 1/8.  For a fluctuating heat
source, with amplitude ∆q:

∆δ = C2 L2  ∆q  α
λ

. (25)

Thus for a given geometry and heat input, the distortion is minimised by selecting materials with
large values of the performance index

M4 = λ
α

. (26)

Other geometries of heat flow and other beam boundary conditions change  C2,  but the
performance index  M4  remains the same.

3.2 Case study: materials for measuring devices

Figure 11 is a materials selection chart from CMS for selecting materials with high values of
M4 = λ/α.  It shows the thermal expansion coefficient  α  plotted against the thermal conductivity
λ.  The diagonal selection line has a slope of 1.0:  it corresponds to the condition

M4 = λ
α

 = 107   W/m.
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Materials below this line have values of  λ/α  greater than 107.  Among the metals, good choices
are: aluminium alloys, tungsten alloys, beryllium alloys, silver alloys and copper alloys.  Among
the ceramics, silicon, silicon carbide, tungsten carbide and particularly graphite and diamond have
very low thermal distortion.
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Fig. 11 The chart of thermal expansion against thermal conductivity, plotted by CMS, showing
the selection of materials to minimise thermal distortion.

Suppose a precision instrument was required for applications in which the vibration input was
below the first natural frequency of the structure, and that it was to be manufactured from solid
sections with a low value of the shape factor  φB

e
.  The best materials would then be those with high

values of  E1/2/ρ  (found from figure 1) and  λ/α   (found from figure 11).  Materials that perform
best for both of these criteria are ceramics like pure silicon, silicon carbide (SiC) and diamond.
Other possibilities are aluminium and beryllium alloys.  In his analysis of this problem, Chetwynd
[10] identified silicon as a good candidate material.  It has a relatively high value of performance
index  M4  and hence low thermal distortion.  It is also relatively light and stiff and has high
undamped natural frequencies.  Furthermore it is available as large, pure, single crystals from
which high quality components can be made.
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4 CONFLICTING DESIGN GOALS

4.1 Methodology

Any real design imposes requirements which conflict.  In the AFM example, the analyses above
led to two different performance indices (M3 and M4) and two different sets of candidate-materials
which minimise each sort of distortion separately.  If the vibrational input was strong and the
thermal one was weak, the designer might bias the choice towards members of the first set.  If the
opposite were true, then the bias might favour the second.  This sort of problem is common in
design, and is usually tackled by assigning arbitrary weighting factors which bias the choice
towards the goal which, in the designer's view, is the more critical for overall performance.  Such
arbitrary decisions are a weakness because different designers will make different choices.  The
following method avoids them.

The key is to find a single measure – a common ‘currency’, so to speak – in which both design
goals can be expressed.  In many design problems the measure is simply that of cost.  However,
for critical components it is often performance and not cost that counts.  Then a single measure of
performance must be sought.  We will illustrate the method by seeking the best material selection
for the AFM frame, using, as a common measure, the distortion caused by imposed vibrational and
thermal inputs.

4.2 Case study: materials for measuring devices

When the materials selection charts have logarithmic scales that span a wide range, it can be shown
that the total distortion is least when the contributions from the two forms of deformation are equal.
Equating the RMS vibrational distortion (equation A9) with the RMS thermal distortion* (equation
25) gives a coupling equation  which links the two performance indices.  For  ω1  from equation
9, with a1 = π2,  C1 = 48,  and  C2 = 1/8,  the result is:

M3 = 
25

L S3 1 4   
S0 ω0

4

∆q
2

  M4
2. (27)

The first bracket contains functional constraints, which are prescribed by the design, and the
second bracket contains a relationship between the two inputs  ∆q  and  S0 ω0

4.  The best choice of
material is now the one which maximises the two indices  M3  and  M4,  and which also satisfies
this equation.  Thus it depends on the relative magnitudes of the two inputs.

Taking logs of equation 27 gives

log10 M3  =  2 log10 M4  +  log10  25

L S3 1 4
  
S0 ω0

4

∆q
2

. (28)

Figure 12 shows a materials selection chart generated by CMS, with  M4  plotted on the x-axis and
M3  on the y-axis.  In order to choose the best material for a particular design, it is necessary to
specify values for the input excitations  ∆q  and  S0 ω0

4, and for the beam length  L and design
stiffness  S,  and then to plot a line of slope 2 corresponding to equation 28 for these values.  The
set of parallel dashed lines on the chart correspond to equation 28, plotted for various values of the
bracketted term.  Two selection examples follow.

*   A factor of 1 2 has been introduced to convert the amplitude of thermal distortion into an RMS value, assuming
a sinusoidal input of amplitude  ∆q.  A more accurate analysis could be performed if necessary, assuming a spectrum
or Fourier series of thermal input.
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If the thermal input  ∆q  is large and the vibration input  S0 ω0
4  is small, then equation 28 plots as a

line towards the right of the chart, like line A–A.  The best materials are then the ones furthest
along this line, which fall into the box labelled Selection 1.  These materials have high values of
M4  and intermediate values of  M3.  Graphite, and tungsten (W) alloys have the best performance
(approximately equal), and molybdenum (Mo) alloys also perform well.

Conversely if  S0 ω0
4  is large and  ∆q  is small, equation 28 plots as a line like B–B, nearer the left

of the chart.  The best materials are then the ones furthest along this line, which fall into the box
labelled Selection 2.  These materials have high values of  M3  and intermediate values of  M4.
The best choice is clearly magnesium and its alloys, with  CFRP uniply  following close behind.
Cast iron and beryllium alloys have approximately equal performance (although significantly
different cost), and mild steel is also a reasonable choice.

Note that when the vibration input is considered to be broad–band, as in this example, pure silicon
is no longer a good choice, because it has very low damping (η ≈ 10–5 in figure 9), and hence a
low value of performance index  M3.  It does not enter into either of the selection boxes shown in
figure 12.
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5 CONCLUSIONS

A procedure with several novel features has been developed for selecting materials for components
requiring low thermal distortion and low vibration.

(i) The procedure uses a novel display, the Materials Selection Chart, in conjunction with
Performance Indices for selecting materials with optimum properties and shape.  It has
been implemented in an interactive computer program.

(ii) Performance indices have been developed for a number of standard design cases:  for
systems subjected to low frequency vibrational input and subject to broad–band vibration
input;  and for systems subject to thermal fluctuations.  Vibrational distortion is minimised
by maximising the lowest natural frequency of the component,  or a combination of the
lowest natural frequency and the loss coefficient.  Thermal distortion is minimised by
maximising a combination of thermal properties.

(iii) More sophisticated selections can be performed to trade–off apparently conflicting design
goals, by expressing the selection criteria in terms of a common ‘currency’, in this case
distortion of the instrument.  Some surprising material choices result.
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APPENDIX:  PERFORMANCE INDICES FOR BROAD–BAND VIBRATION

The spectral density  Sy(ω)  of the response of an oscillator to the ergodic random input  Sx(ω)  is
given by the standard input/output relationship [11]:

Sy(ω) = H(ω) 2Sx(ω). (A1)

The mean–square output  σy
2  (square of the standard deviation) is found by integrating the output

spectral density over all frequencies:

σy
2 =  Sy(ω)  dω

0

∞
  =  H(iω) 2 Sx(ω)  dω

0

∞
.

(A2)

The area under each resonant peak of the output spectrum  Sy(ω)  is approximately

Peak value
of H(ωn)

2
 Average value of Sx(ω)

in the region of ωn
  Mean square

bandwidth
,

where the ‘mean square bandwidth’ is  πζnωn  [11].  Thus the integral can be approximated by a
summation over all of the natural modes:

σy
2  ≈  H(ωn)2  Sx(ωn)   πζnωn∑

n = 1

∞
. (A3)

In order to perform this summation, it is helpful to make the following simplifications.

(i) When  ω = ω1, equation 4 gives  |H(ω1)| = 1/2ζ1.  It is straightforward to show that the
same result holds for all natural modes in a multi–mode system.  Therefore,

H(ωn) = 1
2 ζn

,            n = 1, 2, 3, . . . (A4)

(ii) In the absence of detailed information about the variation of damping with frequency for all
materials of interest, it is necessary to assume that all modes have the same damping ratio:

ζn = ζ,    for all n. (A5)

This is a crude simplification.  More accurate expressions could easily be included to
account for the variation of damping with frequency, if such data was available.

(iii) For simple continuous systems, the frequencies of the second and higher natural modes of
vibration can normally be written in terms of the first natural frequency  ω1.  We introduce
the function  f(n),  where

ωn = f(n) ω1. (A6)

For example, for flexural vibration of beams, equations 6 and 7 give f(n) = n2.

Substituting equations  A4–A6  and  16  into equation  A3  gives

σy
2  ≈  

π S0 ω0
k

4
 1

ζ ω1
k–1

 f(n)1–k∑
n = 1

∞
(A7)
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The mean square output  σy
2
  will be finite, providing the summation in equation A7 converges.

The conditions for this convergence cannot be defined for the general case, however for the simply
supported beam, for which  f(n) = n2,  the summation will converge providing  2(1–k) < –1,
ie k > 1.5.†  For axial or torsional vibration of rods with ‘clamped-clamped’ or ‘free-free’ end
supports, or for transverse vibrations of strings;  f(n) = n.  In this case the convergence condition
is  (1–k) < –1, ie k > 2.

Providing the summation converges, the mean square displacement calculated from equation  A7
is proportional to 1/ζω1

(k–1).  Therefore the root mean square (RMS) relative displacement  σy, can
be minimised by maximising the objective function

g(ω1, ζ) = ζω1
k–1. (A8)

The AFM is assumed to be a beam with  f(n) = n2, subject to an input spectrum with  k = 4.
The summation in equation A7 is then close to  1.0,  and equation A7 becomes:

σy ≈  
πS0 ω0

4

4ζ ω1
3

1 2

. (A9)

†  Note that for broad–band seismic input, the average kinetic energy of the foundation is proportional to the mean–
square velocity.  For this energy to be finite, it is necessary for k to be in the range k ≥ 2.


