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Maternal and fetal T cells in term pregnancy and preterm labor
Derek Miller 1,2, Meyer Gershater1,2, Rebecca Slutsky1, Roberto Romero 1,3,4,5,6,7 and Nardhy Gomez-Lopez 1,2,8

Pregnancy is a state of immunological balance during which the mother and the developing fetus must tolerate each other while

maintaining sufficient immunocompetence to ward off potential threats. The site of closest contact between the mother and fetus is

the decidua, which represents the maternal–fetal interface. Many of the immune cell subsets present at the maternal–fetal interface

have been well described; however, the importance of the maternal T cells in this compartment during late gestation and its

complications, such as preterm labor and birth, has only recently been established. Moreover, pioneer and recent studies have

indicated that fetal T cells are activated in different subsets of preterm labor and may elicit distinct inflammatory responses in the

amniotic cavity, leading to preterm birth. In this review, we describe the established and proposed roles for maternal T cells at the

maternal–fetal interface in normal term parturition, as well as the demonstrated contributions of such cells to the pathological process

of preterm labor and birth. We also summarize the current knowledge of and proposed roles for fetal T cells in the pathophysiology of

the preterm labor syndrome. It is our hope that this review provides a solid conceptual framework highlighting the importance of

maternal and fetal T cells in late gestation and catalyzes new research questions that can further scientific understanding of these cells

and their role in preterm labor and birth, the leading cause of neonatal mortality and morbidity worldwide.
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INTRODUCTION
Pregnancy, a state in which the mother must maintain a
synergetic relationship with the developing fetus, depends on
constant, effective crosstalk between these two genetically
dissimilar individuals.1–12 Thus, pregnancy represents a complex
state of balance in which the maternal immune system must
tolerate the fetus3,13–17 (and vice versa18–21) and concurrently
maintain a certain level of immunocompetence to protect against
potential threats.22–24 In particular, such distinction necessitates
systemic and local immune interactions throughout pregnancy, in
which the most intimate site of contact is the maternal–fetal
interface (i.e., decidua).25,26 In humans, the maternal–fetal inter-
face comprises the decidualized endometrium, named according
to the specific adjacent maternal and fetal tissues: the decidua
basalis forms the junction between the uterine endometrium and
the placenta, and the decidua parietalis connects the fetal
membranes to the uterine wall.26,27 Together, these two unique
tissues form the site of specific mechanisms through which
maternal and fetal immunity are bridged to promote the
maintenance of pregnancy.12,22,25,28–32

The cellular immune repertoire of the maternal–fetal interface
comprises numerous innate subsets, including natural killer (NK)
cells33–40 and macrophages41–47 as well as adaptive immune cells
such as effector T cells,48–56 regulatory T cells (Tregs),3,45,57–60 and
a fraction of B cells,38,39,49,61–64 all of which vary throughout

gestation.65–68 Cell types that bridge innate and adaptive immune
responses, such as invariant NK T cells (iNKT cells)69–71 and innate
lymphoid cells (ILCs)67,72–75 have also been described at the
maternal–fetal interface. Each of these subsets performs specific
roles throughout pregnancy such as supporting placental
development,35,68,76 maintaining maternal–fetal tolerance,1–12,45

and participating in the inflammatory processes that accompany
labor.46,49,55,64,70,77–82 Consequently, a disruption of these different
immune cell subsets is often associated with adverse pregnancy
outcome.22,31,68,83 In particular, the premature influx of activated
effector T cells55,84–87 or alterations in the functions or proportions
of Tregs88–93 in the decidual tissues have been associated with
pregnancy complications. Thus, a clearer understanding of the
roles that maternal T cells play at the maternal–fetal interface in
late gestation, as well as in the physiological and pathological
processes of labor, is warranted.
To further explore the cellular immune repertoire of the

maternal–fetal interface, recent cutting-edge molecular surveys
utilizing next-generation sequencing technologies have provided
a deep characterization of the many leukocyte subsets present in
the decidual tissues as well as their interaction networks.94–98

Importantly, placental and decidual cell type-specific gene
signatures can be monitored in the maternal circulation, providing
a noninvasive means of evaluating maternal–fetal crosstalk.95,98

Pertinent to the topic discussed herein, we have shown that
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activated T cell-specific transcriptional signatures derived from the
maternal–fetal interface are modulated during pregnancy, in term
labor, and in preterm labor.98–100 This evidence further supports a
role for maternal T cells in normal and complicated pregnancies.
Fetal immunity must also be considered in the context of

pregnancy and its complications, as the fetus displays an
established and functional T-cell repertoire beginning early in
gestation.18,101–103 Indeed, pioneer studies showed that the fetal
immune system is activated during the onset of preterm labor,
which precedes preterm birth.104,105 Recently, this concept has
been revisited to establish the contribution of fetal T cells to
preterm labor and birth as well as to elucidate the stimuli that
might drive such fetal T-cell activation;21,106 however, additional
investigation is required in this research area.
In this review, we highlight the established and proposed roles

for maternal T cells at the maternal–fetal interface in the process
of normal parturition at term. Moreover, we describe the known
contributions of maternal T cells to the pathological process of
preterm labor and birth. Finally, we summarize current knowledge
on the presence and functional status of fetal T cells in the context
of preterm labor and birth. We aim to provide a clear summary of
the importance of both maternal and fetal T cells in the
mechanisms of physiological and pathological parturition, which
can shed light on the gaps in knowledge that still remain in order
to guide future research.

MATERNAL T CELLS AT THE MATERNAL–FETAL INTERFACE
Generally speaking, naïve T cells (TN) are present in the circulation,
awaiting presentation of their cognate antigen by dendritic cells in
secondary lymphoid tissues,107 after which the T cells will
proliferate and differentiate to carry out effector functions.108

Once the threat has been cleared, a fraction of antigen-specific
T cells will persist in the circulation as memory T cells to provide
more rapid responses should the same antigen be detected
again.108 Memory T cells can be further divided into central (TCM),
effector (TEM), and terminally differentiated effector memory
(TEMRA) T cells based on immediate or latent function and the
expression of migratory homing receptors.108 In addition, CD4+
T cells (and CD8+ T cells, to some extent) can differentiate
into one of several effector subsets including T helper type 1 (Th1),
Th2, Th9, and Th17 cells based on the surrounding
microenvironment.108,109 Various reports described below have
indicated the participation of multiple T-cell subsets in both the
normal physiological processes of pregnancy and in its complica-
tions such as preterm labor and birth.
Conventional effector T cells had typically been considered a

relatively minor component of the cellular immune repertoire at
the maternal–fetal interface prior to term parturition, with their
increased presence or activation indicating inflammation-related
pregnancy pathologies. Indeed, early reports indicated that
suppressive mechanisms exist in the decidua that are targeted
specifically toward IL-2-dependent cells,110 likely to be driven at
least partially by Tregs. Seminal studies have shown that tissue-
specific gene silencing mechanisms exist to prevent uncontrolled
invasion of effector T cells into the decidua during early
pregnancy, thereby preventing premature fetal loss.111 Thus,
together with the presence of Tregs and other homeostatic cells
such as macrophages,41–46 the decidual tissues represent a tightly
controlled microenvironment. More recently, we and others
showed that a proportion of the maternal T cells found at the
maternal–fetal interface display an exhausted or dysfunctional
phenotype at term pregnancy,24,82 demonstrating other mechan-
isms in which effector T cells are precluded from disrupting
normal gestation, which is further described below.
In addition to the abovementioned mechanisms of regulation,

the fetal tissues themselves contribute to the modulation of the
maternal immune environment through the expression of specific

HLA antigens, most notably HLA-G.112 First described as being
solely expressed by extravillous trophoblast cells,113–115 soluble
isoforms of this protein are found in the placenta, chorion,
decidua, and even maternal blood during pregnancy.116 HLA-G
interacts with several members of the immunoglobulin-like
transcript (ILT) receptor family117–121 [now termed leukocyte Ig-
like receptor subfamily B (LILRB)122] that are expressed by multiple
subsets of immune cells,117,123 including T cells.124–128 LILRB
receptors exhibit immunosuppressive behavior upon their activa-
tion and have thus been considered as immune checkpoints for
T cells.129 Accordingly, studies have indicated that the interaction
of fetal HLA-G with maternal T cells may promote a more tolerant
state.130–135 On the other hand, several studies have suggested
that altered levels of HLA-G at the maternal–fetal interface or in
the maternal circulation could be associated with adverse
pregnancy outcomes including preterm birth,136–140 and increased
concentrations of soluble HLA-G have been detected in amniotic
fluid of women with intra-amniotic infection.141 Yet, the participa-
tion of HLA-G in adverse pregnancy outcomes remains
unclear.142,143 Interestingly, HLA-G expression may not be
exclusive to fetal tissues during pregnancy, as recent reports
have shown that subsets of immunosuppressive regulatory-like
T cells can express HLA-G themselves144–146 or in some cases can
acquire the expression of this molecule through trogocytosis from
antigen presenting cells (APCs).147,148 The investigation of whether
the latter method of HLA-G “transfer” from APCs to T cells occurs
during pregnancy could provide important insight into the
mechanisms of maternal–fetal tolerance during this critical period.

T cells at the maternal–fetal interface in term pregnancy
As the end of gestation approaches, conventional T cells
constitute an obvious proportion of the immune cellular repertoire
at the maternal–fetal interface.48,51,55,62,78,79,81,98,149 A comparative
immunohistochemistry-based study reported that the proportion
of CD45+CD3+ cells was significantly increased in the human
term decidua compared to that in the first trimester, and such an
increase was reflected by the elevated numbers of T cells
expressing CD4, CD8, TCRαβ, or TCRγδ,48 suggesting that a
general increase in decidual T cells occurs in late pregnancy. The
comparison of specific T-cell subsets between the two main
sites of the maternal–fetal interface at term indicated that
the frequencies of TCRγδ+ and CD8+ T cells were greater in
the decidua parietalis versus the decidua basalis, whereas the
opposite was true for CD4+ T cells.62 In addition to the above
observations, several studies have also indirectly confirmed the
presence of conventional T cells at the maternal–fetal interface
using immunofluorescence microscopy150 or immunophenotyp-
ing151 to detect CD4+ and CD8+ T cells in the murine placenta
during late pregnancy. These studies indicate that T cells are
residents of the maternal–fetal interface in term pregnancy, even
before the onset of labor, the coordinated timing of which is
critical.
The migration of conventional T cells to the maternal–fetal

interface prior to term parturition is controlled at least partially
through tissue-specific mechanisms: a series of studies revealed
that T-cell chemotactic pathways were upregulated in the
decidual tissues from cases of term labor.78–80 Moreover, decidual
T cells express activation markers such as CD38 and CD69 at term
pregnancy,149 diminishing the possibility of such cells being mere
bystanders at the maternal–fetal interface. More recently, in
support of the previously described general residence of T cells at
the maternal–fetal interface, high-dimensional immunophenotyp-
ing studies showed that term decidual tissues host a hetero-
geneous population of CD4+ and CD8+ TN, TCM, and TEM
subsets.55 In addition, decidual effector T cells expressed
enhanced levels of effector molecules such as perforin and
granzyme B, cytotoxic molecules that function in a cooperative
manner to perforate the target cell membrane and initiate
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apoptosis,152 in women who underwent the physiological process
of labor at term.55 This suggests that T-cell activation at the
maternal–fetal interface is an intrinsic mechanism associated with
the inflammatory process of labor at term, which is in line with
in vitro observations showing that the stimulation of decidual
T cells results in upregulation of perforin and granzymes.24 Single-
cell analyses of the maternal–fetal interface complemented these
prior studies by showing upregulation of the cell signature specific
to activated T cells in the decidua basalis in cases of term labor
compared to term deliveries without labor.98 Together, these data
support a role for activated effector maternal T cells at the
maternal–fetal interface in physiological parturition at term.

Effector T cells at the maternal–fetal interface in preterm labor and
birth
As the presence of functional maternal effector T cells at the
maternal–fetal interface is amplified toward the end of pregnancy, a
premature increase in the frequency and/or activation of such cells
has thus been associated with pathological pregnancy outcomes
such as preterm labor and birth. Initial studies established that the
invasion of cytotoxic T cells into the decidual tissues, a placental
lesion classified as chronic histological chorioamnionitis, can occur
in a subset of term deliveries but is more frequently observed in
cases of preterm labor and birth, preterm prelabor rupture of
membranes (pPROM), and fetal death.84–86 Such associations have
been confirmed using flow cytometry55 and single-cell transcrip-
tomic98 approaches to demonstrate the increased presence of
effector and activated T cells at the maternal–fetal interface of
women with preterm labor and birth. Indeed, these pathological
cases are characterized by an influx of TEM expressing perforin and
granzyme B into the maternal–fetal interface, which is even greater
than that observed in labor at term.55 Further, murine studies have
established that the systemic activation of T cells through the
administration of an anti-CD3 antibody is sufficient to induce
preterm birth55,87 through inflammatory mechanisms that are
distinct from those observed in conventional models of preterm
birth [e.g., administration of endotoxin (LPS) or progesterone
receptor antagonist (RU486)].55 Together, these observations have
caused a paradigm shift in regard to how the adaptive immune
system is viewed in the context of pregnancy complications.
IL-17-producing T cells were shown to be present at

the maternal–fetal interface in early pregnancy,153–157 and a
disruption of the balance between Th17 cells and Tregs has
been implicated in early pregnancy complications (e.g., sponta-
neous abortion).158–164 Yet, studies have also suggested that Th17
cells are implicated in late pregnancy disorders such as
preeclampsia162,165–170 or preterm labor.171 Cases of preterm labor
with chronic inflammation of the placenta showed higher amounts
of IL-17 at the maternal–fetal interface and in amniotic fluid
compared to preterm labor cases without this lesion, which may be
released by the Th17 cells infiltrating the chorioamniotic mem-
branes.171 Moreover, a recent transcriptomic study demonstrated
increased expression of Th1- and Th17-related genes together with
downregulation of Foxp3 at the maternal–fetal interface of women
with preterm labor and pPROM.172 Together, these findings provide
a possible link between dysregulated Th17 responses and preterm
labor and birth.
Besides dedicated adaptive lymphocytes such as T cells, cells that

bridge innate and adaptive immunity [e.g., iNKT cells (discussed
below) and ILCs (reviewed in ref. 67)] are also present at the
maternal–fetal interface in early and late gestation.173,174 Pregnant
mice deficient in iNKT cells were less susceptible to endotoxin-
induced preterm birth, indicating that iNKT-cell activation could be
detrimental to pregnancy outcomes.69,175 Accordingly, the systemic
activation of iNKT cells using α-galactosylceramide resulted in
preterm delivery and increased neonatal mortality.70 Such systemic
activation of iNKT cells resulted in their expansion at the
maternal–fetal interface as well as concomitant reductions in the

local numbers of total T cells and Tregs,71 suggesting an inverse
relationship between the Tregs and iNKT cells in this compartment.
Moreover, such expansion of iNKT cells at the maternal–fetal
interface was accompanied by increased numbers of Th17 cells.71 In
humans, transcriptomic analysis of decidual lymphocytes revealed
elevated expression of CD1d (an established iNKT-cell receptor) in
cases of preterm labor and birth compared to labor at term.39

Moreover, immunophenotyping consistently revealed an increased
proportion of activated iNKT-like cells in the decidual basalis of
women with preterm labor and birth.70 Given that iNKT cells are
present at the murine maternal–fetal interface throughout preg-
nancy, further investigation of this unique decidual subset is
required to establish the different roles of iNKT cells in early and late
gestation.

Exhausted and senescent T cells at the maternal–fetal interface
during pregnancy
Several physiological mechanisms exist to reduce the severity of
effector T-cell functions in situations where such responses may
cause more harm than good. Prime examples of these mechan-
isms include T-cell suppression and the more recently described
phenomena of T-cell exhaustion and senescence.176,177 Although
the endpoints of T-cell exhaustion and senescence are similar (i.e.,
the control of effector T-cell responses), these two cell fates have
been demonstrated to be distinct176 and are the topic of current
investigation.178–181

T-cell exhaustion typically occurs in the context of chronic antigen
exposure/stimulation that results in a progressive loss of function
accompanied by upregulated expression of multiple inhibitory
receptors such as TIM-3, PD-1, CTLA-4, and LAG-3.182–184 Clinically,
this phenomenon has been described in the context of chronic viral
infections and cancers;182–185 yet, recent reports have suggested
that this process occurs in pregnancy as well.24,52,82

In contrast to exhaustion, senescent T cells maintain effector
functions in the absence of inhibitory receptor expression while
losing the ability to proliferate,176 thus reaching a terminal state.
Senescence is indicated by the upregulation of markers such as
CD57, KLRG-1, and CD45RA together with the downregulation of
CD27 and CD28.186–190 Among T cells, recent studies have indicated
that the TEMRA subset is at least partially comprised of senescent
T cells based on phenotypic and functional data.191 To date, few
reports have investigated the presence of senescent T cells during
pregnancy,82 evidence that is further discussed below.
Animal studies have revealed that the decidua hosts a

population of CD8+PD-1+TIM-3+ T cells in early and mid-
pregnancy that display enhanced inflammatory capacity upon
blockade of either inhibitory marker.52 In addition, the in vivo
blockade of PD-1 or TIM-3 resulted in increased rates of fetal loss,
indicating that the expression of inhibitory receptors is important
for pregnancy maintenance.52 This was further supported by the
observation that CD8+PD-1+TIM-3+ T cells were impaired in
decidual tissues from women with miscarriage.52 In the third
trimester, decidual cytotoxic T cells expressed a transcriptomic
signature indicative of a combination of dysfunction and
activation that could be reversed by in vitro stimulation,24 and
detailed immunophenotypic analysis revealed that a large
proportion of CD4+ and CD8+ TEM expressed an exhausted-like
PD-1+TIM-3+ phenotype at the maternal–fetal interface.82

Notably, the proportion of exhausted CD4+ T cells in the decidua
parietalis increased with advancing gestational age,82 suggesting
that the prolonged exposure to antigens (fetal, microbial, or even
self) that occurs during pregnancy necessitates increasing
regulation of these cells to avoid aberrant T-cell activation. The
process of physiological labor affected exhausted T cells in the
decidua basalis and decidua parietalis differently, as a significant
reduction in the proportions of exhausted CD4+ and CD8+ T cells
was observed in the decidua basalis of women who underwent
term parturition compared to non-labor controls.82 These studies
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confirm that T-cell exhaustion is a physiological phenomenon at
the maternal–fetal interface in late gestation; yet, further
investigation into the clinical implications of exacerbated T-cell
exhaustion in term gestation (delayed parturition, prolonged
labor, dystocia, etc.) is needed. In line with this concept, a recent
report showed that mice of advanced maternal age undergo
prolonged labor and dystocia that is associated with a reduced
number of pro-inflammatory T cells at the maternal–fetal inter-
face; yet, the exhausted phenotype of such cells was not
investigated.192

Besides exhaustion, a fraction of T cells at the maternal–fetal
interface was shown to express surface markers consistent with a
senescent phenotype (KLRG-1 and CD57) in late gestation.82

Among both CD4+ and CD8+ populations, a large proportion of
senescent T cells was of the TEMRA subset,82 which is in line with
previous reports.191 Unlike their exhausted counterparts, senes-
cent T cells at the maternal–fetal interface did not significantly
vary with gestational age or with the presence of labor.82 Taken
together, these findings suggest that both exhaustion and
senescence play a role in regulating the function of effector
T cells at the maternal–fetal interface, which future mechanistic
studies may demonstrate.

Exhausted and senescent T cells at the maternal–fetal interface in
preterm labor and birth
Mechanistic studies demonstrated that the blockade of PD-1 and
TIM-3 in early to mid-pregnancy results in fetal loss.52 However,
whether a reduction in the number or function of these cells is
associated with late pregnancy complications such as preterm
labor and birth is still unclear. Among women with preterm labor
and birth, those with acute inflammatory lesions of the placenta
displayed reduced proportions of exhausted T cells in the decidua
basalis.82 These observations suggest that, although T-cell
exhaustion is a physiological process in late gestation, adverse
events such as pathological inflammation can reactivate these
cells. Such a concept is supported by the fact that the in vitro
stimulation of exhausted decidual T cells results in the restoration
of effector functions.24,82

Investigation focused on senescent T cells is relevant to
pregnancy complications given that the process of decidual
senescence has been proposed as a new mechanism of disease for
preterm labor and birth (reviewed in refs. 193,194). In line with this
concept, the presence of acute placental inflammation in preterm
gestations, but not at term, was associated with a significantly
reduced proportion of senescent T cells in the decidua basalis.82

Senescence has been demonstrated to be reversible in T cells
in vitro;195–198 thus, it is possible that the pathological inflamma-
tion accompanying specific subsets of preterm labor cases will
cause reversal of senescent T cells in the decidual tissues, further
propagating inflammation.
Collectively, these studies suggest that the inflammatory

responses accompanying preterm labor may reactivate exhausted
and senescent T cells at the maternal–fetal interface, leading to an
aberrant effector T-cell response that can trigger preterm labor
and birth. However, further investigation into how the various
etiologies of preterm labor differentially affect exhausted and/or
senescent T cells at the maternal–fetal interface is warranted in
order to find novel strategies to prevent the adverse neonatal
outcomes associated with this syndrome.

Regulatory T cells at the maternal–fetal interface during
pregnancy
Regulatory T cells (Tregs) are well known for their critical functions in
preventing autoimmunity, driving successful transplantation, and
modulating tumor–immune interactions (reviewed in refs. 199,200).
Importantly, Tregs are also highly relevant for maternal–fetal
tolerance.1–12,45,57–60 Regulatory T cells are classically described as
CD4+CD25+Foxp3+ cells that display potent immunosuppressive

functions.200 In particular, expression of the transcription factor
Foxp3 is essential for the development, differentiation, and
suppressive function of Tregs, and is thus a key phenotypic marker
for the identification of such cells.201–204 Regulatory T cells are
further subdivided into thymic/natural Tregs and peripheral/induced
Tregs, which arise through different developmental processes.205,206

Natural Tregs are thought to be mainly involved in the control of
autoimmune responses,207–209 while peripheral Tregs appear to be
significant in mucosal immunity,210–214 including maternal–fetal
tolerance.8,9,215–217 Regulatory T cells exert their suppressive function
primarily by direct cell-cell interactions and through the release of
anti-inflammatory cytokines such as IL-10,218,219 TGFβ,220,221 and IL-
35.222 Such regulatory functions are especially critical for pregnancy
establishment and maintenance, as the systemic depletion of Tregs
prior to implantation or in early gestation leads to implantation
failure or pregnancy loss.4,6–9,223–225 Yet, due to their importance in
the establishment and maintenance of maternal–fetal tolerance, few
studies have investigated the function of Tregs at the maternal–fetal
interface in the third trimester of pregnancy, a central period for the
onset of obstetrical disease.226

A role for decidual Tregs late in term gestation was first suggested
when it was found that the proportions of CD3+CD4+CD25+ T cells
in the decidua basalis and decidua parietalis were reduced in
women with spontaneous term labor compared to those with term
cesarean sections.49 The authors proposed that this subset may
include decidual Tregs that “disappeared” prior to the onset of
labor.49 A later study further investigated the CD4+CD25bright and
CD4+CD25dim populations in decidual tissues from the second
trimester and term deliveries (both cesarean section and vaginal),
and showed that these populations did not change with the length
of gestation.50 Subsequently, the same CD4+CD25+ population was
further characterized by the expression of Foxp3 and other cellular
markers associated with Tregs, revealing that the CD4+CD25bright
decidual population was largely composed of Tregs with high
proportions of Foxp3, CTLA-4, and HLA-DR expression, whereas the
CD4+CD25dim population displayed an activated phenotype with
high percentages of CD69+ cells.227 Together, these studies
provided an initial overview of Tregs at the maternal–fetal interface
in normal term deliveries, prompting further discovery.
A subsequent in-depth investigation included decidual samples

from women undergoing cesarean section either without any signs
of labor, in early labor, or in advanced labor, and confirmed that
Tregs are present at the maternal–fetal interface at term.228 Notably,
the authors found that the proportions of decidual Tregs declined
as labor progressed, suggesting that the process of labor is
associated with alterations in Treg populations at the maternal–fetal
interface.228 A recent report described three distinct Treg subsets in
the decidua defined by the high expression of CD25, PD-1, or
TIGIT.60 The authors compared Treg populations in the decidua
basalis and decidua parietalis and showed that there are no
significant differences in Treg populations between these tissues,
although the proportions of the CD25+ and TIGIT+ Treg subsets
tended to be greater in the decidua parietalis.60 Moreover, the
ability of decidual Tregs to suppress CD4+ effector T-cell
proliferation was significantly reduced at term compared to those
from the first trimester decidua, suggesting that the functional
capacity of decidual Tregs declines, but is not completely reduced,
toward the end of gestation.60

Several investigations in mice have also consistently found a Treg
population in the decidual tissues prior to term delivery.229–231

Specifically, two of these reports investigating the anti-inflammatory
properties of vaginal progesterone229 or human chorionic gonado-
tropin (hCG)231 showed that both treatments significantly increased
the proportion of Tregs at the maternal–fetal interface in
the third week of murine pregnancy, suggesting that the observed
anti-inflammatory properties of these hormones were at least
partially due to modulation of immune cell populations in this
compartment (the immune modulatory functions of progesterone
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and hCG during pregnancy have recently been reviewed in
refs. 232,233). Together, human and animal studies support the
presence and functionality of Tregs at the maternal–fetal interface in
term gestations.

Is there a role for Tregs at the maternal–fetal interface in preterm
birth?
The importance of Tregs throughout gestation is underscored by
the fact that systemic and local alterations in these cells are
consistently observed in women with preeclampsia (as reviewed
in refs. 91,93), a clinical condition for which the only current
effective treatment is delivery of the placenta.234,235 Indeed,
animal studies have demonstrated a preeclamptic-like phenotype
resulting from the depletion of Tregs in early gestation.92 Such
alterations hold true in late pregnancy, as preeclampsia impacts
Treg numbers and function at the human maternal–fetal
interface.59,88,89,170,236 Importantly, preeclampsia can have adverse
effects on neonatal Treg populations, as evidenced by studies of
umbilical cord blood,237,238 further extending the negative
outcomes associated with this obstetric disease.
While dysfunctional or reduced Tregs have been implicated in

the pathogenesis of preeclampsia, which could secondarily
result in preterm delivery, the concept that Tregs could directly
contribute to the onset of preterm labor has largely been
ignored. Yet, a pioneer study indicated that the depletion of
CD25+ cells in late pregnancy did not cause preterm birth.7

However, given that CD25 is a less specific marker for Tregs than
Foxp3,239–241 the question of whether alterations in the number
or function of decidual Tregs are implicated in the onset of
preterm labor is still unclear. Importantly, human and murine
data from our laboratory show that Tregs play a central role in
the pathophysiology of preterm labor and birth as well as in
neonatal well-being, highlighting the importance of these
regulatory cells in the last period of pregnancy (Gomez-Lopez
N, 2020, unpublished data).

FETAL T CELLS DURING PREGNANCY AND PRETERM LABOR
Fetal T cells during early and mid-pregnancy
The fetal immune system is exposed to maternal antigens, thus
necessitating the development of a tolerogenic state to avoid any
potential adverse reactions.18–21 Accordingly, the cellular immu-
nity of the fetus undergoes continuous development, in some
cases starting as early as 6 weeks of gestation.18–20,101–103 Notably,
maternal microchimerism (i.e., the presence of maternal cells in
fetal circulation,242–244 which can persist long after delivery245),
drives the induction of fetal Tregs that serve to suppress immune
responses against maternal antigens.18,101 Indeed, the large naïve
T-cell populations found in the fetus are predisposed to
differentiate into Tregs when exposed to maternal antigens, likely
driven by the enhanced TGFβ signaling.246 Genetic surveys of fetal
naïve T cells showed that multiple epigenetic and transcriptional
programs are expressed, similar to those expressed by committed
Tregs, confirming this underlying predisposition for naïve T-cell
differentiation into Tregs in the fetus.247 The transcription factor
Helios was demonstrated to be important for such fetal-specific
predisposition, as the ablation of this molecule reduced the
expression of genes associated with immunosuppression and
increased that of inflammatory mediators.247

Recent studies have made the remarkable observation that fetal
T cells display a memory phenotype as early as in the first
trimester.102,103 Single-cell and mass cytometry surveys of the first
trimester fetal intestine described multiple CD4+ T-cell subsets
with a memory-like gene expression profile.102 Moreover, TCR
analysis and imaging cytometry revealed CD4+ T-cell clonal
expansion and localization with APCs in the fetal intestinal tissues,
suggestive of exposure to foreign antigens.102 Another report
identified effector memory CD4+ T cells with a PLZF+CD161+

phenotype that displayed effector functions (such as IFNγ
production) in the fetal intestine, and such cells were enriched
in the cord blood of infants with gastroschisis.103 Moreover, new
evidence suggests that, in a limited number of cases, viable
bacteria in the fetal intestine at mid-gestation modulate the
activation of fetal T cells;248 yet, there is no consistent evidence
for a fetal microbiome in late gestation.249 Together, these
studies demonstrate the presence and functionality of antigen-
experienced fetal T cells during early and mid-pregnancy.

Fetal T cells in preterm labor and birth
The participation of the fetal immune system in the pathogenesis
of preterm labor and birth was first indicated by a seminal study
showing enhanced activation of leukocytes in the umbilical cord
blood of fetuses who were ultimately delivered after preterm labor
compared to those who were delivered at term, even in the
absence of intra-amniotic infection.104 This study was unique in
that the cord blood sampling was performed prior to delivery
(obtained via cordocentesis), thus allowing for a rare view of
in vivo fetal immunity in humans.104 Importantly, this report also
gave rise to the concept that the fetus itself was responding to
foreign antigens, including those derived from microbes in the
context of intra-amniotic infection-associated preterm labor.105

More recently, the concept that the fetal immune system
participates in the host defense mechanisms against microbial
invasion of the amniotic cavity was further expanded by showing
that women with intra-amniotic infection have abundant innate
and adaptive immune cells that are highly functional in amniotic
fluid, including T cells.250–256

In recent times, the concept that the fetus responds to maternal
alloantigens was revisited by implementing a multifaceted
approach that combined human samples (umbilical cord blood
obtained at the time of delivery) and animal models.21 This study
demonstrated that not only does the cord blood of preterm
neonates contain a significant fraction of functional central memory
Th1 cells that is largely absent in term neonates, but such T cells
also specifically respond to maternal alloantigens in vitro.21 Yet,
given the fact that some of these neonates were born to women
who presented with pPROM (a clinical condition highly associated
with intra-amniotic infection257,258), whether a subset of these
neonatal T cells were activated against microbes and/or their
products should also be considered. These preterm neonatal T cells
also induced myometrial contractility in vitro through the release of
Th1 cytokines.21 Finally, the adoptive transfer of activated T cells
into murine fetuses resulted in pregnancy loss, providing in vivo
confirmation that the presence of activated T cells in the fetus is
associated with adverse pregnancy outcome. Similar phenomena
were observed in the context of placental malaria infection, in
which a large proportion of functional effector memory T cells was
found in the cord blood of infants born to infected mothers.259

These fetal T cells responded to malarial antigens in vitro and,
importantly, the strength of the proliferative response to such
antigens correlated with prospective protection from this infectious
disease during childhood.259 Each of these studies provided novel
contributions to the understanding of fetal adaptive immunity; yet,
both featured T cells that were isolated from the umbilical cord
blood, thus providing only indirect measurements of fetal T-cell
responses in utero.
In light of these limitations, a recent study investigated the

presence and role of fetal T cells in the amniotic cavity.106

Amniotic fluid, which is in direct contact with the fetus throughout
pregnancy, contains a notable fraction of immune cells.253

Multiple studies have established that neutrophils and monocytes
found in amniotic fluid in the context of local (i.e., intra-amniotic)
inflammation/infection are of fetal origin in preterm gesta-
tions.260–262 In addition, a recent report indicated that functional
ILCs of fetal origin are present in amniotic fluid in the absence
of intra-amniotic inflammation/infection.263 Amniotic fluid ILCs
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expressed a phenotype consistent with that of intra-epithelial
localization,263 which suggested that amniotic fluid lymphocytes
could originate directly from fetal tissues such as the intestine. In

line with these observations, we reported that T cells present in
amniotic fluid in preterm gestations are of fetal origin and express
surface markers such as CD103 and CD161 that are indicative of a

Fig. 1 Maternal T cells at the maternal–fetal interface in term pregnancy and preterm labor/birth. (Left panel) During normal pregnancy, a
suppressive microenvironment exists at the maternal–fetal interface to prevent aberrant maternal immune responses against foreign antigens.
This suppressive microenvironment is mainly driven by regulatory T cells and exhausted T cells. (Right panel) Preterm labor is accompanied by
inflammation at the maternal–fetal interface, which can be driven or exacerbated by the invasion of activated effector T cells that release pro-
inflammatory mediators such as perforin and granzyme B. Moreover, local inflammation may lead to the reactivation of exhausted T cells, restoring
effector functions such as the release of pro-inflammatory cytokines and thereby further propagating T-cell responses

Fig. 2 Fetal T cells in preterm labor subsets and term gestation. (Upper left panel) Intra-amniotic infection/inflammation-associated preterm
labor and birth are accompanied by the activation of conventional CD4+ and CD8+ T cells by microbial products, resulting in the release of
pro-inflammatory cytokines. (Upper right panel) A subset of idiopathic preterm labor cases (preterm labor occurring in the absence of clinical
intra-amniotic infection/inflammation) are associated with an increased number of activated fetal CD4+ T cells in amniotic fluid together with
elevated concentrations of T-cell cytokines. (Lower left panel) In term pregnancy, fetal immunity is skewed toward a tolerant state, as
evidenced by an elevated propensity for fetal naïve T cells to differentiate into regulatory T cells (Tregs). (Lower right panel) Fetal T cells in the
amniotic cavity express a phenotype similar to that of intra-epithelial lymphocytes in the intestines, suggesting that some T cells in this
compartment are derived from the mucosal organs that are in contact with amniotic fluid
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mucosal origin.106 Together, these studies provide evidence that
fetal T cells in the amniotic cavity are largely derived from the
mucosal tissues, thereby providing clues that can shape future
investigations of these cells.
A notable finding of the latter study was that, among the major

immune cell populations, only fetal CD4+ T cells were increased in
the amniotic fluid of women with preterm labor occurring in the
absence of a demonstrable clinical cause (intra-amniotic inflam-
mation/infection), which is commonly known as idiopathic
preterm labor.106 The influx of fetal CD4+ T cells into the amniotic
cavity was accompanied by modest increases in T-cell specific
cytokines, providing further evidence that some cases of
idiopathic preterm labor are accompanied by a mild and distinct
fetal T-cell response.106 This represents novel evidence that, in
cases of idiopathic preterm labor, fetal T-cell activation is not
directed against microbial antigens given that the patients
included in this study were confirmed to have no viable microbes
in the amniotic cavity.106 In support of these findings, umbilical
cord blood T cells from neonates born after idiopathic preterm
labor displayed enhanced in vitro functionality compared to those
from women who delivered at term.106 Finally, the ultrasound-
guided intra-amniotic injection of activated neonatal T cells
induced preterm birth in mice,106 providing a causal in vivo
demonstration of a new mechanism of disease for preterm labor
and birth, which is mediated by activated fetal T cells. Yet, it is
worth mentioning that the mechanisms leading to premature
activation of amniotic fluid fetal T cells in idiopathic preterm labor
require further exploration.

CONCLUSION
In summary, the maternal–fetal interface contains a diverse
population of maternal T cells at term, which includes effector
T cells, exhausted and senescent T cells, and Tregs. Maternal Tregs
may serve to prevent fetus-specific immune responses and control
the presence of effector T cells as well as prevent their premature
activation. Moreover, the presence of exhausted and senescent
T cells at the maternal–fetal interface indicates additional
safeguards that exist to further control T-cell responses. Failure
of such mechanisms, either through the excessive invasion of
effector T cells into the maternal–fetal interface or the dysfunction
or reduced presence of Tregs, may lead to the premature
activation of the common pathway of parturition resulting in
preterm birth (Fig. 1). Importantly, recent studies have now
provided firm evidence that fetal T cells, most likely derived from
the mucosal tissues, undergo premature activation in a subset of
preterm labor cases, most notably in cases that would otherwise
be considered idiopathic. Fetal T cells also participate in the host
immune defense mechanisms involved in the better-characterized
clinical scenario of intra-amniotic infection-associated preterm
labor (Fig. 2). Together, these findings implicate the fetus as an
entity that can contribute to adverse pregnancy outcome, thus
adding a new layer of complexity to the syndrome of preterm
labor. It is our hope that this review provides a solid conceptual
framework highlighting the importance of maternal and fetal
T cells in pregnancy and catalyzes new research questions that
can further scientific understanding of these cells and their role in
preterm labor and birth.
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