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I. Introduction

IN THEIR classic text published in 1948, Albright and Rei-
fenstein (1) noted the presentation of two young women

with idiopathic osteoporosis worsened by pregnancy, and
they recognized that significant maternal losses of skeletal
calcium could occur during both pregnancy and lactation.
They speculated that secondary hyperparathyroidism nor-
mally develops during pregnancy and lactation to resorb
calcium from bone, and they concluded that, in certain cases,
these skeletal calcium losses would cause a form of osteo-
porosis. Since that time, both pregnancy and lactation have
been described in various endocrinology texts as states of
“physiological, maternal hyperparathyroidism” (2, 3). How-
ever, this concept has not been supported by measurements
of PTH with newer, more reliable assays.

Although Albright and Reifenstein’s theory proved to be
incorrect, it is now evident that mineralization of the fetal
skeleton and continued skeletal growth in the infant both
mandate a series of hormone-mediated adjustments in ma-
ternal calcium metabolism during pregnancy and lactation,
respectively. These hormone-mediated adjustments nor-
mally satisfy the daily calcium needs of the fetus and infant
without long-term consequences to the maternal skeleton.
In addition, both fetal and neonatal calcium and bone me-
tabolism are uniquely adapted to meet the specific needs
of these developmental periods. The fetus must actively
transport sufficient calcium across the placenta to meet
the large demands of the rapidly mineralizing skeleton,
whereas the neonate must quickly adjust to loss of placental
calcium transport, while continuing to undergo rapid skel-
etal growth.

Here we review our present understanding of normal
human calcium and bone metabolism during pregnancy,
lactation, fetal development, and the neonatal period. We
shall also discuss the relevant pathophysiology and man-
agement of clinical disorders of calcium and bone metabo-
lism that can occur during these periods. Generally these
conditions are due to preexisting disease (e.g., hyperpara-
thyroidism) that is compounded by the alterations in calcium
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and bone metabolism naturally occurring during these re-
productive periods.

Although the focus of this review is on human calcium
physiology and pathophysiology, the animal literature will
be closely considered as well. Many of our models for ex-
plaining human physiology are based on these animal stud-
ies, particularly since ethical constraints generally prevent all
but observational studies from being performed during hu-
man pregnancy and fetal development. Where both human
and animal data are available, we will point out several
significant differences that have been found between the
animal and human data. These differences illustrate the dif-
ficulty of extrapolating from the animal models in the ab-
sence of human data.

The literature reviewed in this paper was obtained from
computerized searches of the MEDLINE database, manual
searches of Index Medicus before 1966, and the bibliographies
of individual articles and texts.

II. Maternal Physiology and Pathophysiology During
Pregnancy

A. Maternal adaptive goals during pregnancy

Measurements of calcium in ashed human abortuses de-
termined that the normal total accumulation of calcium in a
fetus at term is 21 g (range, 13–33 g) (4). Approximately 80%
of this calcium accumulates during the third trimester, when
the fetal skeleton is rapidly mineralizing (4, 5). Therefore,
although maternal adaptations designed to meet the calcium
needs of the fetus might begin early in pregnancy, they are
most needed in the third trimester. Such adaptations could
theoretically involve increased intestinal absorption of cal-
cium, decreased renal excretion of calcium, and increased
resorption of calcium from the maternal skeleton. The studies
reviewed later in this section indicate that the major adaptive
process in human and animal pregnancy is a 2-fold increase
in the intestinal absorption of calcium, mediated by increases
in 1,25-dihydroxyvitamin D and other mechanisms.

The pregnant rat has typically been used as a model for
studying calcium metabolism during pregnancy, but the
adaptive strategies of the rat differ importantly from those of
the human (Table 1). These differences probably reflect the
large litter size (six to 12 fetuses) and the short gestational

period (22 days) of the rat; the rat must deliver 12 mg of
calcium per fetus between day 17 of gestation and term (6).

B. Mineral ions and calcitropic hormones

The changes that occur in human maternal serum calcium,
phosphate, and calcitropic hormone levels are schematically
depicted in Fig. 1.

1. Calcium. Early studies of blood calcium levels during preg-
nancy in humans found a significant decrease in the total
serum calcium as pregnancy progressed (7, 8). These early
results seemed to confirm that the fetus was “draining” the
maternal calcium and thereby creating a state of secondary
hyperparathyroidism in the mother, as postulated by Al-
bright and Reifenstein (1). The pregnancy-related fall in total
serum calcium was later found to be the consequence of a fall
in the serum albumin, and, thereby, the albumin-bound frac-
tion of the total calcium (9). The intravascular fluid volume
is greatly expanded during pregnancy, leading to the de-
creased serum albumin and hemodilution of pregnancy.
Measurements of the ultrafiltrable fraction of serum calcium
(representing complexed and free calcium) showed no sig-
nificant change over prepregnancy values (10). More recent
measurements of serum ionized calcium, using ion-specific
electrodes, demonstrated that the mean ionized calcium level
was maintained at the nonpregnant level throughout gesta-
tion in most cross-sectional (11–13) and longitudinal studies
(14–20).

In contrast, the serum total and ionized calcium have been
reported to fall during the last several days of pregnancy in
the rat (21). Maternal losses of calcium to a litter of rapidly
growing fetuses may exceed the maternal capacity to main-
tain a normal serum calcium level. Indeed, larger litter sizes
correlated with lower serum calcium in pregnant rats (22). In
white-tailed deer, the corrected serum calcium falls in the last
1 to 2 weeks of gestation (23). Pregnant ewes have a mild
decrease in total serum calcium over the last 6 weeks of
pregnancy, likely due to the fall in serum albumin (24);
moreover, in one study, about 13% of Awassi fat-tail ewes
were found to develop signs and biochemical evidence of
hypocalcemia in the last month of pregnancy (25). Therefore,
data from several animal models suggest that maternal blood
calcium regulation may be disrupted by fetal demands in late
pregnancy.

2. Phosphate. Serum phosphate levels are normal throughout
pregnancy in humans and animals, as is the renal tubular
reabsorption of phosphate (14, 17, 26–29).

3. PTH. The bulk of published human data on PTH levels in
pregnancy was obtained from studies that used early-gen-
eration PTH RIAs (18, 26, 30–40); some of the more fre-
quently cited studies reported high maternal serum levels of
PTH in the latter half of pregnancy (18, 30–34, 39). These data
must now be reinterpreted, because it is now known that
these PTH RIAs were insensitive and heterogeneously mea-
sured multiple different fragments of PTH, most of which
were biologically inactive (41, 42).

With the advent of sensitive two-site immunoradiometric
(IRMA) PTH assays that accurately determine the level of

TABLE 1. Important differences between calcium physiology of
human and rodent pregnancy

Factor Human pregnancy Rat pregnancy

Blood ionized
calcium

Stable Reduced in late
pregnancy

PTH Low to low-normal from
early pregnancy

Increased

1,25-D Increased in early pregnancy Increased in late
pregnancy

Intestinal
calcium
absorption

Increased; follows rise in
1,25-D

Increased;
precedes rise in
1,25-D

1,25-D, 1,25-Dihydroxyvitamin D.
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intact PTH (42), PTH levels have been typically found to be
low-normal in the serum of pregnant women in all three
trimesters (11, 12, 17, 19, 20, 27, 43). Five prospective, lon-
gitudinal studies found that the mean PTH level was in the
low-normal range (i.e., ,50% of the mean nonpregnant
value) during the first trimester but increased steadily to the
mid-normal range by the end of pregnancy (14–16, 27, 44).
These findings have been independently validated by re-
ports of normal nephrogenous cAMP levels (12, 26, 44) and
low to normal PTH-like bioactivity (11) throughout human
pregnancy (although this may be confounded by synthesis of
nephrogenous cAMP due to the effects of PTHrP). Studies in
primates suggest that the parathyroid glands may have less
secretory reserve as pregnancy progresses; the incremental
PTH response to acute EDTA-induced hypocalcemia in rhe-
sus monkeys decreased across the trimesters (39).

In contrast to humans, rats develop secondary hyperpara-
thyroidism late in pregnancy. Normally, in late pregnancy,
both maternal levels of intact immunoreactive (45) and bio-
active (46) PTH rise to exceed the normal range, and the
maternal ionized and total calcium levels decline slightly
(21). The parathyroid gland volume has also been reported
to increase during normal rat pregnancy (47, 48). In vitro
studies in pregnant rats indicate that the parathyroids secrete
more PTH at a given extracellular calcium concentration,
when compared with parathyroid cells taken from nonpreg-
nant rats (49). The PTH levels begin to rise earlier in gesta-
tion, and peak at higher levels, in pregnant rats fed a mod-
estly calcium-restricted diet (21, 50). This increase in PTH
during late pregnancy is critical for normal maternal calcium
homeostasis; parathyroidectomized pregnant rats can ex-
hibit signs of tetany in the last 2–4 days of gestation and
death during the birthing process (51–54). In parathyroid-
ectomized pregnant rats, dietary intake and weight gain
decline, while serum 1,25-dihydroxyvitamin D and intestinal
calbindin9K-D levels fall (52–54). Maternal tetany coincides
with the time onset of rapid fetal accretion of calcium (6);
therefore, the parathyroidectomized pregnant rat has com-
promised dietary intake and intestinal calcium absorption at
the time of peak fetal demand for calcium. The calcium
abnormalities can be completely prevented when the rats are
fed a high-calcium, low-phosphorus diet. Taken together,
these observations indicate that rats (but not humans) nor-
mally develop a form of secondary hyperparathyroidism
during late pregnancy in response to the fall in the maternal
serum calcium level. Rats may be more dependent on PTH-
mediated bone resorption and PTH-induced 1a-hydroxylase
up-regulation during late pregnancy, at a time when the
combined calcium need of a litter of fetuses is at its peak.

In summary, immunoreactive and bioactive PTH levels
are in the low-normal range during early human pregnancy
and are in the mid-normal range at term; in contrast, im-
munoreactive and bioactive PTH levels in rats are normal in
early pregnancy but exceed the normal range in late gesta-
tion.

4. 1,25-Dihydroxyvitamin D. Cross-sectional studies have
found that the serum level of 1,25-dihydroxyvitamin D more
than doubles early in the first trimester in human pregnancy
(12, 27, 36, 37, 55–58). Longitudinal studies have found that

FIG. 1. Schematic illustration of the longitudinal changes in calcium,
phosphate, and calcitropic hormone levels that occur during human
pregnancy. Normal adult ranges are indicated by the shaded areas.
Data have been compiled from the following sources: total calcium (9),
ionized calcium (14–19), phosphate (14, 17, 26, 27), PTH (11, 14–16,
27, 44), 1,25-dihydroxyvitamin D (15, 41, 57–59), calcitonin (14, 34,
36, 37, 86–89), and PTHrP (44, 111). The progression in PTHrP levels
has been depicted by a dashed line to reflect that the data are less
complete.
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the levels of both free and bound 1,25-dihydroxyvitamin D
are doubled, and that this increase is maintained until term
(15, 20, 41, 57–59). Although clearance of 1,25-dihydroxyvi-
tamin D has not been studied during human pregnancy, in
pregnant rats, sheep, and rabbits the increased 1,25-dihy-
droxyvitamin D levels were due to increased production,
and not decreased metabolic clearance, of 1,25-dihydroxyvi-
tamin D (60–63). In vitro measurements in homogenates of
maternal kidney from rabbits and guinea pigs show that the
renal 1a-hydroxylase may be up-regulated 2- to 5-fold (64,
65). The increase in the 1,25-dihydroxyvitamin D level begins
while the PTH level is in the low-normal range in humans
(Section II.B.3, above); this may indicate that PTH does not
mediate the up-regulation of the maternal renal 1a-hydrox-
ylase during early human pregnancy. Furthermore, parathy-
roidectomy in pregnant sheep reduces, but does not eliminate,
the pregnancy-related increase in 1,25-dihydroxyvitamin D
(66). Other potential direct or indirect regulators of the 1a-
hydroxylase include PTHrP (Section II.B.6, below), estradiol,
PRL, and placental lactogen. Estradiol (67), PRL (68, 69), and
placental lactogen (69) acutely stimulate the 1a-hydroxylase in
vitro, and placental lactogen (but not PRL) raised the serum
1,25-dihydroxyvitamin D levels in hypophysectomized, non-
pregnant rats (70). The effect of estradiol on the 1a-hydroxylase
has been confirmed in vivo by the observation that estrogen
replacement in postmenopausal women increases the free and
total serum 1,25-dihydroxyvitamin D level (71). However, an
effect of PRL in vivo has not been confirmed, since hyperpro-
lactinemic patients showed no alteration in 1,25-dihydroxyvi-
tamin D levels (72). Further, in pregnant women, the high
1,25-dihydroxyvitamin D levels of pregnancy did not correlate
with serum PRL, estrogens, or human placental lactogen (73).

In addition to the renal 1a-hydroxylase, 1a-hydroxylase
activity found in maternal decidua, placenta, and fetal kid-
neys may also add 1,25-dihydroxyvitamin D to the maternal
circulation during pregnancy (59, 74–77). To test this hy-
pothesis, [3H]25-hydroxyvitamin D was administered to
pregnant rats after bilateral maternal nephrectomy (74, 78).
Newly synthesized (i.e., tritiated) 1,25-dihydroxyvitamin D
appeared in the maternal circulation of nephrectomized
pregnant rats (but not in nonpregnant nephrectomized rats).
Although this study indicates that extrarenally produced
1,25-dihydroxyvitamin D can reach the maternal circulation
(74), the specific extrarenal sites and the amounts of 1,25-
dihydroxyvitamin D produced could not be ascertained.
Data from the Hannover pig model (autosomal recessive
1a-hydroxylase deficiency) indicate that the amounts con-
tributed by these extrarenal sites may be insignificant. In
pregnant sows homozygous for absence of 1a-hydroxylase
activity, serum levels of 1,25-dihydroxyvitamin D were very
low, comparable to the nonpregnant values (79). The pres-
ence of heterozygous fetuses did not increase the circulating
level of 1,25-dihydroxyvitamin D in the homozygous sows
(79). The same gene controls renal and decidual 1a-hydrox-
ylase activity in this model (77). A single case report of a
human patient on chronic hemodialysis found 1,25-dihy-
droxyvitamin D levels of 10–15 pg/ml during pregnancy;
these levels were higher than the nonpregnant level in the
same patient, but were far lower than in normal pregnancy
(80). It is, therefore, likely that increased maternal production

of 1,25-dihydroxyvitamin D is mainly due to increased ac-
tivity of maternal, renal 1a-hydroxylase and not to large
contributions from extrarenal sites.

Again, the pregnant rat model differs somewhat from the
human, in that the maternal rise in 1,25-dihydroxyvitamin D
level does not occur in rats until the time of fetal skeletal
mineralization in late gestation (22, 45, 45, 81, 82), at which
time the serum PTH levels rise above normal (22, 45) and
serum ionized calcium levels fall (21, 22). Larger litter sizes
correlate with higher maternal 1,25-dihydroxyvitamin D lev-
els (22). These studies suggest that the effect of PTH on the
renal 1a-hydroxylase may dominate the production of 1,25-
dihydroxyvitamin D during late pregnancy in the rat.

Serum 25-hydroxyvitamin D levels are unchanged in hu-
man pregnancy, and 24,25-dihydroxyvitamin D levels are
lower in pregnant women than in controls (35). Supplemen-
tation with 1000 IU of vitamin D3 daily after the first trimester
in humans did not affect maternal calcium, phosphate, PTH,
and 1,25-dihydroxyvitamin D levels; this suggests that the
changes in calcitropic hormone levels observed in human
pregnancy are not the result of occult vitamin D deficiency
(83). Maternal vitamin D deficiency in the rat has been as-
sociated with reduced fertility and smaller litter sizes, and up
to 20% of pregnant, vitamin D-deficient rats may die of
hypocalcemia near term (84, 85).

In summary, free and total 1,25-dihydroxyvitamin D levels
rise early in human pregnancy to peak at twice the normal
range, while in rats the 1,25-dihydroxyvitamin D level does
not rise until late gestation. These increases appear to be due
to increased production of 1,25-dihydroxyvitamin D by the
maternal kidneys, with possibly small contributions from
maternal decidua, placenta, and fetal kidneys. PTH may be
less important during pregnancy in humans compared with
rats in mediating this rise in 1a-hydroxylase activity.

5. Calcitonin. Serum calcitonin levels in human pregnancy
have generally been reported to be higher than nonpregnant
values, with at least 20% of values exceeding the normal
range (14, 34, 36, 37, 86–89). Several human studies reported
that calcitonin levels were not elevated in pregnancy (15, 18,
33, 35); however, these studies were flawed by the use of
improper controls. For example, in some of these studies,
postpartum measurements in the same women were used as
the baseline, and it has since been shown that calcitonin is
also elevated in the postpartum period (see Section IV.B.5,
below). Similar data from monkeys (39), sheep (77, 90, 91),
deer (23), goats (77), and rats (92) have confirmed that the
maternal calcitonin level is elevated during pregnancy. No
clearance data are available for humans or other animals, but
the increased level of calcitonin is generally thought to reflect
increased synthesis.

Thyroidal C cells, breast, and placenta are sites of calci-
tonin synthesis during pregnancy (93, 94). It is not surprising,
therefore, that a rise in calcitonin is found in totally thyroid-
ectomized women, most likely due to calcitonin synthesized
by the placenta and breast (93, 94). In pregnant rhesus mon-
keys, acute calcium infusions led to a progressively greater
calcitonin response across the trimesters, which may indicate
greater secretory reserve of the thyroidal C cells and placenta
(39).
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It has been speculated that elevated calcitonin protects the
maternal skeleton from excessive resorption of calcium, a
hypothesis that has been difficult to prove. Indeed, the phys-
iological role of calcitonin in human calcium and skeletal
metabolism has not been established (95). No adequate
model of experimental calcitonin deficiency has been cre-
ated, partly because the extrathyroidal sites of calcitonin
synthesis were not appreciated at the time. All models used
total thyroidectomy with parathyroid gland autotransplan-
tation and thyroid hormone replacement in pregnant goats
or rats (53, 91, 96–98). In none of these models was the serum
calcitonin or TSH measured to determine whether a calci-
tonin-deficient, euthyroid state had been attained. Thus, al-
though these models suggested that an intact thyroid gland
protected the maternal skeleton from loss of bone mineral
during pregnancy, these findings remain to be confirmed by
more rigorously controlled models.

In summary, calcitonin levels are increased during preg-
nancy in humans and animals, partly due to extrathyroidal
synthesis in the placenta and breast. The possible role of
calcitonin in protecting the maternal skeleton from increased
resorption during pregnancy needs more study.

6. PTH-related protein (PTHrP). PTHrP was originally iden-
tified in 1987 as the cause of humoral hypercalcemia of ma-
lignancy (99). PTHrP has been postulated to be a prohor-
mone, which is processed into several different circulating
fragments or hormones, each of which, in turn, may have
different functional roles and specific receptors (100). PTHrP
has partial homology in its first 13 amino acids to PTH
(101–103) and activates the common PTH/PTHrP receptor
(42). Amino-terminal forms of PTHrP (PTHrP 1–34, 1–86, or
1–141) resemble PTH in their actions on kidney and bone
(104) and can inhibit acetylcholine-induced uterine contrac-
tions in the rat (105). Levels of PTHrP decreased acutely in
the amnion and myometrium at the time of onset of labor in
humans (106). It has been suggested that amino-terminal
forms of PTHrP may, therefore, have a role in regulating the
onset of labor (106). A midmolecular form of PTHrP stim-
ulates placental calcium transport in the fetus (Section III.C,
below), although its possible role in the mother is unclear.
The carboxyl-terminal portion of PTHrP, termed “osteosta-
tin,” is able to inhibit osteoclastic bone resorption in some in
vitro assays (107, 108) and in rats in vivo (109); therefore, this
fragment of PTHrP could have a role in protecting the ma-
ternal skeleton during pregnancy.

The development of RIAs for PTHrP has concentrated on
detecting the PTH-like amino-terminal fragments of PTHrP
and has thus far largely ignored the detection of other frag-
ments that might be biologically active. Therefore, no data
are available on the levels of midmolecular or carboxyl-
terminal fragments of PTHrP during pregnancy compared
with controls. An early RIA that used an antibody to PTHrP
1–34 found no elevation of PTHrP in pregnancy (110).
Newer, more sensitive two-site immunoradiometric assays
that measure forms of PTHrP that encompass amino acids 1
through 86 have found a significant increase in the maternal
PTHrP level, beginning as early as weeks 3 to 13 of human
pregnancy (44, 111). This increase is not due to any change
in the clearance of PTHrP 1–34, 1–86, or 1–141 during preg-

nancy, as determined in sheep (112, 113). The increase in
amino-terminal PTHrP, by activating the PTH/PTHrP re-
ceptor in kidney and bone, may well explain (at least in part)
the increase in 1,25-dihydroxyvitamin D and ionized cal-
cium, and the decrease in PTH levels, found during human
pregnancy.

The source of PTHrP in the maternal circulation during
pregnancy is not established, but several candidate sites are
known. PTHrP is produced by the placenta (114), amnion
(106), decidua (106), umbilical cord (115), and fetal parathy-
roid glands (116) and potentially might reach the maternal
circulation. PTHrP produced by the breast tissue is detect-
able in human colostrum (117), and it is produced as early as
day 14 of pregnancy by the mammary glands of the rat (118).

Overproduction of PTHrP by the breast might explain the
development of hypercalcemia at 24 weeks of gestation in a
woman with massive (4.5 kg) mammary hyperplasia of preg-
nancy, associated with hypercalciuria, hypophosphatemia,
and undetectable PTH levels (119). Bilateral mastectomies in
the second trimester of that same pregnancy corrected the
hypercalcemia and the suppressed PTH level (119).

In summary, PTHrP may be made available to the mater-
nal circulation by several different maternal and fetal
sources. PTHrP fragments encompassing amino acids 1–86
are increased in the maternal circulation during pregnancy
and may contribute to the elevations in 1,25-dihydroxyvita-
min D and blood calcium, and suppression of PTH, noted
during pregnancy. The true quantitative importance of
PTHrP in maternal physiology needs to be established.

7. Other hormones. Pregnancy induces a dramatic rise in other
hormones, including the sex steroids, PRL, and placental
lactogen. The possibility that each of these, in turn, may have
direct or indirect effects on calcium and bone metabolism
during pregnancy has been largely unexplored. There is
some evidence to suggest that PRL and placental lactogen
may increase the intestinal transport of calcium (70, 120, 121),
reduce urinary calcium excretion (122, 123), and stimulate
synthesis of PTHrP (124) and 1,25-dihydroxyvitamin D (68,
69). This is discussed in more detail in the relevant sections.

C. Intestinal absorption of calcium

Calcium is absorbed throughout the small intestine, a
small portion by active transport in the duodenum and prox-
imal jejunum, and the major portion by passive mechanisms
in the distal jejunum and ileum (125). Mineral balance and
calcium kinetic studies in humans using stable isotopes of
calcium (48Ca, 44Ca, 42Ca) have consistently found a positive
calcium balance and a doubling of the intestinal absorption
of calcium during human pregnancy from as early as 12
weeks of gestation (the earliest time point studied) (27, 126,
127). By studying the effect of an oral calcium load on serum
calcium and urine calcium excretion, other investigators in-
directly confirmed that intestinal calcium absorption must be
increased in all trimesters (12, 128). The results of these stud-
ies led to speculation that the increase was mediated by
1,25-dihydroxyvitamin D, and this appeared to be confirmed
when elevated levels of 1,25-dihydroxyvitamin D were
found during human pregnancy (Section II.B.4, above). 1,25-
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Dihydroxyvitamin D probably stimulates intestinal calcium
absorption by increasing the synthesis of proteins, including
the intestinal vitamin D-dependent calcium-binding protein,
calbindin9K-D. Protein and mRNA levels of calbindin9K-D
increase in the intestines of mice and rats during pregnancy
and plateau when both maternal 1,25-dihydroxyvitamin D
levels and the efficiency of intestinal calcium absorption are
at peak levels (129–131). Maternal vitamin D deficiency in
rodents reduces the rise in the intestinal expression of
calbindin9K-D (132, 133), while 1,25-dihydroxyvitamin D ad-
ministration can restore it (133).

The rise in intestinal absorption of calcium occurs by mid-
pregnancy in rats, before the onset of rapid skeletal miner-
alization in the fetus (45). The doubling of intestinal absorp-
tion persists in parathyroidectomized rats (134) and may,
therefore, be independent of PTH regulation. The early in-
crease in intestinal calcium absorption may allow the preg-
nant mother to accrete calcium (probably in the maternal
skeleton), before the peak fetal demand for calcium in late
pregnancy. Consistent with this hypothesis, it has been es-
timated from isotope studies in the pregnant rat that 92% of
fetal skeletal calcium content was absorbed from the mater-
nal diet at some point during pregnancy (135). Further, sev-
eral investigators have found that pregnant rats normally
store calcium during the first half of pregnancy (136), such
that by the end of pregnancy, the calcium content of the
femurs is unchanged (137). Inadequate accretion of calcium
early in pregnancy may lead to a net loss of maternal skeletal
calcium later in pregnancy. For example, under dietary cal-
cium restriction, pregnant rats (138, 139) and goats (98) have
reduced calcium content in their long bones by the end of
gestation. Similarly, maternal vitamin D deficiency has been
found to cause maternal skeletal demineralization by the end
of pregnancy (140).

PRL treatment of pregnant, vitamin D-deficient rats re-
sulted in an increase in the intestinal absorption of calcium;
PRL might, therefore, have an effect on the intestine inde-
pendent of 1,25-dihydroxyvitamin D (120). This is further
supported by studies in everted gut sacs of nonpregnant,
hypophysectomized rats, where PRL and placental lactogen
stimulated the intestinal transport of calcium (70, 121). Also
in rats, the increase in duodenal calcium absorption has been
found to precede the rise in the 1,25-dihydroxyvitamin D
level by 1 week, suggesting that the intestinal effect is not
dependent solely on vitamin D (45, 141). Even in the absence
of vitamin D, pregnancy in rats is associated with hypertro-
phy of the small intestine and a doubling of intestinal ab-
sorption of calcium (141, 142). Furthermore, rats hypocalce-
mic from vitamin D deficiency developed a progressive rise
in serum calcium levels during pregnancy, despite un-
changed serum PTH levels (143). However, an independent
effect of PRL on intestinal calcium absorption could not be
demonstrated in studies on humans. Hyperprolactinemic
patients showed no alteration in the intestinal absorption of
calcium (72).

In summary, intestinal calcium absorption is increased
2-fold early in human and rat pregnancy, probably through
a 1,25-dihydroxyvitamin D-mediated increase in intestinal
calbindin9K-D and other proteins. PRL and placental lacto-
gen (or possibly other factors) may mediate part of the nor-

mal pregnancy-related increase in intestinal calcium absorp-
tion. The early rise in intestinal calcium absorption may
allow the maternal skeleton to store calcium in advance of the
peak fetal demands later in pregnancy. The increased intes-
tinal calcium absorption appears to be a major maternal
adaptation to meet the fetal need for calcium.

D. Renal handling of calcium

Pregnancy is associated with an increase in creatinine
clearance and glomerular filtration rate (144, 145). The 24-h
urine calcium excretion is increased as early as the 12th week
of gestation (the earliest time point studied), and averages
300 6 61 mg in the third trimester (levels in the hypercalciuric
range are not uncommon) (12, 14, 20, 27, 146, 147). Since
fasting urine calcium values are normal or low, the increase
in 24-h urine calcium reflects the increased intestinal absorp-
tion of calcium (absorptive hypercalciuria) (12, 28, 44). A
similar 2-fold increase in urinary calcium excretion has been
observed in the pregnant rat from the second week of ges-
tation (148). Although PRL and placental lactogen have been
shown to reduce urinary calcium excretion in nonpregnant
rabbits in vivo (122, 123), the effect (if any) of either hormone
on the kidneys of pregnant humans and rats must be very
modest.

Interestingly, preeclampsia and pregnancy-induced hy-
pertension (PIH) have been associated with hypocalciuria
(147, 149–152). Further studies have found the hypocalciuria
to be associated with low 1,25-dihydroxyvitamin D levels
(149–152), but to be independent of PTH, calcitonin, or ion-
ized calcium levels (147, 149–151). The finding of hypocal-
ciuria prompted a large trial of calcium supplementation in
pregnant women, which recently reported no benefit in pre-
venting preeclampsia or PIH (153). These abnormalities in
1,25-dihydroxyvitamin D and urine calcium excretion are,
therefore, probably secondary to a primary renal tubular
defect occurring in preeclampsia and PIH and are likely not
the primary cause of the hypertension (149).

E. Skeletal calcium metabolism

1. Bone formation and resorption. Histomorphometric param-
eters of both bone formation and osteoclast-mediated re-
sorption are increased during pregnancy in rats (154). Preg-
nant beagle dogs also show histomorphometric evidence of
increased bone turnover in iliac trabecular bone (155). De-
spite evidence of increased turnover, bone mineral content
during pregnancy in rats does not change (137, 140, 154, 156).
In contrast, pregnant ewes have a 20% decrease in skeletal
calcium content during gestation (157).

Comparable histomorphometric data are not available for
human pregnancy, but markers of bone formation and re-
sorption have been assessed. Generally speaking, such in-
dices are more reliable for measuring changes in bone re-
sorption than bone formation (158, 159). Several markers of
bone resorption (tartrate-resistant acid phosphatase, deoxy-
pyridinoline/creatinine, pyridinoline/creatinine, and hy-
droxyproline/creatinine) are low in the first trimester but
rise steadily to peak at values up to twice normal in the last
trimester (27, 44, 160, 161). In contrast, osteocalcin, a marker
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of bone formation, is low or undetectable early in gestation
and sometimes rises to normal levels by term (15, 27, 161–
163). Other markers of bone formation (procollagen I car-
boxypeptides, bone-specific alkaline phosphatase) are low in
the first trimester and have been found to remain low (44) or
rise to normal or above in the last trimester (27, 160). Total
alkaline phosphatase rises early in pregnancy due to contri-
butions from the placental fraction, and, therefore, is not a
useful marker of bone formation in pregnancy (14, 44).

Taken together, the histomorphometric data from animals,
and the changes in the markers of bone formation and re-
sorption in humans, indicate that bone turnover is probably
low in the first half of pregnancy, but may be increased in the
third trimester. The third trimester increase in bone turnover
corresponds to time of the peak rate of calcium transfer to the
fetus and may result from mobilization of skeletal calcium
stores (which contain 99% of the body’s stores of calcium) to
help supply the fetus.

2. Bone density. Concerns about fetal radiation exposure have
resulted in few studies of changes in maternal bone mass
during pregnancy; these studies used techniques that are far
less precise or reproducible than the current standard, dual
x-ray absorptiometry (DXA) (164, 165). Of the scant data
available, an early study used x-ray spectrophotometry of the
radius and femur to demonstrate a progressive decrease in
trabecular bone density during pregnancy (166). Using more
modern techniques, four prospective studies of bone density
during pregnancy did not find a significant change in cortical
or trabecular bone density, as respectively determined by
single photon absorptiometry (SPA) and/or dual-photon ab-
sorptiometry (DPA) (28, 146, 167, 168). Another study found
a significant decrease in bone mineral density of the femoral
neck and radial shaft, but no change in lumbar bone density,
by comparing preconception SPA and DPA measurements to
those taken 6 weeks postpartum (169). Most recently, cross-
sectional (170) and longitudinal studies (161, 171) have found
a progressive decrease during pregnancy in indices thought
to correlate with bone mineral density, as determined by
ultrasonographic measurements of the os calcis in all three
trimesters.

The majority of retrospective, epidemiological studies of
pre- and postmenopausal women have found no association
of parity with bone density or fracture risk (172–191). In
contrast, several other studies found increased parity to be
beneficial, as indicated by a slightly greater lumbar (192, 193),
femoral (194), or radial bone density (194–196) and de-
creased hip fracture risk (197, 198). Four remaining studies
linked parity to somewhat decreased lumbar bone density
(199–201) or increased hip fracture risk (202). An epidemi-
ological study of healthy women aged 21 to 95 found diver-
gent effects of parity at different anatomical sites. Femoral
neck bone mineral density was decreased in parous women
by 1.5% per live birth, while lumbar spine bone density was
not influenced by parity (203). Among the studies that found
no significant association of parity, several reported that a
first pregnancy as an adolescent was associated with de-
creased bone density (178, 190, 195), possibly because the
fetal calcium demands of pregnancy reduce the peak bone
mass that is eventually achieved in the adolescent. Overall,

many of these epidemiological studies had significant meth-
odological limitations, specifically the difficult problem of
retrospectively separating out the effects of parity from those
of lactation. Nevertheless, it may be reasonable to conclude
from these studies that if parity has either a positive or a
negative effect on bone density or fracture risk, it must be
only a very modest effect.

Therefore, although changes in serum and urine markers
of bone formation and resorption have indicated that bone
turnover may be increased in the third trimester, it is im-
possible to determine from the available bone density data
whether there is any acute change in bone mineral during
human pregnancy. Further, it is also unknown whether any
such acute change has a long-term effect on the calcium
content or fragility of the maternal skeleton.

3. Osteoporosis in pregnancy. The rare presentation of idio-
pathic osteoporosis in a woman of child-bearing age has
often been associated with a recent pregnancy, as noted by
Albright and Reifenstein (1) and other early case reports
(204–206). The exact prevalence of the condition is uncertain.
The theory that pregnancy might cause osteoporosis (as pro-
posed by Albright and Reifenstein) was disputed by an early
observational study of five women with symptomatic, severe
osteoporosis presenting in a first pregnancy (207). In subse-
quent pregnancies, these women were found to have no
worsening of their condition, but the parameters used (new
pain or fracture, worsening of osteopenia on plain roentgen-
ograms) were crude and insensitive by methods available
today (207). Despite better documentation of the absence of
known causes of decreased bone density in more recent case
reports (208–212), it has not been possible to exclude the
possibility that low peak bone mass and/or an accelerated
bone resorptive state preceded the pregnancy and simply
became clinically obvious in pregnancy. In addition, some
reported cases of osteoporosis in pregnancy have been
clearly confounded by the presence of other recognizable
causes of secondary osteoporosis, such as chronic heparin,
anticonvulsant, or corticosteroid therapy (209, 212). In two
documented cases of osteoporosis diagnosed in pregnancy,
the female progeny were found at age 10 to also have low
bone mineral density (213). This finding suggested that a
shared genetic or environmental factor (and not pregnancy)
was the cause of osteoporosis in the mothers and daughters.
The limited data from bone biopsy typically show no evi-
dence of osteomalacia, but only mild osteoporosis or normal
architecture (208, 212). It remains intriguing to speculate that
some of these rare cases of osteoporosis presenting in preg-
nancy may result from excessive resorption of calcium from
the maternal skeleton, perhaps in the setting of inadequate
intake of calcium, low stores of 25-hydroxyvitamin D, or an
excessive rise in PTHrP in the maternal circulation (see also
the discussion of osteoporosis in lactation, Section IV.E.3,
below). Nevertheless, these rare cases may simply represent
idiopathic osteoporosis occurring in pregnant women by
mere chance.

A second (also rare) form of pregnancy-associated osteo-
porosis is a focal, transient osteoporosis of the hip (214–217).
Typically these patients present with unilateral or bilateral
hip pain, limp, and/or hip fracture in the third trimester (214,
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216, 218, 219). Radiolucency of the femoral head and neck
was recognized on plain radiographs taken in early reports
of this condition (215, 220); and more recently, DXA mea-
surements have shown that the bone density of the symp-
tomatic femoral head and neck is reduced (218). Magnetic
resonance imaging (MRI) of the affected femoral head in one
patient showed a joint effusion and images suggesting in-
creased water content of the femoral head and marrow cavity
(221). Routine serum chemistries are typically normal (222).
Alkaline phosphatase and urine hydroxyproline have been
reported to be elevated (215, 218, 223); however, the inter-
pretation of these findings is uncertain, since control mea-
surements from normal pregnant women were not com-
pared. Intriguingly, the decreased bone mineral density of
the femoral head and neck typically resolves within 2 to 6
months postpartum (214, 218, 219), including the MRI find-
ings (221). Patients generally require only pain relief and
continued mobilization for this self-limited condition. The
fact that this rare condition is typically localized to one or
both femoral heads, and not the rest of the skeleton, suggests
that it is not the result of a generalized increase in skeletal
resorption. Several theories have been proposed to explain
this condition, including femoral venous stasis due to pres-
sure from the pregnant uterus, a form of Sudeck’s atrophy,
or reflex sympathetic dystrophy (causalgia), ischemia,
trauma, viral infections, marrow hypertrophy, immobiliza-
tion, and fetal pressure on the obturator nerve (214–216, 220).
As yet, the etiology of transient osteoporosis of the hip in
pregnancy remains unclear; its association with pregnancy
may be not causal but incidental. In any case, it appears likely
that this disorder is not a manifestation of altered calcitropic
hormone levels or mineral balance during pregnancy.

F. Primary hyperparathyroidism

The presentation of primary hyperparathyroidism in preg-
nancy raises important diagnostic and management consid-
erations. Many cases are asymptomatic, detected by routine
prenatal biochemical tests or after the presentation of hy-
pocalcemia in the neonate. Several normal pregnancy-related
changes in calcium and PTH physiology (noted above) may
obscure the diagnosis of mild primary hyperparathyroidism.
These include the fall in total serum calcium, the rise in the
corrected serum calcium (111, 224), the fall in the intact PTH
level (14–16, 44), and the rise in the 24-h urinary excretion of
calcium, often into the hypercalciuric range (14, 27) (see also
Sections II.B and II.D, above).

Although maternal primary hyperparathyroidism in preg-
nancy is probably a rare condition (there are no data available
on its prevalence), it has been associated in the literature with
an alarming rate of adverse outcomes in the fetus, including
a 30% rate of spontaneous abortion or stillbirth (225, 226). In
the neonatal period, a 50% rate of tetany and a 25% rate of
neonatal death has been reported (225, 227). These adverse
outcomes are thought to result from suppression of the fetal
parathyroid glands; this suppression may occasionally be
prolonged for months (228, 229). PTH cannot cross the pla-
centa (230–232); therefore, the fetal parathyroid suppression
is thought to result from increased net calcium flux across the
placenta to the fetus, facilitated by maternal hypercalcemia.

Evidence from animal models has confirmed that acute el-
evations in maternal serum calcium cause an increase in fetal
serum calcium, and a fall in fetal PTH level (233). However,
whether chronic maternal hypercalcemia has the same effect
on fetal serum calcium, or placental calcium transport, has
not been determined.

Surgical correction of primary hyperparathyroidism dur-
ing the second trimester, to prevent fetal and neonatal com-
plications, has been almost universally recommended (226,
234–236). Several case series have found elective surgery to
be well tolerated and to dramatically reduce the rate of ad-
verse events when compared with the earlier cases reported
in the literature (234, 235, 237, 238). However, many of the
women in those early cases were symptomatic and had
nephrocalcinosis or renal insufficiency. Those early case re-
ports may also have reflected reporting bias of adverse fetal
and neonatal outcomes. Whether the milder, asymptomatic
form of primary hyperparathyroidism commonly seen today
has the same risk of adverse fetal or neonatal outcomes has
not been determined. In several case reports, mild elevations
in maternal serum calcium were followed without operative
intervention, and no adverse fetal or neonatal outcome oc-
curred (239, 240). However, in other cases the mild hyper-
calcemia of both asymptomatic primary hyperparathyroid-
ism and familial hypocalciuric hypercalcemia has been
reported to cause neonatal parathyroid suppression and tet-
any (241–243). Nevertheless, it is probably reasonable to fol-
low cases of asymptomatic primary hyperparathyroidism
with mild hypercalcemia conservatively and to reserve sur-
gery in the second trimester for patients that are symptomatic
or have more severe hypercalcemia. If surgery is deferred,
the neonate must be monitored closely for the development
of hypocalcemia.

G. Hypoparathyroidism and pseudohypoparathyroidism

As described earlier (Section II.B.4), free and bound 1,25-
dihydroxyvitamin D levels normally double during human
pregnancy in the presence of low-to-normal intact PTH lev-
els, and, therefore, it is likely that PTH does not mediate the
pregnancy-related rise in 1,25-dihydroxyvitamin D produc-
tion. Other hormones of pregnancy, such as estrogen, PTHrP,
and perhaps placental lactogen and PRL, may regulate the
increased production of 1,25-dihydroxyvitamin D by mater-
nal kidney and decidua. Also, placenta and fetus may con-
tribute to the maternal increase in 1,25-dihydroxyvitamin D.

In multiple case reports, pregnant hypoparathyroid
women have been found to have fewer hypocalcemic symp-
toms, a rise in the serum calcium, and decreased dependence
on supplemental calcitriol to maintain a normal serum cal-
cium (244–252). This finding is consistent with a limited role
for PTH in the pregnant woman and suggests that an increase
in 1,25-dihydroxyvitamin D and/or increased intestinal cal-
cium absorption will occur in the absence of PTH. The lit-
erature on hypoparathyroidism in pregnancy is not entirely
consistent on this point, since in other case reports the cal-
citriol dosage was increased for a variety of reasons (some
incompletely documented) (253–257). Despite these contrast-
ing views on the natural history of hypoparathyroidism in
pregnancy, there is general agreement (244, 245, 248, 253, 254,
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258) that in late pregnancy and the puerperium, hypercal-
cemia may result unless the calcitriol is discontinued, or the
dosage is decreased below the prepartum requirement. Since
this effect is even more pronounced in those who breast-feed,
and since PTHrP is found at high concentrations in the breast
during late pregnancy and lactation (further discussed in
Section IV.B.6, below), the pregnancy-related rise in 1,25-
dihydroxyvitamin D production may be regulated by PTHrP
(secreted from the breast) in these hypoparathyroid women.

Calcitriol (rather than vitamin D or calcifediol) has typi-
cally been prescribed for hypoparathyroidism in pregnancy,
and the dosage needed may range from 0.5–3.0 mg daily.
Chronic maternal hypocalcemia must be avoided because it
has been associated with the development of intrauterine
hyperparathyroidism and death in the fetus (Section III.F,
below).

Further illumination of the role of PTH in pregnancy has
come from cases of pseudohypoparathyroidism in preg-
nancy. Pseudohypoparathyroidism is a heterogeneous
group of genetic syndromes characterized by hypocalcemia
due to PTH resistance (259). Although the data are limited,
Breslau and Zerwekh (260) noted a normalization of serum
calcium levels in two pregnant women with pseudohypo-
parathyroidism (probably type 1b). Before pregnancy the
patients had hypocalcemia, markedly elevated PTH levels,
and low 1,25-dihydroxyvitamin D levels. During four preg-
nancies (two for each patient), the serum calcium levels were
normal, their PTH levels were halved, and the 1,25-dihy-
droxyvitamin D levels increased 2- to 3-fold. Contributions
of 1,25-dihydroxyvitamin D from placental and fetal sources
might have accounted for these findings; Zerwekh and
Breslau (261) noted elsewhere that the placental production
of 1,25-dihydroxyvitamin D was no different between pla-
centas obtained from pseudohypoparathyroid women and
controls. Alternatively, it is possible that the hormonal milieu
of pregnancy lessened the renal resistance to PTH and PTHrP
and thereby increased the formation of 1,25-dihydroxyvita-
min D. It is apparent from Breslau’s observations that
estrogens alone cannot be the explanation for such an im-
provement during pregnancy, because the same two
pseudohypoparathyroid women were not improved by
treatment with an oral contraceptive. In any case, calcitriol
supplementation in these patients should be monitored care-
fully and adjusted during pregnancy. The progeny of these
pregnancies are also at risk of intrauterine, fetal hyperpara-
thyroidism (262, 263), perhaps because of relative maternal
hypocalcemia during pregnancy.

H. Summary

The fetal demand for calcium, which largely occurs during
the third trimester, is met by a doubling of free and bound
maternal 1,25-dihydroxyvitamin D levels, which, in turn,
partly mediate a doubling of the intestinal absorption of
calcium. Some of the increased intestinal calcium absorption
may be mediated by PRL or other hormones of pregnancy.
Further, the increase in 1,25-dihydroxyvitamin D may be
largely independent of changes in PTH, since PTH levels are
typically low or normal at the time of the increase in 1,25-
dihydroxyvitamin D. The increased calcium intake and ab-

sorption leads to a marked increase in renal calcium excre-
tion (absorptive hypercalciuria). The serum ionized calcium
is normal, despite a fall in total serum calcium caused by a
reduction in the albumin-bound fraction. Calcitonin and
PTHrP are both elevated, particularly in the latter half of
gestation, but the physiological importance of these hor-
mones in pregnancy is not known. The typical changes in
calcium and calcitropic hormone levels during pregnancy
are depicted schematically in Fig. 1.

Bone resorption is increased during late pregnancy, as
evidenced by a rise in the levels of serum and urine markers
of bone resorption in the third trimester, and this may in-
dicate that maternal skeletal calcium stores are mobilized
during the time of rapid fetal accretion of calcium. As noted
at the beginning of Section II.E.2, bone density studies during
pregnancy have been of insufficient precision to determine
whether this increased bone resorption results in significant
loss of skeletal calcium during pregnancy or the third tri-
mester. Retrospective epidemiological studies (although not
definitive) have generally found no effect of parity on the risk
of osteoporosis or fractures in later life. Uncommonly, preg-
nancy may be associated with osteoporosis and fractures,
particularly if the woman enters pregnancy with a low peak
bone mass. A distinct disorder, focal, transient osteoporosis
of the hip in pregnancy, is not likely due to altered calcitropic
hormone levels and calcium physiology.

Primary hyperparathyroidism in pregnancy has been clas-
sically associated with adverse fetal or neonatal outcomes,
but the milder, asymptomatic form of primary hyperpara-
thyroidism most often seen today may not share such out-
comes. Maternal hypoparathyroidism may be improved in
pregnancy by increased intestinal absorption of calcium, pos-
sibly mediated by increased production of 1,25-dihydroxyvi-
tamin D caused by PTHrP or some other non-PTH factor. A
similar improvement in biochemical indices has been seen in
pregnant women with pseudohypoparathyroidism. In both
hypoparathyroid and pseudohypoparathyroid women, ma-
ternal hypocalcemia may adversely affect the fetus and must
be avoided.

The pregnant rat model differs from the human condition
in several important respects (Table 1). The rat normally
develops a form of secondary hyperparathyroidism in the
last several days of pregnancy, prompted by a fall in the
maternal serum-ionized calcium at the time of rapid fetal
accretion of calcium. 1,25-Dihydroxyvitamin D increases late
in gestation in rats, approximately 1 week after the rise in
intestinal calcium absorption. This indicates that mecha-
nisms independent of 1,25-dihydroxyvitamin D may con-
tribute to the increased intestinal calcium absorption in rats.

III. Fetal-Placental Physiology and Pathophysiology

A. Fetal adaptive goals

With respect to calcium physiology, the fetal-placental
unit has two main adaptive goals. One is to provide sufficient
calcium to mineralize the skeleton, and the other is to main-
tain an extracellular level of calcium that is physiologically
appropriate for fetal tissues (i.e., for cell membrane stability,
blood coagulation, etc). A human fetus typically accumulates
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21 g of calcium by term, and 80% of this calcium is accu-
mulated in the third trimester alone, necessitating an average
daily transfer of 200 mg calcium (4). Similarly, the fetal rat
accretes less than 0.5 mg calcium in the first 17 days of
gestation, and about 12 mg calcium in the remaining 5 days
of gestation (6). To attain the required amount of calcium and
regulate the fetal calcium level, the fetus makes use of the
placenta, kidneys, bone, and intestine. The studies reviewed
herein will demonstrate that the fetal-placental unit func-
tions relatively independently of the mother, such that it is
capable of mineralizing the fetal skeleton and maintaining a
normal blood calcium, even in the presence of significant
maternal hypocalcemia and vitamin D deficiency. In addi-
tion, this section will show that PTHrP is a major regulator
of placental calcium transport, while PTHrP and PTH may
both act on fetal bone and kidneys to regulate the blood
calcium.

Human handling of placental calcium transport must be
largely inferred from data that have been obtained from
studies in sheep, pigs, rats, and mice. Therefore, it must be
emphasized that mice and rats have hemochorial placentas
that are structurally very similar to those of humans (264–
267). In contrast, the epitheliochorial placentas of sheep and
pigs differ significantly in structure from the human hemo-
chorial placenta, and may, therefore, be functionally differ-
ent as well (266).

B. Mineral ions and calcitropic hormones

1. Calcium. In humans, rodents, sheep, cattle, monkeys, and
other mammals, the fetal blood calcium (total and ionized)
is maintained at a higher level than in the maternal circula-
tion (268–275). This elevation is mainly due to an increase in
the ionized calcium level (274). Ionized calcium is approxi-
mately 80% of the total calcium in fetal rodents (276); only a
small fraction is bound to albumin.

In fetal rats, there is a progressive rise in total and ionized
calcium over the last week of gestation, corresponding to the
time of a progressive decline in fetal pH (277–279). Data are
lacking on precisely how early in gestation the fetal blood
calcium begins to exceed the maternal. In sheep, fetal hy-
percalcemia has been detected as early as the 35th day of
gestation (280, 281). In humans, fetal hypercalcemia was
documented at 15–20 weeks of gestation (by fetoscopy) (282)
and at delivery of preterm singleton and twin pregnancies
(mean gestational age 33 weeks) (283).

Two physiological models could explain fetal hypercalce-
mia: either the fetus maintains a fixed positive gradient of
calcium with respect to the maternal level, or the fetus main-
tains a high, fixed level of calcium. Evidence from rat and
mouse models indicates that the fetus sets its blood calcium
at a higher level independently of the maternal calcium level.
For example, in rats, the fetal blood calcium is unchanged in
the presence of severe maternal hypocalcemia due to a cal-
cium-restricted diet (284), vitamin D deficiency (29, 84, 285),
or thyroparathyroidectomy (46, 134). The calcium gradient
from mother to fetus is increased in these fetuses because the
maternal blood calcium is lower. When both the pregnant rat
and its fetus are thyroparathyroidectomized, the fetus still
maintains a higher blood calcium level than the mother (286,

287). Also, in genetically engineered mice, maternal hyper-
calcemia due to heterozygous ablation of the calcium-sens-
ing receptor (CaSR) gene does not affect the blood calcium
level set by normal fetuses (288). Similarly, heterozygous
calcium-sensing receptor knockout fetuses establish a con-
stant, abnormally high fetal blood calcium level, regardless
of whether the mother is heterozygous (and therefore hy-
percalcemic) or normal (288). The apparent “calcium gradi-
ent” is lower in offspring of these heterozygous mice, due to
maternal hypercalcemia. Finally, acute alterations in the ma-
ternal blood calcium of rodents and primates (by calcium,
1,25-dihydroxyvitamin D, calcitonin, PTH, or EDTA infu-
sions) are not reflected by much perturbation in the fetal
blood calcium (232, 289–292).

Others have reported a fall in the fetal blood calcium after
maternal parathyroidectomy in rats (52–54). The fetal blood
calcium was normal between the 12th and 17th day of ges-
tation, but fell during the period of rapid fetal skeletal cal-
cium accretion. Therefore, these data indicate that the ability
of the fetal rat to set its blood calcium may break down
during the time of rapid accretion of calcium by the skeleton,
if the mother has been parathyroidectomized.

In summary, from early pregnancy, mammalian fetuses
have higher levels of blood calcium than their mothers,
mainly due to an increase in the ionized calcium level. The
fetus does not establish a particular calcium gradient with
respect to the maternal blood calcium; instead, it establishes
a particular fetal blood calcium level, irrespective of the
ambient maternal blood calcium level. This ability persists in
the presence of significant maternal hypocalcemia of various
causes, but may be impaired during the time of rapid ac-
cretion of calcium by the skeleton. The physiological impor-
tance of fetal hypercalcemia is not known.

2. Phosphate. Fetal phosphorus levels are higher than mater-
nal in rats (279) and humans (32, 270, 273). This suggests that
phosphate may be actively transported across the placenta,
but the regulators of this active transport are unknown (293).
PTHrP and PTH do not stimulate placental transport of phos-
phate in sheep (294); vitamin D may have a role (295).

3. PTH. Fetal parathyroid glands of rats and sheep contain
PTH mRNA (114, 116), and PTH immunoreactivity is present
in human fetal parathyroid glands as early as 10 weeks of
gestation (296). These findings indicate that fetal parathyroid
glands are capable of synthesizing PTH early in gestation.
Furthermore, PTH detected in the fetal blood likely derives
from fetal sources alone. Intact PTH does not cross the pla-
centa of nonhuman primates, sheep, and rodents (230–232)
and probably does not cross the human placenta.

The following evidence indicates that fetal parathyroid
glands appear to contribute to calcium homeostasis, by se-
cretion of PTH or PTHrP. Fetal thyroparathyroidectomy in
sheep and fetal decapitation in rats caused hypocalcemia (52,
297, 298), and mice lacking the PTH/PTHrP receptor gene
are hypocalcemic in utero (299). PTH can be regulated by the
ambient fetal blood calcium, since EDTA-induced fetal hy-
pocalcemia has been found to induce a rise in fetal PTH levels
in rats (300), cattle (275), and rhesus monkeys (301), although
another study in rhesus monkeys found no fetal PTH re-
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sponse (271). Removal of a maternal parathyroid adenoma
was followed by a rise in amniotic fluid PTH levels and a
decline in the amniotic fluid calcium level during a human
pregnancy (302). Since maternal PTH cannot cross the pla-
centa, the findings in this case have been interpreted to in-
dicate that fetal PTH secretion can be influenced by the
maternal blood calcium (302).

In fetal humans and other animals, immunoreactive PTH
blood levels have been found to be undetectable or very low
(i.e., ,0.5 pmol/liter) with respect to maternal PTH level near
the end of gestation (17, 32, 35, 38, 43, 110, 124, 268, 275,
303–310). Little information is available on PTH levels earlier
in gestation. One study in fetal rats found that the PTH level
declined in the last several days of gestation as the serum
ionized calcium rose (277), while two cross-sectional studies
in preterm humans found that the fetal PTH level was not
lower than the maternal PTH level (283, 308).

In summary, the available evidence suggests that the fetal
parathyroids are capable of synthesizing PTH. Since blood
levels of PTH have been typically found to be low in late
gestation at a time when the fetal blood calcium is high, other
factors must determine the fetal blood calcium level. The
precise role of PTH in normal fetal calcium homeostasis will
be clarified by ablating the PTH gene in mice.

4. 1,25-Dihydroxyvitamin D. Although maternal vitamin D
deficiency reduces fertility and litter size in the rat (84, 85),
evidence from several animal models indicates that 1,25-
dihydroxyvitamin D is not necessary for normal fetal calcium
and bone metabolism. In pregnant rats, sheep, and pigs that
were hypocalcemic due to severe vitamin D deficiency, the
fetuses maintained completely normal blood calcium and
phosphate levels and had fully mineralized skeletons at term,
as determined by total weight, ash weight, and calcium con-
tent of femurs (29, 84, 284, 285, 311). Each of these studies is
limited by the possibility that low levels of vitamin D might
have reached the fetus.

Further evidence that 1,25-dihydroxyvitamin D is not
needed for normal fetal calcium and bone homeostasis comes
from the 1a-hydroxylase-deficient Hannover pig model, in
which the fetuses of homozygous 1,25-dihydroxyvitamin D-
deficient sows also maintained completely normal blood cal-
cium and phosphate levels and fully mineralized their skel-
etons (79). Nephrectomy of fetal rats did not affect fetal blood
calcium or phosphate levels when measured 48 h later, even
though fetal 1,25-dihydroxyvitamin D levels fell (286). Also
in fetuses of vitamin D-deficient rats, normal levels of
calbindin28K-D and calbindin9K-D were found in the pla-
centa, intestine, and other tissues (132, 311, 312). In addition,
fetal mice that lack the gene encoding the receptor for 1,25-
dihydroxyvitamin D are born with normal skeletons (313,
314).

Some data from humans lend support to the observation
that 1,25-dihydroxyvitamin D is not needed for normal fetal
calcium and bone metabolism. At term, the cord blood cal-
cium and skeletal mineralization is completely normal in the
offspring of vitamin D-deficient mothers (315–317). It is only
in the first or second week after birth that hypocalcemia
develops; skeletal demineralization and other rachitic

changes are typically not detectable until 1 or 2 months of age
(see Section V.E, below).

These observations of a minimal effect of vitamin D de-
ficiency on fetal calcium and skeletal metabolism do not
mean that 1,25-dihydroxyvitamin D is inactive or has no role
in fetal life. In rats, the receptor for 1,25-dihydroxyvitamin D
appears on day 13 of gestation in the mesenchyme that will
subsequently condense to form the skeletal tissues, and by
day 17 of gestation it is expressed in proliferating and hy-
pertrophic chondrocytes, and osteoblasts of limb buds and
the vertebral column (318). The widespread expression of the
vitamin D receptor early in fetal skeletal development sug-
gests an important role for its ligand in fetal bone develop-
ment, but evidence for this postulated role has not yet been
found. Further studies manipulated the 1,25-dihydroxyvita-
min D level in fetal animals to test the role of this hormone.
Infusion of antibody to 1,25-dihydroxyvitamin D decreased
the ovine fetal blood calcium level (66). 1,25-Dihydroxyvi-
tamin D given to pregnant guinea pigs increased the fetal
calcium and phosphate levels (319). Bilateral nephrectomy in
fetal sheep resulted in reduced ionized and total calcium and
increased phosphate and PTH levels; these changes could be
reversed by administration of 1,25-dihydroxyvitamin D to
the fetus (295). Since these changes could be attributable to
uremia and not loss of the renal 1a-hydroxylase enzyme,
additional fetuses underwent bilateral ureteral sectioning
alone. This surgical procedure allowed urine to drain into the
fetal peritoneal cavity while retaining functional kidneys in
situ. In these fetuses, ureteral sectioning had no effect on fetal
calcium or calcitropic hormone levels. Thus, at least in the
absence of normal renal function, 1,25-dihydroxyvitamin D
may have a substantial influence on fetal mineral ion ho-
meostasis.

1,25-Dihydroxyvitamin D does not readily cross the pla-
centa in rats (320); consequently, circulating levels of 1,25-
dihydroxyvitamin D in the fetus are largely derived from
fetal sources. The fetal kidneys and placenta possess the
1a-hydroxylase enzyme and convert 25-hydroxyvitamin D
to the active form (1, 25-dihydroxyvitamin D) (75, 76). The
contribution of the fetal kidneys must be significant, since
fetal nephrectomy reduced the fetal 1,25-dihydroxyvitamin
D levels in sheep and rats (66, 286). Fetal blood levels of
1,25-dihydroxyvitamin D are typically lower than maternal
levels in humans (37, 56, 304, 321), but umbilical artery levels
of 1,25-dihydroxyvitamin D are slightly higher than umbil-
ical venous levels, confirming the contribution of the fetal
kidneys (37). 25-Hydroxyvitamin D levels have been found
to be roughly equal to maternal levels (37, 56); this is not
surprising since 25-hydroxyvitamin D readily crosses the
placenta in rats (322). Levels of 24,25-dihydroxyvitamin D
correlate with, but are typically lower than, maternal levels
at term in humans (283, 307, 321).

In summary, evidence from animal models indicates that
deficiency of 1,25-dihydroxyvitamin D impairs neither fetal
skeletal formation and calcification nor the ability of the fetus
to maintain a normal blood calcium. Although these data
suggest a limited role for 1,25-dihydroxyvitamin D in the
fetus, fetal production of 1,25-dihydroxyvitamin D and the
vitamin D receptor mandate a continued search for fetal roles
for 1,25-dihydroxyvitamin D. 25-Hydroxyvitamin D readily
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crosses the placenta and can be 1a-hydroxylated by the fetal
kidneys. However, 1,25-dihydroxyvitamin D does not cross
the placenta, and fetal blood levels of 1,25-dihydroxyvitamin
D are low.

5. Calcitonin. Immunoreactive calcitonin can be detected in
human fetal thyroid glands from as early as the 15th week
of gestation (323), and fetal calcitonin levels are maintained
at higher levels than maternal (35, 37, 86, 88, 89, 269, 273, 304,
324). Maternal calcitonin cannot cross the placenta (325). The
increased fetal levels of calcitonin are thought to reflect in-
creased synthesis, but the metabolism and clearance of cal-
citonin have not been studied in fetal animals.

Several acute experimental perturbations suggest a role for
calcitonin in fetal calcium homeostasis. Infusion of calcitonin
antiserum to fetal rats at day 21.5 of gestation slightly in-
creased the fetal blood calcium 1 h later (326), while fetal
injection of calcitonin caused hypocalcemia and hypophos-
phatemia (327). However, fetal thyroidectomy with subse-
quent T4 replacement did not affect the fetal blood calcium
in sheep, indicating that fetal thyroidal C cells alone may not
affect the regulation of the blood calcium level (298). There-
fore, the precise role of calcitonin in fetal calcium homeosta-
sis and skeletal metabolism has not yet been established.

6. PTHrP. Studies of PTH bioactivity in human umbilical
cord blood (as determined by an in vitro cytochemical bio-
assay) found high PTH-like bioactivity, while immunoreac-
tive PTH was simultaneously found to be undetectable or
low (38, 303, 328). Subsequently, it has been recognized that
human cord blood PTHrP levels are significantly higher than
the simultaneous maternal levels at term (43, 310). When
both PTH 1–84 and PTHrP 1–86 were simultaneously mea-
sured by two-site immunoradiometric assays [and expressed
in equivalent units (picomoles/liter)], human cord blood
PTHrP levels were 2–4 pmol/liter, up to 15-fold higher than
the levels of PTH (0.2–0.5 pmol/liter) (43, 110, 124). It has yet
to be confirmed that PTHrP accounts for the high PTH-like
bioactivity in human cord blood; however, studies in fetal
pigs (329) and sheep (116, 330) found that the levels of PTHrP
and PTH-like bioactivity were tightly correlated in late ges-
tation and the neonatal period.

As noted earlier (Section II.B.6), PTHrP may be a prohor-
mone that is processed into separate circulating fragments,
each of which may have different functional roles and re-
ceptors (100). Although the structures of these fragments
have been deduced from studies of tumor cell lines trans-
fected with the PTHrP gene, it has yet to be determined
which of these fragments normally circulate in fetal life.
Full-length PTHrP has twice the molecular weight of PTH;
since PTH cannot cross the placenta, PTHrP probably does
not either. PTHrP 1–86 did not cross the placentas of sheep
and goats (113); however, the possibility that smaller, bio-
logically active fragments of PTHrP might cross the placenta
has not been evaluated.

PTHrP is produced in many sites throughout the devel-
oping embryo and fetus, including the fetal parathyroid
glands (116, 331), skeletal growth plate (332, 333), trophoblast
cells of the placenta (114, 331), amnion (106, 334), chorion
(334), umbilical cord (115), and many other organs. All of

these sites may contribute to the circulating level of PTHrP
in the fetus and may thereby be relevant to fetal calcium and
bone metabolism. Since venous umbilical PTHrP levels were
higher than umbilical arterial levels in pigs, the placenta may
be an important source of systemically circulating PTHrP in
the fetus (329). Due to local production of PTHrP by the
umbilical cord (115), the level of PTHrP in cord blood might
not accurately reflect the systemic level of PTHrP, but this has
not been tested.

PTHrP has multiple possible roles during embryonic and
fetal development (335). PTHrP gene-ablated mice have ab-
normalities of chondrocyte differentiation (336) and aberrant
breast development (337). PTHrP may also be an important
regulator of the fetal blood calcium. PTHrP levels correlate
with the fetal ionized calcium levels in pigs (329). In gene-
tically engineered mice, homozygous ablation of the PTHrP
gene results in a fetal blood calcium no higher than that of
the mother (299). In sheep, fetal parathyroidectomy causes
hypocalcemia that can be reversed by PTH or PTHrP infusion
(297, 298, 338). Since PTH normally circulates at low or un-
detectable levels in the fetus near term (Section III.B.3, above),
it is possible that the hypocalcemic effect of fetal parathy-
roidectomy is at least partly due to the loss of PTHrP pro-
duced by the parathyroids. In the next section (III.C), the
unique role of PTHrP in stimulating placental calcium trans-
port will be discussed.

In summary, PTHrP is produced by diverse fetal tissues
and circulates in fetal blood at levels higher than adult levels.
PTHrP appears to regulate the fetal blood calcium as well as
fetal-placental calcium transport.

C. Fetal-placental calcium transport

Calcium is actively transported across the placenta (339,
340). The site of active transport is likely at the fetus-facing
basement membrane of the syncytiotrophoblast cells in the
human and at the trophoblast cells and the basal surface of
the endoderm of the intraplacental yolk sac in rodents (341,
342). The active transport of calcium may be mediated by a
Ca21-ATPase present at these same sites (339, 342). This
enzyme’s activity can be inhibited by dinitrophenol, ouabain,
quercetin, and antibody to the human erythrocyte plasma
membrane calcium pump (339, 342). Calcium-binding pro-
teins in the placenta and yolk sac are also thought to be
involved in active placental calcium transport. The placental
calbindin9K-D mRNA and protein levels increase over the
last week of gestation in rats (129, 343) and mice (130, 133)
and are unaffected by maternal vitamin D deficiency (132,
311). Transplacental transport of calcium is generally found
to be a one-way process, i.e., fetal-to-maternal flow of calcium
is typically less than 1% of the forward (maternal-to-fetal)
flow (344, 345). In rhesus monkeys, backflux was reported to
be 80% of the forward flow (345); it is not certain whether this
represented a true species difference or methodological dif-
ferences. It has not been determined when active transport
of calcium begins in gestation, due to technical difficulties
involved in studying placental physiology early in gestation.
However, active transport of calcium must be underway by
the third trimester in humans, which is the time of rapid
skeletal mineralization and peak fetal calcium requirement.

December, 1997 MATERNAL-FETAL CALCIUM PHYSIOLOGY 843

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/18/6/832/2530800 by guest on 21 August 2022



1. Maternal hormones. Maternal hormones might influence the
fetal-placental calcium transport process by raising or low-
ering the ambient maternal calcium level, and by direct ef-
fects on the placenta. However, several lines of evidence
from animal experiments indicate that fetal-placental cal-
cium transport and net maternal-fetal calcium transfer are
maintained relatively independently of maternal hypocalce-
mia or hormone deficiencies. In pregnant sheep, maternal
hypocalcemia due to parathyroidectomy or dietary calcium
restriction did not affect the rate of fetal-placental calcium
transfer as directly assessed in placental perfusion experi-
ments (297, 346); in addition, the fetal blood calcium, phos-
phate, PTH, and 1,25-dihydroxyvitamin D levels were all
unchanged by maternal hypocalcemia (284, 347). The finding
of a “normal” rate of calcium transfer across the placenta
indicates that the fetal-placental unit must be working harder
to extract the normal amount of calcium from a reduced
amount of maternal calcium presented to the placenta. In-
deed, the following observation from intact fetal rats con-
firmed that the rate of placental calcium transfer is up-reg-
ulated in response to parathyroidectomy-related chronic
maternal hypocalcemia. In this experiment, a maternal cal-
cium infusion caused a marked, acute rise in the blood cal-
cium of fetuses from parathyroidectomized rats, but had no
effect on the fetuses of normal rats (348). Such an up-regu-
lation in placental calcium transfer may compensate for a low
ambient maternal blood calcium and permit a normal
amount of calcium to be transferred by the end of gestation.

Several additional studies have examined only indirectly
the effect of other maternal hormone deficiencies on placen-
tal calcium transfer. In these studies, net fetal accumulation
of calcium at term was used as an index of placental calcium
transfer during pregnancy in vitamin D-deficient rats (311),
thyroidectomized, T4-supplemented (“calcitonin-deficient”)
sheep (349, 350), and in sheep that received daily adminis-
tration of PRL and/or bromocriptine (351). Since placental
calcium transport was not directly assessed in these studies,
conclusions cannot be drawn about the effect of maternal
vitamin D, calcitonin, and PRL deficiency on placental cal-
cium transport.

2. Fetal hormones. The role of 1,25-dihydroxyvitamin D in
fetal-placental calcium transport has not been thoroughly
studied. Receptors for 1,25-dihydroxyvitamin D are present
in the placentas of humans, rats, and sheep and might, there-
fore, have a role in placental calcium physiology (352–355).
In placental perfusion models in rats, guinea pigs, and sheep,
pharmacological doses of 1,25-dihydroxyvitamin D or 1a-
cholecalciferol increased the fetal blood calcium, transport of
calcium across the placenta, and mineral content of ashed
fetuses (319, 356, 357). Also, prior nephrectomy of fetal sheep
reduced calcium transfer in the placental perfusion model,
and this effect could be partly restored by administering
1,25-dihydroxyvitamin D (339). Thus, the evidence indicates
a possible role for 1,25-dihydroxyvitamin D in fetal calcium
homeostasis, but this role is not yet well defined.

The role of fetal calcitonin is even less well established. In
intact fetal sheep, calcitonin has been found to reduce the
PTHrP-mediated increases in the apparent rate of calcium
transfer (349, 358). In contrast, fetal thyroidectomy with sub-

sequent T4 replacement did not alter placental calcium trans-
fer in sheep, indicating that loss of fetal calcitonin does not
perturb the placental calcium pump (298).

The role of the parathyroid gland in fetal calcium metab-
olism has been extensively studied. Fetal thyroparathyroid-
ectomy in sheep and fetal decapitation in rats resulted in a
lower fetal blood calcium, such that the maternal-fetal cal-
cium gradient was obliterated (297, 298, 359). In addition,
when the thyroparathyroidectomized sheep or rat fetuses
were removed so that the placentas could be artificially per-
fused in situ, active transport of calcium across these exper-
imentally perfused placentas was found to be reduced (297,
298, 359, 360). These findings indicate that the parathyroid
glands have a critical role in maintaining the fetal blood
calcium and the active transport of calcium across the pla-
centa. Infusion of autologous blood from fetuses with intact
parathyroid glands restored calcium transport across the
perfused placentas of thyroparathyroidectomized fetal
sheep (298). However, PTH failed to restore the active trans-
port of calcium in fetal sheep or rats under these conditions
(338, 359, 361).

The placenta may be able to transport calcium actively to
some extent even in the absence of fetal parathyroid glands.
When rat dam and fetus were both thyroparathyroidecto-
mized, the fetus maintained a higher blood calcium level
than the dam (286, 287). Although calcium transport was not
measured, the fact that relative fetal hypercalcemia was
maintained may indicate that some capability for active
transport of calcium persists after fetal parathyroidectomy.

In the studies of thyroparathyroidectomized fetal sheep,
synthetic PTHrP molecules of amino acid lengths 1–141, 1–
86, and 67–86 were found to stimulate placental calcium
transport in the experimentally perfused placentas (338, 361–
363). These results suggested that PTHrP, perhaps produced
by the parathyroid glands, stimulates active transport of
calcium across the placenta. In contrast, PTHrP 1–34, which
contains only the PTH-like amino-terminus, failed (like PTH)
to stimulate calcium transport in this model. Studies in ge-
netically engineered mice support the hypothesis that PTHrP
stimulates placental calcium transport. A reduction in blood
calcium to the maternal level and reduced placental transfer
of calcium has been found in homozygous PTHrP-gene
knockout fetal mice (299). The placental transfer of calcium
was acutely increased in the homozygous fetuses by treat-
ment with PTHrP 1–86 or PTHrP 67–86, but not by PTHrP
1–34 or intact PTH (299). These data suggest that PTHrP
increases placental calcium transport by acting through a
receptor distinct from the PTH/PTHrP receptor, since the
PTH/PTHrP receptor is stimulated equally by amino-termi-
nal PTH and PTHrP. This hypothesis is further supported by
the studies of fetal mice homozygous for deletion of the
PTH/PTHrP receptor gene. These mice are hypocalcemic,
but placental calcium transport in these fetuses is increased
(299).

These data on the effects of PTHrP in parathyroidecto-
mized fetal sheep and genetically engineered mice are not
supported by the following observations in fetal rats. In the
perfused placentas obtained from intact or decapitated fetal
rats, active transport of calcium was found to be stimulated
slightly by amino-terminal PTH or PTHrP, but not by frag-
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ments of PTHrP that do not contain the amino terminus (359,
360). This could reflect a true species difference or method-
ological differences.

Taken together, the studies in genetic knockout mice, and
those in thyroparathyroidectomized fetal sheep, suggest that
in fetal life, PTHrP is necessary to maintain the normal fetal
hypercalcemia and at least part of the active transport of
calcium across the placenta. This transport is regulated in
part by a midmolecular portion of PTHrP acting on a novel
(as yet uncloned) receptor distinct from the PTH/PTHrP
receptor. Recent evidence suggests that the structure of this
midmolecular fragment of PTHrP may encompass amino
acids 38–94 (100, 364), but this has yet to be confirmed by
RIAs of fetal blood. The studies in sheep suggested that the
parathyroid glands secrete the PTHrP that controls placental
calcium transport; however, direct evidence to support this
hypothesis is not yet available. Finally, the physiological
importance of the actions of fetal 1,25-dihydroxyvitamin D
and calcitonin require further exploration.

D. Renal handling of calcium and the amniotic fluid

The fetal kidneys may play a role in regulating the fetal
blood calcium level, by adjusting the relative reabsorption
and excretion of calcium and phosphate by the renal tubules
in response to the filtered load and other factors, such as
PTHrP and/or PTH. The fetal kidneys may also participate
by synthesizing 1,25-dihydroxyvitamin D. However, little
hard data are available on fetal kidney function and its rel-
ative importance in regulating the fetal blood calcium. As
noted previously, nephrectomy in fetal lambs resulted in
hypocalcemia, hyperphosphatemia, and reduced placental
calcium transfer; these effects were attributed to loss of renal
production of 1,25-dihydroxyvitamin D (295, 339). The fetal
renal tubular function may be under the control of PTHrP or
PTH in fetal life, since thyroparathyroidectomy in fetal sheep
resulted in an increase in fractional excretion of calcium by
the fetal kidneys and reduced phosphate excretion (365, 366).
These effects were reversed by treatment with amino-termi-
nal fragments of either PTH or PTHrP (365, 366). Thyropara-
thyroidectomy also reduced placental calcium transport in
fetal sheep (Section III.C., above); therefore, the hypocalcemia
in thyroparathyroidectomized fetuses likely results from the
combined effects of reduced influx of calcium across the
placenta, increased excretion of calcium by the fetal kidneys,
and possible effects of the loss of PTHrP and/or PTH on the
fetal skeleton and renal 1a-hydroxylase.

In fetal life, renal excretion of calcium does not necessarily
represent a permanent loss of calcium for the fetus. Fetal
urine excretion is probably the major source of fluid and
solute in the amniotic fluid, while fetal swallowing is likely
the major pathway for clearance of amniotic fluid and is a
pathway by which excreted calcium can be made available
again to the fetus (367). The volume and composition of
amniotic fluid have been used as indirect measures of fetal
renal function. The amniotic fluid ionized calcium level has
been found to be constant between 14–15 weeks of gestation
and term in humans, while the total calcium and phosphate
levels decline over the same interval (13). This may indicate
that renal excretion of calcium is equally balanced by fetal

swallowing and intestinal reabsorption of calcium. How-
ever, other sources may contribute to the amniotic fluid,
including secretions from the respiratory tract, and exchange
of fluid and/or solute across the fetal skin, fetal membranes
(amnion, chorion and chorionic plate), and umbilical cord
(367). Little is known about the relative contribution of these
sites to the volume and composition of the amniotic fluid,
and hence uncertainty remains about how accurately the
amniotic fluid composition reflects renal function. Never-
theless, amniotic fluid represents a pathway by which ex-
creted calcium may be recirculated to the fetus.

E. Skeletal calcium metabolism

The fetal skeleton may well have two interdependent roles
— substantial growth during late fetal life and participation
in fetal calcium homeostasis. Several lines of evidence indi-
cate that the fetal skeleton participates in fetal calcium ho-
meostasis and that skeletal calcium may be mobilized in
response to reduced transfer of calcium from mother to fetus.
Maternal hypocalcemia due to thyroparathyroidectomy or
calcitonin infusion increased the basal level of bone resorp-
tion in subsequently cultured fetal rat bones (368, 369). These
effects were blocked by prior fetal decapitation, which is
thought to mimic the effects of thyroparathyroidectomy (368,
369). Further, the fetal parathyroid glands enlarge in re-
sponse to maternal hypocalcemia in the rat (47, 370), and fetal
femur length and mineral ash content are subsequently re-
duced (53). Additional, recent observations in genetically
engineered mice suggest a role for the skeleton in fetal cal-
cium homeostasis. The ionized calcium of fetal mice that lack
the PTH/PTHrP receptor gene is lower than that of fetal mice
that lack the PTHrP gene, despite the fact that placental
calcium transport is supranormal in PTH/PTHrP receptor
knockout fetuses and subnormal in PTHrP knockout fetuses
(299). Lack of bone responsiveness to amino-terminal PTH
and PTHrP may well, therefore, contribute to the hypocal-
cemia in mice without PTH/PTHrP receptors.

Intact fetal parathyroid glands are needed for normal skel-
etal development, since fetal thyroparathyroidectomy in
sheep caused decreased ash content and rachitic changes in
the fetal skeleton by term (371, 372). These effects could be
partly reversed or prevented by fetal calcium and phosphate
infusions; thus, much of the effect of fetal parathyroidectomy
was caused by a decrease in blood levels of calcium and
phosphate (372). However, although bone formation param-
eters were corrected by the calcium and phosphate infusion,
bone resorption parameters remained abnormal (reduced
resorption cavities, reduced osteoclast numbers). Therefore,
functioning fetal parathyroids (and, therefore, parathyroid
gland-produced PTH and/or PTHrP) are required for nor-
mal fetal bone resorption and mineralization.

PTHrP is clearly important for growth plate development,
because absence of PTHrP (in the PTHrP gene-knockout
mouse) results in a chondrodysplasia characterized by ac-
celerated differentiation of growth cartilage and adjacent
endochondral bone (336). This effect of PTHrP must be me-
diated by the PTH/PTHrP receptor, because mice homozy-
gous for the absence of the PTH/PTHrP receptor have a
similar skeletal phenotype (373). However, these gene
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knockout experiments could not determine whether system-
ically delivered PTHrP adds to the likely role of PTHrP
produced in the growth plate itself.

In summary, normal mineralization of the fetal skeleton
requires intact fetal parathyroid glands and adequate deliv-
ery of calcium to the fetal circulation. The fetal skeleton can
participate in the regulation of fetal calcium homeostasis,
probably through actions of PTHrP and/or PTH. In addition
to its effects on regulating placental calcium transport,
PTHrP is required for normal skeletal development. Evi-
dence from experimental vitamin D deficiency and the vi-
tamin D receptor knockout indicates that 1,25-dihydroxyvi-
tamin D may not be required by the developing skeleton.

F. Fetal response to maternal hyper- or hypoparathyroidism

As discussed earlier (Section II.F), in humans, maternal
hypercalcemia due to primary hyperparathyroidism may
suppress the fetal parathyroid glands, since hypocalcemia
can be present at birth (225, 235). The fetal parathyroid glands
may also be suppressed when the mother has hypercalcemia
due to familial hypocalciuric hypercalcemia (241–243, 374).

On the other hand, maternal hypoparathyroidism in hu-
man pregnancy has been associated with the development of
intrauterine, fetal hyperparathyroidism. This condition is
characterized by fetal parathyroid gland hyperplasia, gen-
eralized skeletal demineralization, subperiosteal bone re-
sorption, bowing of the long bones, osteitis fibrosa cystica, rib
and limb fractures, and low birth weight (246, 375–378).
Spontaneous abortion, stillbirth, and neonatal death have
also been associated with this condition (379–381). Similar
skeletal findings have been reported in the fetuses and ne-
onates of women with pseudohypoparathyroidism (262,
263), renal tubular acidosis (382), and chronic renal failure
(383). Although these skeletal changes have been interpreted
to indicate fetal hyperparathyroidism, no serum measure-
ments of intact PTH (or PTHrP) have been reported for this
condition, and the serum calcium level has been generally
reported to be normal.

G. Integrated fetal calcium homeostasis

Previous sections have demonstrated that the fetus main-
tains a blood calcium higher than the maternal level, and that
the placenta and bone, and perhaps fetal kidney and intes-
tine, transport calcium into and out of the bloodstream. How-
ever, the need for fetal hypercalcemia and the mechanisms
by which it is maintained are not fully understood.

The need for an increased fetal blood calcium level is
uncertain. It may well not be necessary for normal accretion
of calcium by the developing skeleton, since, despite oblit-
eration of the normal fetal-maternal calcium gradient (299),
homozygous PTHrP-null fetal mice do not have a deficit in
skeletal mineral content, as assessed by alizarin red staining
and ash mineral content (336, 384).

In adult life, the CaSRs on the parathyroid glands and
kidneys set the ambient serum calcium level, mainly by con-
trolling the synthesis and secretion of PTH by the parathy-
roid glands and regulating renal tubular handling of calcium
(385, 386). Inactivating or loss-of-function mutations of this

receptor raise the set point for PTH secretion and increase
renal calcium retention; these actions lead to hypercalcemia
(385, 386). If the parathyroid gland CaSR were responsible for
the elevated fetal calcium level, the set point would have to
be different in fetal life, and one would expect to find in-
creased or inappropriately normal PTH levels in the presence
of the increased fetal calcium level. Instead, PTH in humans
is normally low or undetectable at term (Section V.B.3), and
the fetal blood calcium and PTH level are negatively corre-
lated (387). Therefore, it is likely that neither the parathyroid
CaSR nor PTH is responsible for the high fetal blood calcium;
instead, the normally functioning CaSR suppresses the para-
thyroids in response to a high fetal calcium that is maintained
by other processes. Further evidence that factors other than
PTH derived from the parathyroids have a role in regulating
the fetal blood calcium come from studies of thyroparathy-
roidectomized rat fetuses, which maintain a higher blood
calcium than their simultaneously thyroparathyroidecto-
mized mothers (286, 287). Such factors might include PTHrP
(derived from the placenta, parathyroids, and other tissues),
among other factors that might still be undiscovered.

That PTHrP has a role in maintaining the fetal blood cal-
cium is suggested by the finding of a reduction in the fetal
calcium to a level equal to that of the mother, in the PTHrP
gene knockout fetuses (299). PTH levels are sharply in-
creased in the PTHrP-null fetus (388), indicating that, in the
absence of PTHrP, the parathyroids respond to regulate the
fetal calcium level. Indeed, other evidence indicates that
eliminating the amino-terminal actions of PTH, in addition
to those of PTHrP, has a greater effect on reducing the fetal
blood calcium than removing the PTHrP gene. The ionized
calcium level of PTH/PTHrP receptor-null fetuses is lower
than the ambient maternal level, despite the presence of a
supranormal rate of placental calcium transfer (299).

Since the ionized calcium level of PTHrP-null fetuses is not
higher than the maternal calcium level, this might indicate
that PTH cannot make up for lack of PTHrP (including the
effect of PTHrP to stimulate placental calcium transport);
alternatively, in the absence of PTHrP, the fetal parathyroid
CaSR may then control the regulation of the blood calcium,
by stimulating PTH and setting the ionized calcium at the
normal adult level. Further work is needed to determine
whether either of these proposed mechanisms is correct.

Thus, an integrated model of normal fetal calcium ho-
meostasis proposes that the fetal blood calcium is set at a
level higher than maternal through the actions of PTHrP
(among other potential factors). The parathyroid CaSR re-
sponds appropriately to this increased level of calcium and
suppresses the parathyroids. 1,25-Dihydroxyvitamin D syn-
thesis and secretion are, in turn, suppressed due to the effects
of low PTH and high blood calcium and phosphate. PTHrP
may be autonomously produced by the placenta and other
tissues, or its production may be regulated. This model fur-
ther proposes that the fetal blood calcium is maintained not
only by flux of calcium across the placenta from the mother,
but by contributions from fetal skeleton and kidney.

This tentative model needs to be tested further, and the
physiological benefit of fetal hypercalcemia requires clarifi-
cation.

846 KOVACS AND KRONENBERG Vol. 18, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/18/6/832/2530800 by guest on 21 August 2022



H. Summary

The fetal-placental unit has adapted to rapidly extract
calcium from the maternal blood stream in sufficient
amounts to mineralize the fetal skeleton in late gestation.
Fetal blood calcium and active transport of calcium across the
placenta are regulated relatively independently of the levels
of maternal calcium and calcitropic hormones. The fetus has
a higher blood calcium than the ambient maternal calcium
level. PTH and 1,25-dihydroxyvitamin D, the traditional cal-
citropic hormones, are present at low levels in the fetal cir-
culation and may have a limited role in fetal calcium phys-
iology. Calcitonin levels are elevated in the fetal circulation,
but the role of calcitonin in fetal calcium homeostasis is
uncertain. PTHrP is critical for maintaining normal fetal hy-
percalcemia and active transport of calcium across the pla-
centa, although it is likely that other factors regulate placental
calcium transport, as well. A midmolecular form of PTHrP
stimulates placental calcium transport, through actions on a
receptor that is distinct from the cloned PTH/PTHrP re-
ceptor.

The fetal-placental unit has a remarkable ability to meet its
needs irrespective of maternal calcium or vitamin D levels.
However, maternal hypercalcemia due to primary hyperpara-
thyroidism or familial benign hypercalcemia can suppress the
fetal parathyroid glands. In turn, maternal hypocalcemia due
to hypoparathyroidism and pseudohypoparathyroidism (and
other causes) can cause fetal parathyroid gland enlargement
and increased resorption in the fetal skeleton.

The fetus does not set a calcium gradient against the ma-
ternal circulation; instead, the fetus sets its blood calcium at
a particular level independently of the maternal value. The
physiological role of this relative hypercalcemia is uncertain.
The normal setting of this level requires the presence of a
normal calcium-sensing receptor. The fetal blood calcium is
not simply determined by the influx of calcium across the
placenta. Rather, other important factors include fluxes of
calcium in and out of the developing skeleton, and (probably
to a lesser extent) renal tubular reabsorption and excretion of
calcium, and reabsorption of calcium from swallowed am-
niotic fluid.

IV. Maternal Physiology and Pathophysiology
During Lactation

A. Maternal adaptive goals during lactation

Albright and Reifenstein (1) reported that maternal losses
of calcium during 9 months of lactation are 4-fold higher than
the losses occurring during pregnancy. More specifically, the
typical daily loss of calcium in breast milk has been estimated
to range from 280–400 mg (389, 390), although daily losses
as great as 1000 mg calcium have been reported (391). Ac-
curate estimates of the calcium content of breast milk are
complicated because the content varies within and between
feedings (392, 393), between breasts of the same person (393),
and among different mothers and ethnic groups (392). Al-
though the calcium content of milk is lower at 6 months
compared with 3 months postpartum (390, 392, 394, 395), the
volume of milk produced at 6 months tends to be greater

(390), and therefore the daily maternal loss of calcium may
be greater when lactation extends to 6 months and beyond
(390).

In a classic study in 1931, Donelson et al. (396) carefully
measured dietary calcium intake and losses of calcium in
feces, urine, and breast milk in a group of lactating women
who exclusively pumped breast milk and did not permit
their infants to suckle. Despite adequate vitamin D and cal-
cium intake (in the form of cod liver oil and yeast), calcium
balance was negative in these women throughout lactation
(396). A similar study of three lactating women found a
negative calcium balance (net loss of 1 g calcium) during the
interval of greatest milk production, despite ingestion of
supplemental calcium and phosphorus; only during the time
of lessened milk production (weaning) did the calcium bal-
ance return to normal (391).

To compensate for the calcium requirements of lactation,
the maternal adaptations could, in theory, include increased
intestinal absorption of calcium, renal conservation of cal-
cium, and increased resorption of calcium from the skeleton.
In fact, the studies reviewed in this section indicate that a
temporary demineralization of the skeleton is the main
mechanism by which lactating humans and animals meet
these calcium requirements. This demineralization does not
appear to be mediated by PTH or 1,25-dihydroxyvitamin D,
but may be mediated by PTHrP in the setting of a fall in
estrogen levels.

B. Mineral ions and calcitropic hormones

The changes that occur in maternal calcium, phosphate,
and calcitropic hormone levels during lactation, weaning,
and postweaning are schematically depicted in Fig. 2.

1. Calcium. From the earliest measurements of total calcium
to the newer reports of ionized calcium determinations in
lactation, the blood calcium of lactating humans has been
found to be normal or slightly increased (7, 397–399). More
recently, with larger sample sizes, it has been shown that the
mean ionized calcium level of exclusively lactating women
is higher than that of normal controls (400, 401). Also, moth-
ers nursing twins have been found to have significantly
higher total calcium levels than mothers nursing singletons
(402). Furthermore, occasionally substantial hypercalcemia
may develop during lactation and resolve only at weaning
(403).

In contrast, the data from lactating rats are conflicting: two
reports found lactating rats to be slightly hypocalcemic com-
pared with nonlactating controls (50, 404); another found
normal calcium levels that could be decreased by feeding a
low calcium diet (405), while a fourth found mild hypercal-
cemia (406). More intensive lactation (as determined by the
relative rate of weight gain in the pups of a litter or by the
number of pups in a litter) correlated with a lower maternal
serum calcium (22, 50, 407, 408). Deer have also been found
to have higher corrected serum calcium levels during lacta-
tion than after weaning (23). With abrupt weaning, the serum
calcium of lactating rats typically rebounds into the hyper-
calcemic range (81, 409).

2. Phosphate. Serum phosphate levels are typically higher
during lactation in humans, and, in some cases, exceed the
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normal range (14, 28, 398, 401, 410–412); similar results have
been reported for lactating rats (50) and deer (23). Reabsorp-
tion of phosphate by the kidneys may be increased, although
few measurements of tubular reabsorption of phosphate
have been made (27, 160, 410, 411), and the data are con-
flicting. The increased serum phosphate levels may, there-
fore, reflect the combined effects of increased flux of phos-
phate into the blood from diet and from skeletal resorption
(Sections IV.E.1 and IV.E.2, below) in the setting of decreased
renal phosphate excretion (Section IV.D, below).

3. PTH. Lactation had been described as a state of secondary
hyperparathyroidism by Albright and Reifenstein (1) and, as
with pregnancy, early PTH assay results appeared to confirm
this hypothesis (413) [although some early assays reported
normal levels (30, 55, 397, 414)]. However, intact PTH, as
determined by a two-site IRMA, has been found to be re-
duced 50% or more in lactating women in both cross-sec-
tional (399, 401) and longitudinal studies (27, 160, 398, 400,
411, 415–417). The intact PTH level remains low compared
with that of nonlactating postpartum women, rising to nor-
mal (160), or above normal (27, 398, 410) after weaning. This
postweaning increase in intact PTH level may be sustained
for 2–3 months (27, 398). This elevation corresponds to the
time when bone mineral is restored to the skeleton (see
discussion on bone density during lactation, Section IV.E.2,
below) (27, 410).

PTH, measured with a two-site IRMA, rises during lacta-
tion in rats (45, 49, 50). Under the stress of a low calcium diet,
urine cAMP levels sharply increase (405), and PTH levels
(N-terminal assay) rise even higher (21, 50). Similar effects
have been seen in dams nursing larger litters (50, 408). How-
ever, a functioning parathyroid gland is not necessary to
provide calcium to the milk of the lactating rat (418). After
weaning in rats, PTH levels were found to fall within 6 h (as
determined by an N-terminal assay) and were normal by
24–48 h (21).

These data suggest that PTH levels are likely subnormal or
normal during lactation in humans; the original hypothesis
of hyperparathyroidism in lactation has not been substanti-
ated. The metabolism of lactating rats, on the other hand,
may represent a functionally hyperparathyroid state, in re-
sponse to a fall in maternal blood calcium during lactation.

4. 1,25-Dihydroxyvitamin D. In contrast to the high 1,25-di-
hydroxyvitamin D levels of pregnancy that contribute to the
doubling of intestinal calcium absorption, within days of
parturition, maternal free and bound 1,25-dihydroxyvitamin
D levels fall to normal (20, 55, 58, 73, 160). The levels remain
normal throughout lactation and postweaning (27, 58, 160,
397, 398, 410, 414, 417), although one study reported that the
levels rose above the normal range when lactation continued
beyond 6 months (414), and another found an elevation after
weaning (398). Women nursing twins had higher 1,25-dihy-
droxyvitamin D levels than women nursing singletons (402).
Serum 25-hydroxyvitamin D levels are typically unchanged
by lactation (410).

In contrast to humans, lactating rats have elevated levels
of 1,25-dihydroxyvitamin D (22, 81), and more intense lac-
tation correlated with higher levels (22, 407). The lactational

FIG. 2. Schematic illustration of the longitudinal changes in calcium,
phosphate, and calcitropic hormone levels that occur during lactation
and postweaning in humans. Normal adult ranges are indicated by
the shaded areas. Data have been compiled from the following sourc-
es: total calcium (7, 397–399), ionized calcium (400, 401), phosphate
(14, 398, 401, 410–412), PTH (27, 160, 398–401, 410, 411), 1,25-
dihydroxyvitamin D (27, 58, 160, 397, 398, 410, 414), calcitonin (14,
397, 402, 420), and PTHrP (399–401, 411, 435). The progression in
PTHrP levels has been depicted by a dashed line to reflect that the
data are less complete.
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rise in 1,25-dihydroxyvitamin D seen in rats was prevented
by a small increase in the calcium content of the diet and was
exacerbated by a low-calcium diet (419). Parathyroidectomy
in the lactating rat caused a 70% decrease in the level of
1,25-dihydroxyvitamin D (81). Therefore, 1,25-dihydroxyvi-
tamin D levels are elevated in rats in response to a fall in
blood ionized calcium and a rise in serum PTH.

5. Calcitonin. In lactating humans, high calcitonin levels that
do not vary with suckling have been reported (14, 420), while
normal levels 6 weeks to 6 months postpartum have been
found by others (397, 402, 417). In these reports the serum
calcium was not different between lactating women and
controls. Nursing of twins resulted in higher calcitonin and
corrected serum calcium levels compared with nursing of
singletons, although the levels remained in the normal range
(402). Calcitonin is secreted into breast milk at concentrations
45 times that of maternal plasma (93); its functional role
within the breast is unknown. Since a rise in serum calcitonin
during lactation persists in totally thyroidectomized women,
the breast may be an important extrathyroidal source of
calcitonin during lactation (93).

In sheep, despite constancy of serum calcium levels, cal-
citonin levels fall to nonpregnant levels at parturition, rise
over the period of lactation, and fall again at weaning (324).
A similar rise in serum calcitonin has been found in deer,
which also manifest a mild increase in the corrected serum
calcium during lactation (23). In contrast, the data from lac-
tating rats are conflicting. Investigators have reported low
calcitonin levels in the presence of mild lactational hyper-
calcemia (406), while others have found high calcitonin levels
until weaning in the presence of a normal or low serum
calcium (421).

In the “calcitonin-deficiency” model previously described
(Section II.B.5), rats made calcitonin-deficient during preg-
nancy lost more mineral content of their femurs than normal
after 3 weeks of lactation (96, 97). Similarly, calcitonin-defi-
cient goats fed a calcium-deficient diet lost more bone min-
eral by day 60 of lactation than control animals (77). Lactat-
ing, thyroparathyroidectomized rats had a prompt (1.8 mg/
dl) rise in blood calcium after eating, while lactating control
(intact) rats had no change in blood calcium (422). These
findings indicate that in some species, during lactation, cal-
citonin protects the maternal skeleton from excessive resorp-
tion and regulates the maternal blood calcium level, partic-
ularly in response to meals. The relevance of these findings
to humans has not been determined.

6. PTHrP. PTHrP has been detected in breast milk of humans
and other animals at concentrations exceeding 10,000 times
the level in the blood of patients with hypercalcemia of
malignancy or normal human controls (110, 117). The pri-
mary role of PTHrP in the mammary glands or milk is not
clear. A paracrine action of PTHrP in mammary tissue has
been suggested because PTHrP concentrations in the milk are
positively correlated with total milk calcium content of the
human (423) and cow (424) [although no such correlations
were found in rats (118, 425)], and administration of bro-
mocriptine reduces both the PTHrP and calcium level in the
milk of goats (426). However, a direct effect of PTHrP on the

transport of calcium into the breast and breast milk has not
been established. PTHrP has been found to have vasodilatory
effects on mammary vessels and, therefore, may regulate
mammary blood flow (427, 428). PTHrP has also been shown
to have an essential role in mammary development (337).

PTHrP immunoreactivity in milk and PTHrP mRNA lev-
els in mammary tissue have been observed to rise over the
first few days postpartum in rats (118). Suckling induces
PTHrP (mRNA and protein) locally in rat mammary glands
(425, 429), and this response appears to be mediated by PRL
and not oxytocin (429) and is blocked by bromocriptine (429).
Milking a mammary gland in goats caused a marked increase
in the PTHrP concentration in milk from that gland, but not
in the milk of the contralateral (unstimulated) mammary
gland (430). This result suggests that the synthesis and/or
secretion of PTHrP by the mammary glands is under the
control of local factors rather than the systemic level of PRL
alone (430). Further, in rats, PTHrP is higher in milk at day
21 of lactation, after the PRL level has fallen, indicating that
factors other than PRL may stimulate continued production
of PTHrP by the mammary glands (431).

Studies in lactating rats have found that suckling induces
phosphaturia and an increase in nephrogenous cAMP, which
persists in parathyroidectomized, lactating rats (432). This
result suggests that PTHrP (but not PTH) is released into the
maternal circulation in physiologically relevant amounts in
response to suckling. A similar study in cows found a milk-
ing-induced phosphaturia that could be blocked by (Tyr)34-
bovine PTH(7–34)-NH2, a PTH/PTHrP receptor antagonist
(433). Further, a significant venous-arterial concentration
gradient of PTHrP was found across the mammary gland of
the goat (426), consistent with PTHrP reaching the maternal
circulation from the mammary glands. However, chronic,
passive immunization of the lactating mouse with antibodies
to amino-terminal PTHrP, sufficient to eliminate PTHrP bio-
activity in the breast tissue, failed to affect maternal calcium
or phosphate levels (434). Thus, PTHrP is not the sole de-
terminant of mineral homeostasis in lactating rats. Perhaps
PTH, which is elevated in lactating rats (Section IV.B.3), can
substitute for PTHrP in this circumstance.

Although one less sensitive single-site assay found normal
levels of PTHrP in maternal blood during human lactation
(110), studies that used a more sensitive RIA, or two-site
IRMAs, have found PTHrP levels to be significantly higher
than in nonpregnant controls (399–401, 411, 435). In addi-
tion, a small rise in the systemic level of PTHrP can be
demonstrated after suckling (400, 436). PTHrP was not ele-
vated in the first 3 days postpartum, at which time lactation
is not fully established (437); PTHrP immunoreactivity rises
steadily in the breast milk over the first few days postpartum
and subsequently declines as lactation wanes (400, 431).

Amino-terminal fragments of PTHrP and PTH are equi-
potent in activating the human PTH/PTHrP receptor (104),
and it is possible that fluctuations in secretion of PTHrP into
the maternal circulation from the lactating breast cause re-
sorption of calcium from the maternal skeleton, renal tubular
resorption of calcium, and suppression of PTH. In support of
this hypothesis, PTHrP levels have been found to correlate
negatively with PTH levels and positively with the ionized
calcium levels of lactating women (400, 401). Also, PTHrP
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levels correlate with loss of bone mineral density during
lactation in humans (435). Furthermore, aparathyroid or hy-
poparathyroid women have been found, while lactating, to
be able to activate the 1a-hydroxylase enzyme to synthesize
low-to-normal levels of 1,25-dihydroxyvitamin D and main-
tain normal serum calcium levels while not receiving sup-
plemental calcitriol (244, 245, 258). This is consistent with
PTHrP reaching the maternal circulation in amounts suffi-
cient to allow stimulation of 1,25-dihydroxyvitamin D syn-
thesis and maintenance of normal (or slightly increased)
maternal serum calcium. This consistent finding has resulted
in the recommendation that calcitriol supplementation be
reduced and the ionized calcium carefully followed in the
postpartum period of hypoparathyroid women who plan to
breast-feed (254).

PTH-independent hypercalcemia can occur during lacta-
tion and may be PTHrP-mediated. A 21-yr-old woman was
reported to develop hypercalcemia and hypercalciuria dur-
ing lactation in the presence of low PTH, low 1,25-dihy-
droxyvitamin D, and high PTHrP levels (438). These abnor-
malities resolved within 2 weeks of weaning, except that the
elevated PTHrP level declined more gradually (438). A sec-
ond woman had lactational hypercalcemia associated with
low PTH levels and bone biopsy evidence of active cellular
resorption, consistent with hyperparathyroidism (439). An-
other case of PTHrP-mediated hypercalcemia was reported
to occur in a lactating woman with mammary hyperplasia
and fully resolved only after a reduction mammoplasty was
performed (440).

In summary, PTHrP is present at very high concentrations
in breast milk and at higher than normal concentrations in
the maternal circulation during lactation. PTHrP may affect
maternal calcium metabolism, particularly by increasing
skeletal resorption of calcium and phosphate, and renal tu-
bular reabsorption of calcium. It may, thereby, be at least
partially responsible for the slight increase in ionized calcium
that occurs normally in lactating women and may contribute
to the occasional occurrences of hypercalcemia and osteo-
porosis in lactation (Section IV.E.3, below).

C. Intestinal absorption of calcium

Intestinal absorption of calcium in lactating humans falls
from the high levels of pregnancy to control levels (12, 28,
126–128, 412, 441), coinciding with the corresponding fall in
1,25-dihydroxyvitamin D levels to normal (Section IV.B.4,
above). Even when women are assigned to different levels of
dietary calcium intake, a lactational increase in efficiency of
intestinal absorption of calcium cannot be demonstrated
(412). Intestinal absorption of calcium does increase slightly
in lactating women whose menses have resumed (412). In
some women, dietary intake of calcium may be increased
during lactation, such that the total amount of calcium ab-
sorbed is increased, even though the efficiency of intestinal
absorption is not (412). However, other studies have indi-
cated that such dietary calcium supplementation is of un-
certain benefit, since it will increase the urine calcium ex-
cretion without affecting the calcium content of breast milk
or maternal skeletal losses of calcium (160, 442, 443) (see
discussion in Section IV.E.2, below). After weaning, there is

an increase in intestinal absorption of calcium (412), which
may facilitate restoration of calcium to the maternal skeleton.

The adaptations in lactating rats differ from those in hu-
mans. These may reflect the effect of greater calcium de-
mands due to the larger litter size and far shorter lactational
period. Rats demonstrate a 2-fold increase in duodenal cal-
cium absorption in everted gut sacs, similar to the levels
found during pregnancy (141, 444); 1,25-dihydroxyvitamin D
levels are also elevated (81). Other factors, in addition to
vitamin D, may influence calcium absorption, since, even in
the setting of vitamin D deficiency, lactating rats exhibited an
increase in duodenal calcium absorption and raised their
serum calcium (141, 444). This finding suggests that PRL or
some other factor present during lactation might stimulate
intestinal calcium absorption. The increased intestinal cal-
cium absorption also persisted in the presence of ovariec-
tomy on the postpartum day 2 (445). At weaning, rats nor-
mally experience a rebound hypercalcemia (81, 409), and this
is still detected in the presence of severe vitamin D deficiency
(143), consistent with an increase in intestinal absorption of
calcium. However, this rebound hypercalcemia could also be
explained by enhanced release of calcium from the skeleton
due to active bone resorption. Despite the persistent increase
in dietary absorption, rats appear to also mobilize calcium
from the skeleton to meet the demands of lactation (Sections
IV.E.1 and IV.E.2, below).

Therefore, in summary, intestinal calcium absorption is
not increased during lactation in humans, despite calcium
requirements similar to those in pregnancy. In contrast, in-
testinal absorption of calcium is increased in rodents
throughout lactation by increases in 1,25-dihydroxyvitamin
D and probably other unknown mechanisms.

D. Renal handling of calcium

In humans, the glomerular filtration rate falls from the
elevated level of pregnancy, and renal excretion of calcium
is typically reduced to levels as low as 50 mg/24 h (12, 14,
27, 28, 44, 128, 146, 410). The low urine calcium in the setting
of high calcium in blood suggests that tubular reabsorption
of calcium might be increased to account for the reduction in
calcium excretion. The reduction in calcium excretion ap-
pears to persist after weaning during the period of restora-
tion of bone density to the skeleton (410). Renal calcium
excretion has been shown to be similarly reduced in the
lactating rat (446).

E. Skeletal calcium metabolism

1. Bone formation and resorption. Bone turnover is increased
during lactation in rats, as indicated by changes in histo-
morphometric parameters of bone (136, 156, 447). Beagle
dogs also show histomorphometric evidence of increased
bone turnover in iliac trabecular bone (155), proximal femur
(448), and lumbar vertebrae (448) during lactation.

In humans, definitive histomorphometric data are lacking,
and, therefore, serum and urine markers of bone formation
and resorption have been used to assess bone turnover.
Markers of bone resorption (tartrate-resistant acid phos-
phatase, deoxypyridinoline/creatinine, hydroxyproline/
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creatinine) are elevated 2- to 3-fold during lactation and are
higher than the levels attained in the third trimester (27, 28,
160, 161, 400, 410, 415, 449). Although markers of bone for-
mation have been reported in a few studies to be generally
normal (27, 162), most studies have found such markers to
be high during lactation and increased over the levels at-
tained during the third trimester (28, 160, 161, 400, 410, 415,
449). Total alkaline phosphatase falls immediately postpar-
tum due to loss of the placental fraction, but may still remain
above normal due to the elevation in the bone-specific frac-
tion (161, 162).

Overall, the results of these studies in humans of markers
of bone formation and resorption are consistent with the
histomorphometric data from animal models, indicating that
bone turnover is significantly increased during lactation.

2. Bone density. Within 21 days of parturition, lactating rats
lose about 35% of bone mineral, primarily from trabecular
sites (primarily femurs, tibias, and lumbar vertebrae), as
determined by a variety of methods that determined total or
trabecular ash weight, ash mineral content, and changes in
bone mineral density (2, 50, 139, 140, 405, 447, 450). These
losses can be increased to 43% or more of trabecular bone
mineral by consumption of a low calcium diet beginning at
parturition (50, 405, 408, 451, 452). These changes are suffi-
cient to adversely affect the mechanical properties of bone
(strength, stiffness, toughness, and ductility) (408).

The loss of skeletal calcium can be worsened by larger litter
sizes (408). The loss is similar in vitamin D-deficient and
vitamin D-replete rats (137), although another study found
a 2-fold greater loss of calcified bone in vitamin D-deficient
rats (154). Moreover, vitamin D-replete rats regain the lost
mineral after weaning while vitamin D-deficient rats do not;
thus vitamin D is needed to restore the lost mineral (137). The
lactational loss of bone mineral also persists in the absence
of the maternal parathyroid glands (453, 454) and is not
affected by ovariectomy, adrenalectomy, or immediate preg-
nancy (455), unless the animals are simultaneously fed a low
calcium (0.1%) diet (445). Therefore, estrogen (and perhaps
estrogen deficiency), adrenal hormones, 1,25-dihydroxyvi-
tamin D, and PTH are not needed to mobilize skeletal cal-
cium during lactation. On the basis of these observations,
Brommage and DeLuca (455) first proposed that the putative
hypercalcemia of malignancy factor, later identified to be
PTHrP, might be the mediator of skeletal bone resorption
during lactation.

The earliest longitudinal study of bone mineral density
during human lactation followed 10 women with serial mea-
surements of the femoral shaft, using a 241Am source, and
found a mean loss of 2.2% of bone mineral content over 100
days of lactation (456). More recent studies have followed
women with serial measurements of bone density during
lactation (by SPA, DPA, or DXA), and a fall of 3–8.0% in bone
mineral content has been reported after 2 to 6 months of
lactation at trabecular sites (lumbar spine, hip, femur, and
distal radius), with smaller losses at cortical sites (28, 146, 160,
166, 169, 400, 410, 415, 417, 449, 456–463); this subject has
recently been reviewed in detail elsewhere (390). In contrast,
bottle-feeding, postpartum controls do not lose bone density
at the lumbar spine over the same interval and may show a

net gain in bone density (415, 417, 458, 462, 464). A 15%
decrease in cortical bone density determined by SPA of the
distal radius was found in teenaged mothers who consumed
calcium and phosphate at levels below the recommended
daily allowance. This result suggests that poor maternal nu-
trition might worsen the skeletal changes during lactation
(459, 460). This was confirmed in a follow-up study, in which
lactating adolescents who consumed calcium in excess of
1600 mg daily had no change in bone mineral density, com-
pared with lactating adolescents who consumed 900 mg cal-
cium daily and lost 10% of bone mineral content over the
same interval (465). These teenaged mothers had not yet
reached their peak bone mass, which might have been a
factor in the responsiveness of the skeleton to dietary calcium
supplementation.

Other evidence suggests that skeletal calcium will be pref-
erentially resorbed and that supplementing the diet with
calcium will not prevent resorption. For example, consump-
tion of a calcium supplement by lactating Gambian women
caused a sharp increase in urinary calcium excretion but had
no effect on lactational bone mineral loss when compared
with women who consumed less than the recommended
daily allowance of calcium (442, 443). In a randomized clin-
ical intervention trial that studied the effect of consuming
dietary calcium in excess of the recommended daily allow-
ance (2.4 g daily), lactating women still lost 6.3% of bone
mineral density at the lumbar spine and up to 8% from the
radius and ulna, as determined by DXA (160). Furthermore,
in a preliminary report, the lactational decrease in lumbar
spine bone mineral density was not influenced by maternal
calcium intake but was negatively and significantly corre-
lated with the breast milk output (466). Therefore, loss of
bone mineral from the maternal skeleton appears to be a
normal consequence of lactation and may not be preventable
by raising the calcium intake above the recommended di-
etary allowance.

It is not clear whether this loss of bone mineral content is
simply due to relative estrogen deficiency of lactation or a
more complex, possibly humorally mediated, mechanism.
Several studies have suggested that estrogen withdrawal and
the intensity and duration of lactation are independent fac-
tors in determining the rate and magnitude of bone loss
during lactation (218, 416, 462, 464, 467). For example, early
resumption of menses (464) or an oral contraceptive (462) can
reduce the skeletal losses, but bone density may continue to
decrease during extended lactation, even after menses have
resumed (218, 467). No published study has adequately ad-
dressed the relative role of estrogen withdrawal during lac-
tation in a definitive way, since no study has thus far ma-
nipulated estrogen independently of lactation. However, it is
evident from studying the effects of acute estrogen deficiency
induced by GnRH agonist therapy in young women (given
for such diverse conditions as endometriosis, uterine leiomy-
omata, and premenstrual syndrome) that estrogen deficiency
alone is unlikely to account for all of the changes in skeletal
calcium metabolism seen during lactation (Table 2). After 6
months of GnRH agonist therapy, the bone mineral content
of trabecular-rich sites in the axial skeleton alone is affected
and is typically reduced by only 2–4%, as determined by
DXA (468–478). At the same time, the serum calcium and
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phosphate are increased (469–471, 473, 479), 24-h urine cal-
cium excretion and urinary calcium/creatinine ratio are in-
creased (469–473, 478, 479), but the levels of intact PTH and
1,25-dihydroxyvitamin D are low (469, 473, 479). Therefore,
in lactation, the greater losses of bone mineral density (at
both trabecular and cortical sites), the normal 1,25-dihy-
droxyvitamin D levels, and the reduced urinary calcium
excretion may be due to the effects of other factors (such as
PTHrP) in addition to the effects of estrogen withdrawal. In
one recent study of lactating women, higher PTHrP levels
were found to correlate with loss of bone mineral density at
the lumbar spine and femoral neck, even after accounting for
the effects of estradiol levels, PTH, and breast-feeding status
(435). In this same study, the high PTHrP levels correlated
with breast-feeding status, high PRL levels, and lower es-
tradiol levels (435). Further support for a role of PTHrP in
mediating the skeletal changes that occur during lactation
comes from the finding that PTHrP is also elevated in the
serum of patients with hyperprolactinemia due to pituitary
adenomas (401, 480). In these patients, PTHrP correlated
positively with the serum PRL and calcium and was nega-
tively correlated with the serum PTH and bone density of the
lumbar spine.

The bone density losses of lactation are substantially re-
versed during weaning, such that the maternal skeleton is
able to provide for the calcium requirements of lactation with
few, if any, long-term consequences (160, 410, 417, 467). Also,
the losses are regained quickly enough that women who
breast-feed for at least 6 months, but have a second preg-
nancy within 18 months, do not have lower bone density
after the second pregnancy (463, 481). Only one study has
thus far reported failure of the bone density to return to
baseline (415). Compared with the studies of GnRH therapy,
the longitudinal, prospective studies of lactating women
were of insufficient power, however, to eliminate the pos-
sibility of modest failure to completely restore bone mass
after weaning. The reversibility of bone density losses has
also been found in the lactating rat model, where the loss of
35% of trabecular bone mineral content is completely re-
stored at weaning (2, 140, 452).

In the long-term, the consequences of lactation-induced
depletion of bone mineral content appear clinically unim-
portant. The vast majority of epidemiological studies of pre-
and postmenopausal women have found that a history of
lactation has no adverse effect (172, 174–181, 183, 188–191,
195, 197, 202, 482) or a protective effect (184, 187, 203, 483–
487) on peak bone mass, bone density, or hip fracture risk.
Only five studies suggest that a history of lactation correlates
with reduced radial (196, 488–490) or lumbar (199) bone
mineral content. Thus, there appears to be little or no long-
term harm caused by the temporary demineralization of the
skeleton during lactation.

A similar pattern of decreasing bone density of the lumbar
spine during lactation with recovery at weaning has been
observed in another primate species, the African green mon-
key (491). The bone mineral density of the lumbar spine in
these monkeys has been observed to fall by about 12% from
the baseline value at parturition during 20 weeks of lactation;
during an additional 20 weeks of observation after weaning,
the bone mineral density increased but did not fully recover
to baseline. This model may more closely resemble the hu-
man condition, but has not yet been thoroughly studied.

In summary, bone mineral density decreases of 3–8% at
trabecular sites occur in the first 6 months of lactation in
humans. By comparison, lactating rats lose about 35%; less
dramatic losses have been reported in African green mon-
keys. In all cases, the lost bone mineral content is largely
restored after weaning, and there appears to be little or no
long-term increased risk of fracture or decreased bone den-
sity in women who have lactated. The loss of bone mineral
density during lactation may be due to the combined effects
of relative estrogen deficiency and PTHrP-induced skeletal
resorption; both of these factors may correlate with more
intense and prolonged lactation.

3. Osteoporosis of lactation. Rarely, osteoporosis presents
during lactation; like the osteoporosis of pregnancy, this
may represent a coincidental, unrelated disease. Alterna-
tively, it may represent a continuum of the condition that
may present in pregnancy and an exacerbation of the nor-
mal degree of skeletal demineralization during lactation
(208, 223, 438, 492). In some of these cases, low peak bone
mass may have preceded lactation (and pregnancy). Typ-
ically these women present 1 to 6 months postpartum with
vertebral crush fractures, bone pain, loss of height, and
rarely hypercalcemia; the osteopenia may resolve subse-
quently (438, 492). Bone biopsies show features indistin-
guishable from normal (223) or may show evidence of
increased resorption (492). When measured, PTH is typ-
ically normal or reduced, and 1,25-dihydroxyvitamin D is
also normal (438, 492). As for the osteoporosis of preg-
nancy, the difficult diagnostic question remains: when did
the condition start? Given the preceding discussion, the
possibility arises that excessive PTHrP release from the
lactating breast into the maternal circulation could cause
excessive bone resorption, osteoporosis, and fractures in
these cases (438, 493). PTHrP was high in one case of
lactational osteoporosis and was found to remain elevated
for months after weaning (438). However, the extent to

TABLE 2. Comparison of the changes in bone density, calcitropic
hormones, minerals, and markers of bone resorption that occur
during 6 months of lactation and 6 months of GnRH agonist
therapy

Lactation GnRH Agonist

Serum calcium Increased Increased
Serum phosphate Increased Increased
PTH Decreased Decreased
1,25-Dihydroxyvitamin D Normal Decreased
24-h Urine Ca Decreased Increased
Urinary Ca/Cr Decreased Increased
Urine HP/Cr Increased Increased

BMD changes (DXA) 3–8% at
trabecular-rich
sites; less at
cortical

2–4% at
trabecular-rich
sites

Recovery of BMD at 6 months ? Complete ? Complete

BMD, Bone mineral density; Ca, calcium; Cr, creatinine, HP, hy-
droxyproline.
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which PTHrP contributes to the reduction of bone density
during lactation has yet to be established.

F. Hypoparathyroidism and pseudohypoparathyroidism

Calcitriol requirements of hypoparathyroid women fall
early in the postpartum period, especially if the woman
breast-feeds, and hypercalcemia may occur if the calcitriol
dosage is not substantially reduced (244, 245, 248, 253–255,
258, 494). As noted earlier in the discussion of hypopara-
thyroidism in pregnancy (Section II.G), this may result from
the activation of the renal 1a-hydroxylase by PTHrP.

The management of pseudohypoparathyroidism has been
less well documented. Since these patients are likely resistant
to the renal actions of PTHrP, and the placental sources of
1,25-dihydroxyvitamin D are lost at parturition, the calcitriol
requirements can be expected to return to prepregnancy
levels and should be unchanged by lactation.

G. Summary

Even when dietary intake of calcium exceeds the recom-
mended daily intake, the calcium demands of lactation in
humans are preferentially met by increased skeletal resorp-
tion of calcium and probably increased renal conservation of
calcium, but not by increased intestinal absorption of cal-
cium. Serum calcium is slightly increased or normal, while
phosphate is high normal or frankly elevated. These in-
creases reflect calcium and phosphate entering the circula-
tion from bone in increased amounts and reabsorption of
calcium and phosphate by the kidney. PTHrP levels are
extremely high in breast milk and increased in the maternal
circulation, while PTH levels are generally low during lac-
tation. 1,25-Dihydroxyvitamin D levels are typically normal
throughout lactation but may be higher in women nursing
twins. Markers of bone resorption and formation are in-
creased, and bone density has been found to reversibly de-
crease during lactation. These lactational decreases in bone
density may not adversely affect the skeleton in the long-
term, although occasionally the normal lactation-induced
decrease in bone density may be excessive, leading to frac-
tures and a clinical diagnosis of osteoporosis.

Increasing the dietary intake of calcium does not consis-
tently prevent the loss of skeletal calcium from occurring.
Relative estrogen deficiency and elevation in PTHrP levels
may both play a role in the lactational loss of skeletal calcium.
PTH and 1,25-dihydroxyvitamin D elevations occurring after
weaning may indicate a role for these hormones in providing
the mineral needed to restore the skeleton.

In contrast to the findings in humans, skeletal losses of
calcium are far greater in lactating rats, and hypocalcemia
may ensue with more intense lactation. In that setting, the
dietary absorption of calcium is increased, and both PTH and
1,25-dihydroxyvitamin D levels are elevated. These striking
differences may limit the usefulness of the lactating rat as a
model for understanding the human condition (Table 3).

Although critical experimental data are missing, a tentative
hypothesis for explaining calcium physiology in lactation starts
with the dominant role of PRL to suppress gonadotropins (and,
therefore, estrogen) and to stimulate PTHrP synthesis. Estrogen

withdrawal then leads to bone resorption. If PTHrP were not
available, the bone resorption would be expected to suppress
PTH levels, which would cause loss of calcium in the urine,
decrease in 1,25-dihydroxyvitamin D levels and intestinal cal-
cium absorption, and diminution of net bone resorption (i.e.,
similar to the changes seen in GnRH therapy, Fig. 3). Such
actions would act against the provision of calcium for milk
production. In this context, the production of PTHrP can be
viewed as the provision of a PTH surrogate, but one that is not
under negative feedback control by calcium. Thus, even with
low levels of PTH, 1,25-dihydroxyvitamin D levels are then
maintained, urinary calcium is reabsorbed, and bone resorption
continues (Fig. 3).

In this formulation, the bone resorption initiated by es-
trogen withdrawal is not a disease, but an intelligent way to
assure a supply of calcium for milk, independent of dietary
vagaries. At weaning, young bones are apparently able to
restore bone mass by as yet uncertain mechanisms. In this
context, menopausal osteoporosis can be viewed as an evo-
lutionary accident — a property of estrogen withdrawal that
is constructive during the reproductive years, but destructive
in the setting of older bones and prolonged estrogen with-
drawal.

V. Neonatal Physiology and Pathophysiology

A. Neonatal adaptive goals

As described earlier, the fetus maintains a higher blood
calcium than the mother. This level of blood calcium appears
to be dependent on the input of calcium across the placenta,
an intact PTH/PTHrP receptor, and fetal PTHrP to maintain
the fetal blood calcium and regulate placental calcium trans-
port. After the umbilical cord has been cut and the placental
calcium infusion (and placental sources of PTHrP) abruptly
lost, the neonate becomes dependent on intestinal calcium
intake and skeletal calcium stores to maintain a normal blood
calcium at a time of continued skeletal growth. Further, the
kidney, which postnatally produces urine unavailable for
reingestion, takes on a major role in maintaining calcium
and, particularly, phosphate homeostasis. If intestinal cal-
cium intake is inadequate, continued growth and mineral-
ization of the skeleton will be compromised. In adjusting to
the loss of the placental calcium pump, PTH and 1,25-dihy-
droxyvitamin D become more important, while PTHrP ap-
pears to be less involved in neonatal calcium homeostasis.
Therefore, the adaptive goals of the neonate are to quickly
turn on PTH and 1,25-dihydroxyvitamin D synthesis, which,

TABLE 3. Important differences between calcium physiology of
humans and rodents during lactation

Factor Human lactation Rat lactation

Blood ionized calcium Stable or slightly increased Reduced
PTH Low to low-normal Increased
1,25-D Normal Increased
Intestinal calcium

absorption
Normal Increased

Skeletal calcium losses 3–8% 30–35%

1,25-D, 1,25-Dihydroxyvitamin D.
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in turn, up-regulate intestinal calcium absorption, and reg-
ulate skeletal and renal handling of calcium and phosphate.

B. Mineral ions and calcitropic hormones

The changes that occur in neonatal calcium, phosphate,
and calcitropic hormone levels over the first 4 days after birth
are schematically depicted in Fig. 4.

1. Calcium. In rodents, ionized calcium and total calcium fall
to about 60% of the high fetal values within 6–12 h of birth
(269, 278). Thereafter, the ionized calcium rises over the suc-
ceeding 12–36 h to about 80% of the fetal value, and then
slowly falls over the following week to normal adult levels
(276). In contrast, after reaching a nadir at 6–12 h after birth,
the total calcium gradually rises to adult levels over the
succeeding 7–14 days (269, 276). The total calcium changes
largely reflect alterations in the serum albumin, such that, by
the end of the first 2 weeks of life, the albumin-bound fraction
is approximately 50% of the total calcium (in fetal life it
accounts for only about 20%) (276). Neonatal lambs differ in
that the blood calcium may remain at the higher fetal value
over the first several months of postnatal life (330).

Although data from umbilical cord and neonatal blood
levels are less complete in humans, the progression in ion-
ized and total calcium values appears to be similar to that of
rats (268, 270, 495). The ionized calcium in normal neonates
has been reported to fall from the umbilical cord level of 1.45
mmol/liter to a mean of 1.20 mmol/liter by 24 h after birth
(496). Babies delivered by elective cesarean section were
found to have lower blood calcium and higher PTH levels at
birth compared with babies delivered by spontaneous vag-
inal delivery (387). This finding suggests that the mode of
delivery can affect early neonatal calcium homeostasis, a
variable that has not been controlled in most studies of neo-
natal calcium physiology.

FIG. 3. Schematic illustration of the responses to acute estrogen de-
ficiency alone (e.g., GnRH analog therapy) vs. lactation. Acute estro-
gen deficiency increases skeletal resorption and raises the blood cal-
cium; in turn, PTH is suppressed and renal calcium losses are
increased. During lactation, the combined effects of PTHrP (secreted
by the breast) and estrogen deficiency increase skeletal resorption
and raise the blood calcium, but calcium is directed into breast milk.
Although PTH is suppressed during lactation, renal calcium losses
are lower than normal.

FIG. 4. Schematic illustration of the longitudinal changes in calcium,
phosphate, and calcitropic hormone levels that occur during the neo-
natal period in humans. Normal adult ranges are indicated by the
shaded areas. Data have been compiled from the following sources:
total calcium (268, 270, 495), ionized calcium (268, 270, 495, 496),
phosphate (32, 270, 273), PTH (17, 43, 110, 124, 268, 272, 305–307,
387, 495, 497–501), 1,25-dihydroxyvitamin D (11, 37, 40, 56, 304, 321),
calcitonin (11, 86, 272, 500), and PTHrP (43, 110, 124, 310). The
progression in PTHrP levels has been depicted by a dashed line to
reflect that it is speculative.
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2. Phosphate. Phosphate initially rises over the first 24 h of
postnatal life in humans (270) and then gradually declines.
The rise in phosphate corresponds to the early postnatal
period when the parathyroid glands are still suppressed;
phosphate declines as PTH secretion increases (see Section,
V.B.3).

3. PTH. As discussed earlier (Section III.B.3), in fetal life PTH
is present at low levels in the circulation and is apparently
synthesized at low levels by the parathyroid glands. Based
on measurements taken only at birth and 24 h of age in
humans, the intact PTH level has been found to rise briskly
after birth to within or near the normal adult range (17, 387,
497–501). However, these studies did not ascertain how soon
the PTH level begins to rise postnatally and whether the peak
level is attained by 24 h or even later. A more detailed time
course for PTH was obtained using earlier generation PTH
assays; as discussed earlier, these assays were less reliable,
and measured fragments that accumulated in the circulation
much more slowly than intact PTH. With these caveats in
mind, data from these older assays found that PTH levels
remained low over the first 12–24 h in humans and did not
reach peak levels until 48 h or later (268, 272, 305–307).

Regardless of the exact time course, it is apparent that the
increase in PTH levels follows the early postnatal drop in the
serum ionized calcium and precedes the subsequent rise in
ionized calcium (268, 272, 306, 495) and 1,25-dihydroxyvi-
tamin D (Section V.B.4, below). The fall in ionized calcium is
probably a consequence of the parathyroid gland suppres-
sion seen in late gestation (Section III.B.3, above) combined
with the sudden loss of placental calcium delivery; the sub-
sequent rise in PTH and the ionized calcium represents the
progressive recovery from this suppression. During the first
48 h, the parathyroid glands have been found to respond
sluggishly to more severe falls in the ionized calcium, such
as that caused by exchange transfusion with citrated blood
(268, 272, 306, 502). The degree of responsiveness to acute
hypocalcemia appears to increase with postnatal age (306,
502); however, the interpretation of these data are limited by
the nature of the older PTH assays from which they were
obtained.

4. 1,25-Dihydroxyvitamin D. In humans, 1,25-dihydroxyvita-
min D rises to adult levels over the first 48 h of postnatal life,
likely in response to the rise in PTH (11, 40). Phosphate levels
are high at this time and would tend to inhibit a rise in
1,25-dihydroxyvitamin D. Although in humans, rats, sheep,
and pigs the fetal blood calcium and skeletal mineralization
are unaffected by vitamin D deficiency, in the neonatal pe-
riod deficiency of vitamin D can become manifest (29, 79, 84,
284, 285). This is further discussed in Section V.E, below.

5. Calcitonin. Data from humans have found a rise in the
serum calcitonin, 2- to 10-fold over cord blood levels, over the
first 24–48 h of life (11, 272, 500). Infants that are premature,
asphyxiated, or hypocalcemic have the highest postnatal cal-
citonin levels (272); consequently, it has been suggested that
hypercalcitoninemia may cause neonatal hypocalcemia (86).
Consistent with this hypothesis, hypocalcemic preterm in-
fants had higher calcitonin levels than normocalcemic, pre-
term control infants (503). However, the same study found

that the calcitonin levels of hypocalcemic term infants did not
differ from those of normocalcemic term infants (503). There-
fore, the influence of calcitonin on neonatal calcium ho-
meostasis may vary with gestational age at birth; or, alter-
natively, have little role in calcium homeostasis. The
physiological effect of calcitonin administration to neonates
(human or animal) has not been directly tested.

Further evidence suggests that calcitonin levels are not
significantly regulated by calcium, or responsive to the se-
rum calcium level, in the neonatal period. In infants of nor-
mal and diabetic pregnancies, calcitonin levels increased af-
ter birth irrespective of the rate of fall in serum calcium,
indicating that the postnatal surge in serum calcitonin may
not be the main mechanism of postnatal hypocalcemia (500).
Similarly, in very-low-birth-weight, preterm infants, spon-
taneous hypocalcemia provoked a rise in PTH but no change
in calcitonin levels, and a calcium infusion to treat the hy-
pocalcemia reduced the PTH level but did not affect the
calcitonin level (504).

After the early surge in calcitonin levels over the first 48 h
of life, calcitonin gradually falls to adult levels over the first
month after birth in sheep (324) and humans (86).

6. PTHrP. PTHrP secretion from placenta, amnion, and um-
bilical cord is lost at birth; secretion from the parathyroid
glands is also apparently lost, since PTHrP circulates at low
to undetectable levels (with currently available assays) dur-
ing normal adult life in humans and animals (104, 116, 335,
493, 505). The loss of placental sources of PTHrP, in addition
to loss of the placental calcium pump, may be one of the
reasons that the ionized and total calcium levels fall dra-
matically at birth. However, a preliminary report in neonatal
(1- to 3 day-old) rat pups has found persistently high PTHrP
levels, in the range of 20–40 pmol/liter (506). Studies in
neonatal lambs have shown a progressive decline in PTHrP
immunoreactivity in the parathyroid glands, and serum bio-
activity attributable to PTHrP, over the first several months
after birth, corresponding to the delayed fall in blood calcium
that occurs in this species (116, 330). As noted earlier (Section
III.C), indirect evidence from fetal sheep suggests that the
fetal parathyroid gland may be an important source of
PTHrP for normal regulation of the blood calcium and pla-
cental calcium transport. However, it is not known whether
PTHrP synthesis occurs in the parathyroid glands of neo-
natal humans, or is turned off at some point in postnatal
development.

Although immunoreactive PTHrP in milk can be absorbed
into the bloodstream of suckling neonates (and might ac-
count for high levels of PTHrP in neonatal plasma) (113, 507),
PTHrP may not have a dramatic effect on neonatal mineral
homeostasis, since blocking its activity in milk by passive
immunization of the mother had no dramatic effect on mouse
pup blood calcium, weight gain, or femur mass (434). These
negative results, however, might result from compensatory
changes in neonatal PTH, calcitonin, and 1,25-dihydroxyvi-
tamin D, which were not measured in this study. Passive
immunization of the 2-day-old neonatal mouse with anti-
bodies to amino-terminal PTHrP did not affect neonatal cal-
cium homeostasis (508), but again, compensations may have
obscured the role of PTHrP. These findings are consistent
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with the observations described above from humans and
rats, that PTH dominates the regulation of calcium ho-
meostasis by 48 h of postnatal life. However, since there are
no human data, and limited animal data on PTHrP levels in
the neonatal period, an important role for PTHrP in calcium
homeostasis after birth has not been ruled out.

C. Intestinal absorption of calcium

Calcium is absorbed in the gastrointestinal tract by both
active and passive mechanisms (125, 509). Active intestinal
transport occurs mainly in the duodenum and is regulated
by 1,25-dihydroxyvitamin D, partly through its stimulation
of calbindin9K-D. Passive transport of calcium appears to be
an unregulated, nonsaturable process that occurs throughout
the small intestine; the rate of passive transfer of calcium into
intestinal cells is directly proportional to the intraluminal
concentration of calcium.

In newborn rat pups, intestinal calcium absorption is
largely a passive, nonsaturable process that is not dependent
on vitamin D (510–512). The high lactose content of milk has
been shown to specifically increase the efficiency of intestinal
calcium absorption, and net bioavailability of dietary cal-
cium, through effects on paracellular diffusion in the distal
small bowel (513–515). As the pups mature, receptors for
1,25-dihydroxyvitamin D begin to appear in intestinal cells
(516), and the mucosal levels of calbindin9K-D increase
sharply (517). Around the same time, vitamin D-dependent
active transport of calcium becomes noticeable (512), while
passive transfer of calcium into the intestinal cells declines
(510, 511). By the time of weaning, the intestine is less per-
meable to passive absorption of calcium, and active transport
has become the dominant means by which calcium is trans-
ferred into the intestinal mucosa (510–512).

Data from newborn humans is less complete; therefore, the
timing of the development of vitamin D-dependent calcium
transport in humans is not known. However, normal term
and preterm infants exhibit a similar postnatal increase in the
efficiency of intestinal calcium absorption (518–520). Studies
from preterm infants indicate that passive, non-vitamin D-
dependent absorption of calcium may be the dominant route
of calcium transfer (518, 521). In addition, the lactose content
of breast milk has been shown to increase the efficiency of
intestinal calcium absorption in human infants (522, 523).
Postnatal supplementation of the preterm infant (mean ges-
tational age, 32 weeks) with vitamin D markedly increased
the absorption of calcium by 2–4 weeks after birth, as com-
pared with similar preterm infants that were not supple-
mented (520). However, the intestinal absorption of vitamin
D has been shown to undergo a postnatal age-dependent
increase (524); this may limit the efficacy of vitamin D sup-
plementation in the newborn.

In summary, data from newborn rats and humans indicate
that intestinal calcium absorption is largely a passive, non-
vitamin D-dependent process until near the time of weaning.
The high lactose content of milk increases the efficiency of
passive absorption of calcium. The normal postnatal matu-
ration of the neonatal intestine may affect the ability of pre-
term humans to accrete sufficient calcium for skeletal min-
eralization and to regulate their blood calcium.

D. Renal handling of calcium

Little data are available from animal or human studies on
the renal handling of calcium in the first few days of post-
natal life (509). In humans, urinary excretion of calcium is low
over the first few days of life and rises over the succeeding
2 weeks (498, 525, 526). This rise in renal calcium excretion
probably reflects the concurrent 2-fold rise in glomerular
filtration rate over the first 2 weeks after birth (525, 527). It
may also reflect a greater filtered load of calcium as a con-
sequence of the gradually rising serum calcium, 1,25-dihy-
droxyvitamin D, and PTH levels and gradually declining
serum calcitonin (Section V.B, above). The responsiveness of
the renal proximal tubules to PTH may increase over the
same time period. In addition to evidence from animal stud-
ies presented earlier (Section III.D), data in preterm and term
human infants indicate that the renal tubules are responsive
to exogenously administered PTH, as evidenced by a rise in
urinary cAMP (528, 529); further, this response to exogenous
PTH increases with postnatal age (277, 528, 529).

E. Skeletal calcium metabolism

In humans that receive adequate dietary calcium and
phosphate, the neonatal skeleton continues to accrete cal-
cium at a rate of about 150 mg/kg per day, similar to the rate
of the late-term fetus (5, 530–532). Having abruptly lost the
placental calcium pump, the neonate becomes completely
dependent on intestinal intake of calcium and phosphate to
continue to meet the demands of the developing skeleton. In
turn, the blood calcium will be maintained by calcium ob-
tained from skeletal stores, absorbed by the intestine, and
reabsorbed by the kidneys. The effects of vitamin D defi-
ciency during gestation become manifest during the neonatal
period because intestinal calcium transport becomes neces-
sary for supply of calcium to the skeleton. As noted earlier,
from studies of maternal vitamin D deficiency in rats (29, 79,
84), pigs (79, 285), and sheep (284), the blood calcium is
typically normal at birth and the skeleton is fully mineral-
ized, but after birth the neonate will begin to manifest the
complications of vitamin D deficiency. In vitamin D-deficient
rats and pigs, a slight decrease in blood calcium was detected
by 3 days after birth, but it was only after 14 days of neonatal
life that absence of 1,25-dihydroxyvitamin D resulted in sig-
nificant, but still modest, hypocalcemia (84, 285, 311). There-
after, rat pups failed to thrive and manifested rachitic skeletal
growth plates and decreased longitudinal growth (84, 285).
These effects became more pronounced after weaning (84,
285). Further, in vitamin D receptor knockout mice, hypocal-
cemia and rachitic changes in the skeletons developed only
after the first three postnatal weeks (313, 314).

The development of vitamin D dependence is similar for
humans. In human vitamin D deficiency, hypocalcemia ap-
pears late in the first or second week of life, and rickets
develops after 2–3 months (316, 317). Vitamin D supplemen-
tation during pregnancy is associated with higher neonatal
serum calcium levels and a reduced incidence of neonatal
hypocalcemia (83, 533, 534). Neonates with rachitic changes
in the skull (craniotabes) have lower 25-hydroxyvitamin D
levels than those without craniotabes (535), and fewer neo-
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nates develop craniotabes if the mothers received a vitamin
D supplement during pregnancy (534). Infants in China with
lower cord blood 25-hydroxyvitamin D levels were found to
have fewer wrist ossification centers at 3–5 days of postnatal
age (536); furthermore, the crown-heel lengths of infants born
to vitamin D-insufficient Pakistani women were found to
correlate positively with the maternal serum calcium and
negatively with the maternal PTH level (537). These findings
suggest that fetal vitamin D deficiency may be manifest
earlier in postnatal life than previously believed (and per-
haps even during fetal life) or may be a marker for more
global nutritional deficiency.

Although parathyroidectomy of rats at birth results in
hypocalcemia and hyperphosphatemia (538, 539), by the
time of weaning the neonatal rats still have normal body
weight, normal shape and trabecular content of developing
long bones, and normal calcium and phosphorus content of
bone ash (539). These observations are similar to the finding
of normal skeletons in experimental models of vitamin D
deficiency, and in the vitamin D receptor knockout mice.
These findings suggest that factors other than PTH and vi-
tamin D may be required for normal accretion of calcium by
the skeleton in the first several weeks after birth, while the
infant is nursing. The lactose content of milk (discussed in
Section V.C) and the high levels of PTHrP in milk may be
important.

Premature infants are prone to develop metabolic bone
disease of prematurity, a form of rickets precipitated by loss
of the placental calcium pump at a time when the skeleton
is accreting calcium at a peak rate (315, 316). These premature
infants are born with a bone mineral content appropriate for
gestation age (as assessed by SPA of the radius), but if un-
treated, their radial bone mineral content fails to increase as
appropriate for their gestational age (540–544). By 2–3
months of age, the physical and radiological signs of rickets
of prematurity may develop. These include craniotabes, ra-
chitic rosary, chest deformity, osteopenia, pathological frac-
tures, metaphyseal stippling, and flaring and widening of the
epiphyses of long bones (315).

Rickets of prematurity is not due to vitamin D defi-
ciency. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin
D levels are typically normal, and vitamin D supplemen-
tation of the mother during pregnancy, or the infant post-
natally, does not prevent its development (315, 545, 546).
Rickets of prematurity appears to be the consequence of
inadequate calcium and phosphate intake to meet the de-
mands of the mineralizing neonatal skeleton. Special oral
or parenteral formulas that are high in calcium and phos-
phorus content will correct the demineralization process
and allow normal skeletal accretion of these minerals (315,
316, 544, 545, 547).

In summary, continued mineralization of the neonatal
skeleton is dependent on adequate vitamin D stores and
intact intestinal calcium absorption. Preterm infants are
prone to develop a form of metabolic bone disease if the
immature intestine cannot absorb calcium efficiently
enough to make up for the loss of the placental calcium
pump.

F. Neonatal response to maternal hyper- or
hypoparathyroidism

Although the fetal blood calcium is set independently of
the maternal level in utero, and PTH does not cross the pla-
centa, it is clear from more than 100 reported cases in humans
that maternal hyperparathyroidism adversely affects the ne-
onate (11, 225, 227, 229, 235, 237). Premature labor and still-
birth may result from unrecognized maternal hyperparathy-
roidism (225, 235). Typically, the parathyroid glands remain
suppressed after birth, and complications of neonatal hy-
pocalcemia, tetany, permanent childhood hypoparathyroid-
ism, and even death may result. The mechanism of the pro-
longed suppression is not known, but is probably due to
increased flux of calcium across the placenta when the
mother is hypercalcemic (233). However, this hypothesis has
not been tested experimentally. A similar suppression has
also been observed in normal infants of women with hyper-
calcemia due to familial hypocalciuric hypercalcemia, who
typically have similar elevations in the serum calcium with-
out an increase in serum PTH level (241–243, 374).

Similarly, maternal hypoparathyroidism in humans has
been associated in the neonate with parathyroid gland hy-
perplasia, generalized skeletal demineralization, subperios-
teal bone resorption, bowing of the limbs, fractures of ribs
and long bones, and low birth weight (246, 375–378). Still-
birth and neonatal death have also been associated with this
condition (379–381). The serum calcium level of the neonate
has been reported to be normal in most cases, while the PTH
level (older assays) has been found to be elevated (263, 376,
548). The skeletal findings generally resolve over the first
several months after birth, but acute interventions may be
required to raise or lower the blood calcium in the neonate.
In addition, subtotal parathyroidectomy, with or without
parathyroid autotransplantation and cryopreservation, may
be required to control more severe, autonomous disease
(549).

Maternal hypocalcemia of any cause may result in para-
thyroid gland hyperplasia and hyperparathyroidism in the
fetus and neonate (376, 382, 383). In women with pseudohy-
poparathyroidism, children who do not inherit the genetic
disorder are usually normal at birth, although transient neo-
natal hyperparathyroidism has been reported in some cases
(262, 263). Furthermore, children who did inherit the con-
dition may also be normal at birth but may gradually develop
the full biochemical features of pseudohypoparathyroidism
over the first several years of life (550).

G. Neonatal hypocalcemia

Neonatal hypocalcemia typically presents as seizures,
starting between 4–28 days of age (551, 552). The preterm
infant is particularly prone to hypocalcemia, having lost the
placental calcium pump at a time when the skeleton is rap-
idly accreting calcium, and the intestinal calcium absorption
mechanism is relatively immature. In addition to prematu-
rity, other causes of neonatal hypocalcemia include congen-
ital hypoparathyroidism, magnesium deficiency, maternal
diabetes, vitamin D deficiency or resistance, and hyperphos-
phatemia (Table 4) (552). In many cases the etiology of the
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hypocalcemia is unknown. One study reported that three
hypocalcemic, otherwise unremarkable, neonates had high
PTH and serum phosphate levels and a subnormal phos-
phaturic response to PTH infusion; this “neonatal pseudohy-
poparathyroidism” completely resolved by 6 months of age
(551). In addition, the higher phosphate content of infant
formula has been associated with increased serum phosphate
and decreased serum ionized calcium levels in formula-fed
infants, as compared with breast-fed neonates (553).

When older PTH assays were used, preterm infants, in-
fants of diabetic pregnancies, and hypocalcemic neonates
were typically found to have even lower or undetectable
levels of PTH than normal neonates and took a day or two
longer to manifest the rise in PTH (272, 305, 554). This was
interpreted to indicate that in preterm infants, and in infants
of diabetic pregnancies, the parathyroid glands are less able
to regulate the blood calcium and prevent hypocalcemia.
However, more recent studies have failed to confirm the
earlier impression that parathyroid function is abnormal in
preterm infants (17, 504).

Neonatal hypocalcemia can occur as a complication of
maternal diabetes in pregnancy in up to 50% of cases (555,
556), although tight control of the maternal glucose during
pregnancy reduces the incidence of neonatal hypocalcemia
(557). The cause of hypocalcemia in these infants is likely to
be multifactorial. As noted above, parathyroid gland secre-
tion may be blunted during the first few days of life in both
normocalcemic and hypocalcemic infants of diabetic preg-
nancies (272, 554, 558). Neonatal hypomagnesemia, which
results from maternal wasting of magnesium in association
with glycosuria during pregnancy, correlates with the se-
verity of neonatal hypocalcemia and may be the major factor
contributing to the sluggish neonatal parathyroid function
(557, 559, 560). However, this hypothesis has not been tested
by correcting the hypocalcemia through magnesium replace-
ment alone. Although occult vitamin D deficiency has been
suggested as a cause of hypocalcemia in these infants (561),
supplementation of infants of diabetic pregnancies with vi-
tamin D at 2, 24, 48, and 120 h after birth did not reduce the
magnitude or incidence of hypocalcemia as compared with
infants that were not supplemented (562).

In addition to the blunted parathyroid function and hy-
pomagnesemia, it is also possible that alterations in maternal
calcium homeostasis due to diabetes might predispose the
neonate to become hypocalcemic. Although two cross-sec-

tional studies in humans found no effect of maternal diabetes
on maternal levels of calcium, phosphate, PTH, and calcito-
nin (563, 564), a longitudinal study found that pregnant
diabetic women had lower 1,25-dihydroxyvitamin D, total
serum calcium, and ionized calcium levels in the third tri-
mester, as compared with nondiabetic pregnant women
(565). Furthermore, experimental models of diabetes in preg-
nant rats demonstrate marked maternal hypercalciuria (566),
reduced maternal-fetal transfer of calcium and magnesium
(567), a 12-fold reduction in placental calbindin9K-D levels
(567), and reduced calcium content of fetal ash (567). Col-
lectively, the human and animal data indicate that maternal
diabetes can affect maternal calcium homeostasis and reduce
the placental transfer of calcium. However, whether these
effects predispose to the development of hypocalcemia in
infants of diabetic pregnancies has not been determined.

H. Summary

In the early neonatal period, the neonate is challenged by
the loss of the placental calcium pump and manifests a quick
transition, from an environment in which PTHrP plays an
important role to a PTH- and 1,25-dihydroxyvitamin D-con-
trolled neonatal milieu. This is reflected in a rapid fall in total
and ionized calcium over the first 6 h of life. The calcium level
gradually corrects over the following 48 h, after PTH secre-
tion by the parathyroid gland increases, and 1,25-dihy-
droxyvitamin D levels ascend to adult values. Serum phos-
phate persists at high levels until the rising PTH levels and
increasing renal responsiveness to PTH permit a phospha-
turia. Calcitonin levels may remain elevated for several
weeks; the physiological importance of this elevation is un-
certain. These changes in calcium and calcitropic hormone
levels are summarized in Fig. 4. In contrast to the rapid
changes in calcitropic hormone levels, intestinal calcium ab-
sorption changes gradually from a passive to an active, 1,25-
dihydroxyvitamin D-mediated process over the first weeks
of life.

Although human and animal fetuses develop remarkably
normally in the presence of maternal calcium, PTH, and
vitamin D deficiency, the resulting neonates demonstrate
abnormalities that are consequences of the prior abnormal
maternal calcium homeostasis. Maternal hyperparathyroid-
ism and hypoparathyroidism during pregnancy can be man-
ifest as disturbances of neonatal calcium and bone metabo-
lism. In addition, maternal diabetes during pregnancy can
predispose to neonatal hypocalcemia, probably as a conse-
quence of fetal hypomagnesemia induced by maternal renal
wasting of magnesium.

When data from fetal and neonatal humans and animals
are compared, it is apparent that PTHrP has a significant role
in fetal calcium homeostasis and circulates at higher levels
than PTH. In contrast, there is as yet no evidence of an
important role for PTHrP in normal postnatal calcium ho-
meostasis. PTHrP is normally found at low to undetectable
levels in the adult, but the postnatal time point at which
PTHrP is lost is not known.

TABLE 4. Causes of neonatal hypocalcemia

Prematurity
Maternal diabetes
Congenital hypoparathyroidism
Maternal hypercalcemia
Magnesium deficiency
PTH resistance
Maternal vitamin D deficiency
Resistance to vitamin D
Anticonvulsants
Hyperphosphatemia
Citrated blood transfusion
Phototherapy
Respiratory alkalosis
Alkali therapy
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VI. Discussion and Conclusions

Maternal adaptations of calcium homeostasis differ be-
tween pregnancy and lactation (Fig. 5). The pregnant woman
manifests a 2-fold increase in intestinal calcium absorption
that is mediated partly by a 2-fold increase in free and total
1,25-dihydroxyvitamin D levels and partly by mechanisms
that are independent of vitamin D. In addition, the increased
dietary intake of calcium is offset by increased renal losses of
calcium. Skeletal stores of calcium do not appear to be mo-
bilized to any significant degree during pregnancy. PTH
levels are low or low-normal for much of pregnancy, and
thus the concept of “physiological hyperparathyroidism of
pregnancy” is invalid. The increased intestinal calcium ab-
sorption results in a gradual, slight increase in the corrected
serum calcium and ionized calcium and a marked increase
in renal calcium excretion (absorptive hypercalciuria). Bone
mineral stores may be increased early in pregnancy in an-
ticipation of the peak fetal demand of the third trimester; by
term, the maternal skeleton has no apparent deficit of bone
mineral. In contrast, the lactating woman does not increase
intestinal calcium absorption, but increases bone turnover
and renal tubular reabsorption of calcium to provide ade-
quate calcium for the breast milk. Again, the serum ionized
calcium is increased slightly, while the serum phosphate may
be frankly elevated. These increases reflect the increased
skeletal resorption and decreased renal excretion of these
minerals. The lactation-associated fall in estrogen levels,
along with secretion of PTHrP, leads to bone resorption. This,
combined with PTHrP-mediated calcium reabsorption from
the urine, leads to suppression of PTH. Lactation causes a
loss of 3–8% of bone mineral content that is restored after
weaning; this reversible loss of bone mineral does not appear
to adversely affect the skeleton in the long term.

Estrogen deficiency due to menopause is associated with
significant, essentially irreversible losses of calcium from the
aging skeleton; these losses cause osteoporosis and increase
the risk of fractures. During lactation, the effect of estrogen
deficiency, in association with PTHrP, increases skeletal re-

sorption to provide calcium for the milk; the younger skel-
eton appears capable of restoring calcium losses after wean-
ing. In this sense, the occurrence of osteoporosis at
menopause may be regarded as the unfortunate consequence
of outliving normal ovarian function and inducing perma-
nent estrogen deficiency without the normal bone-restor-
ative factors that are also present during lactation and wean-
ing.

The regulatory mechanisms that direct the adaptive pro-
cesses that occur in pregnancy and lactation are by no means
fully elucidated. The potential roles of reproductive hor-
mones of pregnancy in calcium homeostasis (estrogen, PRL,
CG, placental lactogen, etc.) have not been adequately ex-
plored, and it is also possible that other calcitropic factors,
perhaps specific to pregnancy and lactation, remain to be
identified. The results of studies from animal models of preg-
nancy and lactation must be interpreted carefully, given that
there are significant differences between the adaptive strat-
egies for calcium and bone homeostasis seen in humans,
rodents, and other animals (Tables 1 and 3). For example, the
pregnant and lactating rat both develop secondary hyper-
parathyroidism, and the lactating rat can lose up to 35% of
skeletal calcium before restoring it after weaning. The lac-
tating rat also increases the intestinal absorption of calcium,
whereas lactating women do not.

The rare disorders of osteoporosis in pregnancy and lac-
tation may represent chance occurrences of idiopathic os-
teoporosis, or they may represent a spectrum of one common
condition whose time of presentation is determined by the
prepregnancy bone mass and the rate of bone resorption
subsequent to conception. It seems likely that estrogen de-
ficiency combines with the actions of PTHrP to stimulate the
loss of calcium from the skeleton during lactation. The mech-
anism by which calcium is restored to the skeleton after
weaning is not known, but if understood, might be adapted
to a bone-restorative therapy for osteoporosis. The postpar-
tum restoration of normal estrogen levels (recognized by the
resumption of normal menses) is clearly an important factor,

FIG. 5. Schematic illustration con-
trasting the adaptive processes of cal-
cium homeostasis in human pregnancy
and lactation, as compared with nor-
mal. The thickness of arrows indicates a
relative increase or decrease with re-
spect to the normal, nonpregnant state.
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but probably not the only one, since part of the restoration
of calcium to the skeleton occurs only with weaning.

Fetal calcium homeostasis in late gestation appears to be
largely regulated by PTHrP, which stimulates placental cal-
cium transport, resorbs bone, and may stimulate renal cal-
cium reabsorption. PTH can also resorb bone, stimulate renal
calcium reabsorption, and stimulate synthesis of 1,25-dihy-
droxyvitamin D. However, since PTH and 1,25-dihydroxyvi-
tamin D are found at very low levels in the fetal circulation
during late gestation, their roles in fetal life are less well
defined. The relative importance of PTH and PTHrP earlier
in fetal life are unknown. The fetus sets its blood calcium
level irrespective of the ambient maternal blood calcium
level. The usefulness to the fetus of a blood calcium higher
than the mother’s is not understood, as it does not appear to
be necessary for full mineralization of the skeleton to occur.
It is possible that the high fetal calcium levels act as a safety
margin at birth, allowing the newborn to experience a post-
natal fall in ionized calcium without tetany or convulsions.
Alternatively, a higher ionized calcium may be useful for
cellular functioning under fetal conditions (low pO2, low pH,
for example) that differ from those in later life. In any case,
the fetus is able to maintain a normal blood calcium and fully
mineralize its skeleton in the setting of significant maternal
calcium and vitamin D deficiencies.

A changeover to a PTH- and 1,25-dihydroxyvitamin D-
driven environment occurs during the first 48 h of postnatal
life, accompanied by loss of hypercalcemia and high PTHrP
levels. Placental calcium transfer may suppress PTH syn-
thesis by the fetal parathyroid glands, and loss of the placenta
may, therefore, stimulate PTH synthesis in the neonatal para-
thyroid glands. Since PTHrP is normally undetectable in the
adult circulation, secretion of PTHrP into the circulation by
fetal tissues must be lost postnatally; the time of this occur-
rence has not been determined. The rising PTH and 1,25-
dihydroxyvitamin D levels mobilize skeletal calcium to
maintain the blood calcium level and increase the efficiency
of intestinal calcium absorption to meet the continued de-
mands of the mineralizing skeleton. Preterm infants are com-
promised by the loss of the placental calcium pump at a
gestational age when rapid accretion of calcium by the skel-
eton normally occurs. They cannot increase their bone min-
eral content postnatally unless given high amounts of cal-
cium and phosphate parenterally or in their diet. Infants of
hypercalcemic mothers may have suppressed parathyroid
function in the first month of life, while infants of hypocal-
cemic mothers may have enlarged, overactive (and occasion-
ally autonomous) parathyroid glands that caused significant
skeletal demineralization in utero. Although increased mor-
tality has been associated with both conditions, in most in-
stances the disturbance in neonatal calcium homeostasis is
self-limited.

As stated, the adaptive strategies of the pregnant woman
differ from the lactating woman, in the face of similar calcium
demands. The fetal and neonatal adaptations differ, largely
because the former utilizes a placental calcium pump, while
the source of calcium for the latter is the intestine. If more
fully understood, these adaptive mechanisms might be ex-
ploited further to treat disorders of calcium and bone me-
tabolism in later life, such as osteoporosis.
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