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Abstract: 

Background: Maternal gestational diabetes mellitus (GDM) has been associated 

with adverse outcomes in the offspring. Growing evidence suggests that the 

epigenome may play a role, but most previous studies have been small and 

adjusted for few covariates. The current study meta-analyzed the association 

between maternal GDM and cord blood DNA methylation in the Pregnancy and 

Childhood Epigenetics Consortium. 

Methods: Seven pregnancy cohorts (3,677 mother-newborn pairs, 317 with 

GDM) contributed results from epigenome wide association studies, using DNA 

methylation data acquired by the Infinium HumanMethylation450 array. 

Associations between GDM and DNA methylation were examined using robust 

linear regression, adjusting for potential confounders. Fixed-effects meta-

analyses were performed using METAL. Differentially methylated regions 

(DMRs) were identified by taking the intersection of results obtained using two 

regional approaches: comb-p and DMRcate. 

Results: Two DMRs were identified by both comb-p and DMRcate. Both regions 

were hypomethylated in newborns exposed to GDM in utero, compared with 

controls. One DMR (chr1:248100345-248100614) was located in the OR2L13 

promoter and the other (chr10:135341870-135342620) was located in the gene 

body of CYP2E1. Individual CpG analyses did not reveal any differentially 

methylated loci based on a PFDR threshold of 0.05. 

Conclusions: Maternal GDM was associated with lower cord blood methylation 

levels within two regions, including the promoter of OR2L13, a gene associated 
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with autism spectrum disorder, and the gene body of CYP2E1, which is 

upregulated in type 1 and type 2 diabetes. Future studies are needed to 

understand whether these associations are causal and possible health 

consequences. 
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Background: 

Gestational diabetes mellitus (GDM) is one of the most common 

pregnancy complications, with prevalence estimates ranging from 2% to 25% 

depending on the screening and diagnostic criteria used and the population 

examined (1, 2). In addition to the adverse pregnancy and delivery outcomes 

associated with GDM, which can include preeclampsia, macrosomia, and 

shoulder dystocia (3), women diagnosed with GDM are four times more likely to 

have children who develop metabolic syndrome later in life and twice as likely to 

have children who become overweight or obese (4). There is also evidence that 

maternal GDM during pregnancy alters fetal growth trajectories (5) and adversely 

affects neurodevelopment (6, 7). Thus, understanding the molecular changes 

related to prenatal exposure to GDM could have widespread implications for 

children’s health. 

One potential mechanism underlying such a diverse array of GDM-

associated outcomes is epigenetic dysregulation. In support of this, a growing 

number of studies have observed associations between GDM and cord blood 

DNA methylation patterns (8-17). However, the majority of studies have been 

small (e.g., fewer than 100 participants or fewer than 30 GDM cases), adjusted 

for few if any covariates, and used lenient or no adjustment for multiple testing 

(8-10, 12-15, 17), which may have contributed to a lack of replication of results 

across studies. 

There has therefore been a call for research on GDM and offspring DNA 

methylation within larger studies (18). The current study conducted a meta-
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analysis of results from epigenome-wide association studies (EWAS) of GDM 

and cord blood DNA methylation patterns from seven cohorts participating in the 

Pregnancy and Childhood Epigenetics (PACE) consortium (19). Additionally, we 

conducted a look-up in our meta-analysis results for CpGs that were previously 

identified as differentially methylated in prior publications. 

 

Methods: 

 

Participating Cohorts: 

All cohorts in the PACE consortium (19) were invited to participate in the 

current meta-analysis. Seven cohorts, representing eight countries, participated, 

contributing a total of 317 GDM cases and 3,360 controls (Table 1, Table S1). 

These cohorts are the Avon Longitudinal Study of Parents and Children 

(ALSPAC), the Genome-Wide Population-Based Association Study of Extremely 

Overweight Young Adults (GOYA), the Healthy Start study, the Proyecto Infancia 

y Medio Ambiente (INMA) study, the Prediction and Prevention of Preeclampsia 

and Intrauterine Growth Restriction (PREDO) study, Project Viva, and a pooled 

analysis of three cohorts: the Rhea study (RHEA), The ENVIRonmental influence 

ON early AGEing in early life (ENVIRONAGE) study, and the Piccolipiù study  

(RHEA/ENVIRONAGE/Piccolipiù). Cohort details are described in the “Cohort-

Specific Information” section of Supplementary Data. Each cohort received 

ethics approval and informed consent from participants prior to data collection, 
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and the current meta-analysis was approved by the Health Sciences Institutional 

Review Board of the University of Southern California.  

 

Gestational Diabetes: 

Participants diagnosed with type 1 or type 2 diabetes prior to the index 

pregnancy were excluded from analyses. The criteria used to classify GDM 

cases are summarized by cohort in Table 1 and are also described in more detail 

in the Supplementary Data. All cohorts except Piccolipiù used information 

abstracted from medical records as their primary method for identifying GDM 

cases. Due to a lack of international consensus, the criteria used to classify GDM 

differ by country and have changed over time. In the United States and some 

European countries, GDM is often diagnosed using a 2-step approach, which 

entails universal screening with a 50-g glucose challenge test, followed by a 100-

g 3-hour oral glucose tolerance test (OGTT) for those who test positive (20). In 

contrast, some European countries have adopted the International Associations 

of the Diabetes and Pregnancy Study Groups (IADPSG) guidelines (21), which 

recommend a 1-step approach, in which a 75-g 2-hour OGTT is performed for all 

women at 24-28 weeks’ gestation. Furthermore, some countries use a selective 

approach and only administer GDM diagnostic tests to women with traditional 

risk factors. GDM cases from Healthy Start, Project Viva, Rhea, and 

ENVIRONAGE were classified based on the 2-step approach, using the 

Carpenter-Coustan criteria (22). GDM cases from PREDO were classified based 

on the IADPSG 1-step approach. Piccolipiù identified GDM cases based on self-
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reported questionnaire data collected at delivery, and all but one case was 

confirmed using medical record data (IADPSG 1-step approach (21)). GDM 

cases from INMA were diagnosed using a selective screening approach, where 

women at high risk for GDM were administered a glucose challenge test, 

followed by a diagnostic OGTT, using the Carpenter-Coustan criteria (22). GDM 

cases from ALSPAC and GOYA were diagnosed based on the practices at the 

time in the United Kingdom and Denmark, respectively, in which diagnostic tests 

were only performed for women 1) at high risk for GDM based on established risk 

factors or 2) with glycosuria (23, 24). Given anticipated under-reporting of GDM 

in the medical records, information from telephone interviews was also used to 

classify GDM cases in GOYA. 

 

Methylation Measurements: 

Cord blood DNA was bisulfite-converted using the EZ-96 DNA Methylation 

Kit (Zymo Research Corporation, Irvine, USA). Each cohort measured DNA 

methylation using the Infinium® HumanMethlyation450k BeadChip array 

(Illumina Inc., San Diego, United States), either at Illumina or in cohort-specific 

laboratories, and completed its own quality control and normalization of data, as 

described in the Supplementary Data. Since the PACE consortium has observed 

that extreme outliers (> 3 times the interquartile range) can have a large impact 

on results, they were removed prior to analyses. For all analyses, normalized, 

untransformed betas were evaluated as the outcomes. 
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Cohort-Specific Statistical Analyses: 

Cohorts ran independent EWAS models according to the same analysis 

plan, using robust linear regression, as this method controls for possible 

heteroscedasticity and potential outliers. Only singleton pregnancies were 

included in analyses. GDM was modeled as the exposure of interest and the cord 

blood DNA methylation level at each CpG was modeled as the outcome. 

Regression models were adjusted for hypothesized confounders, which included 

newborn’s sex, maternal age, maternal education level, maternal body mass 

index (pre-pregnancy or early pregnancy), maternal smoking status during 

pregnancy (ever versus never), and maternal genetic ancestry (if available) or 

maternal race/ethnicity. Cohort-specific details for covariate assessment are 

described in the Supplementary Data. First, we adjusted only for this baseline set 

of covariates (results are presented in the Supplementary Data), such that results 

could be compared with previous studies, which have generally not accounted for 

cord blood cell heterogeneity. However, our final model was additionally adjusted 

for cord blood cell fractions, including B cells, CD8+ T cells, CD4+ T cells, 

granulocytes, natural killer cells, monocytes, and nucleated red blood cells, which 

were estimated using a cord blood reference panel (25). We also examined 

results from two of the larger participating cohorts (PREDO and Project Viva) 

after additional adjustment for parity. Since results were very similar (Tables S2-

S3), parity was not included in the final model. 

 

Meta-Analyses: 
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METAL (26) was used to conduct inverse variance-weighted fixed effects 

meta-analyses, using results from the cohort-specific analyses. Control probes, 

probes mapping to the X and Y chromosomes, and probes that have been shown 

to cross-hybridize or which target polymorphic CpGs or contain SNPs at the 

single base pair extension (27) were excluded. A total of 380,878 CpGs were 

therefore included in the meta-analyses. Probes were annotated to hg19 using 

the IlluminaHumanMethylation450kanno.ilmn12.hg19 R package (28). After 

meta-analyses were complete, a second analyst ran shadow meta-analyses to 

rule out potential human error. CpGs were considered differentially methylated if 

the false discovery rate-adjusted p-value (PFDR) was < 0.05.  

Potential heterogeneity between studies was assessed using Cochran’s Q 

statistic and I2. Additionally, leave-one-out meta-analyses (i.e., comparison of 

results after the sequential removal of one cohort and a meta-analysis of the 

remaining six cohorts) were conducted to evaluate the influence of each 

individual cohort on the results. 

Differentially methylated regions (DMRs) were identified from meta-

analysis results by taking the intersection of DMRs identified using two different 

software programs: comb-p (29) and DMRcate (30). Comb-p identifies regions 

enriched for low p-values, uses the Stouffer-Liptak method to correct for auto-

correlation, and adjusts for multiple testing using the Sidak correction (29). 

DMRcate calculates two smoothed estimates for each chromosome (one 

weighted by F-statistics, one not) and uses a Sattherwaite approximation to 

compare these estimates; it then adjusts for multiple testing using the FDR 



 

 13 

method (30). These approaches were selected, because they can be applied to 

meta-analysis results. Windows of 500 and 1,000 base pairs were compared for 

each approach. For comb-p, a p-value threshold of 1x10-3 was used to specify 

the start of each region, and a distance of 200 base pairs was selected for 

extending the region. For DMRcate, the default settings were used, as 

recommended (30), and FDR thresholds of 0.05 and 0.01 were compared. 

 

Sensitivity Analyses 

Since the seven participating cohorts represent different geographic 

regions and differ in the timing of participant recruitment and the criteria used to 

classify GDM cases, we ran a series of sensitivity meta-analyses. We compared 

meta-analysis results after restricting to 1) cohorts with GDM cases identified by 

selective versus universal screening, 2) cohorts with GDM cases identified using 

a 1-step 75 g versus a 2-step 100 g OGTT, 3) European versus U.S. cohorts, 

and 4) cohorts that recruited participants prior to 2004 versus after 2004. 

 

Look-Up Analyses: 

In an effort to replicate previous findings, a look-up of CpGs previously 

identified as differentially methylated by GDM status was conducted within 

results from the meta-analyses (both with and without adjustment for estimated 

cell proportions). Relevant studies were identified in PubMed using the following 

search terms: Gestational diabetes AND DNA methylation. We focused on 

studies that: 1) were not included in the current meta-analyses, 2) included > 10 
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GDM cases, 3) measured DNA methylation in cord blood using Illumina’s 450k, 

EPIC, or 27k array, 4) adjusted for multiple testing using any method, and 5) 

provided effect estimates and p-values for individual CpGs. Two studies met 

these criteria (9, 12). These studies collectively reported a total of 110 

differentially methylated CpGs, none of which were common. Additionally, nine 

CpGs within two genes (MEST, NR3C1) that were identified as differentially 

methylated by GDM status in both cord blood and placenta in a previous 

candidate gene study (11), which are represented on the 450k array, were 

evaluated. Of these 119 CpGs, 32 were cross-reactive or polymorphic, or the 

CpG probe contained a SNP at the single base pair extension (27). These 32 

CpGs were therefore excluded, leaving a total of 87 CpGs for the look-up 

analyses. 

 

Results: 

 

Study Characteristics: 

Characteristics of participating studies are shown in Table 1 and Table S1. 

The number (%) of GDM cases per study ranged from 12 (7.7%) for INMA to 180 

(23.1%) for PREDO. The majority of participants were of European ancestry, and 

about half of the newborns were male (N = 1,900, 51.7%). 

 

Meta-Analyses for the Individual CpG Results 
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Probe numbers and the level of inflation () for individual cohort results 

are shown in Table S4. The  for the meta-analyses was 1.15. Meta-analysis 

results are summarized in a Manhattan plot (Figure 1). No CpGs were identified 

as differentially methylated by GDM status based on a PFDR < 0.05, but six were 

identified based on a PFDR < 0.10 (Table 2). While the directions of effect were 

generally consistent for Healthy Start; INMA; PREDO; Project Viva; and the 

pooled analysis of Rhea, Environage, and Piccolipiù; they often differed for 

ALSPAC or GOYA (Table 2). For five of the CpGs, there was not strong evidence 

of heterogeneity (I2 < 10.0, Pheterogeneity > 0.36), but for one CpG (cg11723077), 

there was evidence of moderate heterogeneity (I2=38.7, P=0.13). However, effect 

estimates were similar across the leave-one-out meta-analyses (results shown in 

Figure S1 and Table S5).  

 

Look-Up Analysis Results 

The full look-up analysis results are presented in Tables S6 and S7 within 

the Supplementary Data. Of the 87 CpGs examined, four were differentially 

methylated (uncorrected P < 0.05) in the same direction in the meta-analysis that 

accounted for cell heterogeneity (Table S7). These four CpGs (cg01203331, 

cg03345925, cg08471713, cg20507276) were annotated to a total of seven 

genes: NOP56, SNORD56, SNORD57, SNORD86; ZC3H3; MEOX1; and 

OR2L13, respectively. However, based on the 87 tests conducted, FDR-

corrected p-values exceeded 0.05 for all of the CpGs evaluated. 
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DMRs Identified from the Meta-Analysis Results 

Using individual CpG results from the meta-analyses, comb-p identified five 

regions that were differentially methylated by GDM status (Table S8). Comb-p 

results were the same when either a 500 or 1,000 base pair window was used. 

DMRcate identified two DMRs when using an FDR threshold of 0.10. One DMR 

was identified when using the 500 base pair window (chr1:248100407-

248100614) and the other when using the 1,000 base pair window 

(chr10:135341870-135342620) (Table S9). Both of these DMRs overlapped two 

DMRs that had also been identified by comb-p (Table 3). One was located in the 

promoter region of OR2L13 and was also annotated to pseudogene CLK3P2. 

The second overlapped a CpG island in the gene body of CYP2E1. %Methylation 

levels in both regions were lower in the GDM case, compared with control, group, 

and effect estimates were generally consistent for the individual CpGs contained 

within each region (Figure S2). DMRcate did not identify any DMRs when using 

an FDR threshold of 0.05. 

 

Sensitivity Analysis Results 

Results were generally similar for the six CpGs with a PFDR < 0.10, and 

also for CpGs within the 2 DMRs identified by comb-p and DMRcate, when 

restricting to cohorts with GDM cases identified by a 1-step 75 g OGTT versus a 

2-step 100 g OGTT or using selective versus universal screening. They were 

also generally similar for U.S. versus European cohorts and for cohorts that 

recruited participants prior to versus after 2004 (Figures S3-S5). 
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Discussion: 

While previous studies have investigated associations between maternal 

GDM and newborn DNA methylation (8-16), the majority have been small, used 

lenient or no adjustment for multiple testing, did not consider regional methylation 

differences, and adjusted for a limited number of covariates. In particular, few 

studies have adjusted for cell heterogeneity, an important source of variability in 

DNA methylation (31). Results have been inconsistent between these previous 

studies, raising questions of robustness and reproducibility. The current study 

therefore conducted meta-analyses of EWAS results from seven cohorts (3,677 

mother-newborn pairs, 317 with GDM) participating in the PACE consortium (19), 

which examined associations between GDM and cord blood DNA methylation, 

after adjusting for a larger number of potential confounders. We evaluated 

methylation differences at both the regional and individual CpG level. 

Using two dimension reduction approaches (comb-p (29) and DMRcate 

(30)), we identified two regions that are differentially methylated by GDM status. 

One of the DMRs identified by the meta-analysis (chr1:248100276-248100614) is 

located in the promoter region of OR2L13, a gene which codes for an olfactory 

receptor (9). Methylation levels in this region were lower in cord blood from GDM 

exposed, compared with unexposed, newborns. This finding is consistent with a 

previous study by Quilter et al., which observed lower cord blood methylation 

levels at a CpG located in this DMR (cg20507276) among GDM exposed 

newborns (9). This same CpG has also been identified as differentially 
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methylated in both blood and buccal cells from autism spectrum disorder (ASD) 

cases versus controls (32). While the mechanism by which OR2L13 may 

contribute to ASD is currently unknown, olfactory dysfunction has been 

associated with more severe social impairments among individuals with ASD 

(32). Since children exposed to maternal GDM in utero have a higher risk of 

developing ASD (6), future investigation into the potential mediating role of 

OR2L13 in GDM-associated ASD is merited. Methylation levels in the second 

DMR (chr10:135341933-135342560) were also lower in the GDM case, 

compared with control, group. This DMR is located in a CpG island within the 

gene body of CYP2E1, which codes for an enzyme that is highly expressed in 

the liver and metabolizes ethanol, numerous drugs, and certain protoxicants (33). 

Although, to our knowledge, the CpGs within this DMR have not previously been 

associated with in utero exposure to GDM, increased CYP2E expression has 

been observed in peripheral blood from individuals with type 1 and type 2 

diabetes (33). 

In contrast with the DMR results, we did not identify any individual 

differentially methylated CpGs when using a conservative PFDR threshold of 0.05. 

When using a more lenient PFDR threshold of 0.10, six individual CpGs 

(cg00812770, cg11723077, cg22791932, cg17588003, cg11187204, 

cg10139436) were identified as differentially methylated by GDM status, none of 

which had been identified in the previous studies that we reviewed. Three of 

these CpGs (cg11723077, cg22791932, and cg17588003) were annotated to 

genes: SYNJ2, ZFPM1, and C17orf87, respectively, and a fourth CpG 
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(cg00812770) was located in a long intergenic non-coding RNA (LINC01342). 

The remaining two CpGs were not annotated to any genes, and the potential 

consequences of altered methylation at these loci are currently unclear.  

The 13 CpGs comprising the two DMRs identified by both comb-p and 

DMRcate were not identified as differentially methylated in individual CpG meta-

analyses, likely due to the greater statistical power of the DMR approaches. 

Additionally, the six CpGs identified as differentially methylated based on a PFDR 

< 0.10 in the individual CpG analyses were not identified by either comb-p or 

DMRcate. It is possible that these six CpGs are false positives, since they did not 

reach statistical significance after applying a more conservative threshold of PFDR 

< 0.05. However, two of these CpGs (cg11187204, cg10139436) also resided in 

intergenic regions that are either CpG-poor or sparsely represented on the 450k 

array, which would have precluded their identification using regional approaches. 

In our examination of 87 CpGs that have previously been associated with 

GDM status (9, 11, 12), only four were found to be differentially methylated in the 

same direction in the current meta-analysis, based on an uncorrected P < 0.05. 

Since these previous studies were similarly conducted in predominately 

European populations, differences in race or ethnicity are likely not driving these 

discrepancies. However, some of the prior findings may be false positives due to 

small samples sizes; insufficient control for multiple testing; or a lack of 

adjustment for important confounding factors, such as maternal BMI. Other 

potential explanations for the lack of replication include differences in exclusion 
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criteria and the fact that these previous studies stratified by fetal sex (9) or GDM 

treatment type (11, 12), which was not feasible for the current meta-analysis. 

Importantly, the seven cohorts participating in the current meta-analysis 

represent eight countries and multiple time periods. Since the criteria used to 

classify GDM differ by country and have changed across time, the severity of 

disease among GDM cases, and the proportion of controls with undiagnosed 

GDM or hyperglycemia, may have varied between cohorts. Nevertheless, we did 

not observe evidence of heterogeneity for the majority of meta-analysis results. 

Furthermore, results were generally similar across a series of sensitivity 

analyses, which stratified cohorts based on geographic location, time, and the 

criteria used for GDM classification. It is therefore possible that there may be a 

linear relationship between maternal glucose levels and cord blood DNA 

methylation. However, while there is some evidence for this (34), additional 

studies are needed to determine if maternal glucose is the main mechanism 

through which GDM alters DNA methylation and, if so, whether or not there is a 

clear threshold below which maternal glucose does not alter cord blood 

methylation. 

The current study had many notable strengths. By meta-analyzing results 

from multiple cohorts, we were able to increase the statistical power of the study 

and adjust for a large number of potential confounders, including estimated cell 

fractions. We also used stringent adjustments for multiple testing to reduce the 

chance of identifying false positives. Another strength of the study was the 
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evaluation of DMRs (using two different approaches) in addition to individual 

CpGs.  

However, our meta-analyses also had limitations. First, there may have 

been an overall underestimation of GDM cases, since GDM cases from several 

cohorts were diagnosed based on a selective approach. This may have resulted 

in some participants being misclassified as controls, which would have biased 

results toward the null. Another important consideration is that regression models 

were adjusted for maternal BMI, because it is a risk factor for GDM (35) and may 

impact cord blood DNA methylation (36). However, this may have also biased 

results toward the null, since GDM cases from several cohorts were diagnosed 

selectively based on traditional risk factors, including obesity. Importantly, women 

with GDM may have utilized different strategies to manage their disease. 

However, this information was not available for all cohorts, and the number of 

GDM cases adhering to particular management strategies or treatments was 

very small for most cohorts, so these differing subsets of GDM cases could not 

be evaluated separately. We also could not evaluate potential differences by fetal 

sex due to the small number of GDM cases per cohort. Additionally, since the 

gestational age at OGTT was not available for all participants, we were unable to 

adjust for this covariate. Another potential limitation was our focus on cord blood 

DNA methylation, which may not reflect methylation patterns in other tissues. 

However, cord blood DNA methylation has been associated with several 

outcomes that have been associated with in utero exposure to GDM, such as 

early childhood weight and adiposity (37) and ASD (38). While we excluded 
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CpGs that overlapped SNPs and also CpG probes with SNPs at the single base 

pair extension (27), we cannot rule out the possibility that some of the 

differentially methylated CpGs and regions identified in this meta-analysis may 

be driven by genetic, rather than epigenetic, differences between GDM cases 

and controls, which merits future investigation. Finally, since the majority of 

individuals in the seven participating cohorts were of European ancestry, results 

from the current meta-analysis may not be generalizable to other populations. 

 

Conclusions: 

In a meta-analysis of integrated EWAS results from seven pregnancy 

cohorts, comprising data from 3,677 mother-newborn pairs, GDM was associated 

with lower cord blood methylation levels within the promoter region of OR2L13 

and the gene body of CYP2E1. Given that reduced methylation in the OR2L13 

promoter has previously been associated with both GDM status and ASD, its 

potential role in mediating this relationship should be evaluated in future studies. 

Additionally, since CYP2E1 is upregulated in peripheral blood from individuals 

with type 1 and type 2 diabetes, the impact of reduced methylation within this 

gene among GDM-exposed newborns on subsequent health merits future 

investigation. Finally, the inability to replicate many results from previous studies 

of GDM exposure and cord blood DNA methylation highlights the importance of 

conducting EWAS meta-analyses, using data from multiple cohorts. 
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Table 1. Characteristics of Participating Cohorts* 

Cohort Location Participant 
Enrollment 

Years 

GDM Screening Approach GDM 
Classification 
Criteria and 
Source of 

Information 

Number 
of GDM 
Cases 

Number 
of 

Controls 

ALSPAC United Kingdom 1991-1992 Selective Physician-
diagnosed 

GDM (Medical 
Records) 

22 867 

GOYA Denmark 1996-2002 Selective Physician-
diagnosed 

GDM based on 
a 1-Step 75 g 

OGTT 
(Medical 

Records) + 
Self-Report 

28 404 

Healthy Start United States 2009-2014 Universal Physician-
diagnosed 

GDM based on 
a 2-Step 100 g 

OGTT, 
Carpenter and 

Coustan 
Criteria 
(Medical 
Records) 

32 534 

INMA Spain 2004-2007 Selective 2-Step 100 g 
OGTT, 

Carpenter and 
Coustan 
Criteria 
(Medical 
Records) 

12 144 
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PREDO Finland 2006-2010 Universal 1-Step 75 g 
OGTT, 

IADPSG 
Criteria 
(Medical 
Records) 

180 600 

RHEA/ENVIRONAGE/Piccolipiù 
(Pooled) 

Greece/Belgium/Italy 2007-
2008/2010-
/2011-2015 

Universal/Universal/Universal 2-Step 100 g 
OGTT, 

Carpenter and 
Coustan 
Criteria 
(Medical 

Records)/2-
Step 100 g 

OGTT, 
Carpenter and 

Coustan 
Criteria 
(Medical 

Records)/Self-
Report 

20 352 

Project Viva United States 1999-2002 Universal 2-Step 100 g 
OGTT, 

Carpenter and 
Coustan 
Criteria 
(Medical 
Records) 

23 459 

 
Abbreviations used: GDM, gestational diabetes; IADPSG, International Association of the Diabetes and Pregnancy Study Groups; OGTT, oral 
glucose tolerance test 

 
*Additional details on GDM classification and other characteristics of each cohort are included in the “Cohort-Specific Methods” section of the 
Supplementary Data 
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Table 2. CpGs with a PFDR<0.10 in the Meta-Analysis of Maternal GDM Exposure* 

 
CpG Genomic Position 

%Methylation 

Difference (95%CI)† 

Direction 
by 

Cohort‡ 

Raw P-
Value 

FDR-
Corrected 
P-Value 

Heterogeneity 

P-Value§ 
I2 

Relation 
to CpG 
Island|| 

Target 

Gene¶ 

cg00812770 chr1:1073510 0.8% (0.5%, 1.1%) +-+++++ 1.7 x 10-7 0.06 0.55 0.0 
South 
Shore 

LINC01342 

cg11723077 chr6:158508188 -1.0% (-1.4%, -0.6%) -+----- 1.3 x 10-6 0.09 0.13 38.7 
South 
Shore SYNJ2 

cg22791932 chr16:88537374 0.8% (0.4%, 1.1%) +++-+++ 1.2 x 10-6 0.09 0.74 0.0 Island 
ZFPM1 

cg17588003 chr17:5138696 -1.4% (-2.0%, -0.8%) +------ 1.4 x 10-6 0.09 0.67 0.0 
Open 
Sea 

C17orf87 

cg11187204 chr17:36480526 -1.6% (-2.1%, -1.0%) ++----- 5.2 x 10-8 0.09 0.57 0.0 
Open 
Sea 

N/A 

cg10139436 chr19:30219558 -0.4% (-0.5%, -0.2%) ++----- 1.3 x 10-6 0.09 0.36 9.7 
South 
Shelf 

N/A 

 

*Results are from inverse variance-weighted fixed effects meta-analyses, conducted using METAL. Each cohort independently ran robust linear 
regression models, adjusting for newborn’s sex, maternal age (in years), maternal body mass index (early pregnancy or pre-pregnancy), maternal 
smoking status during pregnancy, maternal education, maternal genetic ancestry (if available) or maternal race/ethnicity, and estimated 
proportions of B cells, CD8+ T cells, CD4+ T cells, granulocytes, natural killer cells, monocytes, and nucleated red blood cells in cord blood. 
 

†%Difference in newborn DNA methylation and 95% confidence interval, comparing the gestational diabetes case group to the control group 
 
‡Direction of association between gestational diabetes and methylation at the locus of interest by cohort, ordered as follows: ALSPAC, GOYA, 
Healthy Start, INMA, PREDO, RHEA/ENVIRONAGE/Piccolipiù, Project Viva 
 

§The heterogeneity p-value and I2 were calculated by METAL using Cochran’s Q-test for heterogeneity. 
 
||Relationship to CpG islands from the UCSC database, annotated using the Illumina 450k manifest (28) 
 
¶Target gene name(s) from the UCSC database, annotated using the Illumina 450k manifest (28) 
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Table 3. Differentially Methylated Regions Identified By Both Comb-p and DMRcate* 

 
DMR 450k CpGs Direction 

of 
association  

Nearby Genes Regulatory Feature 
Group/Gene Group/Relation to 

Island 
Comb-p (500 and 1,000 bp 
window) 

    

chr1:248100345-248100614 cg00785941, 
cg03748376, 
cg04028570, 
cg08260406, 
cg08944170, 
cg20434529, 
cg20507276 

- OR2L13,CLK3P2 Promoter associated/1st 
Exon:5’UTR or TSS200/Island or 

North Shore 

chr10:135342218-135342413 cg10862468, 
cg25330361 

- CYP2E1 NA/Body/Island 

DMRcate (500 bp window)     

chr1:248100407-248100614 cg00785941, 
cg03748376, 
cg04028570, 
cg08260406, 
cg08944170, 
cg20507276 

- OR2L13 Promoter Associated/1st 
Exon/5’UTR/Island 

DMRcate (1,000 bp window)     

chr10:135341870-135342620 cg00321709, 
cg10862468, 
cg19469447, 
cg23400446, 
cg24530264, 
cg25330361 

- CYP2E1 Unclassified/Body/Island 

 
Abbreviations Used: bp, base pairs 
 
*Differentially methylated regions were identified from meta-analysis results for individual CpGs, which used results from robust linear regression 
models that were adjusted for newborn’s sex, maternal age (in years), maternal body mass index (pre-pregnancy or early pregnancy), maternal 
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education, maternal smoking status during pregnancy (ever vs. never), maternal genetic ancestry (if available) or maternal race/ethnicity, and 
estimated cord blood cell fractions. 
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Figure 1. Manhattan plot summarizing results for meta-analyses of the 

associations between maternal gestational diabetes mellitus and cord blood DNA 

methylation. Meta-analyses were run using METAL on results from robust linear 

regression models, which adjusted for newborn’s sex, maternal age, maternal 

education, maternal body mass index (pre-pregnancy or in early pregnancy), 

maternal smoking status during pregnancy (ever versus never), maternal genetic 

ancestry (if available) or maternal race/ethnicity, and estimated cord blood cell 

fractions. Blue and red lines indicate log10(p-values) that are equivalent to a PFDR 

of 0.10 and a PFDR of 0.05, respectively. 


