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Abstract
Normal development and function of the placenta is

critical to achieving a successful pregnancy, as normal fetal

growth depends directly on the transfer of nutrients from

mother to fetus via this organ. Recently, it has become

apparent from both animal and human studies that growth

factors within the maternal circulation, for example the

IGFs, are important regulators of placental development

and function. Although these factors act via distinct

receptors to exert their effects, the downstream molecules

activated upon ligand/receptor interaction are common to
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many growth factors. The expression of numerous signaling

molecules is altered in the placentas from pregnancies

affected by the fetal growth complications, fetal growth

restriction, and macrosomia. Thus, targeting these

molecules may lead to more effective treatments for

complications of pregnancy associated with altered placental

development. Here, we review the maternal growth factors

required for placental development and discuss their

mechanism of action.
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Introduction

Aberrant fetal growth affects as many as 7% of babies –

w50 000 infants born each year in the UK (Population,

Censuses & Surveys Office 2007). Many infants born with

inadequate growth (fetal growth restriction; FGR) die, and

others require costly neonatal intensive care, while excessive

fetal growth (macrosomia) is associated with increased

intrapartum risks to the mother and child. In addition,

these conditions have a life-long impact on health including

elevated childhood morbidity and mortality and an increased

risk of developing cardiovascular disease and diabetes in

adulthood (Barker 2006). Currently, there are no treatments

for cases of altered fetal growth. It is well established that many

fetal growth disorders are rooted in defective placental

development, thus in order to make significant progress in

this area, a better understanding of the mechanisms regulating

placental growth is needed.
Placental development and fetal growth

In chorionic villi of the human placenta (Fig. 1), cytotro-

phoblasts are a progenitor stem cell population which

continuously proliferate and differentiate into one of two
subtypes; extravillous trophoblasts that migrate into the

maternal decidualized endometrium and remodel the spiral

arteries to optimize the supply of oxygen and nutrients to the

placenta and fetus; or syncytiotrophoblast, a multinucleated

epithelia which acts both to protect the fetus from the

maternal immune response and as a nutrient and gas exchange

membrane (Fig. 1; Kingdom et al. 2000). As the growth and

thus nutrient demands of the fetus increase with pregnancy

progression, the syncytial surface area must also increase to

ensure sufficient transfer of nutrients to the fetus. The villous

syncytiotrophoblast layer has a short lifespan with terminally

differentiated and apoptotic elements shedding continuously

into maternal circulation. A process to renew and expand

the syncytial layer throughout pregnancy is therefore

required. The syncytiotrophoblast layer has no transcriptional

activity, and hence during pregnancy, it is maintained by

the continual proliferation, differentiation, and fusion of

cytotrophoblasts.

Consequently, cytotrophoblast proliferation is important

for placental growth, especially during the first trimester,

when the tissue grows rapidly. Increased or decreased rates

of trophoblast turnover have been associated with different

tissue pathologies and are linked to enhanced (macrosomic)

or reduced (FGR) fetal growth ( Jansson & Powell 2006).

In these conditions, the surface area available for transfer of
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Figure 1 Schematic diagram of the first trimester human placenta.
Cytotrophoblasts proliferate and differentiate into one of two
subtypes, the invasive extravillous trophoblasts or the terminally
differentiated non-proliferative syncytiotrophoblast. The syncytio-
trophoblast functions as a protective barrier for the fetus and is the
epithelial surface where exchange of nutrients and gases between
the maternal and fetal circulations occurs. The villous stroma lies
directly below the cytotrophoblast layer and contains numerous
different cell types including placental macrophages (Hofbauer
cells), fibroblasts, and endothelial cells.
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nutrients is altered: an increase in trophoblast proliferation

results in enhanced placental nutrient transfer in macrosomia,

while the converse occurs in FGR (Jansson & Powell 2006).

Since extravillous trophoblasts invade the maternal circulation

and are required to establish an oxygen supply to the fetus, it is

unsurprising that alterations in this aspect of trophoblast

function are also associated with pregnancy complications

such as FGR and pre-eclampsia (Kaufmann et al. 2003);

establishing the mechanisms of trophoblast invasion and

spiral artery remodeling is the current focus of many

research groups (Goldman-Wohl & Yagel 2002, Lyall 2006,

Pijnenborg et al. 2006, Knofler et al. 2008, Harris et al. 2009).

Recently, several studies have suggested that soluble

factors in the maternal circulation, including growth factors,

can influence placental development and function (Baczyk

et al. 2005, Johnstone et al. 2005b, Sferruzzi-Perri et al.

2006, 2007, Moll et al. 2007, Forbes et al. 2008, 2010a,b,c,

Hoffmann et al. 2009).
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This review will examine the role of such growth factors in

the regulation of trophoblast function by briefly discussing

their effect on extravillous trophoblast invasion (see the recent

review by Knofler (2010) for more detail on this topic), and

focussing in detail on the control of villous cytotrophoblast

proliferation and function.
Influence of maternal growth factors on fetal
growth

During pregnancy, the levels of growth factors, such as

the insulin-like growth factors 1 and 2 (IGF1 and IGF2),

epidermal growth factor (EGF), platelet-derived growth

factor (PDGF), fibroblast growth factors (FGF)-2 and FGF4,

and members of the transforming growth factor (TGF)-b
superfamily, are increased within the maternal circulation, and

these elevated levels are sustained throughout gestation,

suggesting that they have important roles in promoting the

growth of the developing fetus. The levels of some growth

factors such as IGFs and EGF correlate with fetal growth,

while others such as TGFb1 are not altered (Table 1).

However, all of these growth factors exert their effects via

intracellular cascades that utilize common signaling

molecules; many of which are dysregulated in fetal growth

disorders. Therefore, enhancing the growth factor levels alone

may not be sufficient to rescue the placental phenotype;

instead, it is likely that greater therapeutic benefits may be

achieved by targeting growth factor receptors, or indeed the

downstream signaling molecules that are responsible for

exerting their mitogenic effects. Here, we discuss each of

these growth factors and its signaling cascades in the context

of their potential role in regulating placental and fetal growth.
The IGF axis

IGF1 and IGF2 are two small, highly homologous single-

chain polypeptides (Le Roith et al. 2001). Although IGF2 can

bind to the type-2 IGF/mannose-6-phosphate receptor

(IGF2R/M6PR) or the insulin receptor, the classical actions

of both IGF1 and 2 are mediated by binding to the type-1

IGF receptor, IGF1R. Ligand access to the receptors is

regulated by a family of binding proteins termed IGF-binding

proteins (IGFBPs)-1–6. Unsurprisingly, IGFBP levels,

particularly IGFBP-1 and IGFBP-3 that are abundant at the

maternal–fetal interface, are also correlated with fetal growth

(Forbes & Westwood 2008). Although tissue-specific

differences exist, all components of the IGF axis have been

shown to mediate growth, differentiation, survival, and

metabolism in almost every organ of the body ( Jones &

Clemmons 1995), and numerous animal and human studies

have highlighted the importance of their actions for fetal

growth and development (Tables 1–3).

The involvement of IGFs in regulating fetal growth was

first reported in clinical studies demonstrating that birth
www.endocrinology-journals.org
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Table 1 Maternal growth factor concentrations in normal pregnancy and in pregnancies associated with fetal growth disorders

Mother Fetus

Level (ng/ml) in circulation during normal
and complicated pregnancy

Level (ng/ml) in cord blood during
normal and complicated pregnancy

Pregnancy pathology
associated with ligand
or receptor gene
defect (refs)

Normal
(refs)

FGR
(refs)

Macrosomia
(refs)

Normal
(refs)

FGR
(refs)

Macrosomia
(refs)

Growth factor
EGF T1 0.1–2.5(1, 2) 4(1)

T2 0.1–2.5(1, 2) 4(1)

T3 0.02–2.5(1–3) 4(1) [(3) 3.2(18) Y(18) NR NR
FGF2 T2 0.04–6(4, 19) 2(19) NR

T3 0.02–6(3–6, 19) 4(6) [(3, 5) 12(5, 19) 4(6) [(5)

IGF1 T1 110–250(1, 7–9) Y(1)

4(7)

T2 80–400(1, 7, 10) Y(1, 15) 4(15) 20–35(20, 21) Ligand – FGR(27, 28)

[(7)

T3 110–450(1, 3, 7–14) Y(1, 11–13) 4(14) 40–95(14, 20–26) Y(23, 26) [(14, 23, 24) Receptor – FGR(29–31)

4(7) [(3)

PDGF T3 2–600(3, 4, 16) NR [(3) NR NR NR NR
TGFb1 T1 0.35(1) 4(1)

T2 0.35(1) 4(1) NR
T3 0.04–0.35(1, 17) 4(1) NR 5–40(32, 33) Y(33) 4(33)

T, trimester; [, increased versus normal pregnancy; Y, decreased versus normal pregnancy; 4, no change in normal pregnancy; FGR, fetal growth restriction;
NR, not reported. 1 – Hernandez-Valencia et al. (2001); 2 – Vuorela et al. (2002); 3 – Grissa et al. (2010); 4 – Chow et al. (2008); 5 – Hill et al. (1995); 6 – Wallner
et al. (2007); 7 – Bhatia et al. (2002); 8 – Olausson et al. (2010); 9 – Wilson et al. (1982); 10 – Hubinette et al. (2003); 11 – Holmes et al. (1997); 12 – Larsen et al.
(1996); 13 – Malamitsi-Puchner et al. (2007); 14 – Wiznitzer et al. (1998); 15 – McIntyre et al. (2000); 16 – Morita et al. (2001); 17 – Huber et al. (2002);
18 – Shigeta et al. (1992); 19 – Hill et al. (1995); 20 – Langford et al. (1998); 21 – Gohlke et al. (2004); 22 – Reece et al. (1994); 23 – Giudice et al.
(1995); 24 – Roth et al. (1996); 25 – Ong et al. (2000); 26 – Verkauskiene et al. (2007); 27 – Woods & Savage (1996); 28 – Netchine et al. (2009); 29 – Kiess
et al. (2005); 30 – Walenkamp et al. (2006); 31 – Wallborn et al. (2010); 32 – Power et al. (2002); 33 – Ostlund et al. (2002).
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weight is positively correlated with cord blood IGF1 levels

(Osorio et al. 1996, Klauwer et al. 1997), and so levels are low

in small-for-gestational-age (SGA) infants and are enhanced

in large-for-gestational-age babies (Table 1). Evidence for the

importance of IGF2 in this regard comes from the observation

that the IGF2 gene is maternally imprinted (Giannoukakis

et al. 1993). Relaxation of imprinting leads to Beckwith–

Wiedemann syndrome in which excess IGF2 is associated

with fetal overgrowth (Morison et al. 1996, Ward 1997).

Subsequent studies using transgenic mice confirmed these

clinical observations by demonstrating that mutation of

the gene encoding either IGF1 or IGF2 results in offspring

that are w40% smaller than their wild-type littermates

(Efstratiadis 1998; Table 2). More recently, clinical studies

have revealed that levels of IGFs within the maternal

circulation are also correlated with fetal growth (Table 1)

highlighting the potential for maternal IGFs to have an

influence on pregnancy outcome (Holmes et al. 1997,

Hernandez-Valencia et al. 2001, Grissa et al. 2010).

The mitogenic effects of both IGF1 and 2 are thought to be

regulated by IGF1R. Activation of the IGF1R results in

autophosphorylation of tyrosine residues in the intracellular

b-subunits and subsequent activation of downstream signaling

pathways ( Jones & Clemmons 1995). The significance of

IGF1R in mediating IGF effects on fetal growth was first
www.endocrinology-journals.org
realized by the study demonstrating that igf1r null mice have a

more severe phenotype than either the IGF1 or 2 knockout

animals as the birth weight of IGF1R knockout mice is

reduced by w60% when compared to normal littermates

(Efstratiadis 1998; Table 3). More recently, the consequence

of IGFR abnormalities in human fetal development has been

documented. Severe FGR was reported in two infants with

a heterozygous missense mutation in the IGF1R gene

(Walenkamp et al. 2006), and heterozygous mutations within

the IGF1R kinase domain (Kruis et al. 2010) or extracellular

second fibronectin III domain (Wallborn et al. 2010) have

been reported in two children. Although these individuals

had high circulating levels of IGFs, they were both born SGA

which was attributed to IGF resistance arising from reduced

IGF1R tyrosine phosphorylation or altered cell surface

expression respectively.

The type-2 IGF receptor (IGF2R) does not contain tyrosine

kinase activity or an autophosphorylation site, and therefore,

classically it was suggested that the primary function of this

receptor is to clear IGF2 from the circulation; this is suppor-

ted by the studies demonstrating that mice lacking the

IGF2R/M6PR have raised circulating IGF2 levels and much

greater birth weights than their wild-type littermates (Lau et al.

1994, Efstratiadis 1998), and further highlighting the

importance of IGF2 in regulating fetal growth (Table 3).
Journal of Endocrinology (2010) 207, 1–16
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Table 2 Contribution of growth factors to fetal weight. The effect of alteration in maternal or fetal (gene knockout) growth factor levels
on fetal weight

Mother Fetus

Effect of altered GF levels during pregnancy on fetal weight Effect of GF gene knockout (refs)

[ Maternal levels (refs) Y Maternal levels (refs)

Growth factor
EGF Rabbit: 20% [(1) Mouse: 15% Y(11) No overt phenotype(12)

Rat: 4(2)

Sheep: 4(3)

FGF2 NR NR Neuronal defects; delayed wound
healing(13)

IGF1 Guinea-pig: 6–17% [(4–6)

Mouse: [(7)
NR Growth deficiency – pups 60% of

normal birth weight(14)

Rat: [(7)/4(8, 9)

Sheep: 4(10)

PDGF NR NR Renal, cardiovascular, and hemato-
logical abnormalities(15)

TGFb1 NR NR Variable phenotype (background
dependent): Embryonic lethal
(defective vasculogenesis)(16)/
defective HPG axis(17)

HPG, hypothalamus–pituitary–gonadal axis; [, increased versus normal pregnancy; Y, decreased versus normal pregnancy; 4, no change from normal
pregnancy; NR, not reported. 1 – Cellini et al. (2004); 2 – Ali et al. (1990); 3 – Gow et al. (1991); 4 – Sferruzzi-Perri et al. (2006); 5 – Sferruzzi-Perri et al. (2006);
6 – Sohlstrom et al. (2001); 7 – Gluckman et al.(1992); 8 – Woodall et al. (1999); 9 – Gargosky et al. (1991); 10 – Bloomfield et al. (2002); 11 – Kamei et al. (1999);
12 – Luetteke et al. (1999); 13 – Ortega et al. (1998); 14 – Liu et al. (1993); 15 – Leveen et al. (1994); 16 – Dickson et al. (1995); 17 – Kallapur et al. (1999).
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IGF affects fetal growth at least in part through its effect on

placental development and function. Undoubtedly, endogen-

ous placental production of IGF2 is key since the placentas

of mice with placental-specific knockdown of IGF2 have

a significantly reduced diffusional exchange surface area,

an enhanced barrier thickness, and a reduced permeability

for nutrients (Sibley et al. 2004, Constancia et al. 2005).

Placentally derived IGF2 also has a role in promoting

trophoblast invasion (Hamilton et al. 1998), reportedly by
Table 3 Effect of growth factor receptor gene knockout in mice

Phenotype of receptor gene knockout

Receptor
IGF1R 45% of normal fetal weight
IGF2R 135% of normal fetal growth
EGFR (ErbB1) At least 40–50% reduction depending on strain

ErbB2 (HER-2) Embryonic lethal prior to E11 (neuronal and card
ErbB3 Most mice die between E11.5 and E13.5 (neuron

surviving embryos have 10% reduction in birt
ErbB4 Embryonic lethal between E10 and E11 (neurona
TGFbRI Embryonic lethal at E10.5 (abnormal vascular de
TGFbRII Embryonic lethal at E10.5 (abnormal vascular de
TGFbRV Failure of blastocysts to develop into embryos be
FGFR1 Embryonic lethal (skeletal abnormalities & globa
FGFR2 Embryonic lethal (skeletal abnormalities global p
FGFR3 17–93% of controls (skeletal abnormalities)
FGFR4 No phenotype
PDGFRa Embryonic lethal by E16 (neural tube defects)
PDGFRb Mice die at or shortly before birth (abnormal kid

hematological disorders)

Journal of Endocrinology (2010) 207, 1–16
inhibiting molecules such as IGFBP1 and TIMP3 that are

produced by the decidua to constrain trophoblast infiltration

of maternal tissues (Irwin et al. 2001). Similarly, IGF1 from

the villous mesenchyme provides a paracrine stimulus for

extravillous trophoblast migration (Lacey et al. 2002).

However, there is now increasing evidence for the role of

maternally derived IGFs in regulating placental development

and function (Table 2). In guinea pigs, exogenous supple-

mentation of maternal IGF2 increases the total surface area
References

Liu et al. (1993)
Ludwig et al. (1996)
Sibilia & Wagner (1995)

and Dackor et al. (2009)
iovascular defects) Lee et al. (1995)
al defects);

h weight
Riethmacher et al. (1997)

l and cardiovascular defects) Gassmann et al. (1995)
velopment) Larsson et al. (2001)
velopment) Oshima et al. (1996)
cause of implantation failure Herz et al. (1992)
l proliferation defects) Muenke & Schell (1995)
roliferation defects) Muenke & Schell (1995)

Colvin et al. (1996)
Weinstein et al. (1998)
Soriano (1997)

ney development and Soriano (1994)
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of placenta available for nutrient exchange by 39%

(Sferruzzi-Perri et al. 2006). Although IGF1 does not affect

the surface area of the placenta in guinea pigs, in vitro studies

in both cultured human primary trophoblast cells and the

BeWo choriocarcinoma cell line demonstrate that physio-

logical levels of IGF1 enhance amino acid uptake (Karl 1995,

Fang et al. 2006). Furthermore, using a first trimester

placental explant model which faithfully recapitulates the

normal spatial and ontological relationships between the

various cells within the placenta, we have recently reported

that application of exogenous IGF1 and IGF2 to the syncytial

surface (to mimic the maternal circulation) enhances

cytotrophoblast proliferation, differentiation, and survival

(Forbes et al. 2008).

In the human placenta, the IGF1R is localized to all cell

types (Table 4) including the trophoblast, villous endo-

thelium, and the mesenchymal core (Fang et al. 1997, Holmes

et al. 1999). Studies of transgenic mice lacking the IGF1R led

to the hypothesis that a reduction in the number of placental

IGF1R might be a contributing factor in pregnancies

complicated by FGR. An immunohistochemical study of

placentas from normal and FGR pregnancies found no

difference in receptor localization or distribution (Holmes

et al. 1999); however, it is possible that in these placentas,

there may be resistance to IGF caused by alterations in the

downstream signaling molecules. Further studies, however,

have demonstrated a significant reduction in IGF1R protein

levels in FGR (Laviola et al. 2005), while elevated placental

IGF1R expression has been reported in pregnancies

complicated by macrosomia ( Jiang et al. 2009).

In the placenta, the IGF2R is expressed in the microvillus

and plasma membranes of trophoblast (Table 4) but can be

proteolytically cleaved, resulting in release of a soluble form of

the receptor which, when bound to IGF2, results in
Table 4 Localization of growth factor receptors within the human place

Localization in human placenta

Receptor
IGF1R Microvillus membrane, syncytiotrophoblast,

cytotrophoblast, and villous stroma
IGF2R Microvillus membrane and syncytiotrophoblast
EGFR (ErbB1) Syncytiotrophoblast and cytotrophoblast

ErbB2 (HER-2) Extravillous trophoblast
ErbB3 Syncytiotrophoblast, cytotrophoblast,

and extravillous trophoblast
ErbB4 Syncytiotrophoblast, cytotrophoblast, and

extravillous trophoblast
TGFbRI Microvillus membrane, syncytiotrophoblast,

and cytotrophoblast
TGFbRII Syncytiotrophoblast
TGFbRV Microvillus membrane
FGFR1 Villous stroma
FGFR2 Villous stroma and cytotrophoblast
FGFR3 Villous stroma
FGFR4 Villous stroma and syncytiotrophoblast
PDGFR Syncytiotrophoblast and cytotrophoblast

www.endocrinology-journals.org
degradation of IGF2 and inhibition of its mitogenic actions.

Loss of this receptor in mice results in placentomegaly (Wylie

et al. 2003) and fetal overgrowth (Lau et al. 1994), and it has

been reported in humans that the molar ratio of IGF2 to

soluble IGF2R is significantly related to placental develop-

ment and birth weights (Ong et al. 2000). Until recently, it

was thought that the role of IGF2R was to prevent excessive

IGF2 effects on the placenta; however, there are now studies

to suggest that placental IGF2R is also involved in transducing

extracellular signals. Studies in guinea pigs have reported

that IGF2R can partially mediate the effects of IGF2 in

enhancing placental development and nutrient delivery to

promote fetal growth (Sferruzzi-Perri et al. 2008), and both

IGF2 and human chorionic gonadotropin increase tropho-

blast migration via the IGF2R (McKinnon et al. 2001,

Zygmunt et al. 2005). The IGF2R does not have any

tyrosine kinase activity, thus the mechanism by which the

receptor exerts these effects is unclear, although work in

other systems has suggested that activation of IGF2R leads

to the generation of sphingosine-1-phosphate and conse-

quent signaling through receptors coupled to Gi2 protein

(Murayama et al. 1990).
Epidermal growth factor family

EGF, a polypeptide originally isolated from mouse salivary

glands (Cohen 1962), first received attention for its ability to

stimulate epithelial growth and differentiation when injected

into newborn mice (Scott et al. 1983). Since then, it has

become apparent that EGF has mitogenic roles in most organs

within the body (Casalini et al. 2004), thus it is unsurprising

that EGF also regulates fetal growth and development. In

addition to EGF itself, the EGF family comprises 14 different
nta

References

Fang et al. (1997), Holmes et al. (1999) and Kita et al. (2003)

Fang et al. (1997)
Maruo & Mochizuki (1987), Jokhi et al. (1994), Tuncer et al.

(2000), Kita et al. (2003) and Tanimura et al. (2004)
Jokhi et al. (1994) and Tanimura et al. (2004)
Tuncer et al. (2000)

Tuncer et al. (2000) and Tanimura et al. (2004)

Xuan et al. (2007) and Forbes et al. (2010c)

Xuan et al. (2007) and Forbes et al. (2010c)
Forbes et al. (2010c)
Anteby et al. (2005)
Anteby et al. (2005) and Baczyk et al. (2005)
Anteby et al. (2005)
Anteby et al. (2005)
Kita et al. (2003)
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ligands (Normanno et al. 2006), including heparin-binding

EGF, TGF-a, and neuregulin (NRG1). However, the role of

these growth factors in fetal growth regulation is unclear.

EGF exerts its effects by binding to its receptor EGFR

(also known as the erythroblastic leukemia viral oncogene

homolog (ErbB)-1) to stimulate intrinsic tyrosine phospho-

rylation activity and subsequent activation of pro-mitogenic

signaling cascades (Prenzel et al. 2001), while the other family

members bind with distinct affinities to one of four ErbB

receptors (1–4) to influence cellular events (Harris et al. 2003).

Each of the receptors is expressed in the placenta (Tables 4

and 5); ErbB2–4 are expressed both in villous trophoblast and

in extravillous trophoblast (Tuncer et al. 2000, Tanimura et al.

2004), but EGFR (ErbB1) is expressed only in villous

trophoblast. Alterations in EGFR function are associated with

reduced placental and embryonic growth both in mice

(Dackor et al. 2009; Tables 2 and 3) and in humans (Fondacci

et al. 1994; Tables 1 and 2). Taken together, these studies

suggest that signaling via EGFR is important for mediating

villous trophoblast function and placental development.

This role for EGF/EGFR was confirmed following the

discovery that in mice, maternal levels of circulating EGF

correlate with fetal growth (Kamei et al. 1999), and that

EGFR-deficient mice had significantly smaller placentas

and displayed severe FGR (Miettinen et al. 1995). Further

evidence for the importance of EGF in regulating placental

development and function comes from in vitro studies using

human placental cell lines, isolated primary trophoblasts, and

explant tissue. EGF increases trophoblast differentiation

(Maruo et al. 1987, Barnea et al. 1990, Garcia-Lloret et al.

1996), inhibits trophoblast apoptosis ( Johnstone et al. 2005a,b,

Moll et al. 2007), and promotes trophoblast proliferation (Li &

Zhuang 1997). Similar models have been used to demonstrate

that EGF also stimulates extravillous trophoblast invasion

(LaMarca et al. 2008, Han et al. 2010), and the work by Bass

et al. (1994) suggests that the stimulus is most likely maternally
Table 5 Localization of growth factor receptors in the murine placenta

Localization in murine placenta

Receptor
IGF1R Not reported
IGF2R Labyrinth and trophoblast giant cells
EGFR (ErbB1) Maternal decidua, trophoblast giant cells,
ErbB2 (HER-2) Not detectable
ErbB3 Maternal decidua and trophoblast giant ce
ErbB4 Maternal decidua and trophoblast giant ce
TGFbRI Trophoblast giant cells, ectoplacental cone
TGFbRII Trophoblast giant cells, ectoplacental cone
TGFbRV Spongiotrophoblast and maternal decidua
FGFR1 Not reported
FGFR2 Not reported
FGFR3 Trophoblast giant cells
FGFR4 Trophectoderm
PDGFR Labyrinth, spongiotrophoblast and trophob

Journal of Endocrinology (2010) 207, 1–16
derived. More recently, intra-amniotic infusion of EGF was

reported to normalize fetal weight in a rabbit model of FGR

(Cellini et al. 2004) suggesting that targeting the EGF cascade

may improve fetal growth.
Transforming growth factor-b

The TGFb superfamily contains numerous different ligands

including TGFbs, activins, and bone morphogenic proteins

(Jones et al. 2006). Members of the TGFb family ligands exert

their effects by binding to the type-II TGFb receptor

(TGFbRII) which then dimerizes with the type-I TGFb
receptor (TGFbRI). This dimerization initiates the receptor’s

serine/threonine kinase activity and induction of divergent

signaling cascades that regulate multiple cellular processes

including proliferation, migration, and differentiation

(Wrighton et al. 2009). Studies in mice have demonstrated

that knockout of either TGFbRI or TGFbRII results in severe

growth restriction, and that the animals die in utero (Oshima

et al. 1996, Larsson et al. 2001) suggesting that signaling by these

receptors is important for regulating fetal growth (Table 3).

Although TGFb1 levels are elevated in the maternal

circulation during pregnancy (Power et al. 2002), its role in

regulating fetal growth is unclear. TGFb1 levels are not

correlated with fetal growth (Hernandez-Valencia et al. 2001),

but a study demonstrating that maternal TGFb1 can rescue

the embryonic lethal phenotype of TGFb1 knockout mice

(Letterio et al. 1994) suggests that the growth factor does have

an important role during pregnancy (Tables 1 and 2). Indeed,

it is well documented that TGFb1 functions at the maternal–

fetal interface to inhibit extravillous trophoblast migration

and invasion (Jones et al. 2006, Knofler 2010), seemingly by

up-regulating integrin and protease inhibitor expression

(Irving & Lala 1995, Karmakar & Das 2002); however, its

role within the chorionic villous remains controversial.
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Studies in both mice and humans have reported that

TGFb1 promotes cytotrophoblast differentiation into syncy-

tiotrophoblast (or labyrinth in mice; Graham et al. 1992,

Selesniemi et al. 2005), while others have suggested that

TGFb1 inhibits this aspect of trophoblast function (Morrish

et al. 1991, Song et al. 1996, Richard et al. 2008). Further

controversies come from studies to investigate the mitogenic

effects of TGFb within the placenta. In a cell line generated

from isolated primary trophoblast, TGFb inhibits

proliferation (Graham et al. 1992), but more recently, we

have reported that TGFb1 promotes cytotrophoblast prolifer-

ation in first trimester explants (Forbes et al. 2010c).

Although classically TGFb1 was described as a negative regu-

lator of cellular proliferation by activating the TGFbRI/II

Smad2 signaling cascade, our data are consistent with other

reports suggesting that the Smad2 and mitogen-activated

protein kinase (MAPK) pathways can interact to promote

proliferation in the presence of TGFb (Javelaud & Mauviel

2005, Zhang 2009).

It is likely that the conflicting data reflect differential

receptor expression by the various models (Tables 4 and 5), as

the level of TGFb receptor expression within cells and tissues

influences the outcome of TGF treatment (Rojas et al. 2009).

Indeed, we have shown that although each of the TGFb
receptors is expressed in human placenta, the distribution

varies, and altering levels of TGFbRII using siRNA resulted

in altered responsiveness to maternal factors (Forbes et al.

2010c). It has yet to be established whether placental TGFbR

expression and signaling responsiveness to ligands are altered

in FGR and macrosomia, but drugs to target this level of the

cascade could potentially prove to be beneficial.
Fibroblast growth factors

The FGFs are a family comprising 18 members, FGFs 1–10

and FGFs 16–23 (Beenken & Mohammadi 2009). Not all

members of the FGF family have the potential to signal, but

those that do exert their effects by interacting with four

different receptors (FGFR1–4) to activate signal transduc-

tion pathways, such as the MAPK cascade, and stimulate

mitogenesis, differentiation, and cell migration. FGFs are

thus important regulators of multiple developmental

processes (Yamaguchi & Rossant 1995). Although the role

of many members of the FGF family in regulating fetal

development has yet to be documented, it is apparent

that both FGFR1 and FGF2 are important mediators of

fetal growth (Tables 1–3). While FGFR1-deficient mice

display severe growth restriction in utero (Deng et al. 1994),

studies in human pregnancy reveal that maternal and cord

serum levels of FGF2 positively correlate with fetal weight

(Hill et al. 1995, Grissa et al. 2010). Interestingly, the effect

on fetal growth was also accompanied by alterations in

placental growth suggesting that FGF2 may exert its effects

by influencing placental development. Recent studies

support such a role; each of the FGFRs is expressed in
www.endocrinology-journals.org
the human placenta (Table 4); FGFR1 and FGFR3 are

expressed only within the villous stroma, whereas FGFR2

and FGFR4 are expressed both within the villous stroma

and in the trophoblast (Anteby et al. 2005) suggesting that

these receptors may mediate the responsiveness of tropho-

blast to the growth-promoting effects of FGFs. Indeed,

studies both in mice and in human placental tissue have

demonstrated that FGF4 acts upon FGFR2 within

trophoblast stem cells (in mice (Tanaka et al. 1998)) and

in the cytotrophoblast (in humans (Baczyk et al. 2005)) to

regulate the proliferation and differentiation of these cells

within the developing placenta. There are few reports

relating to FGF regulation of extravillous trophoblast

invasion, though FGF10 appears to be stimulatory

(Natanson-Yaron et al. 2007).
Platelet-derived growth factors

The PDGFs A–C and their receptors PDGFRa and PDGFRb
have been shown to promote cellular responses such as

proliferation, survival, and migration, thus they are important

mediators of mammalian development (Hoch & Soriano

2003). Although reports of the role of PDGF in regulating fetal

growth are limited (Tables 1–3), a recent study demonstrates

that the maternal serum PDGFB level is enhanced in mothers

suffering with gestational diabetes with macrosomic babies

(Grissa et al. 2010), and it has been reported that placental levels

of PDGFRa are reduced in FGR placentas ( Jarvenpaa et al.

2007). In the human placenta (Table 4), PDGFRa/b is

expressed within the syncytiotrophoblast and the villous

cytotrophoblast (Kita et al. 2003); this localization together

with reduced expression in FGR placentas suggests that

signaling via PDGFRa may regulate trophoblast proliferation

in the human placenta. At present, there are no direct reports

of the role of PDGF/PDGFR signaling in the regulation of

human villous, or extravillous, trophoblast function. Studies

in mice do, however, support a developmental role for the

PDGFR system in the placenta (Ohlsson et al. 1999, Looman

et al. 2007). In mice, deletion of the gene encoding PDGFB or

PDGFRb results in multiple defects in placental development,

including decreased trophoblast proliferation (Ohlsson et al.

1999), while an activating mutation in PDGFRb induces

hyperproliferation in the labyrinth and in the chorionic plate

(Looman et al. 2007).
Signaling molecules important for mediating
actions of maternal growth factors in the placenta

Taken together, these studies all suggest that it should be

possible to improve placental function by enhancing the

response to maternal hormones. For some, but not all, of the

growth factors, supplementing maternal levels could be of

therapeutic benefit. However, growth factor receptors have a

body-wide distribution, and many of their ligands are known
Journal of Endocrinology (2010) 207, 1–16
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to promote tumorigenesis, thus maternal systemic

administration is unlikely to be without side effects. Instead,

other mechanisms to promote growth factor actions within

the placenta should be explored; we suggest that methods to

specifically target receptors and/or molecules within the

placenta are more likely to prove beneficial.

Despite activation of their specific receptors, the down-

stream effect of the different growth factors is mediated by

inducing activation/phosphorylation of common complex

signaling cascades such as the phosphoinositide 3-kinase

(PI3K) pathway or the MAPK (also termed extracellular

signal-related kinase 1/2 (ERK1/2)) pathway (Fig. 2; Vincent

& Feldman 2002). In vivo, the level of phosphorylation within

these pathways is regulated by the opposing actions of protein

tyrosine kinases (PTKs) and protein tyrosine phosphatases

(PTPs). While PTKs catalyze phosphorylation, PTPs are

responsible for dephosphorylation. PTKs, PTPs, and their

corresponding substrates are integrated within elaborate

signaling networks that are essential for regulating many

cellular events such as growth, differentiation, metabolism,

gene transcription, and survival. These processes are all
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essential for mediating placental development and function,

but until recently the importance of PTKs and PTPs in

mediating growth factor action, and consequently normal

placental development was unclear.
MAPK pathways

MAPKs are an evolutionarily conserved group of enzymes

that were first identified as mitogen-stimulated kinases in

the late 1980s/early 1990s (Pearson et al. 2001) and are now

known to be major components of pathways controlling

many cellular events. All eukaryotic cells possess multiple

MAPK pathways that are activated in response to a wide

variety of ligands acting through multiple receptors; these

include growth factor receptors such as IGF1R, EGFR,

and PDGFR. In mammals, the MAPK cascades can be

divided into four distinct groups, MAPK (ERK1/2), c-jun

N-terminal kinase ( JNK), p38 MAPKs, and the big MAPK,

or ERK-5 cascades (Pearson et al. 2001).

Evidence for the involvement of ERK in placental

development and subsequent fetal growth comes from studies
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in mice. Although ERK-1-deficient mice do not exhibit

altered growth, mutation within the ERK-2 locus results in

failure to form the mature trophoblast leading to embryonic

lethality early in mouse development (Saba-El-Leil et al. 2003).

Furthermore, ERK-2 knockout mice that have been rescued

by the transgenic expression of ERK-2 are much smaller than

their wild-type littermates due to abnormal placental develop-

ment, though when trophoblast function is restored by

generating chimeras in which placental trophoblast expression

of ERK-2 is normal, embryos grow appropriately, demonstrat-

ing the importance of ERK-2 for normal placental develop-

ment and, consequently, fetal growth (Hatano et al. 2003).

In the human placenta, ERK1/2 are expressed in the

villous trophoblast (Kita et al. 2003), and they have been

shown to regulate the differentiation of isolated primary

cytotrophoblasts into syncytia (Daoud et al. 2005). Many

studies demonstrate that activation of the MAPK pathway can

be achieved in trophoblast by multiple growth factor

receptors and their ligands. EGFR, TGFbR, and IGF2R

regulate trophoblast invasion and migration (McKinnon et al.

2001, Qian et al. 2004) via the MAPK pathway, and we

have reported that TGFb1 (via TGFbRI/II)-induced

cytotrophoblast proliferation and IGF-induced cytotropho-

blast proliferation and differentiation (syncytial regeneration)

occur via the MAPK pathway (Forbes et al. 2008, 2010c).

It is generally assumed that ERK1/2 is the major pathway

activated by growth factors and other mitogenic stimuli,

while JNK and p38 MAPK predominantly respond to stress

such as osmotic stress and cytokines (Pearson et al. 2001).

While a role for p38 in regulating stress responses has been

well documented in the placenta (Renaud et al. 2009), it

is now apparent that the p38 MAPK pathway is also an

important mediator of growth factor signaling in the placenta.

It is required for trophoblast differentiation and fusion in

response to different mitogenic factors including serum

(Daoud et al. 2005) and EGF ( Johnstone et al. 2005b),

EGF-induced trophoblast survival ( Johnstone et al. 2005a,

Humphrey et al. 2008) and extravillous trophoblast

motility (LaMarca et al. 2008). Furthermore, p38a has been

shown to be essential for murine placental development

(Adams et al. 2000, Mudgett et al. 2000), and in humans

phosphorylation (and activation) of p38 is reduced in FGR

placentas (Laviola et al. 2005).
PI3K/AKT pathway

In other tissues, activated growth factors recruit and

phosphorylate a number of adaptor molecules and kinases

leading to the activation of PI3K/AKT (also known as protein

kinase B) and downstream phosphorylation cascades. AKT

has been reported to regulate rodent placental development

and fetal growth (Chen et al. 2001, Yang et al. 2003), and there

is reduced translation of AKT in human FGR placentas (Yung

et al. 2008, Scifres & Nelson 2009). As detailed above, one of

the key regulators of placental growth is the IGF axis, and

there are many studies demonstrating that the PI3K/AKT
www.endocrinology-journals.org
pathway mediates IGF responsiveness in the placenta. In a

dexamethasone-induced murine model of FGR, reduced

levels of IGF2 are accompanied by a significant reduction in

levels of phosphorylated AKT (Ain et al. 2005), and in first

trimester placental explants, AKT mediates IGF-induced

trophoblast survival (Forbes et al. 2008). Further evidence

to suggest that the PI3K pathway may be important in

mediating IGF signaling events in the placenta comes from

studies involving the mechanistic target of rapamycin

(MTOR) pathway, which can be activated by phosphorylated

AKT to promote cell growth (Levine et al. 2006) or can be

regulated by nutrient-sensing signaling pathways (Fig. 2).

Studies demonstrating that MTOR acts as a nutrient sensor to

promote proliferation of immortalized human trophoblast

cells (Wen et al. 2005), and that insulin- and IGF1-mediated

amino acid transporter activity is mediated by the MTOR

pathway in primary human trophoblast cells (Roos et al. 2009)

support this hypothesis and suggest that MTOR may

co-ordinate nutrient and growth factor signals to regulate

normal placental development.

In addition to regulating events downstream of IGF1R, the

PI3K pathway is also an important mediator of other growth

factor responses in the placenta. EGF promotes trophoblast

proliferation and cell survival by stimulating PI3K/AKT

pathway (Johnstone et al. 2005a, Moll et al. 2007), while in

placental stromal cells, the PI3K/AKT pathway is required for

FGF2 and vascular endothelial growth factor-stimulated

endothelial cell proliferation (Wang et al. 2009). It is now

emerging that PI3K/AKT may also play additional roles

within the placenta by regulating expression of leptin

(Gambino et al. 2010), a known mediator of trophoblast

proliferation and survival (Magarinos et al. 2007).
Tyrosine phosphatases

In almost all cells, growth factor-induced activation of the

PI3K and MAPK pathways is regulated by PTPs. PTPs were

initially thought to be composed of a small number of non-

specific ‘house-keeping’ enzymes whose only function was to

reverse the action of PTKs. However, PTPs are now

recognized as a large family of enzymes, which have structural

diversity and complexity equivalent to that of the PTKs (Neel

& Tonks 1997). The structural complexity of PTPs enables

them to interact with a number of different proteins allowing

them to exert both positive and negative effects on signaling

pathways; they therefore play crucial roles in a variety of

mammalian tissues and cells.

Although the mRNA for a number of PTPs is expressed

at high levels within the human placenta (Norris et al.

1997), the function of PTPs at the maternal–fetal interface

was relatively unexplored until recently. One PTP, PTP-1B,

was first isolated from human placental tissue (Tonks et al.

1988) and has since been reported to be expressed at the

protein level in the syncytiotrophoblast (Stenzinger et al.

2008). In other systems, it regulates insulin and IGF

signaling (Koren & Fantus 2007), but its function in the
Journal of Endocrinology (2010) 207, 1–16
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placenta is currently unknown. Another phosphatase that

appears to be involved in regulating placental development

is MAPK phosphatase (MKP)-4. Transgenic mice which

have a specific deletion of MKP-4 have abnormal placental

development, and all mice die in utero (Christie et al. 2005).

MKP-4 functions to regulate the activation of the MAPK

pathway, and since this pathway is integral for human

placental development and mediating signals from the

multiple growth factors, it is possible that this phosphatase

may also function to regulate growth factor-induced

signaling events in the placenta.

The majority of work examining the role of PTPs within

the placenta thus far has focused on the SH-2 domain

containing phosphatase, SHP-2. SHP-2 is a ubiquitously

expressed intracellular PTP first cloned in 1992 (Adachi et al.

1992). Since then, SHP-2 has been implicated in the

regulation of diverse intracellular signaling pathways, includ-

ing those initiated by ligands such as insulin, IGFs, EGF,

PDGF, and FGF (Chong & Maiese 2007). When SHP-2 is

truncated, mice have severe developmental abnormalities and

subsequently die at mid gestation (Saxton et al. 1997). It is

now established that trophoblast stem cells in these mice fail to

proliferate and survive in response to essential growth factors

such as FGF4 (Yang et al. 2006) suggesting that the effects on

fetal development are caused by the effect of SHP-2 on the

placenta (Yang et al. 2006). We have now established that

SHP-2 is also important for regulating placental development

in humans. SHP-2 is highly abundant within the cytotropho-

blast and regulates IGF-induced proliferation by mediating

the activation of multiple components of the MAPK and

PI3K pathways (Forbes et al. 2009). Interestingly, SHP-2 is

absent from the terminally differentiated syncytiotrophoblast.

It has been reported that pan-PTP inhibition induces

differentiation and fusion in a trophoblast cell line (Vargas

et al. 2008), thus a possible explanation for the absence of

SHP-2 in the syncytium is that SHP-2 negatively regulates

trophoblast differentiation and is therefore reduced prior to

differentiation and fusion; however, this remains to be

established.

SHP-1 is a structurally similar PTP to SHP-2, but while

SHP-2 can have both positive and negative actions, the role of

SHP-1 is predominantly as a negative regulator of cellular

events (Neel et al. 2003) including those activated by FGF2

(Seo et al. 2008), IGF1 (Tenev et al. 1997), and PDGF (Yu

et al. 1998). Mice with an inactivating mutation of SHP-1

have enhanced cellular proliferation (Shultz et al. 1993, Tsui

et al. 1993), and it is now emerging that SHP-1 can negatively

regulate activation of the MAPK cascade (Zatelli et al. 2005).

SHP-1 mRNA is expressed within the placenta (Norris et al.

1997) and is highly abundant both within the cytotrophoblast

and within the villous stroma in the first trimester human

placenta (Forbes et al. 2010a), thus suggesting a potential role

in regulating cytotrophoblast function. Indeed, we now have

evidence that SHP-1 inhibits cytotrophoblast proliferation by

negatively regulating multiple receptor tyrosine kinases

(Forbes et al. 2010b).
Journal of Endocrinology (2010) 207, 1–16
Targeting intracellular signaling molecules to improve
placental growth

We have discussed the role of maternal growth factors in

regulating villous trophoblast turnover, and it is apparent that

all of these growth factors have similar roles within the

placenta. Although each ligand binds to distinct receptors on

the cell surface, each receptor initiates common intracellular

signaling cascades through the action of both kinases and

phosphatases, and there are studies demonstrating that the

expression of these proteins is essential for growth factor

responses in the normal human placenta. The placental

expression of numerous proteins within these cascades is

altered in fetal growth complications. We therefore propose

that instead of supplementing maternal growth factor levels,

the greatest therapeutic benefits in pregnancies complicated

by altered fetal growth will arise by developing mechanisms to

specifically manipulate the expression/activation of signaling

molecules which are common to multiple growth factor

receptors within the placenta.
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