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The risk and severity of specific infections are increased during pregnancy due to a

combination of physiological and immunological changes. Characterizing the maternal

immune system during pregnancy is important to understand how the maternal immune

system maintains tolerance towards the allogeneic fetus. This may also inform strategies

to prevent maternal fatalities due to infections and optimize maternal vaccination to best

protect the mother-fetus dyad and the infant after birth. In this review, we describe what is

known about the immunological changes that occur during a normal pregnancy.
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INTRODUCTION

During pregnancy, major adaptations occur in the maternal immune system to protect the mother

and her future baby from pathogens while avoiding detrimental immune responses against the

allogeneic fetus. While there is little evidence to support that the maternal immune system is
globally suppressed during pregnancy, increased risks for certain types of infections indicate

important qualitative immunological changes (1). Due to the complexity and unique circumstances

surrounding a normal pregnancy, teasing out how specific endocrinological, physiological and

immunological factors increase the risk of infection requires careful considerations. For example,

urinary tract infections may be more common or pneumonia may be more severe during pregnancy

largely because of circulatory changes and reduced functional residual lung capacity due to

increased abdominal pressure (2, 3). Other types of infections may be simply more frequently
reported because of their severe clinical consequences on the fetus (Table 1). A better understanding

of immunological changes during pregnancy may also be important in considering optimal

strategies for use of vaccines, such as influenza and pertussis, to protect both the pregnant

woman and infant (73). Nonetheless, these examples reveal the complexity of understanding how

physiological, hormonal and immunological adaptation during normal pregnancy directly impacts

the risk of infection. Major adaptations at the maternal-fetal interface have been discussed in recent
reviews (74, 75). Local immunological adaptation in the placenta has been reviewed (76). In this

review article, we describe the dynamic changes occurring in the peripheral maternal immune

system during normal pregnancy.
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INNATE IMMUNITY

Complement System
Studies suggest increased complement activity during pregnancy

(Table 2). Plasma levels of C3a, C4a, C5a, C4d, C3a, C3, C9, and

the Serum Complement Membrane Attack Complex SC5b9 are
elevated during pregnancy (77, 78, 106). Altogether, this increase

in cleaved complement proteins suggests upregulation of

complement activity in pregnant women while the balance is

maintained through high levels of regulatory proteins such as

factor H which blocks the alternative C3 convertase (79).

Consistent with this, the complement inhibitor Decay-
accelerating factor (DAF), also known as CD55, is increased in

peripheral blood mononuclear cells during pregnancy (80). By

blocking formation of C3 convertases, DAF effectively inhibits

downstream effects of complement activation. Similarly, the C3

inhibitor pregnancy-associated plasma protein A (PAPPA)

increases during the second and third trimesters (81, 82).
Complement hemolytic activity (CH50) reflects activity of the

classical complement pathway. Serum CH50 increase as

pregnancy progresses (83, 84). Increased complement activity

has been linked to pre-eclampsia and preterm birth (107),

suggesting that balancing complement activation is necessary

for a healthy pregnancy [reviewed in (108)].

Pregnancy is a hypercoagulable state, with a four-fold

increased risk for deep vein thrombosis when compared to

non-pregnant women (109).There is an interaction between

acute phase proteins, the coagulation and the complement

systems. C-reactive protein (CRP) activates C1, C4, C2, and C3

(110–112) and serum CRP levels are elevated during pregnancy
(85). Fibrinogen and factor VII are part of the coagulation

cascade that independently activates the complement system,

for example, thrombin has been shown to cleave C3 and C5

[reviewed in (113)]. Fibrinogen and factor VII are also increased

during pregnancy (86), further supporting the notion that the

complement system is activated in pregnancy. High levels of
procoagulant factors are counter-balanced by increased plasma

levels of pregnancy-specific glycoproteins (PSGs). These

placenta-derived molecules prevent platelet activation in an

integrin-dependent manner (114).

Granulocytes
Eosinophil and basophil counts are not affected by pregnancy

(Table 2) (85, 86). However, urinary eosinophil-derived
neurotoxin secretion is elevated during the second and

third trimester, suggesting increased eosinophil degranulation.

In contrast, urinary N-methylhistamine concentrations are

lower in the third trimester, suggesting reduced mast cell

degranulation (87).

Neutrophils kill micro-organisms through phagocytosis,
Neutrophil Extracellular Traps (NETs), production of toxic

granules and reactive oxygen species (ROSs) (115). There is a

gradual, marked increase in neutrophils from the first trimester

onwards (85, 88). Consistent with this, G-CSF and GM-CSF, two

cytokines mediating bone marrow neutrophil production, are also

elevated during pregnancy (85, 116). The function of neutrophils

may also be altered during pregnancy. Neutrophils are high-
energy need cells that depend on glycolysis for ATP production,

and reserve oxygen towards production of ROSs and nitrogen

species by the mitochondria. To meet their metabolic demands,

glucose is metabolized through the hexose monophosphate shunt,

which produces NADPH for the oxidative burst. Activation of

neutrophils leads to translocation of metabolic enzymes to the cell
membrane where they form enzyme complexes, increasing

efficiency of these anabolic processes. Neutrophils from

pregnant women exhibit retrograde transport of these metabolic

enzymes to centrosomes, suggesting active prevention

of metabolic upregulation (89, 90): Glucose-6-phosphate

dehydrogenase and 6-phosphogluconate dehydrogenase remain
functional in neutrophils during pregnancy, but since their

activity is restricted to the cytoplasm, the metabolic output is

dampened (89, 90). This may explain why in vitro activated

neutrophils from pregnant women show reduced respiratory

burst activity and are refractory to priming with IFN-g (89–91).
In contrast, unstimulated neutrophils from pregnant women have

increased oxidative burst and produce ROS levels that are
comparable to stimulated neutrophils from non-pregnant

women (90, 92). In addition to ROS production, neutrophils

also augment NETosis during pregnancy, with a continuous

increase throughout gestation (117). Overall, these in vitro

studies indicate that basal neutrophil function is increased at

TABLE 1 | Infections associated with increased maternal susceptibility or

severity during pregnancy, or severe adverse fetal outcomes.

Infection Reference

Increased maternal susceptibility

Listerisosis 4–10

Tuberculosis (during the puerperium) 11, 12

Malaria 13–16

Increased maternal severity

Influenza 17–22

Varicella Zoster Virus infection 23–27

Hepatitis E virus infection 28–31

Malaria 14, 32–35

Invasive Haemophilus influenza infection 36–38

Invasive pneumococcal disease 39

Invasive group A streptococcal disease 39

Dengue fever 40

Lassa Fever 41, 42

Ebola virus 41

Primary Herpes Simplex Virus infection 43–45

Coccidiomycosis† 46–50

Measles 51, 52

Severe adverse fetal outcomes

Toxoplasmosis 53, 54

Influenza 17, 19, 21, 55–58

Primary varicella zoster virus infection 24, 59

Malaria 33

Rubella 60–62

Parvovirus B19 63

Listeriosis 4, 9, 64, 65

Tuberculosis 66, 67

Zika virus 68, 69

Measles 52, 61, 70, 71

Mumps 70

Cytomegalovirus 72

†some data suggest increased maternal severity while other data do not suggest

this association.
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rest but decreased after activation during pregnancy. The

distinction between resting and activated neutrophils may explain

seeminglycontradictory reportsof the activityofneutrophils during

pregnancy. The increased baseline neutrophil activity in pregnancy

may be due to a more efficient plasma membrane cell surface
localization of the cytoplasmic enzyme myeloperoxidase upon

stimulation (118). Constitutive cell surface expression during

pregnancy may lead to continuous production of ROSs without

the need for re-stimulation.

Data support altered neutrophil phagocytosis during

pregnancy (93). Elastase and lactoferrin are secreted from

primary and secondary neutrophil granules, respectively, and

are elevated in the first trimester (85). While elevated levels

might indicate increased neutrophil activation, the amount of

elastase or lactoferrin protein per granulocyte is unchanged or

even lower as pregnancy progresses (85, 91). Thus, elevated

plasma levels may simply reflect increased granulocyte
numbers during pregnancy. Expression of the activation

marker Human Neutrophil Antigen-2a (HNA-2a), also known

as NB1 or CD177, increases during pregnancy and remains

elevated for at least 4–8 weeks postpartum compared to non-

pregnant women (94). On the other hand, surface expression of

the neutrophil activation markers CD11b, CD15, CD18, and

CD62L is not different between pregnant and non-pregnant

TABLE 2 | Changes in complement, granulocytes and monocytes during normal pregnancy.

Component Main findings References

Complement

Levels Elevated C3a, C4a, and C5a in the second and third trimester in comparison to non-pregnant women 77

Elevated C4d, C3a, C3, C9, the Serum Complement Membrane Attack Complex SC5b9 during pregnancy. 78

Regulatory

proteins

High levels of regulatory proteins (e.g. Factor H). 79

Increased levels of the complement inhibitor Decay-accelerating factor (CD55) on peripheral blood mononuclear cells during pregnancy. 80

Increased levels of the C3 inhibitor pregnancy-associated plasma protein A during the second and third trimesters. 81, 82

CH50 No change in serum CH50 titers during the first trimester but significantly increased in the second and third trimester as compared to

non-pregnant women

83

Increase in CH50 levels in healthy pregnancy as compared to non-pregnant women and as pregnancy progressed, CH50 levels

increased.

84

Granulocytes

Eosinophil and basophil counts were not affected by pregnancy. 85, 86

Increased eosinophil degranulation during the second and third trimester and reduced mast cell degranulation during the last trimester,

compared to non-pregnant women.

87

Increase in neutrophil counts from the first trimester onwards. 85, 88

Neutrophils from pregnant women exhibit retrograde transport of metabolic enzymes to centrosomes, suggesting active prevention of

metabolic upregulation

89, 90

In vitro activated neutrophils from pregnant women show reduced respiratory burst activity and are refractory to priming with IFN-g. 89–91

Unstimulated neutrophils from pregnant women produce ROS at levels comparable to stimulated non-pregnancy neutrophils and have

increased oxidative burst.

90, 92

Elevated levels of elastase and lactoferrin in plasma from pregnant women, especially in the first trimester. 85

Unchanged or lower amounts of granule protein per granulocyte during pregnancy, and decreased as pregnancy progresses. 85, 91

Reduced phagocytosis of neutrophils during pregnancy. 93

Increased expression of the activation marker Human Neutrophil Antigen-2a, during pregnancy and levels remained elevated for at least

4–8 weeks postpartum compared to non-pregnant women.

94

No difference in surface expression of the neutrophil activation markers CD11b, CD15, CD18, and CD62L between pregnant and non-

pregnant women, neither in resting nor in stimulated neutrophils.

91, 92

Elevated levels of CD11b expression on granulocytes in late pregnancy. 95

Increased levels of TLR4 co-receptor CD14 and the Fc receptor CD64 on granulocytes in the second and third trimesters compared to

non-pregnant women.

Reduced expression of the neutrophil maturity marker CD16 and the MHC II molecule HLA-DR on granulocytes in pregnant women.

92

Decrease in CD10 levels and increase in CD15 levels on neutrophils over the course of pregnancy. 96

Monocytes

Granulocytic but not monocytic MDSCs are elevated in pregnant women. 97

Increases in monocyte numbers during pregnancy, mainly due to a higher number of “intermediate” monocytes, where classical

monocytes decrease, with no change in the proportion of non-classical monocytes.

98–101

Elevated stimulation-induced IL-12 and TNFa production by monocytes from pregnant women throughout all three trimesters. 102, 103

Increased levels of activation markers CD11a, CD11b, CD14, and CD64, and higher ROS production by monocytes from pregnant

women.

88, 92

Monocytes in pregnant women are anti-inflammatory and show phenotypic signs of endotoxin tolerance. 99, 104

Reduced LPS-induced IL-12 and TNFa production by monocytes of third trimester pregnant women as compared to non-pregnant

controls.

99

Lower expression of several HLA coding genes on monocytes from first-trimester pregnant women compared to non-pregnant women 98

Upregulation of genes coding for IL-10 and IDO and the negative immune regulator CD200, and a down-regulation of transcripts for IL8

and CXCL10 in monocytes from first trimester pregnancy.

98

Reduction in non-classical monocytes and an increase in classical monocytes in the third trimester compared to healthy controls. 105

CH50, 50% haemolytic complement; IFN-g, Interferon- g; ROS, Reactive oxygen species; TLR, Toll-like receptors; MHC, major histocompatibility complex; HLA-DR, Human Leukocyte

Antigen–DR; MDSC, myeloid-derived suppressor cell; TNFa, tumor necrosis factor a; LPS, Lipopolysaccharides; IDO, Indoleamine 2,3-dioxygenase.
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women (91, 92). Neutrophils can present antigens to T

lymphocytes through the MHC II molecule HLA-DR (119).

Expression of the neutrophil maturity marker CD16 and HLA-

DR were reduced on granulocytes in pregnant women in one

study (92). Another study reported elevated CD11b expression

on granulocytes in late pregnancy, but several of the women were
in labor at the time of blood collection, which may have skewed

the results (95). One study showed that TLR2 and TLR4 mRNA

expression was comparable between pregnant and non-pregnant

women (120). In contrast, expression of the TLR4 co-receptor

CD14 and the Fc receptor CD64 were elevated on granulocytes in

the second and third trimesters, supporting an increased
neutrophil activation during pregnancy (92). Altogether, data

suggest increased neutrophil activation during pregnancy but

their potential to execute effector functions (e.g. antigen

presentation), may be limited.

Decreased neutrophil expression of CD10 and increased

expression of CD15 have been reported during the course of
pregnancy (96). This phenotype (CD10low, CD15high) was most

pronounced during the third trimester and is characteristic of

immature-like neutrophils (96). Many studies use density

centrifugation to isolate neutrophils, which results in a loss of

low-density immature-like neutrophils. The same low-

density fraction also contains Myeloid-Derived Suppressor

Cells (MDSCs), a heterogenetic group of mature, and
immature-state monocytic or granulocytic cells that have

immunosuppressive function. MDSCs are not normally

detected in peripheral blood of healthy adults but common in

cancer patients or newborns [reviewed in (121)]. The number of

circulating granulocytic but not monocytic MDSCs is higher in

pregnant women (97). LowMDSCs levels during pregnancy have
been associated with miscarriage (122), thus, MDSCs might be

important in maintaining adequate immunosuppression at the

maternal-fetal interface.

Monocytes
Three main subsets of monocytes have been characterized in

humans. Classical monocytes (CD14highCD16-) are the main
subset in peripheral blood of healthy adults (~80% of all

monocytes) and have phagocytic functions. Non-classical

monocytes (CD14lowCD16high) are inflammatory and high

levels in peripheral blood have been observed in adults

suffering from chronic or acute inflammatory diseases (123).

Intermediate monocytes (CD14highCD16intermediate) may
represent a transitional state, displaying both inflammatory and

phagocytic capacity (123). Monocytes also present antigens to

T cells, hence modulating adaptive immune responses.

The impact of pregnancy on maternal monocyte function has

been reviewed elsewhere (124, 125) and we will only briefly

summarize key points here. Monocytes increase during

pregnancy, beginning in the first trimester (Table 2) (98, 99).
This increase is mainly due to higher levels of “intermediate”

monocytes, whereas classical monocytes decrease, with no change

in the proportion of non-classical monocytes (100, 101). An

increase in intermediate monocytes could explain observations

of elevated stimulation-induced IL-12 and TNFa production

by monocytes from pregnant women throughout pregnancy

(102, 103) and decreased phagocytosis during pregnancy (93).

Increased pro-inflammatory activity of monocytes is further

corroborated by increased levels of activation markers CD11a,

CD11b, CD14, and CD64, and higher ROS production by

monocytes from pregnant women (88, 92). The increased
numbers of non-classical monocytes and elevated monocyte

activation may be partially caused by placenta-secreted

molecules and cellular particles [reviewed in (125)]. For example,

placenta-derived extracellular vesicles have been shown to induce

monocyte maturation and activation ex vivo (126). Additionally,

hormonal changes in pregnancy may influence monocyte
activity (127).

Contrasting with the findings above, monocytes in pregnant

women are anti-inflammatory and show phenotypic signs of

endotoxin tolerance as observed during the later phase of sepsis

(99, 104). In peripheral blood of third trimester pregnant

women, LPS-induced IL-12 and TNFa production by
monocytes was reduced as compared to non-pregnant controls

(99, 127). Additionally, several HLA coding genes are expressed

at lower levels on monocytes from first-trimester pregnant

women compared to non-pregnant women (98) and surface

expression of MHC II is reduced (101). Together, this is

reminiscent of an anti-inflammatory state observed in sepsis

where an initial strong pro-inflammatory response is followed by
immune paralysis (128). As in sepsis, the timing of the blood

draw during gestation might influence the immunological

changes reported. Several studies reported increased TNFa and

IL-12 production by monocytes from pregnant women using

IFN-g in their stimulation cocktail (102, 103). IFN-g has long

been known to reverse the paralysis in septic monocytes (129),
hence it is plausible that during pregnancy, maternal monocytes

are in a chronically, low-grade inflammatory but unresponsive

state which can be overcome with adequate stimulation (130).

This pro-inflammatory state is balanced by upregulation of

regulatory features. Genes coding for IL-10 and IDO and the

negative immune regulator CD200 are upregulated, while

transcripts for IL8 and CXCL10 were downregulated on
monocytes from first-trimester pregnancy (98). Consistent with

this, a reduction in non-classical monocytes and an increase in

classical monocytes in the third trimester of pregnancy

compared to healthy controls has been reported (105).

While the described results seem contradictory, they may

indicate that pregnancy induces specific immunological changes
that evade oversimplified comparison to disease states. For

example, similar to granulocytes, monocytes are confronted

with an increased demand for phagocytosis during pregnancy

due to presence of fetal and placental cells and particles in

circulation. This could be achieved by an increase in classical

monocytes. However, increased antigen uptake must be carefully

balanced against a suppression of antigen-presenting functions
to lymphocytes in order to prevent allogeneic rejection of the

fetus, exemplified by reduced MHC II expression on monocytes

from pregnant women (101). Moreover, conflicting data may be

caused by differences in the study design (e.g. gestational age at

sampling) and cell isolation method. For instance, PBMC
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isolation has been shown to affect the ratio of non-classical to

classical monocytes detected (123).

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) lack CD3 and antigen-specific

receptors (131). NK cells are the best characterized ILCs (132).
In blood, most NK cells express low levels of the adhesion

molecule CD56 and the Ig receptor CD16. These CD56dim cells

are considered to be cytotoxic effector cells. Conversely,

CD56bright NK cells are much less frequent in peripheral blood

and also less cytotoxic due to a low CD16 expression, suggesting

that they are immunomodulatory (132). NKT cells express both
a T cell receptor (TCR) and NK cell associated markers. Type I

NKT cells (classical or NKT [iNKT] cells), have limited TCR

diversity and recognize a-galactosylceramide (aGalCer) lipid

antigens in a CD1d dependent manner. Type II, or non-

classical, NKT cells are also CD1d-restricted but react to lipids

other than aGalCer and have more diversity in their TCR

repertoire (133). NKT cells can be protective in infections and
auto-immune diseases and, similar to NK cells, can produce

cytokines in patterns mirroring Th subsets (133).

Specialized NK cells are found in the placental decidua and

are essential for successful spiral artery development and fetal

implantation in the first trimester of pregnancy [reviewed in

(134)]. In contrast, less is known about the effect of pregnancy on
circulating NK cells (Table 3). Most studies report no change in

NK subsets (CD56dim, CD56bright), invariant NK T cells (iNKT)

and type II non-classical NK T cells in peripheral blood between

pregnant and non-pregnant women (135–137) despite a

reduction in NK cell numbers (138, 139). NK cells subsets

have sometimes been further divided into type 1 and type 2
immunity, depending on the cytokines they produce. By

examining the surface expression of IL18R1 (type 1 immunity

due to promoting IFN-g production) and IL1RL1 (its activation

by IL-33 promotes innate immunity), the ratio of type 1 to type 2

NK cells was found to decrease in the third trimester compared

to healthy controls (140). Compared to non-pregnant controls,

the percentage of IL18R1 expressing cells is significantly lower in

the third trimester of pregnancy. In addition, the number of

IL18R1 surface molecules per cell is reduced (140). It has also

been shown that homing receptor expression is increased on type

2 CD56bright NK cells in the second trimester, compared to the
first and third trimester. For type 2 CD56dim NK cells, homing

receptor expression is highest in the third trimester (135).

Whether this corresponds to increased migration of NK cells

to the placenta at various stages during pregnancy remains to

be investigated.

Maternal NK cells and monocytes have increased expression
of the immune checkpoint protein TIM-3 in pregnancy (137,

141), potentially induced by high IL-4 and low IFN-g levels (143).
TIM-3 is important for NK cell-mediated IFN-g production and

may contribute to increased phagocytosis in pregnancy (143).

High surface levels of TIM-3, a characteristic of lymphocyte

exhaustion (144), potentially indicate that pregnancy NK cells
are anergic. Plasma levels of Galectin-9 (TIM-3 ligand) are

elevated throughout pregnancy (137). The high levels of this

lectin may stem from a high placental production (137),

however, its impact during pregnancy and whether it

contributes to TIM-3 upregulation is unclear. The augmented

inflammatory NK cell capacity during pregnancy is further

supported by studies showing increased expression of the
activation marker CD69 on CD4neg iNKT cells as pregnancy

progresses (136). Similarly, expression of the degranulation

marker LAMP-1 (CD107a) on CD56dim cells after PMA-

ionomycin stimulation and baseline levels of the cytotoxic

markers NKp46 (CD335) and CD38 are increased in the third

trimester compared to non-pregnant women (101, 137, 145).
Additionally, in vitro NK cell responses to influenza-infected or

cancerous cells is higher in pregnancy (145). Together, this

indicates elevated baseline activity and heightened potential to

upregulate pro-inflammatory responses, underlining increased

innate immunity during pregnancy. In contrast, IFN-g

TABLE 3 | Changes in systemic innate lymphoid cells during normal pregnancy.

Component Main findings References

NK cells

No change in total numbers or frequency of NK subsets (CD56dim, CD56bright), iNKT and NKT cells in peripheral blood between non-

pregnant and pregnant women, regardless of the trimester of pregnancy.

135–137

Reduction in NK cell numbers in pregnant vs. non-pregnant women 138, 139

Decreased ratio of type 1 NK cells (defined as expressing IL18R1) to type 2 NK cells (defined as expressing IL1RL1) in the third trimester

compared to healthy controls.

140

Lower percentage of IL18R1 expressing NK cells in the third trimester compared to non-pregnant controls.

Reduced number of IL18R1 surface molecules per NK cells.

140

Increased homing receptor expression on type 2 CD56bright NK cells in the second trimester, compared to the first and third trimester. 135

Increased expression of surface-marker immune checkpoint protein TIM-3 on NK cells and monocytes in pregnancy. 137, 141

Elevated plasma levels of Galectin-9 (TIM-3 ligand) throughout all trimesters of pregnancy. 137

Increase in expression of the activation marker CD69 on CD4neg iNKT cells from the first to the third trimester, although the levels are not

significantly different to age-matched non-pregnant controls.

136

Increased expression of the degranulation marker LAMP-1 (CD107a) on CD56dim cells after PMA-ionomycin stimulation and baseline

levels of the natural cytotoxicity receptor NKp46 (CD335) in the third trimester as compared to non-pregnant women.

101, 137

Reduced IFN-g production and increased IL-10 production upon ex vivo stimulation with PMA-ionomycin by NK cells from the first

trimester compared to non-pregnant women.

142

NK, Natural killer; iNKT, Invariant natural killer T; NKT, natural killer T; TIM-3, T-cell immunoglobulin- and mucin domain-containing-3; LAMP-1, lysosome-associated membrane protein-1;

PMA, phorbol-12-myristate-13-acetate, IFN-g. Interferon – g.
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production is reduced and IL-10 production upon ex vivo

stimulation with PMA-ionomycin is increased by NK cells

from the first trimester, compared to non-pregnant women

(142). This anti-inflammatory capacity could contribute to the

dampening of the adaptive immune system.

Non-cytotoxic ILCs are grouped into three subtypes, ILC1,
ILC2 and ILC3. These cell types have similar functions and

phenotypes as Th1, Th2 and Th17, respectively (131). ILCs are

found in the human placenta (146), but to the best of our

knowledge, no study has assessed ILCs in other maternal

tissues or blood during pregnancy.

ADAPTIVE IMMUNITY

T Cells
The absolute lymphocyte count and the percentage of total T
cells does not differ significantly during the first, second, and

third trimesters of pregnancy (147, 148), while the numbers of T

cells during pregnancy are lower than before pregnancy (Table

4) (149).

Pregnancy has also been associated with changes in T cell

subsets, although the data are conflicting and the significance is

unclear (147–150). The percentages of CD4+ and CD8+ T cells
of women at various stages of gestation does not differ

significantly (147, 148). In another study, no significant

changes were found in the percentage of CD4+ cells, CD8+

cells, nor of CD4+/CD8+ ratio at any stage of pregnancy (150).

However, compared to pre-pregnancy, the number of T helper

cells and cytotoxic T cells was lower in third and first trimesters
of pregnancy, respectively, while the number of suppressor T

cells was higher in the first trimester of pregnancy (149). At the

end of the first trimester there is a surge in estrogen and

progesterone, which leads to a reversible thymic involution,

which could partially explain the observed decrease in both

CD4+ and CD8+ cells (196, 197).

Studies investigated the ratio of Th2 to Th1 cells as measured
by the circulatory levels of secreted Th1 or Th2 serum cytokines,

or levels of CD4+ cells producing Th1 or Th2 cytokines, or

expression of chemokine receptors CXCR3 (associated with Th1

cells) and CCR4 (associated with Th2 cells) on CD4+ T cells. The

view of pregnancy as a Th2 state is supported by numerous

studies (151–155), but also rejected by others (198). Viewing
pregnancy as a Th2 state is supported by a rise in anti-

inflammatory cytokines, and by studies showing that Th1 and

Th17 -type autoimmune disorders are improved (199–201) while

Th2-type autoimmune disorders worsen in pregnancy (202). A

progressive shift from cell-mediated, pro-inflammatory, Th1 cell

responses to humoral, anti-inflammatory, Th2 cell responses is

initiated early in pregnancy (1, 156). This pregnancy-related Th2
phenotype resolves by 4 weeks postpartum (203). The percentage

of IFN-g-producing CD4+ cells is lower in the third trimester

while no changes in IL-4-producing CD4+ T cells were observed

in one study (158). Other studies have found no changes in Th1/

Th2 cells during pregnancy (158, 159), and stable proportion of

CD3+CD8−IFN-g+ cells across gestation (159). However, a recent
study showed that plasma IL-2 levels (indicative of Th1 cells)

were lower in the post-partum period when compared to all

trimesters (157).

While pro-inflammatory cytokines (IL-1b, IL-6, IL-8, and
TNF-a) increase in amniotic fluid throughout pregnancy and

during labor (204, 205), plasmatic pro-inflammatory cytokines

(e.g. IL-2 and IFN-g) (206) decrease, and anti-inflammatory
cytokines increase (e.g. IL-4 and IL-10) with pregnancy (175,

203). However, the numbers of IFN-g and IL-4 secreting cells

gradually increase as the pregnancy progresses compared with

postpartum (160). In contrast, a recent study showed that

the percentage of resting CD4+ cells expressing CXCR3 and

CCR4 did not change significantly during different stages of
pregnancy (159).

Hormones can affect the differentiation of Th cells. Serum

estradiol levels increase up to 500-fold during pregnancy (175).

Low estradiol promotes Th1 responses, whereas high estradiol

promotes Th2 responses (1). Elevated progesterone inhibits Th1

responses during pregnancy (207) and can induce Th2-type
cytokines (e.g., IL-4 and IL-5) (208) further enhancing the

polarization to Th2. Moreover, progesterone may exert anti-

inflammatory responses as supported by higher IL-10 levels in

women who received progesterone compared to placebo (209).

Th17 cells are important against extracellular bacteria or

fungal pathogens (210). The ratio of Th17 cells to CD4+ T cells

is similar to healthy non-pregnant women during all stages of
pregnancy (161, 211). However, one study revealed a 60% fall in

the percentage of CD3+CD8−IL17+ cells between the first and

second trimesters of pregnancy (159).

Data on T cell function during pregnancy are scarce and

inconsistent (Table 4). The methods used to measure

proliferation matters in the interpretation of T cell function.
For example, proliferation measured using 3H-thymidine

incorporation into replicating DNA may underestimate the

true proliferative response as it only detect cells in early

division cycle, thus potentially missing cells that were already

beyond the S phase of the cell cycle prior to the 3H-thymidine

pulse (212).

B Cells
Maternal antibodies are the main maternal immune component

that protect the neonate immediately after birth (213). Studies have

shown that maternal B cell-produced non-cytotoxic antibodies

directed against paternal antigens are detected in most women

undergoing a normal pregnancy during the first trimester, whereas

they are absent in a vast majority of women who experience a
spontaneous abortion. This also indicates that these antibodies

may be critical for a successful pregnancy (214). Peripheral blood B

cell counts vary during normal pregnancy and the post-partum

period, also compared to healthy non-pregnant women (Table 4)

(149, 150, 165–174). A reduction in circulating B cells is

particularly prominent during the third trimester, revealing a

“physiological” B cell lymphopenia (175) due to the effect of
elevated estrogens on lymphopoiesis (215, 216). This B cell

lymphopenia has also been attributed to cellular migration into

tissues, including the placental decidua, and suggests that B cells

play a particularly important role maintaining tolerance at the

maternal-fetal interface (217). In a mouse model, treatment of
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TABLE 4 | Changes in T cells, B cells, and immunoglobulins during normal pregnancy.

Component Main findings References

T cells

Total levels Lower levels of T cells during pregnancy than before pregnancy. 149

No differences in the absolute total lymphocyte count and the percentage of total T cells during the first, second, and third trimesters. 147, 148

Subsets No difference in the percentages of T helper [CD4+] and T suppressor [CD8+] cells during the first, second, and third trimesters. 147, 148

No significant changes in the percentage of CD4+ cells, CD8+ cells, nor CD4+/CD8+ ratio at any stage of pregnancy. 150

Lower number of T helper cells and cytotoxic T cells in third and first trimesters of pregnancy, respectively, compared to pre-

pregnancy. Higher number of suppressor T cells (CD8+CD11b+) in the first trimester, compared to pre-pregnancy.

149

Pregnancy is associated with a Th-2 or anti-inflammatory state. 151–155

A progressive shift from Th1 cell responses to Th2 cell responses initiated early in pregnancy. 1, 156

Lower plasma IL-2 levels (indicative of CD4+ Th1 cells) in the post-partum period when compared to all trimesters. 157

Lower percentage of Th1 cells (CD4+ cells producing IFN-g) in the third trimester compared to the first trimester and no changes in

the percentage of Th2 (CD4+ cells producing IL-4) was observed.

158

No change in the proportion of Th1 or Th2 cells during pregnancy. No differences in the percentage of CD3+CD8−IFN-g+ cells (Th1

phenotype) across gestation. No change in the percentage of resting CD4+ T-cells expressing CXCR3 (associated with Th1 cells) and

CCR4 (associated with Th2 cells) during different stages of pregnancy.

159

Increase in the numbers of IFN-g and IL-4 secreting cells as pregnancy progressed compared with postpartum 160

No change in the ratio of Th17 cells to CD4+ T cells during all stages of pregnancy compared to that of healthy non-pregnant

women.

161

Function Reduced PHA-Stimulated T lymphocytes proliferation in pregnant women at various times throughout gestation compared with those

from non-pregnant controls.

162

Decreased lymphocyte proliferation to mitogenic stimulation in the first, second and third trimesters as compared to non-pregnant

women.

147

Decreased in IL-2 and IFN-g production and increased in production of IL-4 and IL-10, during normal pregnancy in response to

antigen- and mitogen stimulation.

163

The ability of T cells to form colonies varied during pregnancy. 164

B cells

Total B cells Lower numbers and/or frequency of total B cells in pregnant women compared to post-partum levels or to healthy non-pregnant

women.

149, 150,

165–175

No changes in absolute levels of total B cells during the entire course of pregnancy. 165, 176,

177

Decrease in the absolute levels of total B cells during the entire course of pregnancy. 149, 168

Subsets of B

cells

Lower frequency or total levels of CD5+ B cells during pregnancy, at delivery or early in the postpartum period. 149, 165,

169, 173

Lower absolute counts of transitional B cells, unswitched memory B cells, resting memory B cells, and plasmablasts during the third

trimester than in non-pregnancy.

174, 178

Markers of B

cell activation

and function

No difference in the percentage of activated B cells during the three trimesters compared to non-pregnant women. 178

Lower soluble CD23 levels in pregnant women during the 3rd trimester than in non‐pregnant women. 179

Higher B cell activating factor levels during their third trimester than in non‐pregnant women. 179

Loss of responsiveness of B cells to mitogens and infectious agents during the course of normal human pregnancy. 180

Immunoglobulins

Total IgG levels No significant changes in total IgG levels during pregnancy. 181–183

Decreased total IgG levels during pregnancy, especially in late pregnancy. 179, 184–

189

Subclass levels Higher IgG1 levels in the three trimesters when compared to non-pregnant women.

Higher IgG3 levels in the second trimester, when compared to non-pregnant women.

No differences in IgG2 and IgG4 levels in any trimester as compared to non-pregnant women.

178

Glycosylation Increase in galactosylation and sialylation of the Fc portion of IgG. 190–192

High and similar levels of fucosylation of Fc portion of IgG during pregnancy. 190, 192

No changes in glycosylation in the Fab portion of IgG during pregnancy. 190

Asymetric IgG Increase in asymmetric IgG antibodies in pregnancy with maximum increase in the second trimester. 193, 194

IgA

Total levels No significant change in IgA levels during pregnancy. 166, 182,

183, 186,

189

Higher IgA levels in the first trimester as compared to second or third trimester. 187

Higher IgA levels in the first trimester compared to non-pregnant women. 178

Lower IgA levels in the third trimester as compared to non-pregnant women. 179

IgM

Total levels No changes total IgM levels during the course of pregnancy. 166, 182,

184, 186

(Continued)
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mice with estrogen upregulated expression of CD22 receptor and
the intracellular tyrosine phosphatase SHP-1 genes in B cells.

Overexpression of these genes led to diminished calcium

response in B cells after activation of BCR, thus supporting a

role of these molecules in reduction in B cell receptor

signaling (218).

Pregnancy is also associated with changes in B cell subsets,

specifically lower innate B-l cells during pregnancy until delivery
and during the early postpartum period (149, 165, 169, 173). B-l

cells are the major source of “innate” IgM antibodies, playing a

protective role in the early stage after infection (219).

The function of B cells also decreases as pregnancy advances.

Loss of responsiveness to mitogens and infectious agents, which

may increase the risk of infection, has been reported (Table 4)
(180). Analyses of serum markers of B cell function and

activation such as soluble CD23 (sCD23) and B cell activating

factor (BAFF) provide further insights into changes in B cell

biology during pregnancy. CD23 is expressed on earliest B cells

exiting the bone marrow while the post‐germinal center B

cells are CD23 negative. Following B cell activation, CD23 is

cleaved and thus sCD23 levels, which are stable for 12–24 h, are a
marker of the turnover fromnaïve tomemory BCells (MBC) (220).

In non-pregnant populations, high sCD23 has been associatedwith

inflammatory and lymphoprolifertiave disorders (221, 222), and

relapse of rheumatoid arthritis (223). Plasma levels of sCD23 levels

decrease during the third trimester of pregnancy (179) ,suggesting

lower turnover from naïve to MBCs and may reflect an anti-
inflammatory state in pregnancy. BAFF expression in

trophoblasts and decidua has been associated with early recurrent

spontaneous abortion (224). Plasma levels of BAFF increase during

the third trimester (179), suggesting that BAFF may play an

important role in the implantation of the embryo. Moreover,

peripheral B cell levels are inversely correlated with serum BAFF

levels inpatientswith rheumatoid arthritis receivingBcell depletion
therapy or who have primary antibody deficiencies (223, 225).

Thus, this increase of BAFF levels in the third trimester of

pregnancy supports the note of a decrease in the total B cell pool

in late pregnancy.

Immunoglobulins
Studies from the 1960s–1970s reported conflicting results

regarding immunoglobulin (Ig) levels during pregnancy (Table

4). Some studies suggest that total IgG levels remain stable

during pregnancy (181–183), while other studies show a

decrease in late pregnancy (179, 184–189). IgG1 levels were

higher in pregnancy compared to non-pregnant women, while
IgG3 levels were higher in pregnant women in their second

trimester, compared to non-pregnant women (178). IgG1 is the

subclass that is most efficiently trans-placentally transferred to

the newborn and is a stronger inducer of Fc-mediated effector

mechanisms (e.g. antibody-dependent cellular cytotoxicity,

complement dependent cytotoxicity, and antibody-dependent

cellular phagocytosis (226), thus potentially providing critical
protection for both the mother and the infant in early life. IgG2

and IgG4 levels remain stable during pregnancy and levels are

comparable to non-pregnant women (178). The seemingly

discrepant results of lower total IgG levels and changes in

subclasses (higher IgG1 and IgG3, comparable IgG2 and IgG4),

emphasize the challenges of interpreting and comparing results
from different cohorts using different immunological assays.

Another important caveat to these studies is that measuring

antibody concentrations only certainly does not fully account for

functional antibody changes unless other characteristics are

examined, including avidity and more recently structural

changes such as glycosylation that enhance antibody functions

(227, 228).
IgGs are glycoproteins and contain N-glycans at both the

Fc and Fab portion of IgGs. These N-glycans consist of a

constant heptasaccharide core, fucose, N acetylglucosamine

(GlcNAc), galactose(s), and sialic acid(s) (190, 229). Pregnancy

has been shown to be associated with changes in IgG Fc domain

glycosylation, with an increase of galactosylation and sialylation
of the Fc portion of IgG (190–192), whereas Fc fucosylation was

shown to remain at high and very similar levels during

pregnancy (190, 192). IgG Fc domain glycosylation can have

immune regulatory functions and modulate IgG effector

functions as Fc-linked glycans alter the three-dimensional

structure of the protein, thus influencing the binding to Fc-

receptors (230, 231). Glycan–glycan interactions occur between
IgG and Fc Receptor IIIa (232), with core fucose decreasing the

affinity of this interaction (233). Thus, high fucosylation of

the Fc portion of the IgG, that is reported to occur during

pregnancy, has the potential to inhibit the binding with Fc

Receptor IIIa expressed on NK cells, and thus decreasing

ADCC activity, suggesting that this post-translational
modification might be associated with an increased risk for

infections in pregnancy.

Asymmetric IgG are characterized by the presence of an

oligosaccharide group of the high mannose type in only one of

the two Fab fragments and are present in mammalian sera in

TABLE 4 | Continued

Component Main findings References

Decrease in IgM levels in the second and third trimester when compared to first trimester. 181, 185,

187

Increase in total IgM levels during late-third (36-42 WG) compared with early-third (27-33 WG) trimester. 185, 195

Increase in total IgM levels in the first trimester as compared to non-pregnant women 178

No difference in IgM levels in the third trimester compared to non-pregnant women. 179

IgE

Total levels No change in IgE levels during the course of pregnancy. 178

IFN-g, Interferon- g; Th, T helper; PHA, Phytohemagglutinin; IgG, immunoglobulin G; Fc, fragment crystallization; IgA, immunoglobulin A; IgM, immunoglobulin M; IgE, immunoglobulin E.
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~15% of total IgG. These antibodies are thought to act locally at

the placental level to block placental antigens, thus preventing

immunological attack by maternal natural killer (NK) cells and

cytotoxic lymphocytes (193). Interestingly, pregnancy is

associated with an increase in asymmetric IgG antibodies

(193, 194).
While some evidence, mainly from the 1960s-1970s support

that there is no significant change in IgA levels during pregnancy

(166, 182, 183, 186, 189), other data suggest more dynamic

changes to occur during pregnancy (178, 179, 187). Data on IgM

levels during pregnancy are conflicting (166, 178, 179, 181, 182,

184–187, 195). Scarce data show that IgE levels remain stable
during pregnancy (Table 4) (178).

Different factors could explain a decrease of total Ig levels in

pregnancy including depression of cell-mediated immunity,

loss of protein in urine, hemodilution, transfer of IgG from

mother to fetus across the placenta, or pregnancy‐associated

hormones, especially steroid hormones, which have effects on
protein synthesis (234, 235). Hemodilution due to increased

intravascular volume during pregnancy might explain the low

Ig levels. However, one small study showed that although

total IgG, IgM and IgA levels decreased from the first trimester

to second trimester and in the third trimester also for

IgG as compared to first trimester, this decrease was also

accompanied by a decrease in the ratio of total IgG to serum
protein in the second and third trimester, thus supporting that

there is a true decrease in serum Ig levels not attributed only to a

decrease in serum protein (187).

T Regulatory Cells
T regulatory cells (Tregs) induce peripheral tolerance by

suppressing the proliferation and cytokine production of CD4

and CD8 T cells, Ig production by B cells, cytotoxic activity of

NK cells, and maturation of dendritic cells (236, 237). Tregs

express low levels of IL7R and high levels of the alpha

chain of IL-2 receptor (CD25) (238) and the transcription

factor Forkhead box p3 (Foxp3) (239). Other suppressive T cell
subsets have been described (240) including, CD4+CD25+Foxp3-

type 1 regulatory T cells (Tr1), and CD4+CD25low Th3 cells (241,

242) that are induced by, and exert their suppressive activity

through IL-10 (243) and TGF-b (244).

Tregs are important in regulating fetal rejection by maternal

immune cells (245) and to suppress inflammation in the uterus

during the implantation period (238, 246–249). The dynamics of

Tregs during pregnancy are controversial, which might be in part

due to difference in how Tregs are defined between studies

(Table 5). Estrogen augmented Foxp3 expression in vitro and
in vivo, and treatment with estrogen increased CD4+CD25+

“Tregs” in animal model, potential promoting maternal fetal

tolerance (254). A decline in peripheral blood CD25brightCD4+ T

cells was reported in pregnant women with spontaneous

abortion compared to uncomplicated pregnancies (249) and

compared to women with elective abortion (249, 255).
However, because activated T cells also express CD25 this

choice of markers may have led to overclassifying Treg. While

CD25 and Foxp3 are often used as Treg markers, activated

conventional T cells can also express Foxp3 in addition to dim

levels of CD25 (256, 257). In one study, a higher percentage of

CD4+CD25dim T cells was observed at term as compared to 17–
24 weeks into gestation, however, no significant changes were

observed in CD4+CD25bright T cells (251). In another study, the

number of CD4+CD25+FoxP3+ T cells decreased during the first

trimester then increased at 24–30 weeks of gestation then again

declined after 31 weeks until term (252). Some studies showed

that the proportion of Tregs in circulation increases during early

pregnancy (238, 249) and peaks in the second trimester (238,
250), with one study showing that these cells express Foxp3 (238)

to further support that they are Tregs (Table 5). However, in the

latter studies (238, 250), no distinction between CD4+CD25dim

and CD4+CD25bright T cells was made, thus limiting the definite

conclusion about the true dynamics of Tregs during human

pregnancy. Comparing different Treg characterization methods,
both CD4+CD25bright and CD4+CD127lowCD25+ T cells subsets

were significantly elevated at the time of delivery compared to

non-pregnant women (258). CD4+Foxp3+ T cell proportions

were also higher but not statistically significant. Further work is

required to truly understand the dynamics of blood regulatory T

cells in human pregnancy.

B Regulatory Cells
B regulatory cells (Bregs) express high levels of CD24, CD27,

and/or CD38, and have the capacity to suppress T cell responses

in part through production of the anti-inflammatory cytokine

TABLE 5 | Changes in systemic T- and B- regulatory cells during normal pregnancy.

Component Main Findings References

T regulatory cells

Increased proportion of T regulatory cells during early pregnancy, peaking in the second trimester and declining in the third trimester. 238, 250

Higher percentage of CD4+CD25dim T cells in samples obtained at term (>37 weeks) as compared to 17–24 weeks, while no significant

changes in CD4+CD25bright T cells.

251

Increased CD4+CD25bright T cells during early pregnancy compared to non-pregnant women, from 6% to 8%. 249

Decreased number of CD4+CD25+FoxP3+ T cells from 5 to 23 weeks gestation, then increased during 24–30 weeks gestation, then

declined after 31 weeks until term.

252

B regulatory cells

Lower absolute levels of IL-10-producing B cells and CD24hiCD38hi B regulatory cells during the third trimester and on delivery day than

those in the post-partum women.

174

Increased CD19+CD24hiCD27+ B cells in the first trimester as compared to non-pregnant women. 253
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IL-10 (259–261). Breg-specific transcription factors have not

been identified and there is phenotypic heterogeneity of Bregs

indicating that Bregs may not represent a distinct lineage (262).

CD19+CD24hiCD27+ Breg levels increase in the first trimester of

pregnancy (253) (Table 5). Human chorionic gonadotropin

(hCG) enhances the function of Bregs as hCG induces IL-10
production in B cells and ~95% CD19+CD24hiCD27+ cells

expressed the hCG receptor (253). Absolute counts of IL-10-

producing Bregs and CD24hiCD38hi Bregs are lower during the

third trimester and at delivery than in women post-partum

(174). Bregs’ main role during pregnancy may be to suppress

maternal Th1 responses, thus preventing allogeneic responses
against the fetus (253). However, the full mechanism behind the

activation and expansion of Bregs in pregnancy remain unclear.

MATERNAL IMMUNE PATHOLOGY
DRIVING ADVERSE PREGNANCY
OUTCOMES

In this review, we have described how the maternal immune

system undergoes major adaptation during a healthy pregnancy.
Failure to induce these systemic changes predisposes women to

adverse pregnancy outcomes and this may be more likely in

women with underlying autoimmune diseases. Women with

Systemic Lupus Erythematosus (SLE) are at a disproportionately

high risk for pregnancy complications. Preterm birth occurs three

times more often and post-partum infections are over four times
more likely in pregnant women with SLE than in healthy women

(263). Using whole blood transcriptomics, Hong et al. found that

while signatures specific to SLE (e.g. elevated interferon

responses) are retained, changes seen in healthy women’s

pregnancies are surprisingly well recapitulated in SLE patients

with uncomplicated pregnancies (264). However, in SLE patients

with pregnancy complications, certain transcriptomic modules

(e.g. plasma cell signatures) were not downregulated to the same
extent as in healthy or uncomplicated SLE pregnancies.

While fetal and maternal obstetric outcomes are often

adversely affected by autoimmune diseases, the disease severity

or risk of relapse is often reduced during pregnancy. This is

especially true for Th1 mediated autoimmune diseases such as

rheumatoid arthritis (RA) and multiple sclerosis (MS) whereas
Th2 mediated diseases such neuromyelitis optica spectrum

disorders worsens during pregnancy [reviewed in (265)].

This dichotomy is attributed to the shift towards Th2 based

immunity during pregnancy. Concomitant with the return to

pre-pregnancy hormone levels and immune status in the

post-partum period, many women affected by RA or MS
experience a relapse and worsening of symptoms (266, 267). A

better understanding of how specific alterations in the

maternal immune system during pregnancy lead to symptom

improvement could help guide the development of novel

therapeutics in autoimmune diseases.

CONCLUSIONS AND FUTURE
DIRECTIONS

In conclusion, a large body of scientific literature that

accumulated over years demonstrates significant systemic

FIGURE 1 | Changes in maternal immune system components during pregnancy based on current literature. Trimester-specific changes that are not described in

the literature are not shown and represented as gaps and stops in lines (i.e. complement activation and regulatory proteins, CH50 and B regulatory cells). Dashed

lines indicate that reduction in B cell might happen during first or second trimester. There are controversies in the literature regarding the dynamics of total and

subclasses of IgG combined to draw a definite pattern (thus it is not described in the figure, see full text for details). Fucosylation of Fc portion of IgG is similar to

non-pregnancy but at very high levels. *Complement activation proteins: C3a, C4a, C5a, Serum Complement Membrane Attack Complex SC5b9; Complement

regulatory proteins: Decay-accelerating factor (CD55), C3 inhibitor pregnancy-associated plasma protein A.

Abu-Raya et al. Maternal Immune System During Pregnancy

Frontiers in Immunology | www.frontiersin.org October 2020 | Volume 11 | Article 57519710

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


immunological adaptation during pregnancy (Figure 1). The

changes indicate highly dynamic co-operative interactions

between the maternal and fetal immune system, rather than a

broad maternal immune suppression. Knowledge of these

changes is helpful to interpret clinical immunology testing

results. However, despite all these data, we still lack a clear
understanding of how these immunological changes contribute

to modulation of the risk of infection and the course of

immunological disease during pregnancy. Also, pregnancy

remains one of the most vulnerable periods in terms of

morbidity and mortality, certainly for the fetus, but also for the

mother. Indeed, sepsis alone accounts for about 12.5% of all
deaths in women during or within 42 days of the end of

pregnancy in the US (268). Major concurrent physiological

(e.g. circulatory changes, increased abdominal pressure) and

endocrinological changes clearly modulate these risks. Yet,

teasing out the specific contribution of immunological changes

on pregnancy outcomes will require more considerate
approaches. Systems immunology can integrate a large amount

of information in an unbiased way. When coupled to detailed

clinical outcomes, these studies have proven extremely valuable

in human health research where classic experimental approaches

are not feasible for obvious ethical reasons (269). Most recently,

multiparameter analyses incorporating blood counts, flow

cytometry and proteomics, identified immunological changes

tightly linked to fetal development stages (270). These

approaches may also help understand whether and how specific

Th2-mediated autoimmune conditions may worsen, while some
immune-mediated diseases improve clinically during pregnancy

as described above. Systems immunology may also provide

insights into the early life origins of allergic sensitization (271)

and the optimization of maternal vaccination schedules to best

protect both the mother and her infant. In the end, the potential

for these unbiased human immunology approaches to inform
therapeutic interventions during pregnancy is enormous, but will

require concerted efforts from clinicians, biostatisticians,

epidemiologists and molecular immunologists.
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