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Abstract

Background—Maternal smoking in pregnancy is associated with adverse health outcomes in
children, including cancers; underlying mechanisms may include epigenetic modifications. Using
Illumina’s 450K array, we previously identified differential DNA methylation related to maternal
smoking during pregnancy at 26 CpG sites (CpGs) in 10 genes in newborn cord bloods from the
Norwegian Mother and Child Cohort Study (MoBa). Whether these methylation signals in
newborns reflect in utero exposure only or possibly epigenetic inheritance of smoking-related
modifications is unclear.

Methods—We therefore evaluated the impact of the timing of mother’s smoking (before or
during pregnancy using cotinine measured at 18 weeks gestation), the father’s smoking before
conception, and the grandmother’s smoking during her pregnancy with the mother on methylation
at these 26 CpGs in 1,042 MoBa newborns. We used robust linear regression, adjusting for
covariates, applying Bonferroni correction.

Results—The strongest and only statistically significant associations were observed for sustained
smoking by the mother during pregnancy through at least gestational week 18 (p<1.6x10~° for all
26 CpGs). We observed no statistically significant differential methylation due to smoking by the
mother prior to pregnancy or that ceased by week 18, father’s smoking before conception, or
grandmother’s smoking while pregnant with the mother.

"Correspondence should be addressed to: SJ London, 111 T.W. Alexander Drive, Rall Bldg, A306, RTP, NC 27709, Tel: (919)
541-5772, Fax: (919) 541-2511, london2@niehs.nih.gov.

None of the authors has any actual or potential competing financial interests.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Joubert et al. Page 2

Conclusions—Differential methylation at these CpGs in newborns appears to reflect sustained
in utero exposure rather than epigenetic inheritance.

Impact—Smoking cessation in early pregnancy may negate effects on methylation. Analyses of
maternal smoking during pregnancy and offspring health outcomes, including cancer, limited to
ever smoking might miss true associations.
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Introduction

Maternal smoking during pregnancy is associated with many adverse health outcomes in
children including certain cancers such as childhood leukemia, lymphoma, and others (1).
Recent evidence suggests that the underlying mechanisms behind detrimental effects of
maternal smoking may involve epigenetic modifications such as DNA methylation (2-6).
We previously reported associations between maternal smoking during pregnancy
(measured objectively using cotinine in maternal plasma samples taken at gestational week
18) and differential DNA methylation in cord blood from newborns in the Norwegian
Mother and Child Cohort Study (MoBa) (3). Using the Illumina Infinium
HumanMethylation450 Beadchip (450K) we identified epigenome-wide statistically
significant associations at 26 CpGs mapping to 10 genes. The genes included AHRR and
CYP1AL1 that are key members of the aryl hydrocarbon receptor pathway well known to be
involved in biologic response to polyaromatic hydrocarbons in tobacco smoke. We also
identified novel genes not previously recognized as playing a role in the response to tobacco
smoke including genes involved in development (GFI1, MYO1G, CNTNAP2 and RUNX1)
and other processes (HLA-DPB2, ENSG00000225718, EXT1, and TTC7B). We replicated
our findings in an independent U.S. birth cohort. The methylation differences at these 26
CpGs were not seen in the range of cotinine consistent with secondhand smoke exposure of
the mother. Of note, differential methylation in AHRR, GFI1, MYO1G, and CNTNAP2 have
also been associated with smoking in adults (7-10). Methylation differences in AHRR
related to smoking in adults have been observed in lung as well as blood (9) confirming that
these findings do not reflect shifts in cell types due to smoking.

Multigenerational health effects from in utero exposure to smoking and other toxicants have
been proposed in a few epidemiologic studies (11, 12). Our observation that DNA
methylation at birth at these 26 CpGs is related to having a mother who smoked during
pregnancy raises several questions about when and how these changes might occur. There is
considerable interest in the possibility that environmental exposures such as smoking result
in epigenetic effects that can be transmitted from one generation to the next but there is no
direct evidence in humans (13). This mechanism has been referred to as transgenerational
epigenetic inheritance (via the gametes) (14) and implies epigenetic alterations to gametes
that escape reprogramming after fertilization.

One possible scenario for the inheritance of smoking-related methylation is that the mother’s
smoking prior to becoming pregnant impacts the epigenome of the ovum that gives rise to
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the child. If this occurs, we might observe that offspring methylation is associated with the
mother’s smoking before pregnancy, even if the mother stopped smoking before becoming
pregnant. In a similar way, the father’s smoking before conception could impact the
epigenome of the sperm that gave rise to the study child. If so, we might observe that
offspring methylation is associated with smoking by the father prior to conception.

Another scenario for the inheritance of the smoking-related methylation changes could be
that smoking by the study child’s grandmother, when she was pregnant with the mother,
impacts the epigenome of the developing ovum that gave rise to the study child. If so, we
would expect the grandmother’s smoking while pregnant with the mother to be associated
with the study child’s methylation at birth, independently of the mother’s smoking during
her pregnancy.

Alternatively, it is possible that the methylation differences at birth related to maternal
smoking primarily reflect the in utero exposure. If so, it is relevant to ask whether early
exposure (smoking very early in pregnancy followed by cessation) is sufficient or whether
sustained exposure through pregnancy is needed.

To address these questions we performed new statistical analyses for the 26 CpGs where we
observed methylation differences at birth related to maternal smoking during pregnancy. We
examined the impact of the timing of the mother’s smoking (before or during pregnancy),
the father’s smoking prior to conception, and the grandmother’s smoking in her pregnancy
with the mother on methylation at these 26 CpGs.

Materials and Methods

Study population

Participants in the current analysis were selected from a substudy of the Norwegian Mother
and Child Cohort Study (MoBa) (15, 16) that evaluated the association between maternal
plasma folate during pregnancy and childhood asthma status at 3 years of age (17).
Umbilical cord blood samples were collected and frozen at birth at —80 degrees Celsius and
maternal plasma samples were collected at approximately gestational week 18. All
biological material was obtained from the biobank of the MoBa study (16). DNA
methylation in cord blood was measured in 1,068 singleton births using the Illumina
Infinium HumanMethylation450 Beadchip (450K). We previously analyzed 1,062 of these
participants who had complete data for maternal plasma cotinine and covariates to evaluate
the association between maternal smoking during pregnancy and DNA methylation in cord
blood (3). In the current study, we analyzed the 1,042 participants who had DNA
methylation measurements and data for maternal cotinine, self-reported smoking behavior
before and during pregnancy, and covariates. Smoking information for the grandmother was
reported as unknown or missing for 114 participants, leaving 928 of 1,042 for analyses with
that variable. Analyses of father’s smoking information included 1,035 participants with
data for that variable (7 missing). The MoBa study has been approved by the Regional
Committee for Ethics in Medical Research, the Norwegian Data Inspectorate and the
Institutional Review Board of the National Institute of Environmental Health Sciences,
USA, and written informed consent was provided by all participants.
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Methylation measurements

Details of the 450K methylation measurements and quality control were previously
published (3) and are described in detail in the supplementary text of that paper. Briefly,
bisulfite conversion was performed using the EZ-96 DNA Methylation kit (Zymo Research
Corporation, Irvine, CA) and DNA methylation was measured at 485,577 CpGs in cord
blood using Illumina’s Infinium HumanMethylation450 BeadChip (18, 19). lllumina’s
GenomeStudio® Methylation module version 1.0 (Illumina Inc., San Diego, CA, 2012) was
used to calculate the methylation level at each CpG as the beta-value (B=intensity of the
methylated allele (M)/(intensity of the unmethylated allele (U) + intensity of the methylated
allele (M) + 100)) (18). The laboratory analysis was designed to minimize potential batch
effects; the bisulfite conversion and methylation measurements including reruns were
completed in less than one month on a single machine. Variables representing chip (12
samples), chip set (four contiguous chips or half of a plate), and plate (96 samples) included
as covariates in statistical models did not influence the results and thus were not included in
the final models.

For the current analysis, we present results accounting for the two different probe designs by
applying the intra-array normalization strategy Beta Mixture Quantile dilation (BMIQ) (20).
The 26 CpGs evaluated in this analysis did not include any underlying SNPs in the probe
sequence as detailed previously in the supplementary text (3).

Timing of mother’s smoking

Information about smoking by the mother, father, and grandmother was reported by the
mother on questionnaires completed at different time points in pregnancy (15, 16)
(Supplementary Figure 1). For the mother, cotinine, a biomarker of smoking, was measured
by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (21) in plasma collected
at approximately gestational week 18. Cotinine values above 56.8 nmol/L were used to
indicate that a mother was smoking at this time point (22). We classified mother’s smoking
into four categories using her report of smoking during pregnancy, and cotinine values:
never smoked, quit before pregnancy, smoked during pregnancy but quit by 18 weeks, and
smoked through gestational week 18. Quitting by 18 weeks was defined by mother’s report
plus having a cotinine value below 56.8 nmol/L.

Father’s smoking

Father’s smoking is an important source of secondhand tobacco smoke exposure to the
mother. However, in our previous analysis, maternal cotinine levels consistent with
secondhand smoke exposure alone (0 to 56.8 nmol/L) were not associated with differential
methylation at the 26 CpGs we evaluate here (3). Nonetheless, the father’s smoking prior to
pregnancy could possibly influence methylation in the sperm that could be passed to the
offspring. We classified the father’s smoking prior to pregnancy using the mother’s response
to the question, “Did the baby’s father smoke before you became pregnant?”

Grandmother’s smoking and combined mother’s and grandmother’s smoking

The grandmother’s smoking was determined by the mother’s response to the following
question on a questionnaire administered in early pregnancy, “Did your mother smoke when
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she was pregnant with you?” The response choices were “Yes”, “No”, or “Don’t know.”
Mother’s report of the grandmother’s smoking during pregnancy has been validated in a
previous publication reporting an association between the grandmother smoking in her
pregnancy with the mother and a lower birth weight of the mother (23). We created a
categorical variable to jointly classify mother and grandmother smoking during pregnancy
into four groups: neither smoked, only grandmother smoked in her pregnancy, only mother
smoked in her pregnancy, and both smoked in their pregnancies. For this variable the
mother’s smoking in pregnancy was determined solely based on a cotinine value above 56.8
nmol/L.

Statistical analysis

As in our previous publication (3) we used robust linear regression to account for potential
outliers or heteroskedasticity (24). However, in the current analysis, rather than logratios, we
used the actual methylation betas because the results were nearly identical and coefficients
are easily interpretable as the incremental change in methylation at each probe between the
categories compared.

We ran four separate models to examine the association between each smoking variable and
methylation in newborns for the 26 CpGs we previously found to be associated with
maternal smoking in pregnancy at Bonferroni-corrected epigenome-wide statistical
significance (480,000 tests, p-value < 1x10~7). The smoking variables evaluated were the
timing of the mother’s smoking (quit before pregnancy, quit by 18 weeks, or smoked
through 18 weeks relative to never smoked), father smoking prior to the pregnancy (yes
compared to no), and the combined mother and grandmother smoking (mother only,
grandmother only, or both smoked relative to neither smoking). To further tease apart the
effects of grandmother and mother smoking, we also compared smoking by both
grandmother and mother in pregnancy to smoking only by the mother.

All models were adjusted for maternal age, maternal education, and parity. For the analysis
of father’s smoking before the mother’s pregnancy we additionally adjusted for whether the
mother was smoking during pregnancy. The number of cigarettes per day that the mother
reported smoking during pregnancy was not a confounder and not included in the final
models. Sex of the child would not be expected to be associated with smoking behavior of
the mother, father, or grandmother before the birth of the child and also did not affect results
so was not included. After our previous publication, a method was published to evaluate
potential confounding by differential cell counts in whole blood (25). A reference dataset of
cord blood, which would be most applicable to our data, is not available. Therefore we used
the reference dataset of 6 adult men (26) to implement this method (25) and adjustment for
estimated cell counts did not alter our results so we present results without this adjustment.
We applied Bonferroni correction for 26 tests (26 CpGs evaluated) adjusting the level of
significance from 0.05 to 0.0019. We also note the CpGs considered statistically significant
after additional Bonferroni correction for the four models run, adjusting the level of
significance to 0.05/(26*4)=0.00048. These statistical analyses were performed using R
(27).
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Results

Study population

Of the 1,042 mothers, 50% had never smoked, 22% quit before pregnancy, 15% quit early in
pregnancy, and 13% smoked through gestational week 18 (Table 1). Among the mothers
who quit by 18 weeks, 80% reported quitting by 6 weeks or earlier and 95% reported that
they quit by 10 weeks or earlier. Father’s smoking prior to pregnancy was reported for 31%
of study newborns (Table 1). The frequencies for the combined classification of
grandmother and mother smoking are also reported in Table 1.

The results for models unadjusted and adjusted for covariates were very similar. Thus, we
present only the adjusted model results.

Timing of the mother’s smoking

Figure 1 shows graphically that the largest differences in mean methylation level
corresponded to having a mother who smoked through gestational week 18, relative to never
smoking whereas the mean methylation differed very little between never, quit before, and
quit during pregnancy smoking categories.

Table 2 and the supplementary volcano plot (Supplementary Figure 2) provide the model
results for the analysis of methylation differences across the timing of mother smoking
categories. Relative to never smoking, former smoking by the mother (quitting before
pregnancy) and smoking in pregnancy that stopped by 18 weeks had minimal effects on cord
blood methylation that were not statistically significant for any of the 26 CpGs evaluated
(Table 2). In contrast, smoking by the mother through at least gestational week 18 had a
much stronger association with methylation, relative to never smoking, with regression
coefficients ranging from —-0.149 to 0.084. Relative to never smoking, the median regression
coefficient (across all 26 CpGs) for smoking through gestational week 18 was 4 fold higher
than the median regression coefficient for smoking that stopped by week 18 and 8 fold
higher than the median regression coefficient for stopping before pregnancy. Only smoking
through 18 weeks in pregnancy was statistically significantly associated with differential
methylation in cord blood (p-values < 1.64x10~4 for all 26 CpGs, Table 2, Supplementary
Figure 2). These associations retain statistical significance if additional Bonferroni
correction for four models run is applied (p-value < 4.8x1074). As expected, our most
statistically significant finding from our epigenome-wide analysis (3), AHRR cg05575921,
was one of the most statistically significant findings for smoking through gestational week
18 relative to never smoking (regression coefficient = —0.074, standard error = 0.008, p-
value=9.70x10722). All of the methylation differences due to smoking are in the same
direction as in our original report (3). Models including an additional adjustment for the
amount of cigarettes smoked per day reported by the mother in pregnancy (17 week
questionnaire) gave similar results.
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Father’s smoking

We did not observe any statistically significant differences in DNA methylation related to
smoking by the father (Supplementary Table 1). Effect estimates were small (coefficients
ranged from —0.011 to 0.009).

Grandmother’s smoking during pregnancy with the mother alone and in combination with
the mother’s smoking during pregnancy

Figure 2 shows graphically that the largest differences in the mean methylation level
occurred when only the mother smoked, relative to either only the grandmother smoked or
neither the mother nor grandmother smoked. In comparison, the mean methylation levels
differed very little between neither and grandmother only, and between mother only and
both grandmother and mother smoking during pregnancy categories.

Table 3 and the supplementary volcano plot (Supplementary Figure 3) display the model
results for the analysis of methylation differences across the combined mother and
grandmother smoking categories. We observed no statistically significant association for
grandmother’s smoking alone, relative to no smoking by either the grandmother or the
mother, with methylation at any of the 26 CpGs (Table 3, Supplementary Figure 3) and the
effect sizes were small (ranging from —0.007 to 0.004) (Table 3). Much larger effect sizes
(regression coefficients ranging from —0.137 to 0.075) were observed for only the mother
smoking relative to no smoking by either the grandmother or the mother (Table 3). Relative
to no smoking by either the grandmother or the mother, the median regression coefficient
(across all 26 CpGs) for smoking by the mother only was 12 fold higher than the median
regression coefficient for smoking by the grandmother only. The associations remain
statistically significant for 23 of the 26 CpGs if additional Bonferroni correction for four
models run is applied (p-value < 4.8x1074). For the combined grandmother and mother
smoking analyses, additional adjustment for the amount of cigarettes smoked per day
reported by the mother in pregnancy (17 week questionnaire) gave similar results.

We also compared the effects of both the grandmother and mother smoking to only the
mother smoking. If the mother smoked, the additional effect of grandmother smoking in her
pregnancy with the mother was minimal and not statistically significant (Supplementary
Table 2, Supplementary Figure 4).

Discussion

We recently reported effects of maternal smoking during pregnancy on DNA methylation in
newborn cord blood at epigenome-wide statistical significance (p-value < 1x10~7) for 26
CpGs across 10 loci using the Illumina 450K array (3). In the current paper, we extend our
analysis to investigate fundamental questions in epigenetics: inheritance and persistence of
exposure effects. We looked for evidence of epigenetic inheritance by evaluating the impact
of the mother’s and father’s smoking prior to pregnancy and the maternal grandmother’s
smoking in her pregnancy with the mother and on DNA methylation in newborn cord blood.
Each of these exposure conditions might potentially alter methylation status of ova or sperm
and if effects persisted through fertilization and embryonic development, these might be
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detected in the cord blood. Our findings do not support epigenetic inheritance. Rather, the
methylation differences we observed at birth in relation to maternal smoking appear to
reflect in utero exposure.

We found that the effects of in utero exposure on newborn methylation at these 26 loci were
much stronger when the mother smoked past 18 weeks in pregnancy than when she quit
earlier in pregnancy. Methylation at these loci in newborns with mothers who quit smoking
earlier in pregnancy was nearly indistinguishable from those whose mothers never smoked.
Thus sustained exposure through at least 18 weeks in pregnancy appears to be required to
observe the effects on DNA methylation at birth. Our findings in newborns are in agreement
with results from studies of adults suggesting that smoking-related epigenetic effects are
stronger for current than former smoking (9, 10).

The prevalence of smoking in our study population is comparable to the larger MoBa
population. Kvalvik et al. measured maternal plasma cotinine concentrations at
approximately gestational week 18 in a larger sample of 2,997 women in the MoBa study
which partially overlaps with the current sample (28). The prevalence of daily or occasional
smoking during pregnancy in this larger sample based on self-report and cotinine
concentrations > 30 nmol/L is 13%, the same as in our smaller population. A ban on
smoking in restaurants and bars went into effect in Norway in June 2004 resulting in
decreased prevalence of smoking (29). Among all 19,140 MoBa women delivering singleton
births between 2002 and 2004 (the date of birth range for our sample), smoking in
pregnancy was reported by approximately 11% of mothers. However, cotinine was not
available for most participants and Kvalvik et al. (30) found that the smoking proportion
incorporating cotinine is slightly higher than that obtained from self-report in MoBa. The
prevalence of grandmaternal smoking (23% grandmother only) and paternal smoking prior
to conception (31%) in these 19,140 MoBa subjects was also similar to the prevalence in our
smaller sample (22% and 31% respectively). The percentage of women that stopped
smoking during pregnancy was 16% among the 19,140 MoBa subjects and 15% in our
sample. Among mothers who reported that they stop smoking during pregnancy, the median
gestational week of quitting was 5.0 (IQR 4-9) in the both the 19,140 MoBa subjects and
our sample.

Cotinine measurements were available only at approximately gestational week 18, so we
could not objectively confirm reports on the 30 week questionnaire of quitting later in
pregnancy. Among the 136 women smoking at gestational week 18 based on cotinine, only
8 (6%) reported that they quit smoking later in pregnancy; excluding these 8 women yielded
similar results.

This study cannot address mechanisms for the apparent need for sustained exposure (defined
in this study as through at least 18 weeks gestation) in utero to identify methylation
differences at birth. However, one can speculate that methylation differences reflect a
cellular response to exposure that enables fetal cells, such as hematopoietic progenitors, to
be more resistant to toxins in tobacco smoke. If this occurs, these cells may have a selective
advantage for survival in the presence of exposure to Ah receptor ligands such as
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polyaromatic hydrocarbons. However, when exposure is not persistent, proliferation of
progenitor cells without these epigenetic changes might be favored.

If mothers who were able to quit smoking early in pregnancy smoke less than mothers who
continued to smoke, it is possible that this lower amount of smoking accounts for why we
see no significant effect of quitting early in pregnancy. However, adjustment for the number
of cigarettes smoked per day reported by the mother early in pregnancy did not materially
alter the associations. The 136 women who smoked through at least gestational week 18
were disproportionately light smokers (median cigarettes per day=4, IQR=2-10) and thus
we had little power to observe a dose response. However, we observed a statistically
significant association between cigarettes smoked per day and methylation at 5 of the 8
GFI1 CpGs and 2 of the 4 AHRR CpGs, adjusting for maternal age, parity, and education
and applying Bonferroni correction (p<0.0019).

Our previous publication included the Newborn Epigenetics Study (NEST) as a replication
dataset to confirm our findings (3). We were not able to use those data for replication of the
current analyses because information on the grandmother’s smoking during pregnancy with
the mother, the mother’s past smoking, mother cotinine data, and the father’s past smoking
was not available.

Subsequent to our original paper, a wide range of preprocessing methods for the Illumina
450K data, including background correction, normalization, and transformation have been
published. In addition to the BMIQ performed for this analysis, we evaluated various
normalization methods in this dataset and observed little impact on the results (31).

Environmental stimuli, including smoking, can affect the cell type composition of blood. In
our previous report, we had evaluated possible confounding of our findings by smoking-
related shifts in cell type by evaluating methylation at the top CpGs in two major cell pools
— mononuclear cells (mostly lymphocytes) and granulocytes (mostly polymorphonuclear
leukocytes) (3). The methylation differences by smoking were in all cases larger than
methylation differences between these two major pools suggesting that the results were not
due to confounding by smoking-related shifts in differential cell counts. Subsequent to
submission of our publication (3), a method for statistical adjustment for cell type
differences was published (25) and implementing this did not alter our results for the 26
CpGs. Of note, Shenker et al. confirmed findings in blood for AHRR by showing differential
methylation at AHRR by smoking in the lung. Shenker et al. also reported consistent
methylation levels for AHRR ¢g05775921 across 6 different cell type pools (9). These
various lines of evidence make it unlikely that our previously published findings reflect
smoking-related cell type differences.

There is little information about the functional impact of the methylation differences that we
observed, many of which have been replicated in studies of adult smokers (7-10). However,
for one of the top hits in our analysis and several studies of adult smoking, AHRR
€g05575921, Zeilinger et al. found methylation-specific protein binding patterns (10). In
addition, Shenker et al. (9) observed decreases in AHRR expression related to AHRR
methylation.
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We use the term epigenetic inheritance to indicate epigenetic modifications in the germline
that escape meiotic resetting during gametogenesis (32), where meiotic resetting is the DNA
methylation erasure that takes place just after fertilization (epigenetic reprogramming) (33).
Other than imprinting, the data on epigenetic inheritance in humans is sparse. The epigenetic
inheritance effects that we evaluated here might be more precisely determined by comparing
DNA methylation status in relation to smoking across the three generations— grandparents,
parents, and the study child. Unfortunately, we do not have these extensive data. However,
even with such direct cross-generation data, interpretation could be challenging because of
known methylation changes with age (34) as well as distinguishing between the effects of
personal smoking in adults and their in utero exposure. We do believe that our data in
newborns at different levels of exposure bring relevant evidence to bear on this difficult
issue. Our findings do not support the inheritance of these epigenetic marks across
generations or from embryonic to somatic cells.

Our results may have relevance to the design of epidemiologic studies of maternal smoking
and childhood leukemia or other cancers. Recent studies of childhood leukemia have not
identified associations between maternal smoking during pregnancy and childhood leukemia
(35-38). However maternal smoking was classified in these studies based on any smoking
during pregnancy. In our study more than half of the women who reported smoking in the
early part of pregnancy had quit by week 18, confirmed by cotinine measurements.
Although we do not know that the methylation changes that we observed predispose to the
development of childhood leukemia, our results indicate that a potential biomarker of in
utero exposure to maternal smoking in pregnancy is only seen with sustained exposure
(through at least 18 weeks gestation). We note that several of the genes differentially
methylated in relation to smoking in our data are plausibly involved in normal or disordered
hematopoiesis including, RUNX1 (39), MYO1G (40), GFI1 (41) and AHRR (42). The fact
that methylation changes that we observed require sustained exposure suggests that
epidemiologic studies of leukemia or other childhood cancers or health outcomes may miss
true associations if data on maternal smoking are limited to ever smoking during the
pregnancy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Mean DNA methylation level for each probe by timing of mother smoking (before and
during pregnancy) category. For clarity, only CpGs in genes with multiple CpGs showing
consistent direction of effect are displayed (AHRR ¢g23067299 is not displayed).
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Descriptive characteristics of the study population?

Table 1

Page 16

Variable Category N (%)
Timing of mother’s smoking during pregnancy © Never 520 (49.9)
Quit before pregnancy 230 (22.1)
Quit during pregnancy by 18 weeks 156 (15.0)
Smoked through gestational week 18 136 (13.1)
Combined grandmother’s and mother’s smoking during their pregnancies € (N=928) ~ Neither grandmother nor mother smoked 607 (65.4)
Only grandmother smoked 204 (22.0)
Only mother smoked 57 (6.1)
Both grandmother and mother smoked 60 (6.5)
Father’s smoking prior to the mother’s pregnancy (N=1,035) Yes 317 (30.6)
No 718 (69.4)
Sex of the child Male 556 (53.4)
Female 486 (46.6)
Maternal age <25 124 (11.9)
25-30 504 (48.4)
>30 414 (39.7)
Maternal education Less than high school 75(7.2)
High school degree 336 (32.2)
Some college 464 (44.5)
4 years of college or more 167 (16.0)
Parity 0 439 (42.1)
1 425 (40.8)
2 135 (13.0)
3+ 43 (4.1)

aN:1,042 individuals in the study population. Grandmother’s smoking missing for 114 and father’s smoking missing for 7 individuals.

b . - . . .
Determined by mother’s self-report and mother’s plasma cotinine measured during pregnancy at approximately gestational week 18, where

cotinine values above 56.8 nmol/L indicate smoking.

C“Their pregnancies” reflects the grandmother’s pregnancy with the study mother and the mother’s pregnancy with the study newborn whose cord

blood DNA methylation we measured.
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