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ABSTRACT

We proposed MATEX, a distributed framework for transient
simulation of power distribution networks (PDNs). MATEX
utilizes matrix exponential kernel with Krylov subspace approx-
imations to solve differential equations of linear circuit. First,
the whole simulation task is divided into subtasks based on
decompositions of current sources, in order to reduce the com-
putational overheads. Then these subtasks are distributed to
different computing nodes and processed in parallel. Within
each node, after the matrix factorization at the beginning of
simulation, the adaptive time stepping solver is performed with-
out extra matrix re-factorizations. MATEX overcomes the stiff-
ness hinder of previous matrix exponential-based circuit simula-
tor by rational Krylov subspace method, which leads to larger
step sizes with smaller dimensions of Krylov subspace bases
and highly accelerates the whole computation. MATEX outper-
forms both traditional fixed and adaptive time stepping meth-
ods, e.g., achieving around 13X over the trapezoidal framework
with fixed time step for the IBM power grid benchmarks.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids, Simulation. J.6 [Computer-aided
engineering]: Computer-aided design (CAD).

General Terms
Algorithms, Design, Theory, Verification, Performance

Keywords

Circuit Simulation, Power Distribution Networks, Power Grid, Transient

Simulation, Matrix Exponential, Krylov Subspace, Distributed Comput-

ing, Parallel Processing.

1. INTRODUCTION
Modern VLSI design verification relies heavily on the analysis

of power distribution network (PDN) to estimate power supply
noises. PDN is often modeled as a large-scale linear circuit
with voltage supplies and time-varying current sources [8, 21].
Such circuit is extremely large, which makes the corresponding
transient simulation very time-consuming. Therefore, scalable
and theoretically elegant algorithms for the transient simula-
tion of linear circuits have been always favored. Nowadays,
the emerging multi-core, many-core platforms bring powerful
computing resource and opportunities for parallel computing.
Even more, cloud computing techniques [1] drive distributed
systems scaling to thousands of computing nodes [6], etc. Such
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distributed systems will be also promising computing resources
in EDA industry. However, building scalable and efficient dis-
tributed algorithmic framework for transient linear circuit sim-
ulation framework is still a challenge to leverage these powerful
computing tools. Previous works [7, 14–16] have been made in
order to improve circuit simulation by novel algorithms, parallel
processing and distributed computing.

Traditional numerical methods solve differential algebra equa-
tions (DAEs) explicitly, e.g., forward Euler, or implicitly, e.g.,
backward Euler (BE), trapezoidal (TR) method, which are based
on low order polynomial approximations. Due to the stiffness
of systems, which comes from a wide range of time constants
of a circuit, the explicit methods require small time step sizes
to ensure the stability. In contrast, implicit methods can deal
with this problem because of their larger stability regions. How-
ever, at each time step, these methods have to solve a linear
system, which is sparse and often ill-conditioned. Due to the
requirement of a robust solution, compared to iterative matrix
solvers [12], direct matrix solvers [5] are often favored for VLSI
circuit simulation, and thus adopted by state-of-the-art power
grid (PG) solvers in TAU PG simulation contest [18–20]. Dur-
ing transient simulation, these solvers require only one matrix
factorization (LU or Cholesky factorization) at the beginning.
Then, the following transient computation, at each fixed time
step, needs only a pair of forward and backward substitutions,
which achieves better efficiency over adaptive stepping methods
by reusing the factorized matrix [8, 18,20].

Beyond traditional methods, a new class of methods called ex-
ponential time differencing (ETD) has been embraced by MEXP
[15]. The major complexity of ETD is caused by matrix ex-
ponential computations. MEXP utilizes standard Krylov sub-
space method based on [11] to approximate matrix exponen-
tial and vector product. MEXP can solve the DAEs with high
polynomial approximations [11, 15] than traditional ones. An-
other merit of using MEXP-like SPICE simulation for linear cir-
cuit is the adaptive time stepping, which can proceed without
re-factorizing matrices on-the-fly, while the traditional coun-
terparts cannot avoid such time-consuming process during the
adaptive time marching. Nevertheless, when simulating stiff cir-
cuits, utilizing standard Krylov subspace method requires large
dimension of basis in order to preserve the accuracy of MEXP
approximation. It may pose memory bottleneck and degrade
the adaptive stepping performance of MEXP.

In this paper, we propose a distributed algorithmic frame-
work for PDN transient simulation, called as MATEX, which
inherits the matrix exponential kernel. First, the PDN’s input
sources are partitioned into groups based on their similarity.
They are assigned to different computing nodes to run the corre-
sponding PDN transient simulations. Then, the results among
nodes are summed up, according to the well-known superpo-
sition property of linear system. This partition reduces the
chances of generating Krylov subspaces and enlarges the time
periods of reusing them during the transient simulation at each
node, which brings huge computational advantage. In addition,
we also highly accelerate the circuit solver by adopting inverted
and rational Krylov subspace methods for the computation of
matrix exponential and vector product. We find the rational



Krylov subspace method is the most efficient one, which helps
MATEX leverage its flexible adaptive time stepping by reusing
factorized matrix at the beginning of transient simulation. In
IBM power grid simulation benchmarks, our framework gains
around 13X speedup on average in transient computing part af-
ter its matrix factorization, compared to the commonly adopted
TR method with fixed time step. The overall speedup is 7X.
Paper Organization. Section 2 introduces the background of

linear circuit simulation and matrix exponential formulations.
Section 3 presents overall framework of MATEX. Section 4
shows numerical results and Section 5 concludes this paper.

2. PRELIMINARIES

2.1 Transient Simulation of Linear Circuits
Transient linear circuit simulation is the foundation of PDN

simulation. It is formulated as DAEs via modified nodal analysis
(MNA),

Cẋ(t) = −Gx(t) +Bu(t), (1)

where C is the matrix resulting from capacitive and inductive
elements. G is the conductive matrix, and B is the input se-
lector matrix. x(t) is the vector of time-varying node voltages
and branch currents. u(t) is the vector of supply voltage and
current sources. In PDN, such current sources are often char-
acterized as pulse inputs [8, 10]. To solve Eq. (1) numerically,
it is, commonly, discretized with time step h and transformed
to a linear algebraic system. Given an initial condition x(0)
from DC analysis, or previous time step x(t), For a time step
h, x(t + h) can be obtained by traditional low order approx-
imation methods, e.g., TR, which is an implicit second-order
method, and probably most commonly used strategy for large
scale circuit simulation.

(
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2
)x(t+ h) = (
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G
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)x(t) +B

(u(t) + u(t+ h))

2
(2)

Besides, TR with fixed time step h is an efficient framework
and adopted by the top PG solvers in 2012 TAU PG simulation
contest [8, 18–20].

2.2 Exponential Time Differencing Method
The solution of Eq. (1) can be obtained analytically [4]. For

simple illustration, we convert Eq. (1) into

ẋ(t) = Ax(t) + b(t), (3)

when C is not singular, A = −C−1G and b(t) = C−1Bu(t).
Given the solution at time t and a time step h, the solution at
t+ h is

x(t+ h) = ehAx(t) +

∫ h

0

e(h−τ)Ab(t+ τ)dτ. (4)

Assuming that the input u(t) is piecewise linear (PWL), e.g.
u(t) is linear within every time step, we can integrate the last
term of Eq. (4), analytically, turning the solution with matrix
exponential operator:

x(t+ h) = ehA(x(t) +A−1b(t) +A−2b(t+ h)− b(t)

h
)

−(A−1b(t+ h) +A−2b(t+ h)− b(t)

h
) (5)

For the time step choice, input transition spots (TS) refer to
the time points where slopes of input sources vector changes.
Therefore, for Eq. (5), the maximum time step starting from t
is (ts − t), where ts is the smallest one in TS larger than t.
In Eq. (5), A in eAv is usually above millions, making the

direct computation infeasible.

2.3 Matrix Exponential Computation by Stan-
dard Krylov Subspace Method

The complexity of eAv can be reduced using Krylov sub-
space method and still maintained in a high order polynomial

approximation [11], which has been deployed by MEXP [15]. In
this paper, we call the Krylov subspace utilized in MEXP as
standard Krylov subspace, due to its straightforward usage of A
when generating basis through Arnoldi process in Alg. 1. First,
we reformulate Eq. (5) into

x(t+ h) = ehA(x(t) + F(t, h))−P(t, h) (6)

where F(t, h) = A−1b(t)+A−2 b(t+h)−b(t)
h

andP(t, h) = (A−1b(t+

h)+A−2 b(t+h)−b(t)
h

). The standard Krylov subspace Km(A, v) :=

span{v,Av, · · · ,Am−1v} obtained by Arnoldi process has the
relation AVm = VmHm + hm+1,mvm+1e

T

m, where hm+1,m is
the (m + 1,m) entry of Hessenberg matrix Hm, and em is the
m-th unit vector. The matrix exponential and vector product
is computed via ehAv ≈ ‖v‖VmehHme1. The Hm is usually
much smaller compared to A. The posterior error term is

‖rm(h)‖ = ‖v‖
∣∣∣hm+1,mvm+1e

T

mehHme1

∣∣∣ (7)

To generate x(t+h) by Alg. 1, we use [L, U] = LU Decompose(X1),
where, for standard Krylov subspace, X1 = C, and X2 = G as
inputs. The error budget ǫ and Eq. (7) are used to determine
the convergence condition in current time step h with an order
j of Krylov subspace dimension for eAv approximation (from
line 10 to line 12).

Algorithm 1: MATEX Arnoldi

Input: L,U,X2, h, t,x(t), ǫ,P(t, h),F(t, h)
Output: x(t+ h),Vm,Hm,v

1 v = x(t) + F(t, h),v1 = v

‖v‖
;

2 for j = 1 : m do
3 w = U\(L\(X2vj)) ; /* a pair of forward and

backward substitutions */

4 for i = 1 : j do
5 hi,j = wTvi;
6 w = w − hi,jvi;

7 end
8 hj+1,j = ‖w‖;
9 vj+1 = w

hj+1,j
;

10 if ||rj(h)|| < ǫ then
11 m = j; break;
12 end

13 end

14 x(t+ h) = ‖v‖VmehHme1 −P(t, h);

2.4 Discussions of MEXP
The input term b embedded in Eq. (4) serves a double-edged

sword in MEXP. First, the flexible time stepping can choose any
time spot until the next input transition spot ts, as long as the
approximation of eAv is accurate enough. The Krylov subspace
can be reused when t + h ∈ [t, ts], only by scaling Hm with h
in x(t + h) = ‖v‖VmehHme1 − P(t, h). This is an important
feature that even doing the adaptive time stepping, we can still
use the last Krylov subspaces.

However, the region before the next transition ts may be
shortened when there are a lot of independent input sources
injected into the linear system. It leads to more chances of gen-
erating new Krylov subspace. This issue is addressed in Sec.
3.1 and Sec. 3.2.

The standard Krylov subspace may not be computationally
efficient when simulating stiff circuits based on MEXP[15, 16].
For the accuracy of approximation of eAv, large dimension
of Krylov subspace basis is required, which not only brings
the computational complexity but also consumes huge mem-
ory. Besides, for a circuit with singular C, during the gen-
eration of standard Krylov subspace, a regularization process
is required to convert such C into non-singular one, which is
time-consuming for large scale circuits. These two problems are
solved in Sec. 3.3.



3. MATEX FRAMEWORK
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Figure 1: Illustration of input transitions. GTS: Global Tran-

sition Spots; LTS: Local Transition Spots; Snapshots: the cross-

ing positions by dash lines and LTS #k without solid points.
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Figure 2: Part of a PDN model with input sources from
Fig. 1

3.1 Motivation
Matrix exponential kernel with Kyrlov subspace method can

solve Eq. (1) with larger time steps than lower order approxi-
mation methods. Our motivation is to leverage this advantage
to reduce the number of time step and accelerate the transient
simulation. However, there are usually many input currents in
PDNs, which narrow the regions for the time stepping of matrix
exponential-based method. We want to utilize the well-known
superposition property of linear system and distributed comput-
ing model to tackle this challenge. To illustrate our framework
briefly, we first define three terms:

Definition: Local Transition Spot (LTS) is the set of TS at
an input source to the PDN.

Definition: Global Transition Spot (GTS) is the union of
LTS among all the input sources to the PDN.

Definition: Snapshot denotes a set GTS \ LTS at an input
source.

If we simulate the PDN with respective to all the inputs, GTS
are the places where generations of Krylov subspace cannot be
avoided. For example, there are three input sources in a PDN
(Fig. 2). The input waveforms are shown in Fig. 1. Then, the
first line is that GTS, which is contributed by all LTS from
input sources #1, #2 and #3.

However, we can partition the task to sub-tasks by simulat-
ing each input sources individually. Then, each sub-task only
needs to generate Krylov subspaces based on its own LTS and
keep track of Snapshot for the later usage of summation via
superposition. In addition, the points in Snapshot between two
points l1, l2 ∈ LTS (l1 < l2), can reuse the Krylov subspace
generated at l1, which is mentioned in Sec. 2.4. For each node,
the chances of Krylov subspaces generations are reduced and
the time periods of reusing these subspaces are enlarged locally,
which bring huge computational benefit when processing these
subtasks in parallel.

Above, we divide the simulation task by input sources. We
can, more aggressively, decompose the task according to the

Global Transition Spot (GTS)

 Local Transition Spot 

(LTS) at #1.1 in Group 1

  Local Transition Spot 

(LTS) at #2.2 in Group 3

  Local Transition Spot 

(LTS) at #3 in Group 4

0

 Local Transition Spot 

(LTS) at #1.2 in Group 4

 Local Transition Spot 

(LTS) at #2.1 in Group 2
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Figure 3: Grouping of “bump” shape transitions for sub-task

simulation. The matrix exponential-based method can utilize

adaptive stepping in each LTS and reuse Krylov subspace gener-

ated at the most recent solid point. However, traditional meth-

ods (TR, BE, etc) still need to do time marching step by step,

either by pairs of forward and backward substitutions to proceed

with fixed time step, or re-factorizing matrix and solving linear

system when using adaptive stepping strategy. (Pulse input in-

formation: t delay: initial delay time; t rise: rise time; t width:

width of pulse-wise; t fall: fall time; t period: period).

“bump” shapes within such input pulse sources. We group the
ones which have the same (t delay, t rise, t fall, t width) into
one set, which is shown in Fig. 3. There are 4 groups in Fig. 3,
Group 1 contains LTS#1.1, Group 2 contains LTS#2.1, Group
3 contains LTS #2.2, and Group 4 contains LTS #1.2 and #3.

3.2 MATEX Framework
Our proposed framework MATEX is shown in Fig. 4. After

pre-computing GTS and decomposing LTS based on “bump”
shape (Fig. 3), we group them and form LTS #1 ∼ #K (Note:
there are alternative decomposition strategies. It is also easy to
extend the work to deal with different input waveforms. We try
to keep this part as simple as possible to emphasize our frame-
work).
MATEX scheduler sends out GTS and LTS to different MA-

TEX slave node. Then the simulations are processed in par-
allel. There are no communications among nodes before the
“write back”. Within each slave node, “circuit solver” (Alg. 2)
computes transient response with varied time steps. Solutions
are obtained without re-factorizing matrix during the transient
computing. After finishing all simulations from slave nodes,
they writes back the results and informs the MATEX sched-
uler.

3.3 Circuit Solver Accelerations
As mention in Sec. 2.4, standard Krylov subspace approxi-

mation in MEXP [15] is not computationally efficient for stiff
circuit. The reason is that Hessenberg matrix Hm of stan-
dard Krylov subspace tends to approximate the large magni-
tude eigenvalues of A [13]. Due to the exponential decay of
higher order terms in Taylor’s expansion, such components are
not the crux of circuit system’s behavior [2, 13]. Dealing with
stiff circuit, therefore, needs to gather more vectors into sub-
space basis and increase the size of Hm to fetch more useful
components, which results to both memory overhead and com-
putational complexity into Krylov subspace generations during
time stepping. Direct deploying MEXP into MATEX’s Circuit
Solver is not efficient to leverage the benefits of local flexible and
larger time stepping. In the following subsections, we adopt the
idea from spectral transformation [2, 13] to effectively capture
small magnitude eigenvalues in A, leading to a fast yet accurate
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Figure 4: The flow of MATEX framework

Algorithm 2: MATEX Circuit Solver Algorithm

Input: LTS #k, GTS, X1, X2, and Pk, Fk, which
contain the corresponding b for node k.

Output: Local solution x along GTS in node
k ∈ [1, · · · , S], where S is the number of nodes

1 t = Tstart;
2 x(t) = Local Initial Solution;
3 [L,U] = LU Decompose(X1);
4 while t ≤ Tend do
5 Compute maximum allowed step size h based on GTS;
6 if t ∈ LTS #k then

/* Generate the Krylov subspace for the time

point of LTS and compute x */

7 [x(t+ h),Vm,Hm,v] =
MATEX Arnoldi(L,U,X2, h, t,x(t), ǫ,Pk(t, h),Fk(t, h));
alts = t;

8 end
9 else

/* Compute the x at Snapshot by reusing the

latest Krylov subspace */

10 ha = t+ h− alts;

11 x(t+ h) = ‖v‖VmehaHme1 −Pk(t, h);

12 end
13 t = t+ h;

14 end

Circuit Solver for MATEX.

3.3.1 Matrix Exponential and Vector Computation by
Inverted Krylov Subspace (I-MATEX)

Instead of A, we use A−1 (or -G−1C) as our target matrix

to form Km(A−1, v) := span{v,A−1v, · · · ,A−(m−1)v}. Intu-
itively, by inverting A, the small magnitude eigenvalues become
the large ones of A−1. The resulting H′

m is likely to capture
these eigenvalues first. Based on Arnoldi algorithm, the in-
verted Krylov subspace has the relation A−1Vm = VmH′

m +
h′
m+1,mvm+1e

T

m. The matrix exponential eAv is calculated as

‖v‖VmehH
′−1
m e1. To put this method into Alg. 1, just by mod-

ifying the input variables, X1 = G for the LU decomposition,
and X2 = C. In the line 14 of Alg. 1, Hm = H′−1

m . The
posterior error approximation is

‖rm(h)‖ = ‖v‖
∣∣∣Ah′

m+1,mvm+1e
T
mH′−1

m ehH
′−1
m e1

∣∣∣ (8)

which is derived from residual-based error approximation in [2].

3.3.2 Matrix Exponential and Vector Computation by
Rational Krylov Subspace (R-MATEX)

The shift-and-invert Krylov subspace basis [13] is designed

to confine the spectrum of A. Then, we generate Krylov sub-
space via Km((I− γA)−1,v) = span{v, (I− γA)−1v, · · · , (I−

γA)−(m−1)v}, where γ is a predefined parameter. With this
shift, all the eigenvalues’ magnitudes are larger than one. Then
the invert limits the magnitudes smaller than one. According
to [2,13], the shift-and-invert basis for matrix exponential-based
transient simulation is not very sensitive to γ, once it is set to
around the order near time steps used in transient simulation.
The similar idea has been applied to simple power grid simula-
tion with matrix exponential method [22]. Here, we generalize
this technique and integrate into MATEX. The Arnoldi pro-
cess constructs Vm and Hm, and the relationship is given by

(I−γA)−1Vm = VmH̃m+ h̃m+1,mvm+1e
T
m, we can project the

eA onto the rational Krylov subspace as follows.

eAhv ≈ ‖v‖VmehHme1, (9)

where Hm =
I−H̃

−1
m

γ
for the line 14 of Alg. 1. Following the

same procedure [2], posterior error approximation is derived as

‖rm(h)‖ = ‖v‖

∣∣∣∣
I− γA

γ
h̃m+1,mvm+1e

T
mH̃−1

m ehHme1

∣∣∣∣ (10)

Note that in practice, instead of computing (I−γA)−1 directly,
(C + γG)−1C is utilized. The corresponding Arnoldi process
shares the same skeleton of Alg. 1 and Alg. 2 with input ma-
trices X1 = (C+ γG) for the LU decomposition, and X2 = C.

3.3.3 Regularization-Free Matrix Exponential Method

When dealing singular C, MEXP needs the regularization
process [3] to remove the singularity of DAE in Eq. (1). It
is because MEXP is required to factorize C in Alg. 1. This
brings extra computational overhead when the case is large.
Actually, it is not necessary if we can obtain the generalized
eigenvalues and corresponding eigenvectors for matrix pencil
(−G,C). Based on [17], we derive the following lemma,

Lemma 1. Considering a homogeneous system Cẋ = −Gx,
u and λ are the eigenvector and eigenvalue of matrix pencil
(−G,C), then x = etλu is a solution of this system.

An important observation is that we can remove such regular-
ization process out of MATEX, because during Krylov subspace
generation, there is no need of computing C−1 explicitly. In-
stead, we factorize G for inverted Krylov subspace basis gen-
eration (I-MATEX), or (C+ γG) for rational Krylov basis (R-

MATEX). Besides, H′
m and H̃m are invertible, which contain

corresponding important generalized eigenvalues/eigenvectors
from matrix pencil (−G,C), and define the behavior of linear
dynamic system in Eq. (1).

In term of error estimation, because C is singular, A can-
not be formed explicitly. However, for a certain lower bound
of basis number, these two Krylov subspace methods begin to
converge, and the error of matrix exponential approximation is
reduced quickly. Empirically, the estimation can be replaced
with ‖rm(h)‖ = ‖v‖

∣∣hm+1,meT
mehHme1

∣∣ to approximate Eq.

(8), where Hm = H′−1
m , hm+1,m = h′

m+1,m for inverted Krylov

method; Hm =
I−H̃

−1
m

γ
, hm+1,m = h̃m+1,m for rational Krylov

method.
Note that the larger step R-MATEX utilizes, the smaller error

it will have. Fig. 5 shows, when time step h increases, the er-
ror between accurate solution and Krylov based approximation
|ehAv − VmehHme1| is reduced. It is because the large step,
the more dominating role first smallest magnitude eigenvalues
play, which are well captured by rational Krylov subspace-based
method [13]. In our MATEX, this property is very crucial factor
for large time stepping. Therefore, once we obtain an accurate
enough solution and Krylov subspace in line 7 of Alg. 2, we can
reuse them in line 14.

3.4 Complexity Analysis
Suppose on average we have Krylov subspace basis dimension

m at each time step along the time span, one pair of forward and



Figure 5: |ehAv − VmehHme1| vs. time step h and dimension

of rational Krylov subspace basis (m). Hm =
I−H̃

−1
m

γ
; γ is fixed;

A is a relative small matrix and computed by MATLAB expm

function; Therefore, ehAv serves as the baseline for accuracy. It

is observed that error reduces when h increases.

backward substitutions has time complexity Tbs. The matrix
exponential evaluation using Hm is TH which costs time com-
plexity O(m3), plus extra Te to form x, which costs O(nm2).
The total time complexity of other serial parts is Tserial, which
includes matrix factorizations, etc. Given K points of GTS,
without decomposition of input transitions, the time complexity
is KmTbs+K(TH +Te)+Tserial. After dividing the input tran-
sitions and send to enough computing nodes, we have k points
of LTS for each node based on the input feature extraction and
grouping (e.g., k = 5 for one “bump” shape feature). The total
computation complexity is kmTbs+K(TH +Te)+Tserial, where
K(TH + Te) contains the portion of computing for Snapshot.
The speedup of distributed computing over single MATEX is,

Speedup =
KmTbs +K(TH + Te) + Tserial

kmTbs +K(TH + Te) + Tserial

(11)

In R-MATEX, we have very small m. Besides, Tbs is larger than
TH+Te. Therefore, the most dominating part is theKmTbs. We
can always decompose input transitions, and make k very small
compared to K. Traditional method with fixed step size has N
steps for the whole simulation. The complexity isNTbs+Tserial.
Then the speedup of distributed MATEX over the one with fixed
step size is,

Speedup′ =
NTbs + Tserial

kmTbs +K(TH + Te) + Tserial

(12)

Usually, N is much larger than K and km. Uniform step sizes
make N increased due to resolution of input transitions, to
which K is not so sensitive. As mentioned before, k can be
maintained in a small number. When elongating time span of
simulation, N will increase. However, k will not change due to
its irrelevant to time span (may bring more input transition fea-
tures and increase computing nodes), and then Speedup′ tends
to become larger. Therefore, our MATEX has more robust and
promising theoretical speedups.

4. EXPERIMENTAL RESULTS
We implement our proposed MATEX in MATLAB R2013a

and use UMFPACK package for LU factorization. The experi-
ment is carried on Linux workstations with Intel CoreTM i7-4770
3.40GHz processor and 32GB memory on each machine.

4.1 MATEX’s Circuit Solver Performance
We test the part of circuit solver within MATEX using MEXP [15],

as well as our proposed I-MATEX and R-MATEX. We create
stiff RC mesh cases with different stiffness by changing the en-

tries of matrix C, G. The stiffness here is defined as Re(λmin)
Re(λmax)

,

where λmin and λmax are the minimum and maximum eigen-
values of −C−1G. Transient results are simulated in [0, 0.3ns]
with time step 5ps. Table 1 shows the average Krylov subspace
basis dimension ma and the peak dimension mp used to com-
pute matrix exponential during the transient simulations. We
also compare the runtime speedups (Spdp) over MEXP. Err (%)
is the relative error opposed to BE method with a tiny step size
0.05ps.

Table 1: Comparisons among MEXP, I-MATEX and
R-MATEX with RC cases

Method ma mp Err(%) Spdp Stiffness
MEXP 211.4 229 0.510 –

2.1× 1016I-MATEX 5.7 14 0.004 2616X
R-MATEX 6.9 12 0.004 2735X

MEXP 154.2 224 0.004 –
2.1× 1012I-MATEX 5.7 14 0.004 583X

R-MATEX 6.9 12 0.004 611X

MEXP 148.6 223 0.004 –
2.1× 108I-MATEX 5.7 14 0.004 229X

R-MATEX 6.9 12 0.004 252X

The huge speedups by I-MATEX and R-MATEX are due to
large reductions of Krylov subspace basis ma and mp. As we
known, MEXP is good at handling mild stiff circuits [15], but
inefficient on highly stiff circuits. Besides, we also observe even
the basis number is large, there is still possibility with rela-
tive larger error compared to I-MATEX and R-MATEX. The
average dimension ma of R-MATEX is a little bit larger than
I-MATEX. However, the dimensions of R-MATEX used along
time points spread more evenly than I-MATEX. In such small
dimension Krylov subspace computation, the total simulation
runtime tends to be dominated by matrix exponential evalua-
tions on the time points with the peak basis dimension(mp),
which I-MATEX has more than R-MATEX. These result to
a slightly better runtime performance of R-MATEX over I-
MATEX. In large scale of linear circuit system and practical
VLSI designs, the stiffness may be even more extensive and
complicated. Many of them may also have large singular C and
MEXP cannot handle without regularization process. These
make I-MATEX and R-MATEX good candidates to deal with
these scenarios.

4.2 Adaptive Time Stepping Comparisons
IBM power grid benchmarks [10] are used to investigate the

performance of adaptive stepping TR (adpt) based on LTE con-
trolling [9, 15] as well as the performance of I-MATEX and
R-MATEX. Experiment is carried out on a single computing
node. In Table 2, the speedups of I-MATEX is not as large
as R-MATEX because I-MATEX with a large spectrum of A
generates large dimension of Krylov subspace. In ibmpg4t case,
I-MATEX and R-MATEX achieve maximum speedups resulted
from relative small number points in GTS, which around 44
points, while the majority of others have over 140 points.

4.3 Distributed MATEX Performance
We focus on MATEX with R-MATEX in the following exper-

iments with IBM power grid benchmarks. These cases have
many input transitions (GTS) that limit step sizes of MA-
TEX. Exploiting distributed computing, we decompose the in-
put transitions, to obtain much fewer transitions of LTS for
computing nodes. The input sources number is over ten thou-
sand in the benchmarks, however, based on “bump” feature, we
obtain a fairly small number of the required computing nodes,
which is shown as Group # in Table. 3. To compete the base-
line classical TR method with fixed time step h = 10ps, which
requires 1000 pairs of forward and backward substitutions for
the transient computing after factorizing (C/h + G/2). In R-
MATEX, γ = 10−10 is set to sit among the order of varied time
steps during the simulation. First, we pre-compute GTS and
LTS groups and assign subtasks to corresponding nodes. MA-



Table 2: TR with adaptive stepping (TR(adpt)) vs. I-MATEX vs. R-MATEX. “Total(s)” is the total runtime of
test cases. “DC(s)” records the time to obtain initial condition. Spdp1: Speedup of I-MATEX over TR(adpt);
Spdp2: Speedup of R-MATEX over TR(adpt); Spdp3: Speedup of R-MATEX over I-MATEX.

Design DC(s)
TR(adpt) I-MATEX R-MATEX
Total(s) Total(s) SPDP1 Total(s) SPDP2 SPDP3

ibmpg1t 0.13 29.48 27.23 1.3X 4.93 6.0X 5.5X
ibmpg2t 0.80 179.74 124.44 1.4X 25.90 6.9X 4.8X
ibmpg3t 13.83 2792.96 1246.69 2.2X 244.56 11.4X 5.1X
ibmpg4t 16.69 1773.14 484.83 3.7X 140.42 12.6X 3.5X
ibmpg5t 8.16 2359.11 1821.60 1.3X 337.74 7.0X 5.4X
ibmpg6t 11.17 3184.59 2784.46 1.1X 482.42 6.6X 5.8X

Table 3: MATEX vs. TR (h = 10ps); Max. and Avg. Err.: maximum and average differences compared to all
output nodes’ solutions provided by IBM Power Grid Benchmarks; Spdp4: t1000/trmatex transient stepping runtime
speedups of MATEX over TR; Spdp5: tt total/tr total total simulation runtime speedups of MATEX over TR.

Design
TR MATEX

t1000(s) tt total(s) Group # trmatex(s) tr total(s) Max. Err. Avg. Err. Spdp4 Spdp5

ibmpg1t 5.94 6.20 100 0.50 0.85 1.4E-4 2.5E-5 11.9X 7.3X
ibmpg2t 26.98 28.61 100 2.02 3.72 1.9E-4 4.3E-5 13.4X 7.7X
ibmpg3t 245.92 272.47 100 20.15 45.77 2.0E-4 3.7E-5 12.2X 6.0X
ibmpg4t 329.36 368.55 15 22.35 65.66 1.1E-4 3.9E-5 14.7X 5.6X
ibmpg5t 408.78 428.43 100 35.67 54.21 0.7E-4 1.1E-5 11.5X 7.9X
ibmpg6t 542.04 567.38 100 47.27 74.94 1.0E-4 3.4E-5 11.5X 7.6X

TEX scheduler is only responsible for simple superposition cal-
culation at the end of simulation. Since MATEX slave nodes are
in charge of all the computing procedures (Fig. 4) for transient
simulation, and have no communications with each other during
transient simulations, we can easily emulate such multiple-node
environment using our workstations. We assign one MATLAB
instance at each node of our workstations. After all MATEX
slave nodes finish their jobs, we report the maximum runtime
among these nodes as the total runtime tr total of MATEX. We
also record“pure transient computing”, the runtime of transient
part t1000 and trmatex excluding LU, where trmatex is the max-
imum runtime of the counterparts among all MATEX nodes.

Our MATEX framework achieves 13X on average with respect
to the pure transient computing t1000/trmatex as well as 7X
on the total runtime tt total/tr total. The average number of
pairs of forward and backward substitutions for Krylov subspace
generations is around 60 (km in Eq. (12)), while TR(h = 10ps)
has 1000 pairs (N in Eq. (12)) on each cases. The reductions of
these substitutions bring large speedups in the pure transient
computing. With huge reductions on these substitutions, the
serial parts, including the operations for LU and DC, play more
dominating roles in MATEX, which can be further improved by
other more advanced methods.

5. CONCLUSIONS
We proposed a distributed framework MATEX for PDN tran-

sient simulation using the matrix exponential kernel. MATEX
leverages the linear system’s superposition property, and decom-
poses the task based on input sources features in order to reduce
computational overheads for its subtasks at different nodes. We
also address the stiffness problem for matrix exponential based
circuit solver by rational Krylov subspace (R-MATEX), which
has the best performance in this paper for adaptive time step-
ping without extra matrix factorizations. In IBM power grid
benchmark, MATEX achieves 13X speedup over the fixed-step
trapezoidal framework on average in transient computing after
its matrix factorization. The overall speedup is around 7X.
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