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HPatches: A benchmark and evaluation of
handcrafted and learned local descriptors

Vassileios Balntas∗, Karel Lenc∗, Andrea Vedaldi, Tinne Tuytelaars, Jiri Matas and Krystian Mikolajczyk

Abstract—In this paper, a novel benchmark is introduced for evaluating local image descriptors. We demonstrate limitations of the

commonly used datasets and evaluation protocols, that lead to ambiguities and contradictory results in the literature. Furthermore,

these benchmarks are nearly saturated due to the recent improvements in local descriptors obtained by learning from large annotated

datasets. To address these issues, we introduce a new large dataset suitable for training and testing modern descriptors, together with

strictly defined evaluation protocols in several tasks such as matching, retrieval and verification. This allows for more realistic, thus

more reliable comparisons in different application scenarios. We evaluate the performance of several state-of-the-art descriptors and

analyse their properties. We show that a simple normalisation of traditional hand-crafted descriptors is able to boost their performance

to the level of deep learning based descriptors once realistic benchmarks are considered. Additionally we specify a protocol for

learning and evaluating using cross validation. We show that when training state-of-the-art descriptors on this dataset, the traditional

verification task is almost entirely saturated.

Index Terms—local features, feature descriptors, image matching, patch classification

✦

1 INTRODUCTION

L OCAL feature descriptors remain an essential component of

image matching and retrieval systems and it continues to

be a very active area of research. With the success of learnable

representations and the availability of increasingly large labelled

datasets, research on local descriptors has seen a renaissance.

End-to-end learning allows to fully optimise descriptors on avail-

able benchmarks, significantly outperforming fully [1] or semi-

handcrafted features [2], [3].

Surprisingly, the adoption of these reportedly better descriptors

has been limited in applications, with SIFT [1] still dominating

the field. We believe that this is due to the inconsistencies in

reported performance evaluations based on the existing bench-

marks [4], [5]. The datasets are either small, or lack diversity to

generalise well to various applications of descriptors. The progress

in descriptor technology and application requirements has not

been matched by a comparable development of benchmarks and

evaluation protocols. As a result, while a novel descriptor may

be highly optimised for a specific scenario, it is unclear whether

it will work well in more general cases e.g. outside the specific

dataset used to train it. In fact, solely comparing descriptors

based on published experiments is difficult and inconclusive as

demonstrated in Table 1.

In this paper, we introduce a novel benchmark suite for

local feature descriptors, significantly larger, with clearly defined

protocols and better generalisation properties, that has all the

properties to supersede currently used datasets. This is inspired by

the success of the Oxford matching dataset [4], the most widely-

adopted and still very popular benchmark for the evaluation of
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TABLE 1: Contradictory conclusions reported in the literature

while evaluating the same descriptors on the same benchmark

(Oxford affine covariant features [4]). Rows report inconsistent

evaluation conclusions due to variations of the implicit parameters

e.g. of feature detectors.

LIOP > SIFT [6], [7] • SIFT > LIOP [8]

BRISK > SIFT [6], [9] • SIFT > BRISK [10]

ORB > SIFT [11] • SIFT > ORB [6]

BINBOOST > SIFT [3], [10] • SIFT > BINBOOST [8], [12]

ORB > BRIEF [11] • BRIEF > ORB [10]

local features, despite consisting of only 48 images. This is woe-

fully insufficient for evaluating modern descriptors in the era of

deep learning and large scale datasets. While some larger datasets

exist, as discussed in Section 3, these have other important short-

comings in terms of data and task diversity, evaluation metrics

and experimental reproducibility. We address these shortcomings

by identifying and satisfying crucial requirements from such a

benchmark in Section 4.

Data diversity is considered especially important for evalu-

ating various properties of descriptors. To this end, we collect

a large number of multi-image sequences of different scenes

under real and varying capturing conditions, as discussed in

Section 5. Scenes are selected to be representative of different

use cases and captured under varying viewpoint, illumination,

or temporal conditions, including challenging nuisance factors

often encountered in applications. The images are annotated with

ground-truth transformations, that allow to identify unique corre-

spondences necessary to assess the quality of matches established

by descriptors.

Reproducibility and fairness of comparisons is crucial in

benchmarks. This is addressed by eliminating the influence of

detector parameters. Hence, the benchmark is based on extracted

local image patches rather than whole images, which brings

important benefits: i) it allows comparing descriptors modulo,

but independently of the choice of detectors, ii) it simplifies the
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process and makes the experiments reproducible, and, importantly,

iii) it avoids various biases, e.g. the number or size of measurement

regions or semi-local geometric constraints that make the results

from image-based benchmarks incomparable (Section 3).

Task diversity is another requirement rarely addressed in

existing evaluation benchmarks. To this end, we define three com-

plementary benchmarking tasks in Section 6: patch verification

(classification of patch pairs), image matching, and patch retrieval.

These are representative of different use cases and, as we show in

the experiments, descriptors rank differently depending on the task

considered.

While this work focuses on local descriptors, the proposed

dataset contains ground-truth, including pairwise geometric trans-

formations, that is suitable for future evaluations of feature de-

tectors as well. We believe that this benchmark will enable the

community to gain new insights in state-of-the-art local feature

matching since it is more diverse and significantly larger than any

existing dataset used in this field, such as those implemented in

the VLBenchmarks [13]. We assess various methods including

simple baselines, handcrafted ones, and state-of-the-art learned

descriptors in Section 7. The experimental results show that

descriptor performance and their ranking may vary in different

tasks, and differ from the results reported in the literature. This

further highlights the importance of introducing a large, varied

and reproducible evaluation benchmark for local descriptors.

This manuscript extends the original conference paper [14]

by refining and clarifying descriptions of methods, evaluation

protocols, and experimental results. Mainly, we have defined three

splits of the dataset sequences into training and test set and we

have defined a cross validation protocol for training and testing

new descriptors over these splits. We use a similar methodology

for finding the best descriptor normalisation. We provide results

for either learning the data whitening on a separate dataset or using

cross validation on the presented dataset. Additionally, we provide

more detailed results across different variants of the benchmark.

All descriptors, benchmark data and code implementing the

evaluation protocols are made publicly available1.

2 REVIEW OF LOCAL FEATURE METHODS

In this section we review the state-of-the-art in feature detection

and description. The focus of this paper is on evaluating keypoint

descriptors but this cannot be done without extracting keypoints,

we therefore briefly review some influential works on keypoint

detectors. Figure 1 shows the timeline and some of the key

contributions in the past two decades, showing increasing interest

in CNN based and binary descriptors.

2.1 Keypoint detectors

Handcrafted detectors. There is a large body of research on

keypoint detectors with a wide variety of approaches, as well as

a number of surveys that discuss their properties in detail, in par-

ticular for the handcrafted methods [15]. Many of the widely used

detectors are based on various convolutional filters. Detectors such

as Harris [16] or Hessian [17] are based on first and second order

derivatives and SIFT [1] uses Difference of Gaussians (DoG).

SIFER [18] and D-SIFER [19] use Cosine Modulated Gaussian

filters and tenth order Gaussian derivative filters. More recently,

KAZE [20] introduces a non-linear gradient based diffusion as

1. https://hpatches.github.io

a preprocessing of images in contrast to isotropic filters in other

detectors.

Many other hand-crafted detectors are tuned to find specific

structures within the image but typically generalize to other

patterns that exhibit large signal variations in local areas. Edge

Foci [21] uses edges to improve robustness to illumination changes

and WADE [22] exploits symmetries in local structures. Some

detectors have resulted from a combination of the existing ones.

Harris-Laplace [17] detector is a successful hybrid of Harris and

Laplacian-of-Gaussian (LoG) method addressing the scale change

problem. This was further extended to affine changes in Harris-

Affine and Hessian-Affine detectors [17]. Other methods such as

MSER [23] or FAST [24] detect features by comparing intensity

levels of regions or individual pixels, respectively.

In [25] orientation of local gradients, instead of being quan-

tised into bins as for SIFT, are mapped into explicit feature maps

which approximate the distance metric for angles. This method is

further improved in [26] by selecting better initial parametrisations

of the local image gradients.

Learned Keypoint detectors. One of the first successful attempts

was FAST [24] and FAST-ER [27], which mainly addressed the

efficiency of feature extraction for real time applications. ORB

[11] extended this idea to rotation changes. Similarly, BRISK [9]

extends FAST and its derivative AGAST [28] by searching for

maxima not only in the spatial coordinates, but also in a scale-

space using the FAST score as a measure for saliency. [29], [30]

were the first to exploit boosting and Haar filters trained on points

detected with another handcrafted method but focus on highly

repeatable points only. Optimizing filters for keypoint detection

was also considered in [31]. Other machine learning algorithms

include the use of Genetic Programming [32], or Structure-from-

Motion [33] to predict keypoints with high matching score.

CNN based detectors. Advances in Convolutional Neural Net-

works have also made an impact on keypoint detection. Notably,

[34] proposed a model to learn from a large dataset to identify and

describe meaningful keypoints. A similar idea is exploited LIFT

[35], TILDE [36] and SuperPoint [37].

Other detectors learn a CNN network using a geometry (co-

variant) constraint only [38] or a combination of geometry and a

patch appearance loss [39]. Similarly, the covariant constraint is

extended for affine adaptation in [40].

From the methods discussed above Harris, Hessian and DoG

have been the most widely used for the past decade and are capable

of providing a large number of regions, we therefore use these

detectors to extract regions for descriptor evaluations.

2.2 Keypoint descriptors

Handcrafted descriptors. The design and implementation of

local descriptors has undergone a remarkable evolution over the

past two decades ranging from differential [41], [42] or moment

invariants [43], correlations, PCA projected patches (PCA-SIFT)

[44], histograms of gradients such as SIFT [1] HoG [45], GLOH

[4], DAISY [5], DSP-SIFT [46] or other measurements such as

LBP [47], BRIEF [48] etc. An overview of pre-2005 descriptors

with SIFT [1] identified as the top performer can be found in

[4]. The associated benchmark data accelerated the progress in

this field and there have been a number of notable contributions.

Efficient computation of features similar to SIFT [1] was targeted

in SURF [49], which approximates convolutional kernels by a

set of box-type filters and integral images. Despite many research

https://hpatches.github.io
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Fig. 1: Illustrative timeline of significant trends in development

of local feature descriptors. For example SIFT based descriptors,

introduced in 1999, have received continuous acclaim while for

other descriptor families the interest has faded more quickly.

efforts in this area the improvements proposed by various methods

were not convincing enough to supersede SIFT in general.

Invariance to various image transformations was also ac-

tively researched topic by engineering descriptors with built in

invariance to rotation or illumination changes. Orientation es-

timation/normalization was addressed in [1] via main mode of

gradient orientation histogram. Central gradient orientation was

also proposed in [50], and direction from the patch centre to

intensity mass centre was used in [11]. Rotation invariance was

implemented differently in MRRID and MROGH descriptors [51]

by pooling local features based on their intensity orders in multiple

support regions. This concept is further exploited in LIOP [7]

together with segmentation based location grid in contrast to a

square grid in SIFT or SURF. LUCID [52] exploited linear time

permutation distances between the ordering of RGB values of two

image patches as descriptor. Siamese CNN was also exploited in

this context in [53] to estimate two values (derivatives) for arctan2

of corresponding orientations.

Binary descriptors. From the family of local binary descriptors

BRIEF [48] is one of the broadly adopted methods, based on

randomised intensity comparison. This inspired a number of

follow up works such as ORB [11], FREAK [54], BRISK [9],

D-BRIEF [55], OSRI [56], USB [57], BOLD [12]. BRIEF was

improved in ORB [11] by selecting uncorrelated tests that max-

imize the variance across training patches. BRISK [9] further

optimizes BRIEF by using decision trees. FREAK [54] attempted

to model a retina in human eye with cascade of binary strings

from comparing image intensities over a retinal sampling pattern.

Learning of discriminant and low dimensional spaces has also

been applied to binary descriptors. D-BRIEF [55] is built by using

the inter to intra class distance objective adapted to a binary

descriptor. A set of discriminative projections is computed and

approximated with a set of predefined dictionaries in order to

generate a binary feature vector. The recently proposed descriptor

BinBoost [3], [58] applies boosting to learn a set of binary hash

functions that achieve the performance comparable to real-valued

descriptors. Both D-BRIEF and BinBoost are not based on binary

intensity tests therefore the extraction process is less efficient. A

different research direction is to use coding methods to make the

descriptors representation compact [59]. Histograms of quantised

intensity for each pixel in the patch (HIPs) [60] were converted

into binary codes for efficient extraction and matching using

bitwise operations. Ordinal and spatial information of regional in-

variants by computing difference tests over a rotationally invariant

sampling pattern was investigated in OSRI [56]. Ultrashort binary

descriptors USB [57] of 24 bits allowed to use large number of

efficiently extracted and matched features. An online learnt binary

descriptor was proposed in [12], which used online transformed

patches to adapt binary tests to each patch independently. Learning

and deep neural networks were also recently used for extracting

compact binary descriptors by optimizing quantization loss, evenly

distributed codes and uncorrelated bits in [61].

Learned descriptors. Large datasets with correspondence ground

truth enabled learning methods to be used to improve perfor-

mance of existing descriptors [62]. One such approach consists

of optimally learning descriptor parameters [5]. Another research

direction is learning discriminative projections from high di-

mensional feature space to subspaces with better discriminating

power. In [63], [64] the descriptor optimization is similar to the

LDA based projections, which simultaneously minimizes intra-

class and maximizes inter-class distances, where each patch is

considered a class. A similar idea was exploited in [65] where

LDA like projections were learnt and applied to gradient based

features and optimized thresholds were then used to binarize the

dimensions resulting in a binary descriptor. Convex optimization

for descriptor learning was proposed in [66]. In contrast to learnt

projections of existing descriptors an interesting observation was

made in [67], which improved SIFT by applying simple square

root normalization.

CNN based descriptors. Compared to shallow learning based de-

scriptors, CNNs differ in terms of the applied learning techniques,

volume of training data and computational efficiency therefore

direct comparison shows significant differences in performance

and speed. Preliminary works on using CNNs for extracting local

descriptors have been done in [68], [69].

The interest in CNNs based descriptors started from results

shown in [70] that the features from the last layer of a convo-

lutional deep network trained on ImageNet can outperform SIFT

even though the networks were not specifically optimized for such

local representations. Deep convolutional activation features were

investigated in [71] as generic image descriptors for a range of vi-

sual tasks. To improve the invariance of such features [72] extracts

CNN activations for patches at multiple scales and performs ag-

gregation similar to VLAD [73]. An unsupervised patch descriptor

based on Convolutional Kernel Networks was attempted in [74].

End-to-end learning of patch descriptors using Siamese networks

and the hinge contrastive loss has recently been re-attempted in

several works which include siamese MatchNet [75] and Deep-

Compare [76] with a distance metric learning for convolutional

features, DeepDesc [77] exploiting hard-negative mining, and

TFeat descriptor [78] based on shallow convolutional networks,

triplet learning constraints and fast hard negative mining. The

WLRN descriptor [79] is also based on a shallow convolutional

network, however the optimisation process is focused on utilising

weakly-labelled data. In contrast, HardNet [80] implements SIFT’s

second nearest neighbour matching criterion in the loss function,

that maximizes the distance between the closest positive and

closest negative example in the batch. This can be viewed as
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TABLE 2: Matching performance measured by mean average

precision (mAP) for different magnification ρ of region size

parameter . Parameter ρ represents the scaling of the size of the

measurement region i.e. increasing the detected DoG keypoint

region by a factor of ρ. Columns 1 / X show matching (mAP)

between the first and the X-th image in the sequence.

ρ 1 / 2 1 / 3 1 / 4 1 / 5 1 / 6

1 31 13 5 3 1
4 68 44 24 15 11
12 80 67 54 42 35
20 87 77 69 55 50

a variant of popular triplet learning with hard negative mining.

L2Net [81] applies progressive sampling from a large training

data and a loss function that emphasises Euclidean distance as a

similarity metric.

Given the multitude of techniques sometimes differing on the

level of implementation details or loss functions, an objective

evaluation protocol and data become more important then ever

to guide users in their choice of methods or developers in their

research directions.

3 REVIEW OF EXISTING BENCHMARKS

In this section we review existing datasets and benchmarks for the

evaluation of local descriptors and discuss their main shortcom-

ings.

3.1 Image-based benchmarks

In image matching benchmarks, descriptors are used to establish

correspondences between images of the same objects or scenes.

Local features, extracted from each image by a co-variant detector,

are matched by comparing their descriptors, typically with a

nearest-neighbour approach. Then, putative matches are assessed

for compatibility with the known geometric transformation be-

tween images (usually a homography) and the relative number of

correspondences is used as the evaluation measure.

All these datasets share an important shortcoming that leaves

scope for variations in different descriptor evaluations: there is

no pre-defined set of regions to match. As a consequence, results

depend strongly on the choice of detector (method, implementa-

tion, and parameters), making the comparison of descriptors very

difficult and unreliable. This is demonstrated in Table 1 where

different papers reach different conclusions even when the same

data and the same protocol are used for evaluation.

Defining centre locations of features to match does not con-

strain the evaluation sufficiently either. For example, this does

not fix the region of the image used to compute the descriptor,

typically referred to as the measurement region. Usually the

measurement region is set to a fixed but arbitrarily set scaling of

the feature size returned by a detector, and this parameter is often

not reported or varies in papers. Unfortunately, this has a major

impact on performance [66]. Table 2 shows matching scores for

different scaling factors of the measurement region in the Oxford

data.2 Variations of more than 50% mAP occur; in fact, due to

the planarity of such scenes, larger measurement regions lead to

improved matching results.

2. mAP is computed on the Leuven sequence in the Oxford matching dataset
using the DoG detector and SIFT descriptor.

In order to control for the size of the measurement region and

other important parameters such as the amount of blurring, resolu-

tion of the normalized patch used to compute a descriptor [82], or

use of semi-local geometric constraints, we argue that a descriptor

benchmark should be based on image patches rather than whole

images. Thus, all such ambiguities are removed and a descriptor

can be represented and evaluated as a function f(x) ∈ R
D that

maps a patch x ∈ R
H×H×3 to a D-dimensional feature vector.

This type of benchmark is discussed next.

3.2 Patch-based benchmarks

Patch based benchmarks consist of patches extracted from interest

point locations in images. The patches are then normalised to the

same size, and annotated pair- or group-wise with labels that

indicate positive or negative examples of correspondence. The

annotation is typically established by using image ground-truth,

such as geometric transformations between images. In case of

image based evaluations the process of extracting, normalising

and labelling patches leaves scope for variations and its parameters

differ between evaluations.

The first popular patch-based dataset was PhotoTourism [5]

(sometimes referred as Brown dataset). Since its introduction, the

many benefits of using patches for benchmarking (Section 6.3)

became apparent. PhotoTourism introduced a simple and unam-

biguous evaluation protocol, which we refer to as patch verifi-

cation: given a pair of patches, the task is to predict whether

they match or not, which reduces the matching task to a binary

classification problem. This formulation is particularity suited

for learning-based methods, including CNNs and metric learning

in particular due to the large number patches available in this

dataset. The main limitation of PhotoTourism is its scarce data

diversity (there are only three scenes: Liberty, Notre-Dame and

Yosemite), task diversity (there is only the patch verification

task), and feature type diversity (only DoG features were ex-

tracted). The CVDS dataset [83] addresses the data diversity

issue by extracting patches from five MPEG-CDVS: Graphics,

Paintings, Video, Buildings and Common Objects. Despite its

notable variety, experiments have shown that the state-of-the-art

descriptors achieve high performance scores on this data [84].

The RomePatches dataset [85] consider a query ranking task that

reflects image retrieval scenario, but is limited to 10K patches,

which makes it an order of magnitude smaller than PhotoTourism.

3.3 Metrics

In addition to choosing data, patches, and tasks, the choice of

evaluation metric is also important. For classification, the Receiver

Operating Characteristic (ROC) curves have often been used [86],

[87] as the basis for comparison. However, patch matching is

intrinsically highly unbalanced, with many more negative than

positive correspondence candidates; ROC curves are less represen-

tative for unbalanced data and, as a result, a strong performance in

ROC space does not necessarily generalise to a strong performance

in applications, such as the nearest-neighbor matching [8], [12],

[55], [77]. Several papers [3], [5], [55] reported at a single point

on the ROC curve (FPR95, i.e. the false positive rate at 95% true

positive recall) which is more appropriate for unbalanced data than

the equal error rate or the area under the ROC curve; however, this

reduces the information provided by the whole curve. Precision-

Recall and mean Average Precision (mAP) are much better choices

of metrics for unbalanced datasets – for example DBRIEF [55] is
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TABLE 3: Comparison of existing and HPatches dataset.

dataset pa
tc

h

di
ve

rs
e

re
al

la
rg

e
m

ul
tit

as
k

Photo Tourism [62] X X X

DTU [88] X X

Oxford-Affine [4] X X

Synth. Matching [89] X X

CVDS [83] X X X

Edge Foci [21] X X

RomePatches [85] X X

RDED [90] X X

HPatches X X X X X

excellent in ROC space but has very low (≈ 0.01) mAP for the

Oxford dataset [10].

4 BENCHMARK DESIGN

To address the shortcomings of the existing datasets, discussed

in Section 3, we identify the following requirements for a good

benchmark:

• Reproducible, patch-based: descriptor evaluation for a good

benchmark should be done on patches to eliminate the detector

related-factors. This leads to a standardisation across different

works and makes results directly comparable.

• Diverse: representative of many different scenes and image

capturing conditions.

• Real: real data have been found to be more challenging than a

synthesized one due to nuisance factors that cannot be modelled

in image transformations.

• Large: to allow accurate and stable evaluation, as well as to

provide substantial training sets for learning based descriptors.

• Multitask: representative of several use cases, from matching

image pairs to image retrieval. This allows cross-task compari-

son of descriptors performance within the same data.

Based on these desired properties, we introduce a new large-

scale dataset of image sequences (Section 5) annotated with

ground-truth homographies. This is used to generate a patch-based

benchmark suite for evaluating local image descriptors (Section 6).

Table 3 compares the proposed dataset to existing benchmarks in

terms of the properties stated above.

5 IMAGES AND PATCHES

Images are collected from various sources, including existing

datasets. We have captured 51 new sequences, 33 sequences were

manually generated by finding suitable scenes from [91], 12 scenes

are from [88], 5 scenes from [90], 4 scenes from [4], 2 scenes

from [92] and 1 scene from [93]. Some of the sequences are

illustrated in Figure 2. In 57 of the scenes, the main nuisance

factors are photometric changes and the remaining 59 sequences

show significant geometric deformations due to viewpoint change.

A sequence includes a reference image and 5 target images

with varying photometric of geometric changes. The sequences

are captured such that the geometric transformations between

images can be well approximated by homographies from the

reference image to each of the target images. The homographies

are estimated following [4].

Patches are extracted using the following protocol. Several scale

invariant interest point detectors i.e. DoG, Hessian-Hessian and

Harris-Laplace are used to extract features3 for scales larger

3. VLFeat implementations [82] of detectors are used.

TABLE 4: The range of geometric noise distributions, in units of

a patch scale. Rotation θ translation t scale s and anisotropic dis-

tortion a in Equation (1) are sampled from a uniform distributions

limited by θmax, tmax, smax and amax.

Noise θmax tmax smax amax

EASY 10
◦ 0.15 0.15 0.2

HARD 20
◦ 0.3 0.3 0.4

TOUGH 30
◦ 0.45 0.5 0.45

than 1.6px, which give stable points. Near-duplicate regions are

discarded based on their intersection-over-union (IoU) overlap

(> 0.5) and one region per cluster is randomly retained. This

keeps regions that overlap less than 0.5 IoU. Approximately 1,300

regions per image are then randomly selected.

For each sequence, patches are detected in the reference image

and projected on the target images using the ground-truth homo-

graphies. This sidesteps the limitations of the detectors, which may

fail to provide corresponding regions in every target image due to

significant viewpoint or illumination variations. Furthermore, it

allows to extract more patches thus better evaluate descriptors

in such scenarios. Regions that are not fully contained in all

target images are discarded. Hence, a set of corresponding patches

contains one from each image in the sequence.

In practice, when a detector extracts corresponding regions in

different images, it does so with a certain amount of noise. In order

to simulate this noise, detections are perturbed using three settings:

EASY, HARD and TOUGH. This is obtained by applying a random

transformation T : R
2 → R

2 to the reference region before

projection. Thus, a sequence of matches includes the detected

region and 5 randomly transformed ones that are projected to

target images with homography. This process is visualised in

Figure 3. Assuming that the region centre is the coordinate origin,

random transformation

T = R(θ) ·
[

s/
√
a 0 m tx

0 s · √a m ty

]

, (1)

includes rotation R(θ) by angle θ, anisotropic scaling by s/
√
a

and s
√
a, and translation by [m tx,m ty] where m is the

detected region scale, and R(θ) is a rotation of angle θ. Thus

the translation is proportional to the detection scale m. The

transformation parameters are uniformly sampled from the inter-

vals θ ∈ [−θmax, θmax], tx, ty ∈ [−tmax, tmax], log2(s) ∈
[−smax, smax], log2(a) ∈ [−amax, amax], whose values for

each setting are given in Table 4.

These settings reflect the typical overlap accuracy of the Hes-

sian and Hessian-Affine detectors on the Oxford matching bench-

mark. There, images in each sequence are sorted by increasing

transformation, resulting in increased detector noise. To identify

the levels of noise in the sequence we measure the average overlap

IoU for corresponding regions between the reference image and

the target images, which is presented in Figure 4. The noise level

indeed increases in the sequence therefore average IoU decreases

and the baseline noise level from the first target image differs

for different sequences. We choose the noise parameters such that

EASY group approximately corresponds to regions extracted in

image pairs 1-2, 1-3 HARD to regions from 1-4, 1-5 and TOUGH

to pairs 1-5,1-6. The noise parameters values are sampled from

uniform distributions limited by factors listed in Table 4.

Detected regions are scaled with a factor ρ = 5 (see Section 3).

The smallest patch size in the reference image is 16× 16px since
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Fig. 2: Examples of the image sequences contributing to HPatches; note the diversity of scenes and nuisance factors, including viewpoint

(left), illumination (right), focus, reflections and other changes.

Fig. 3: Construction of regions for patch extraction. Each detected

feature frame (yellow) is reprojected in the ref. image with a

random transformation T for EASY, HARD or TOUGH. Using the

ground truth homography Hgt, these regions are reprojected to

target images where the patch is extracted from a measurement

region visualised by dashed ellipse for factor ρ = 3.
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Fig. 4: Average overlap of the Hessian and Hessian-Affine detec-

tors on the viewpoint sequences of [94]. Line color encodes dataset

and line style a detector. The selected overlaps of the EASY and

HARD variants are visualised with a dotted line.

only regions from detection scales above 1.6px are considered.

In each region the dominant orientation angle is estimated using

a histogram of gradient orientations [1]. Regions are rectified

by normalizing the transformed region to a circle using bilinear

interpolation and extracting a square of 65 × 65 pixels. Example

of extracted patches are shown in Figure 5, where the effect of the

increasing detector noise is clearly visible.

REF E1 E2 E3 E4 H1 H2 H3 H4 T1 T2 T3 T4

Fig. 5: Geometric noise visualized on a sample set of patches.

Left column shows the reference patches and the other columns

show the corresponding patches from EASY, HARD and TOUGH

distributions.

6 BENCHMARK TASKS

In this section, we define the benchmark metrics, tasks and their

evaluation protocols for patch verification, image matching and

patch retrieval.

The tasks are designed to imitate typical use cases of local

descriptors. Patch verification (Section 6.2) is based on [5] and

measures the ability of a descriptor to classify whether two

patches are extracted from the same interest point. Image matching

(Section 6.3), inspired by [4], tests to what extent a descriptor can

correctly identify correspondences between two images, which

can be later used for accurate homography estimation. Finally,

patch retrieval (Section 6.4) tests how well a descriptor can match

a query patch to a pool of patches extracted from a large set of

distractor patches. This is a proxy to local feature based image

indexing [85], [95].
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6.1 Evaluation metric

We first define the precision and recall evaluation metric used in

HPatches. Let y = (y1, . . . , yN ) ∈ {−1, 0,+1}N be labels for

a ranked list of patches returned for a query, indicating negative,

to ignore, and positive match, respectively. Then precision and

recall at rank i are given by Pi(y) =
∑i

k=1[yk]+/
∑i

k=1 |yk| and

Ri(y) =
∑i

k=1[yk]+/
∑N

k=1[yk]+; the average precision (AP) is

given by AP (y) =
∑

k:yk=+1 Pk(y)/
∑N

k=1[yk]+, with [z]+ =
max{0, z}. The main difference w.r.t. the standard definition of

PR is that some entries can be ignored yk = 0. This is used in

the retrieval evaluation protocol to ignore the query patch from

the retrieved results. All descriptors including the queries are in a

KD-Tree data structure for fast search of nearest neighbours.

6.2 Patch verification

In patch verification, descriptors are used to classify whether two

patches are in correspondence or not. The benchmark starts from

a list P = ((xi,x
′
i, yi), i = 1, . . . , N) of positive and negative

patch pairs, where xi,x
′
i ∈ R

65×65 are patches and yi = {−1, 1}
is the corresponding label, with −1 and 1 denoting a negative and

positive pair respectively.

The dataset is used to evaluate a matching approach A that,

given any two patches xi,x
′
i, produces a confidence score si ∈ R

that the two patches form a match. The quality of the approach is

measured as the average precision of the ranked patches, namely

AP (yπ1
, . . . , yπN

) where π is the permutation that sorts the

scores in decreasing order (i.e. sπ1
≥ sπ2

≥ · · · ≥ sπn
).

Denoting the total number of positive pairs Npos =
∑N

1 yi,

it follows that Nneg = N − Npos. The ratio
Npos

Nneg
indicates the

balance of P . In [5], where the verification protocol was first

introduced in the context of evaluating local feature descriptors,

the evaluation was done in terms of ROC curves [87] and a

list P such that Npos = Nneg . However, most applications of

local feature descriptors involve highly imbalanced scenarios (i.e.

Nneg ≫ Npos) [77]. To test the effect of the positive to negative

samples ratio, we generate two variants of the verification task,

namely BALANCED and IMBALANCED, by altering the ratio of
Npos

Nneg
from 1 to 0.2. For the BALANCED variant, the performance

of a descriptor is measured by the area under the ROC curve. As

shown in [86] for an imbalanced scenario the ROC curve can be

misleading, thus for the IMBALANCED variant, the evaluation is

done in terms of the area under the precision-recall (PR) curve,

which is the average precision.

Another important factor in the verification task is the negative

pair sampling method, due to problems such as repetitive struc-

tures that might be present in a scene. We generate two variants

of the task according to this, namely INTRA-SEQUENCE and

INTER-SEQUENCE negative patch sampling. INTRA-SEQUENCE

indicates that negative pairs of patches are sampled randomly from

images within the same sequence, while for the INTER-SEQUENCE

variant, the negative pairs are sampled randomly from different

sequences.

Thus, there are several possible scenarios in the patch verifica-

tion experiment, arising from the following options: BALANCED

and IMBALANCED, INTRA-SEQUENCE and INTER-SEQUENCE, as

well as EASY, HARD and TOUGH.

It is worth noting that the verification task only requires scores

si, which in the context of local feature descriptors are typically

defined as a negative distance measure. However, in some cases

such a similarity can be directly learned from data [75], [76].

6.3 Image matching

In image matching, an image is represented by a collection of N
patches Lk = (xik, i = 1, . . . , N) and descriptors are used to

match patches from a reference image to a target one. Consider a

pair of images L = (L0, L1), where L0 is the reference and L1

the target. Based on homography, patches are sorted in each image

such that xi0 is in correspondence with xi1.

The pair L is used to evaluate an algorithm A that, given a

reference patch xi0 ∈ L0, determines the index σi ∈ {1, . . . , N}
of the best matching patch xσi1 ∈ L1, as well as the corre-

sponding confidence score si ∈ R. Then, the benchmark labels

the assignment σi as yi = 2[σi = i] − 1, and computes

AP (yπ1
, . . . , yπN

;N), where π is the permutation that sorts the

scores in decreasing order (note that the number of positive results

is fixed to N ; see Section 6.1).

The overall performance of an algorithm A is computed as

the mean average precision for all such image pairs across all the

sequences available in HPatches. In addition, the performance can

also be measured by the matching success rate, which is defined

as the number of correct matches over all possible N matches

in the collection Lk. Note that the benchmark only requires the

indexes σi with scores si computed by the algorithm A for each

image pair L. Typically, these can be computed by extracting patch

descriptors and matching them using nearest-neighbour.

This evaluation protocol is designed to closely resemble the

one from [4]. A notable difference is that, since the patch datasets

are constructed in such a way that each reference patch has a

corresponding patch in each target image, the maximum recall is

always 100%. Note also that similarly to the verification task, the

benchmark evaluates the combined performance of the descriptor

and similarity metric provided by the tested algorithm.

6.4 Patch retrieval

In patch retrieval descriptors are used to find patch correspon-

dences in a large collection of patches, the great majority of which

are distractors, i.e. extracted from irrelevant images. Consider a

collection Q = (xi, i = 0, . . . ,K) consisting of a query patch

x0, extracted from a reference image L0 in a sequence, and all

patches corresponding to x0 from the intra-sequence images Lj ,

with j ∈ [1,K]. Note that for HPatches, K = 5.

Furthermore, consider a collection of N distractors D =
(x̄i, i = 1, . . . , N) consisting of randomly sampled patches

across a large set of sequences. Note that D is built such that it

does not include patches extracted from sequence Q. The idea is

that such patches are not detrimental for the purpose of retrieving

the correct image, and such innocuous errors may occur frequently

in the case of repeated structures in images.

We compute N similarity scores between the query x0 and

all the items in the distractor pool D. In addition, we also

compute the K scores between the query and the remaining

correspondence pool Q. We then use the ground truth labels of

the D and Q collections, which are 0 and 1 respectively, and their

similarity scores to generate a precision-recall curve and compute

the average precision. Note that for a perfect descriptor all the

similarity scores between the query and the patches from Q, would

be higher than all the similarity scores between the query and the

D collection.

In terms of the benchmarking process, we randomly sample a

fixed set of all the query collections Q, and we generate multiple

variants of the retrieval task by altering the cardinality of the
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TABLE 5: Basic properties of the selected descriptors. For binary

descriptors, the dimensionality is in bits (∗), otherwise in number

of single precision floats. The speed is measured in units of 1000

patches per second i.e. the higher the faster.

Desc. Dim.
Input Speed [kP/s]

size CPU GPU

MSTD 2 65 67.0 -
RESZ 36 65 3.0 -
SIFT 128 65 2.3 -
RSIFT 128 65 2.2 -
KDE 147 65 0.3 -
MKD 238 65 0.1 -
BRIEF ∗

256 32 333.0 -
BBOOST

∗

256 32 2.0 -
ORB ∗

256 32 333.0 -
DC-S 256 64 0.3 10.0
DC-S2S 512 64 0.2 5.0
DDESC 128 64 0.1 2.3
TFEAT-M 512 32 0.6 83.0
TNET 256 64 0.4 83.0
L2NET 256 64 0.1 63.3
HNET 128 32 0.7 3.1

distractor set D. This is done to test the performance of the

descriptors across increasing distractor pool sizes. The results for

each variant are reported in terms of mean average precision across

all the query collections Q. The average number of features per

reference image multiplied by the number of sequences gives the

total number of query collections.

The design of this benchmark is inspired by classical image

retrieval systems such as [85], [95], [96], which use patches and

their descriptors as entries in image indexing. A similar evaluation

may be performed by using the PhotoTourism dataset, which

includes ∼ 1000K sets of positive patch pairs. Unfortunately,

since these small sets are not maximal, there is no certainty that a

set does not correctly correspond to another set, which makes the

evaluation noisy, i.e. two sets may correspond to the same physical

point in space.

7 EXPERIMENTAL RESULTS

In this section we evaluate several local descriptors using the

newly introduced HPatches benchmark. We start by presenting

the details of the evaluation (Sections 7.1 and 7.2) followed

by a discussion of a selection of notable descriptors and of

corresponding empirical results.

In more detail, in Sections 7.3 to 7.7 we illustrate several

variants of the benchmark tasks considering, for succinctness

and clarity, only a subset of the descriptors. In Section 7.6 we

investigate the stability of the results across different splits of

the dataset, in Section 7.7 we show the effect of training CNN

descriptors on different data splits, and in in Section 7.8 we

study the effect of choosing different methods for descriptor

normalisation. Finally, we show the results for all tasks and all

selected descriptors in a compact form in Section 7.9.

7.1 HPatches dataset details

Contents. As discussed in Section 5, our benchmark data

comprises 116 image sequences, 57 of which contain il-

lumination/photometric VIEWP transformations and 59 view-

point/geometric ILLUM transformations. Each sequence consists

of one reference image and 5 target images with increasing

transformation magnitude. The reference image is related to each

of its target images by a ground truth homography Hgt. There are

approx 1.3k regions of interest for each image extracted by com-

bining the DoG, Hessian-Hessian and Harris-Laplace detectors,

resulting in 157k reference features and 785k target features for

each of the geometric noise variants EASY, HARD, and TOUGH.

Regions are extracted and normalised to patches of size 65 × 65
pixels.

Splits. In order to assess the variance in the experimental results,

as well as the overfitting characteristics of different learnable

descriptors, HPatches is divided into multiple training and testing

splits. Three generic splits, called SET A, SET B and SET C,

are generated by randomly splitting the data in 80 sequences for

training and and 36 for testing, repeating the selection three times

with different seeds. These splits are used for cross-validation as

the dataset does not define a hidden test set. In cases where a

descriptor is trained or a normalisation is selected based on the

HPatches data, the results are reported as an average over the

splits’ test sets.

In order to test the effect of different transformations, further-

more, two more splits that only contain sequences from the same

transformation type, namely VIEWP and ILLUM, are generated as

well. Note that the randomly sampled SET A, SET B and SET C

splits all contain both VIEWP and ILLUM sequences.

Verification details. For the verification task, 1M negative and

1M positive patch pairs are generated for each split. For the

BALANCED experiment, all positive patch pairs are kept, whereas

for the IMBALANCED only 0.25M positive pairs are kept in order

to achieve a 1 to 4 imbalance between positive and negative

matches.

Matching details. After all the descriptors are extracted for both

the reference image patches and the target image patches, one-to-

one matching is performed, and the correct matches are used to

compute average precisions. Results are then averaged across all

image pairs. Since the goal is to assess and compare descriptors

on an equal footing, matches are performed directly by comparing

descriptors without further filtering steps such as Lowe’s 1st to 2nd

NN distance criterion. Such filtering steps can still be employed

in applications to improve matching accuracy further.

Retrieval details. For each split, we generate 10k query patches,

each having 5 ground-truth matching target patches. For each

query patch approximately 20k distractor patches are randomly

sampled from all sequences. In experiments, in order to examine

the effect of the size of the distractor pool, the latter is gradually

reduced to 20k, 15k, 10k, 5k, 2k, 1k, 100 patches.

Metric. As discussed in Section 6.1, Mean Average Precision

(mAP), i.e. the area under the precision-recall curve, is used

to measure the performance of descriptors for all benchmark

tasks and scenarios. The exception is the BALANCED verification

scenario — since the latter is balanced, mAP is not appropriate

and the Area Under the Curve (AUC) for the Receiver Operating

Characteristic (ROC) graph is used instead

7.2 Descriptors

We evaluate the following descriptors, summarized in Table 5. We

include two trivial baselines: MSTD, [µ, σ] which is the average

µ and standard deviation σ of a patch, and RESZ, the vector

obtained by resizing the patch to 6 × 6 pixels and normalizing

it by subtracting µ and dividing by σ. Additionally, in some
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Desc. EASY HARD TOUGH AVG

TFEAT-M 91.55 84.61 74.77 80.36
DDESC 90.43 82.98 73.28 78.99
LIOP 80.24 73.35 65.55 70.45
DC-S 84.50 72.41 60.94 68.80
BBOOST 81.37 66.52 53.38 62.71
SIFT 84.95 65.68 51.25 62.48
RSIFT 77.83 58.21 45.50 56.28
ORB 78.02 57.02 42.38 54.26
BRIEF 72.72 56.32 44.43 53.86
NCC 66.52 49.28 39.02 48.19

TABLE 6: Verification task — mean average precision (mAP) for

the IMBALANCED scenario and different levels of geometric noise.

Increasing geometric noise leads to lower scores but the ranking

of descriptors is not affected.

experiments we use Normalised Cross Correlation (NCC) [97]

over the grid of 24 × 24 different shifts which is closely related

to Pearson correlation coefficient. This method is often used as

a basic template matching algorithm. For SIFT-based descriptors

we include SIFT [1] and its variant RootSIFT (RSIFT) [67]. We

also include KDE [25] and MKD [26] as examples of more recent

hand-crafted descriptors.

From the family of binary descriptors, we test BRIEF [48],

based on randomised intensity comparison, ORB [11], which

optimises the binary tests by learning, and BBOOST [3], where

binary tests are selected using boosting. We also evaluate sev-

eral recent deep descriptors including the Siamese variants of

DeepCompare [76] (DC-S, DC-S2S) with a distance metric

learning for convolutional features, DeepDesc [77] (DDESC),

which exploits hard-negative mining, and the TFeat (TFEAT-M)

descriptor [78], based on shallow convolutional networks, triplet

learning constraints and fast hard negative mining. L2Net [81] ap-

plies progressive sampling of large training data and HardNet [80]

implements a loss inspired by the second nearest neighbour

ratio. Unless otherwise stated, the learning-based descriptors were

trained on PhotoTourism data.

Table 5 shows the dimensionality, size of the measurement

region in pixels, and speed of each descriptor. DeepCompare [76]

variants have the highest dimensionality of 256 and 512, whereas

the other real-valued descriptors have 128 dimension with the

exception of MSTD and RESZ. The size of all binary descriptors

is 256 bits. In terms of speed, the binary descriptors BRIEF and

ORB are approximately 30 times faster than the most efficient

CNN based descriptor, namely TFEAT-M. Other descriptors are

an order of magnitude slower, BBOOST, MKD and KDE being

the slowest.

7.3 Patch verification

In this section, we discuss results on the patch verification task.

For the IMBALANCED variant, results in Table 6 indicate that

there is no significant difference in the ranking of descriptors

evaluated on different amounts of geometric noise (EASY, HARD,

and TOUGH). Thus, for the rest of the verification experiments

only results computed on the HARD variant are considered.

Positive/negative imbalance. Sorting descriptors by the area un-

der the ROCs in the BALANCED scenario and the PR curves in the

IMBALANCED scenario results in approximately the same ranking.

Hence, while ROC results are overoptimistic for applications as

imbalanced scenarios are much more common in practice, they

are still useful to compare descriptors.

The operating point has however an effect on descriptor

ranking, as their relative performance differs at different operation

points. For example, in the IMBALANCED scenario, NCC out-

performs SIFT-like descriptors at the FPR95, even though their

performance is significantly below SIFT on average. Overall,

averaged metrics such as mAP and ROC AUC are more likely

to offer a balanced evaluation of descriptors.

Methods that are based on convolutional neural networks

tend to perform significantly better in the verification task than

other descriptors. A likely reason is that the formulation of the

verification task is essentially the same as the formulation used to

train most of these descriptors, which are learned from pairs or

triplets of negative and positive patches.

Source of distractors. In Figure 6 (right), we plot the results

for three selected descriptors, TFEAT-M, DDESC and LIOP, us-

ing either the INTRA-SEQUENCE or INTER-SEQUENCE sampling

schemes. It is clear that INTRA-SEQUENCE sampling consistently

makes verification more challenging. The reason is that sampling

from the same sequence returns patches that exhibit similar sta-

tistical properties, and are thus more difficult to discriminate. On

the contrary, randomly sampling negative pairs across different

sequences leads to slightly easier discrimination. This confirms

the intuition that the presence of repetitive patterns, or other self-

similarities structures in the image, is likely to significantly affect

the performance of all descriptors.

To summarise, CNN-based features are very good at the

verification task, with AP scores in the 50% to 80% range, whereas

handcrafted features’ AP is approximately 20% lower. For all

descriptors, performance is strongly negatively affected by in-

creasing geometric noise, by imbalanced sampling (IMBALANCED

scenario), and by sampling distractors from the same sequence

(INTRA-SEQUENCE scenario). However, the relative rankings of

descriptors is generally stable across all such scenarios.

7.4 Image matching

In this section, we discuss the image matching results. Table 7

reports the mAP computed over all test sequences and Table 8

additionally reports the matching success rate, namely the per-

centage of query patches for which the correct result ranked first.

In general, we can observe that mAP scores are much lower

than for the verification task. This can be explained by the fact that

distractor patches are sampled from images in the same sequence

as the matching patches, which, as explained above, results in

harder negatives. In addition, the set of negative examples is much

larger than the set of positive ones, which makes the data highly

imbalanced, resulting in a much higher likelihood of retrieving

hard negatives.

This observation indicates that patch verification performance,

which is often used in the literature to compare descriptors, may

be far better than the performance of the descriptors in image

matching applications. Furthermore, descriptors that perform well

in verification may drop in the ranking significantly for matching.

For example, LIOP and BBOOST outperform SIFT in Table 6

but are far worse in Table 7. We also observe that the matching

success rate, which has been reported in several papers [3], often

results in a different ranking than mAP, as well as in different

relative performance gaps.

7.5 Patch retrieval

Figure 7 shows the mAP results for the retrieval task. Note that

the size of the distractor pool D (see Section 6.4) has a significant
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Fig. 6: Patch verification results for the state of the art feature descriptors, on the HARD geometric noise. (left) ROC curves for

BALANCED scenario - ROC curve (middle) Performance on the IMBALANCED scenario - PR curve. Note that the ranking of the best

performing descriptors remains similar between the BALANCED and IMBALANCED tasks. (right) Performance of INTRA-SEQUENCE

and INTER-SEQUENCE negative pair sampling. INTRA-SEQUENCE sampling leads to a more challenging verification task, due to

repetitive patterns and self-similarities that are commonly present on images.

Desc. EASY HARD TOUGH AVG

TFEAT-M 50.0 27.5 13.9 30.5
DDESC 43.0 23.9 12.5 26.5
RSIFT 48.2 20.9 9.4 26.1
DC-S2S 42.2 23.0 11.3 25.5
SIFT 45.3 19.3 8.6 24.4
DC-S 40.0 19.9 9.5 23.1
LIOP 32.6 18.0 9.9 20.2
ORB 30.0 8.6 2.9 13.9
BBOOST 27.2 9.1 3.3 13.2
NCC 22.5 5.2 1.7 9.8
BRIEF 20.5 5.4 1.7 9.2

TABLE 7: Image matching task — mean average precision (mAP)

for different levels of geometric noise.

Desc. EASY HARD TOUGH AVG

TFEAT-M 58.4 39.5 25.4 41.1
DDESC 52.4 36.0 24.1 37.5
DC-S2S 52.2 35.9 23.3 37.1
DC-S 52.5 34.5 22.3 36.4
RSIFT 56.7 31.7 18.8 35.7
SIFT 55.4 31.0 18.5 35.0
LIOP 42.8 30.1 21.2 31.3
BBOOST 41.5 21.9 12.4 25.3
ORB 39.8 17.6 9.0 22.2
NCC 39.2 17.2 9.2 21.9
BRIEF 35.1 16.4 8.8 20.1

TABLE 8: Image matching task — success rate % for different

levels of geometric noise.

effect on the retrieval performance of all evaluated descriptors

(the abscissa is logarithmic): for HARD and TOUGH patches, the

performance drops by more than half as the distractor pool size is

increased from 102 to 104. Note that this is a significant drop in

performance considering that in application the pool size is likely

to be much larger than this.

CNN-based descriptors again outperform the other methods.

The good performance of LIOP is also notable, especially for the

TOUGH variant of the retrieval task, where it outperforms all other

non-deep descriptors and approaches the performance of some

of the latter (see for instance Figure 7-right). Another interesting

observation is that, while RSIFT performs very well in the EASY

scenario, its performance drastically decreases in the HARD and

TOUGH scenarios. These results, which are different from what we

found in verification and matching, highlight the different nature

of that patch retrieval task and emphasize the need for multi-task

benchmarks in order to compare descriptors meaningfully.

7.6 Performance across splits & datasets

Next, we assess the statistical stability of the results via cross-

validation. In order to do so, we examine the effect of evaluating

feature descriptors on the SET A, SET B and SET C splits of

HPatches. These splits represent a scenario of average difficulty

as they contain patches from the EASY, HARD and TOUGH

scenarios. The VIEWP and ILLUM transformation-specific splits

are also considered. Table 9 reports results for the three evaluation

tasks and the five different splits for the TFEAT-M, DDESC, SIFT

and LIOP descriptors.

The absolute values of mAP vary within 3% between the SET

A, SET B and SET C splits. The difference is thus small com-

pared to the difference between descriptors, which is up to 10%.

This suggests that different image sequences are of comparable

difficulty, resulting in moderate variance as a function of data

selection. Once can therefore expect the ranking of descriptors to

be stable with respect to the choice of split.

The difficulty of matching patches with illumination changes

versus viewpoint changes can be assessed using the results for

the VIEWP and ILLUM splits, that contain only illumination

or viewpoint transformations respectively. Across all tasks, the

VIEWP is consistently less challenging than the ILLUM. This is

interesting as many techniques proposed in the literature focus on

geometric rather than photometric invariance. However, HPatches

contains sequences with extreme illumination changes (e.g. from

night to daylight) which are very challenging to match. Still,

descriptors ranking is quite stable, with the notable exception of

the improved performance of DDESC in the retrieval task for the

ILLUM sequences. This indicates that DDESC is somewhat more

robust to illumination changes than other descriptors.

7.7 Training descriptors on HPatches

In order to test the generalization properties of the descriptors,

Table 10 reports the results of training and testing TFEAT-M

across different splits of HPatches as well as across different



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2915233, IEEE

Transactions on Pattern Analysis and Machine Intelligence

11

102 103 104

Distractor pool size

0

10

20

30

40

50

60

70

80

90

m
A

P

Retrieval - Easy

LIOP

SIFT

RSIFT

NCC

ORB

DDESC

TFEAT-R

BBOOST

TFEAT-M

BRIEF

DC-S2S

DC-S

102 103 104

Distractor pool size
0

10

20

30

40

50

60

70

80

90

m
AP

Retrieval - Hard

102 103 104

Distractor pool size

0

10

20

30

40

50

60

70

80

90

m
A

P

Retrieval - Tough

LIOP

SIFT

RSIFT

NCC

ORB

DDESC

TFEAT-R

BBOOST

TFEAT-M

BRIEF

DC-S2S

DC-S

Fig. 7: Patch retrieval results for several state of the art feature descriptors, measured in mAP for the EASY, HARD and TOUGH settings.

We can observe that the performance significantly decreases with the size of distractor pool.

TFEAT-M DDESC SIFT LIOP

Verification
SET A 77.43 74.73 59.41 69.15
SET B 80.33 76.98 61.16 73.81
SET C 77.51 74.70 61.46 69.63
VIEWP 80.71 76.61 63.27 75.47
ILLUM 77.18 74.86 59.83 67.75

Matching
SET A 30.45 26.47 24.41 20.17
SET B 35.29 30.21 26.67 25.87
SET C 32.45 28.25 26.16 22.82
VIEWP 36.26 29.78 27.14 28.86
ILLUM 28.97 26.31 23.77 18.68

Retrieval
SET A 38.02 38.75 31.44 29.21
SET B 41.82 41.25 33.93 33.36
SET C 36.06 36.71 30.69 28.87
VIEWP 43.45 40.66 33.40 36.90
ILLUM 32.33 35.06 28.36 23.86

TABLE 9: Performance (mAP) of several descriptors on random

subsets of HPatches. While the absolute scores can vary, the

ranking of the methods is generally stable. Descriptors achieve

lower performance on ILLUM sequences compared to VIEWP

sequences. For this experiment, TFEAT-M and DDESC are trained

on the LIBERTY dataset.

datasets. For the latter, we consider training on the LIBERTY set

from the PhotoTourism dataset [63] and testing on HPatches. Note

that when training and testing on SET A, SET B and SET C, non-

overlapping sets of sequences are used as train and test sets in

order to avoid overfitting occurs in this experiment as each split

defines training and test set for a holdout cross-validation (80 and

36 sequences respectively).

As expected, results are significantly higher when descriptors

are trained and tested on samples drawn from the same distribution

even if the individual examples differ in the training and testing

splits. Additionally, we can observe that training on ILLUM and

testing on VIEWP leads to significantly higher mAP, which might

indicate that viewpoint sequences do not have much of illumi-

nation differences, therefore a descriptor trained for them, does

not generalise well for illumination robustness. The above, further

demonstrate how specific results can lead to confusing conclusions

when the same CNN methods are trained on different datasets.

Finally, TFEAT-M performs nearly 10% better when trained

and tested on the same dataset. The inability to perfectly generalize

across dataset is not surprising, but it should be noted when

assessing descriptors. In particular, this provides some context

to many results reported in the literature, where descriptors are

trained and tested on PhotoTourism dataset only [63].

Train Test Verification Matching Retrieval

SET A SET A 94.46 45.62 70.01
SET B SET B 95.41 49.83 73.03
SET C SET C 94.17 47.39 67.22

VIEWP ILLUM 90.14 32.94 54.52
ILLUM VIEWP 95.22 50.78 74.43

TABLE 10: Performance of TFEAT-M when trained and tested

within the same domain. Each of the sets was split into training

and test data. The performance is significantly higher than the

results reported in Table 9 where the training data is from Photo-

Tourism LIBERTY.

7.8 Descriptor normalisation

It has been shown in [25], [44], [67] that normalisation can often

improve the performance of descriptors substantially. In order to

study this effect, we consider ZCA whitening [98, p. 299-300].

The ZCA normalised patches are computed as:

d̃ = UΛ−1/2U⊤(d− d̄), d̄ =
1

|F|
∑

d∈F

d (2)

Σ =
1

|F| − 1

∑

d∈F

(d− d̄)(d− d̄)⊤ = UΛU⊤ (3)

where F = {f(x) | x ∈ P} is the set of all descriptors computed

on a set of patches P .

The method exits in a number of variants; here eigenvalues

Λ = diag(λ1, . . . , λd), sorted in decreasing order, are clipped by

thresholding their cumulative distribution by α, defined in [99] as:

λi = max(λi, λr) r = min k s.t.

∑d
i=k λi

∑d
i=1 λi

< α. (4)

This is followed by power law normalisation [67] and then L2

normalization.

ZCA is unsupervised but still requires a training set of example

patches for computing statistics; to this end, we consider a subset

of the training dataset from PhotoTourism [5]. Note that SIFT and

RSIFT versions are normalized “out of the box” using the L2 and

L
1

2 norms respectively, but no PCA or ZCA projections, which

we add here.

The results, presented in Table 11, clearly show that some

descriptors obtain significant performance gains via normalisation;

for example, the performance of RSIFT increases by nearly 20%

in the verification task. CNN based descriptors benefit less, but

there is still a noticeable improvement; for example, normalization
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Verification Matching Retrieval

norm no ZCApl no ZCApl no ZCApl

TFEAT-M 77.43 78.75 30.45 33.23 38.02 39.09
DDESC 74.73 79.26 26.47 34.37 38.75 44.76
DC-S 65.08 78.18 23.12 31.00 33.54 40.61
SIFT 59.41 69.02 24.41 24.94 31.44 39.02
RSIFT 51.53 70.11 26.12 35.35 33.06 41.64

TABLE 11: Effect of ZCA whitening and power low normaliza-

tion [25], [67]. Surprisingly, for matching and retrieval, normalised

version of hand-crafted descriptors perform on par with the recent

deep learning methods. Results are presented for SET A.

boosts DDESC by up to 8%, while TFEAT-M gains slightly less

than 3%.

It may be surprising that learned descriptors can be improved

by applying off-the-shelf normalization to them. This may be due

to the use of learning formulation that do not perfectly match the

task or to overfitting the training data.

Overall, results clearly show that it is worth applying ZCA

normalization to all descriptors, especially due to the simplicity

and low computational cost of this procedure. Consistent improve-

ments can be expected in the verification, matching and retrieval

tasks.

7.9 Evaluation of state-of-the-art descriptors

So far we have explored different variants of our dataset and

evaluation protocol, using for this purpose a subset of descriptors

We now consider the most informative scenarios identified above

and use them to evaluate systematically all our state-of-the-art

descriptors on those. Results are presented compactly in Figure 8.

The aim is to tune each descriptor and normalization procedure

in order to maximize performance while avoiding overfitting on

HPatches. For this purpose, descriptors and normalization param-

eters are learned (when applicable) either on LIBERTY (Figure 8)

or on HPatches (Figure 9). In the latter case evaluation uses cross-

validation.

Figure 8 clearly shows that verification is the least challenging

of the tasks, with top performers reaching 90% mAP. The results

vary significantly for different experimental settings. The most

important factors of variations are: choosing between the EASY,

HARD, and TOUGH scenarios, choosing between the viewpoint

VIEWP and illumination ILLUM splits (with the latter being more

challenging), and sampling distractors from the same (INTRA-

SEQUENCE) or different (INTER-SEQUENCE) sequences.

Descriptor normalisation. Next, we tune projection and power

law normalisation (Section 7.8) to maximize the performance of

each descriptor. In practice, descriptor normalisation has many

variants, such as using ZCA or PCA whitening with or without

Eigen value clipping, use of power law normalisation or L2

normalisation. In may cases, the decision of what normalisation

to use depends not only on the descriptor, but also on the task

and data. To account for these factors, we use grid search to find

the best performing method for each descriptor in two different

dataset: LIBERTY (Normalisation with LIBERTY in Figure 8)

or over splits of the HPatches (Normalisation with HPatches in

Figure 9). In order to avoid overfitting when searching for the

best normalisation on HPatches (as we evaluate on HPatches),

we perform cross-validation on the three splits of the dataset.

Each split comprises a training and testing subsets; in order to

ZCA α Power Law Norm L2 Norm
Dataset Lib HA HB HC Lib HA HB HC Lib HA HB HC

SIFT .4 .3 .2 .3 X X X X X X X X

RSIFT .4 .2 .2 .2 X X X X X X X X

KDE .4 .1 .1 .1 X X X X X X X X

MKD - .2 .1 .1 X X X X X X

TFEAT-M - .4 .4 .4 X X X X X X X

TNET - - - - X X X X X X

L2NET - .3 .2 .2 X X X X X X

HNET - - - - X X X X

TABLE 12: Best normalisation method found for the real-valued

descriptors using different datasets. The method is found using

grid search over different combinations of normalisation methods.

The ZCA parameter α is defined in [99, Eq. 13].

also obtain a validation subset for each split (used to pick the

best normalisation), we divide its training into 20 sequences used

for validation of the normalisation method and 60 sequences

for training — in this case for computing the ZCA whitening.

This means that for each descriptor we obtain three different

normalisation methods, one for each split. We divide the training

set in order to avoid fitting the best normalisation on the held out

test set for each split. The final score for a descriptor is an average

performance over the remaining 36 sequences of each split.

The resulting best normalisation methods found with grid

search for each descriptor and dataset are summarised in Ta-

ble 12. For the ZCA parameter α (eq. (4)) in the grid search

we consider α ∈ {0, .05, .075, .1, .15, .2, .25, .3, .4}. From the

table we can see, that the normalisation method differs mainly

between datasets. For example, descriptors learnt on LIBERTY,

generally perform best without any normalisation (or simple L2

normalisation). However, we can see that choice of normalisation

method is relatively stable between different splits of HPatches.

The main difference between normalisations found for LIBERTY

and HPatches is the ratio of eigenvalues being clipped.

As discussed in Section 7.8, normalisation significantly im-

proves the absolute score of all descriptors, although the CNN

based methods seem to benefit less compared to handcrafted ones,

with HNET seeing almost no improvement whatsoever. Contrary

to that, we can see that for hand-crafted descriptors it is important

to adjust the normalisation to the target domain, mainly for the ver-

ification task (e.g.RSIFT has 67.56% mAP when normalised with

LIBERTY, while achieves 76.6% when normalised with a subset

of the target dataset). Overall, in both cases the normalisation has

only limited effect on the descriptor’s rank.

Training with HPatches. At the bottom of Figure 9 we show the

average results of two learned descriptors, TFEAT-M and HNET,

trained and tested on the three splits SET A, SET B, SET C of

the HPatches4, reporting cross-validated average scores (hence

these numbers are not directly comparable to other results from

Figure 8).

We can see that, compared to TFEAT-M, HNET benefits the

most from training on HPatches, with the largest gains obtained

on viewpoint sequences. However, both descriptors saturate the

verification task. This confirms the observations from Section 7.6

that within-domain training can lead to overoptimistic conclusions.

4. Please note that for obtaining these results, one has to train three different
descriptors for each split which might be computationally demanding.
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Fig. 8: Verification, matching and retrieval results for descriptors trained on LIBERTY and tested on the all sequences of the HPatches.

Colour bars are means over all the variants of each task. Colour of the marker indicates EASY, HARD, and TOUGH geometric noise. The

type of the marker corresponds to different experimental settings i.e. negative pair patches are sampled from the same image sequences

INTRA-SEQUENCE or different INTER-SEQUENCE, the results are averaged for viewpoint VIEWP or illumination ILLUM sequences

(see Section 7.3, 7.4 and 7.5 for details). Figures titled Normalisation on LIBERTY show results for best normalisation found using the

LIBERTY dataset.
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Fig. 9: Verification, matching and retrieval results for descriptors as an average over three splits of HPatches (SET A, SET B, SET

C). This figure uses same visualisation as Figure 8. Figures titled Normalisation on HPatches show results using descriptors normalised

with a best method found on the training set of the split. In this case, all descriptors are learnt on LIBERTY. Bottom figures report the

average results for two descriptors trained and tested over three different splits of the HPatches dataset.
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8 CONCLUSIONS

With the advent of deep learning, the development of novel and

more powerful local descriptors has accelerated tremendously.

However, as we have shown in this paper, the benchmarks

commonly used for evaluating such descriptors are inadequate,

making comparisons unreliable. In the long run, this is likely to be

detrimental to further research. In order to address this problem,

we have introduced HPatches, a new public benchmark for local

descriptors. The new benchmark is patch-based, removing many of

the ambiguities that plagued the existing image-based benchmarks

and favouring rigorous, reproducible, and large scale experimen-

tation. This benchmark also improves on the limited data and task

diversity present in other datasets, by considering many different

scene and visual effects types, as well as three benchmark tasks

close to practical applications of descriptors.

Despite the multitask complexity of our benchmark suite,

using the evaluation is easy as we provide open-source imple-

mentation of the protocols which can be used with minimal effort.

HPatches can supersede datasets such as PhotoTourism and the

older but still frequently used Oxford matching dataset, addressing

their shortcomings and providing a valuable tool for researchers

interested in local descriptors.

We have performed extensive evaluation of the state of the

art descriptors and demonstrated their properties and relative

performance in various experimental settings. The ranking of the

descriptors is relatively stable subject to small variations in some

settings but the top performers were HNET [80] and L2NET [81].

Even though the CNN based descriptors significantly outperform

traditional handcrafted features, a proper post processing normal-

ization of features can significantly boost the performance of all

methods and bridge the gap between SIFT and modern learning

based descriptors. However, for the handcrafted descriptors, this

involves finding the best normalisation for the target domain.

Additionally, we introduce baseline results and a methodology

for training on the HPatches by defining three fixed splits of the

dataset to perform a form of cross validation.
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