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Abstract In this paper, we introduce the notion of M-decomposability of probability
density functions in one dimension. Using M-decomposability, we derive an inequal-
ity that applies to all symmetric unimodal densities. Our inequality involves only the
standard deviation of the densities concerned. The concept of M-decomposability can
be used as a non-parametric criterion for mode-finding and cluster analysis.

Keywords M-decomposability · Symmetric unimodal densities · Inequality ·
Non-parametric criterion for clustering

1 Introduction

One important class of statistical distributions is the class of symmetric unimodal distri-
butions, among which the Gaussian is perhaps the most commonly used. Unimodality
and symmetric unimodality have been previously investigated by Anderson (1955)
and Ibragimov (1956), among many others. Without the strongly assumptive func-
tional constraints, the class of symmetric unimodal distributions is more general and
flexible than the Gaussian and many others with specific functional forms.

A complimentary class of the symmetric unimodal distributions is the class of
multimodal distributions. In this paper, we attempt to quantify the fundamental dif-
ferences between the densities of unimodal and multimodal distributions. Intuitively,
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276 N. Chia, J. Nakano

it is possible to express a multimodal density as a mixture of functionally simpler,
unimodal ones, such that the sum of the standard deviations of each unimodal density
component is less than that of the original density. On the other hand, it may be difficult
to achieve the same for unimodal densities. The main result of this paper is developed
from this relatively simple observation.

In Sect. 2, we introduce the notion of M-decomposability of probability density
functions in one dimension. Here, the prefix ‘M’ can mean both ‘multimodal’ and
‘mixture’. Examples are provided to illustrate the concept of M-decomposability.

In Sect. 3, we demonstrate that unimodal densities can be approximated using a
specially constructed mixture of uniform densities. In Sect. 4, we derive an inequality
on symmetric unimodal densities. This is the main result of the paper. Using the main
result obtained, we provide a concept demonstration of mode-finding of a multimodal
density in Sect. 5. Concluding remarks are provided in Sect. 6.

2 M-decomposability

In this paper, all probability density functions are in one dimension. We denote the
mean and the standard deviation of a density f byµ f and σ f respectively. The density
of the uniform distribution on the support [a, b] is denoted by U(· |a, b) for (a < b).
As for unimodality, we say that f is unimodal with mode m if there exists a real number
m such that f is non-decreasing on (−∞,m) and non-increasing on (m,∞). If f does
not satisfy the above, we say that f is multimodal. Our definition of unimodality is com-
monly used in textbooks and is comparable with the definition given in Dharmadhikari
and Joag-Dev (1987) and Kotz et al. (2005). If we also have f (m − x) = f (m + x)
on top of unimodality, we say that f is symmetric unimodal with mode m.

A density f can always be written as a two-component mixture, i.e. in the form

f (x) = α g(x)+ (1 − α) h(x), (1)

where 0 < α < 1. Conventionally, g and h are known as the component densities
of f . In general, the number of component densities are not limited to two. In this
paper, however, the focus is on the decomposition of a density into two components.
Henceforth, a pair of {g, h} satisfying Eq. (1) shall be called a decomposition pair of
f . It is clear that there exist infinitely many possible decomposition pairs for a given f .

Definition 1 (M-decomposability) For a given probability density function f , if there
exists a decomposition pair {g, h} such that

σ f > σg + σh,

then f is defined to be M-decomposable. Otherwise, f is M-undecomposable. If,
for all decomposition pairs {g, h},

σ f < σg + σh,

then f is strictly M-undecomposable.
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Fig. 1 Densities in Example 1: p with m = 3 and
√

3; denoted by solid and broken lines respectively

Example 1 (Mixture density of 2 Gaussians) Let p be a mixture of two Gaussians
such that

p(x) = 0.5 N (x | −m, 1)+ 0.5 N (x |m, 1).

Here, N (·|µ, σ) denotes the density of the Gaussian with mean µ and standard devi-
ation σ , and m ≥ 0. The original density p has a standard deviation σp which is√

1 + m2. One possible decomposition pair {q, r} is easily obtained by setting q(x) =
N (x |− m, 1) and r(x) = N (x |m, 1), yielding σq + σr = 2. If m >

√
3, then

σp > σq + σr and accordingly p is M-decomposable. Figure 1 shows the densities
of p with m = 3 and m = √

3. The density of p with m = 3 is an example of an
M-decomposable density.

From the above argument, a density is likely to be M-decomposable if it is a mix-
ture of two distantly located densities. In Example 1, p is M-decomposable for all
m >

√
3 by considering the given decomposition pair {q, r}. It is actually possible to

find another decomposition pair {q∗, r∗} of p such that σq∗ + σr∗ < 2. For example,
set q∗ to be p truncated above 0 (hence r∗ is p truncated below 0). Then, regardless
of m, we must have σq∗ = σr∗ < 1. We are therefore able to conclude that when
m = √

3, p is M-decomposable as well. For 0 < m <
√

3, it is difficult to determine
the M-decomposability of p.

Next, we present a class of M-undecomposable density.

Theorem 1 All uniform densities are M-undecomposable.

To prove Theorem 1, we need to establish the following lemma first.
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Lemma 1 (Density with minimum variance) Let f be a probability density function
such that f (x) ≤ M f < ∞ for all x. Then

σ f ≥ 1

M f
√

12
.

Identity holds if and only if f is U( · |t, t + 1/M f ) for real t’s.

Proof Set µ f = 0 without loss of generality. Let the density of u be

u(x) = U
(

x | − 1

2M f
,

1

2M f

)
.

Therefore, µu = 0 and σu = 1/(M f
√

12). It is also clear that

f (x)

{≤ u(x) when |x | ≤ 1
2 M f

;
≥ u(x) when |x | > 1

2 M f
.

Since µ f = µu = 0, we obtain

σ 2
f − σ 2

u =
∫

x2 { f (x)− u(x)} dx

=
∫

|x |≤ 1
2 M f

x2 { f (x)− u(x)︸ ︷︷ ︸
≤0

} dx +
∫

|x |> 1
2 M f

x2 { f (x)− u(x)︸ ︷︷ ︸
≥0

} dx (∗)

≥ 1

4 M2
f

∫
{ f (x)− u(x)} dx = 0.

Therefore, σ 2
f ≥ σ 2

u and hence σ f ≥ σu . Identity holds if and only if both terms of
(∗) equal to 0, that is f (x) = u(x). ��

Using Lemma 1, we are ready to prove Theorem 1.

Proof of Theorem 1 Let u be a uniform density. We need to prove that for any decom-
position pair {v,w} of u,

σu ≤ σv + σw.

Without loss of generality, set max(u) = M or, equivalently, σu = 1/(M
√

12). Since
u(x) = α v(x)+ (1 − α)w(x), we have

v(x) ≤ u(x)

α
≤ M

α
; w(x) ≤ u(x)

1 − α
≤ M

1 − α
. (2)
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Fig. 2 Density p which is shown in Example 2

Using Lemma 1, the standard deviations of v and w must satisfy

σv ≥ α

M
√

12
= α σu; σw ≥ 1 − α

M
√

12
= (1 − α) σu; (3)

yielding
σv + σw ≥ σu . (4)

Remark 1 For identity in Eq. (4) to hold, equality has to hold for both cases in Eq. (3).
From Lemma 1, this occurs if and only if v is uniform with max(v) = M/α and
w is uniform with max(w) = M/(1 − α). The original density u can be written as
u(x) = U(x |a, b) where b = a + 1/M . Identity holds in Eq. (4) if and only if v and
w are such that v(x) = U(x |a, c) and w(x) = U(x |c, b) where a < c < b.

The uniform distribution forms a natural divider between unimodal and multi-
modal distributions. When the density is cup-shaped with depression occurring near
the centre, we have a multimodal distribution. On the other hand, if the density is bell-
shaped, with the mode located around the middle, an unimodal distribution is formed.
Intuitively, unimodal densities are more likely to be M-undecomposable. In the next
example, we investigate the M-decomposability of a skewed unimodal density.

Example 2 (L-shaped density) Let the probability density function p be

p(x) = 0.1 U(x |0, 1)+ 0.9 U(x |0, 9),

as depicted in Fig. 2. The standard deviation of p is σp = √
2257/300 > 2.742.

One can also write p as p(x) = 0.2 q(x) + 0.8 r(x), where q(x) = U(x |0, 1) and
r(x) = U(x |1, 9). Now, we can easily compute σq = √

1/12 < 0.289 and σr =√
16/3 < 2.310. Hence, σq + σr < 2.599 < σp and thus p is M-decomposable.
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Thus, we have a skewed unimodal density p which is M-decomposable. As such,
we conclude that not all unimodal densities are M-undecomposable.

3 Representation of unimodal densities

From Theorem 1, all uniform densities are M-undecomposable. We shall proceed to
show that the class of M-undecomposable densities can be extended to include sym-
metric unimodal densities. For this purpose, we need to represent symmetric unimodal
densities via a mixture of uniform densities in a special way presented in this section.

Theorem 2 (Representation of unimodal densities via uniforms) Let f be an unimo-
dal density whose kth moment is finite and is equal to M, where k is even. Then, for
all ε > 0, it is possible to construct gn = ∑n

i=1 ωi ui , a mixture of uniforms such that

∣∣∣∣
∫ ∞

−∞
xk gn(x) dx − M

∣∣∣∣ < ε.

Here, each ui is the density of the uniform on the interval Ii,n satisfying I1,n ⊇ I2,n ⊇
· · · ⊇ In,n, and the weight ωi , corresponding to ui , is proportional to the length of the
interval Ii,n.

Proof of Theorem 2 We can define the following functions on non-negative values of
y, for a given f :

p(y) =
∫ ∞

−∞
min{ f (x), y} dx ; q(y) =

∫ ∞

−∞
xk min{ f (x), y} dx .

Then, both p and q are increasing with p(0) = q(0) = 0. If f is unbounded, then p
and q are strictly increasing for all y with limy→∞ p(y) = 1 and limy→∞ q(y) = M .
If f is bounded such that max( f ) = F , then p and q are strictly increasing for
0 ≤ y ≤ F and p(F) = 1 and q(F) = M .

We can rewrite f as a sum of two positive functions in the form

f (x) = f (1)(x)+ f (2)(x), (5)

where f (1)(x) = min{ f (x),Y } and Y is positive. For a given ε1 > 0, it is possible to
choose Y such that

1 − ε1 <

∫ ∞

−∞
f (1)(x) dx = p(Y ) < 1,

M − ε1 <

∫ ∞

−∞
xk f (1)(x) dx = q(Y ) < M. (6)

The above “slicing” ensures that the function f (1) is bounded from above by Y . Let
h = Y/n. Define two sets of real numbers {an,1, . . . , an,n} and {bn,1, . . . , bn,n} by

an, j = inf{x | f (x) ≥ jh} and bn, j = sup{x | f (x) ≥ jh}.
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Fig. 3 f (1) dominating g(1)n . Functions f (1) and g(1)n denoted by broken and solid lines respectively

Let In, j denote the interval [an, j , bn, j ] and let un, j be the density of the uniform on the
interval In, j . By construction, a’s are monotone non-decreasing and b’s are monotone
non-increasing, ensuring that In,1 ⊇ In,2 ⊇ · · · ⊇ In,n . Setting

ωn, j = bn, j − an, j∑n
i=1(bn,i − an,i )

,

we create a density gn such that gn(x) = ∑n
j=1 ωn, j un, j (x). Next, rewrite gn as a

sum of two positive functions in the form of

gn(x) = g(1)n (x)+ g(2)n (x), (7)

where g(1)n (x) = ∑n
j=1(bn, j − an, j ) h un, j (x). Here, all three functions gn, g(1)n and

g(2)n are proportional to one another. Each uniform component (bn, j − an, j ) h un, j of

g(1)n has thickness h. As depicted in Fig. 3, we have constructed g(1)n such that it is
dominated everywhere by f (1). Unimodality of f ensures that

0 ≤ f (1)(x)− g(1)n (x) ≤ min( f (x), h) ≤ h.

It is then possible to choose n (and hence h) such that

∫ ∞

−∞

∣∣∣g(1)n (x)− f (1)(x)
∣∣∣ dx =

∫ ∞

−∞

{
f (1)(x)− g(1)n

}
dx = p(h) < ε1 (8)

∫ ∞

−∞

∣∣∣xk g(1)n (x)− xk f (1)(x)
∣∣∣ dx =

∫ ∞

−∞
xk

{
f (1)(x)− g(1)n (x)

}
dx = q(h) < ε1.

(9)
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Applying the triangle inequality on integrals twice, we have

∣∣∣∣
∫ ∞

−∞
xk gn(x) dx − M

∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣xk gn(x)− xk f (x)
∣∣∣ dx

≤
∫ ∞

−∞

∣∣∣xk g(1)n (x)−xk f (1)(x)
∣∣∣ dx+

∫ ∞

−∞

∣∣∣xk f (2)(x)
∣∣∣ dx+

∫ ∞

−∞

∣∣∣xk g(2)n (x)
∣∣∣ dx .

(10)

The first term on the last inequality is less than ε1, from Eq. (9). The second term is
also less than ε1, ensured by Eqs. (5) and (6). To quantify the third term, note that
from Eqs. (7) and (8),

∫ ∞

−∞
g(2)n (x) dx = 1 −

∫ ∞

−∞
g(1)n (x) dx < 1 −

∫ ∞

−∞
f (1)(x) dx + ε1 < 2 ε1

and therefore,

∫ ∞

−∞
g(1)n (x) dx > 1 − 2 ε1.

Furthermore, since g(1)n and g(2)n are proportional,

g(2)n (x) <
2 ε1

1 − 2 ε1
× g(1)n (x) <

2 ε1

1 − 2 ε1
× f (x)

and hence

∫ ∞

−∞
xk g(2)n (x) dx <

2 ε1

1 − 2 ε1
×

∫ ∞

−∞
xk f (x) dx = 2 ε1

1 − 2 ε1
× M.

Choosing ε1 < 1/4, the right side of Eq. (10) becomes less than 2ε1(1 + 2M).
Therefore, starting with any ε > 0 and setting

ε1 = min

{
1

4
,

ε

2(1 + 2M)

}
,

we attain

∣∣∣∣
∫ ∞

−∞
xk gn(x) dx − M

∣∣∣∣ < ε

with the constructed gn . ��
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4 Symmetric unimodal densities

Theorem 3 (Inequality on symmetric unimodal densities) Let f be a symmetric uni-
modal density with finite variance. Then, for any decomposition pair {g, h},

σ f ≤ σg + σh .

Proof From Theorem 2, it is possible to approximate f as a mixture of uniform com-
ponents as shown below, such that the variances converge:

f (x) = k1

k1 + · · · + kn
U(x | − k1, k1)+ · · · + kn

k1 + · · · + kn
U(x | − kn, kn). (11)

Without loss of generality, we have set the mean m to 0. As f and all uniforms appear-
ing in Eq. (11) above have means fixed at 0, the variance of f is computed to be

σ 2
f =

∫
x2 f (x) dx = k3

1 + · · · + k3
n

3 (k1 + · · · + kn)
. (12)

As a result of f being decomposed into a mixture of two densities g and h, each
uniform component is consequently broken up into a mixture of two densities as well.
The i th uniform component becomes

U(x | − ki , ki ) = αi vi (x)+ (1 − αi ) wi (x), (13)

where αi s are real numbers such that 0 ≤ αi ≤ 1. Here, we allow some but not all of
αi ’s to assume the trivial values of 0 or 1 to ensure the generality of the separation of
f . Using Eqs. (11) and (13), we can rewrite f in terms of ui s and vi s as follows:

f (x) =
{

k1 α1

k1 + · · · + kn
v1(x)+ · · · + kn αn

k1 + · · · + kn
vn(x)

}

+
{

k1 (1 − α1)

k1 + · · · + kn
w1(x)+ · · · + kn (1 − αn)

k1 + · · · + kn
wn(x)

}
.

Assigning α g(x) and (1 − α) h(x) the first and second terms respectively, we have

α g(x) = k1 α1

k1 + · · · + kn
v1(x)+ · · · + kn αn

k1 + · · · + kn
vn(x),

(1 − α) h(x) = k1 (1 − α1)

k1 + · · · + kn
w1(x)+ · · · + kn (1 − αn)

k1 + · · · + kn
wn(x),

or more compactly,

g(x) ∝ k1α1 v1(x)+ · · · + knαn vn(x) = l1 v1(x)+ · · · + ln vn(x), (14)

h(x) ∝ k1(1 − α1) w1(x)+ · · · + kn(1 − αn) wn(x) = m1w1(x)+ · · · + mn wn(x)
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where li ≡ kiαi and mi ≡ ki (1 − αi ). Note that

li + mi = ki

for all 1 ≤ i ≤ n. By the choice of α’s, we circumvent the trivial situation where
g(x) = 0 or h(x) = 0 as at least one l must be neither 0 nor 1. The same applies to
m’s.

Next, using Eq. (13) and Theorem 1, we obtain

σvi ≥ kiαi√
3

= li√
3

and σwi ≥ ki (1 − αi )√
3

= mi√
3
.

From Eq. (14), µg , the mean of g can be expressed in terms of means of vi ’s as

µg = l1 µv1 + · · · + ln µvn

l1 + · · · + ln
.

Consequently, the variance of g becomes

σ 2
g =

∫
x2 g(x) dx − µ2

g

= l1σ 2
v1

+ · · · + lnσ 2
vn

l1 + · · · + ln
+

{
l1µ2

v1
+ · · · + lnµ2

vn

l1 + · · · + ln
−

(
l1 µv1 + · · · + ln µvn

l1 + · · · + ln

)2
}

≥ l1σ 2
v1

+ · · · + lnσ 2
vn

l1 + · · · + ln
≥ l3

1 + · · · + l3
n

3 (l1 + · · · + ln)
. (15)

The first inequality in Eq. (15) is the result of Jensen’s inequality, ensuring that

l1µ2
v1

+ · · · + lnµ2
vn

l1 + · · · + ln
≥ (

l1 µv1 + · · · + ln µvn

l1 + · · · + ln
)2.

Similarly, the variance of h can be bounded from below as

σ 2
h ≥ m3

1 + · · · + m3
n

3 (m1 + · · · + mn)
, (16)

yielding,

σg + σh ≥ 1√
3

·
⎧⎨
⎩

(
l3
1 + · · · + l3

n

l1 + · · · + ln

) 1
2

+
(

m3
1 + · · · + m3

n

m1 + · · · + mn

) 1
2

⎫⎬
⎭ .

123
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From Eq. (12), we have

σ f = 1√
3

·
(

k3
1 + · · · + k3

n

k1 + · · · + kn

) 1
2

.

Therefore, Lemma 2 which follows immediately below is a sufficient condition for
the inequality σ f ≤ σg + σh to hold. We are now only left with proof of Lemma 2 to
complete the proof of Theorem 3.

Lemma 2 Let ai , bi , ci be sequences of non-negative real numbers such that for all i ,
ai = bi + ci and ai > 0. Then the following inequality holds for any positive integer
n:

(
a3

1 + · · · + a3
n

a1 + · · · + an

) 1
2

≤
(

b3
1 + · · · + b3

n

b1 + · · · + bn

) 1
2

+
(

c3
1 + · · · + c3

n

c1 + · · · + cn

) 1
2

.

Equality holds if and only if the sequences ai , bi and ci are linearly dependent.

Proof We prove the inequality in the spirit of Hardy et al. (1988) and Pòlya and Szegö
(1972).

Set x ≡ [x1, . . . , xn]T , y ≡ [y1, . . . , yn]T and z ≡ [z1, . . . , zn]T . and similarly for
a,b, c. Let x = t y + (1 − t) z, i.e. xi = t yi + (1 − t) zi for all i . Furthermore, define
the function ψ as follows:

ψ(x) =
(

x3
1 + · · · + x3

n

x1 + · · · + xn

) 1
2

(17)

and set φ(t) = ψ(t y + (1 − t) z) ≡ ψ(x) where 0 ≤ t ≤ 1. It suffices to prove that
φ′′(t) ≥ 0 for 0 ≤ t ≤ 1. This is an immediate consequence of Jensen’s inequality as
φ′′(t) ≥ 0 implies φ(t) ≤ t φ(0)+ (1 − t) φ(1). Setting t = 1/2, we have

ψ
(y

2
+ z

2

)
≤ 1

2
ψ(y)+ 1

2
ψ(z).

Denoting by y = b, z = c, this becomes 2ψ(a/2) ≤ ψ(b)+ ψ(c). Using Eq. (17),

ψ
(a

2

)
=

(
1

2

)(3−1)· 1
2 · ψ(a) = 1

2
· ψ(a).

Therefore φ′′(t) ≥ 0 implies ψ(a) ≤ ψ(b)+ ψ(c) as required. Equality holds if and
only if φ′′(t) = 0.

We define φ as

φ(t) = ψ(x) = (� x3
i )

1
2 (� x j )

− 1
2 .
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Differentiating once with respect to t , we have

φ′(t) =
(

3

2

)
· φ(t) · [� x3

i ]−1 · [� x2
k (yk − zk)]

−
(

1

2

)
· φ(t) · [�x j ]−1 · [�(yk − zk)].

Differentiating again with respect to t , we have

φ′′(t) =
(

3

2

)
· φ′(t) · [� x3

i ]−1 · [� x2
k (yk − zk)]

+
(

3

2

)
· φ(t) · (−1) · [� x3

i ]−2 · (3) · [� x2
k (yk − zk)]2

+
(

3

2

)
· φ(t) · [� x3

i ]−1 · (2) · [� xk (yk − zk)
2]

−
(

1

2

)
· φ′(t) · [�x j ]−1 · [�(yk − zk)]

−
(

1

2

)
· φ(t) · (−1) · [�x j ]−2 · [�(yk − zk)]2.

After some rearrangements, we have

φ′′(t)
φ(t)

= 3

4
· { [�x j ]−1 · [�(yk − zk)] − [�x3

i ]−1 · [�x2
k (yk − zk)] }2︸ ︷︷ ︸

A

+(3) · [�x3
i ]−2 · { [�x3

i ] · [�x j (y j − z j )
2] − [�x2

k (yk − zk)]2 }︸ ︷︷ ︸
B

. (18)

Here, term A is a square and therefore A ≥ 0. To prove that B ≥ 0, set p2
i = x3

i and
q2

j = x j (y j − z j )
2, and therefore we obtain

B = [�p2
i ] · [�q2

j ] − [�pk qk]2 ≥ 0, (19)

as an immediate consequence of Cauchy–Schwarz’s inequality. As such, φ′′(t) ≥ 0,
due to the non-negativeness of xi , yi and zi .

Next, for B = 0 to hold in Eq. (19), there must exist a real number s such that
pi = s qi for all i , implying that xi = s (yi − zi ). When this happens, term A in
Eq. (18) becomes 0 as well. Combining with the initial condition xi = t yi + (1−t) zi ,
we have (s − t) yi = (s − t + 1) zi , i.e., the sequence yi and zi (and hence bi and ci )
must be linearly dependent to ensure that A = B = 0, resulting in φ′′(t) = 0. Hence
Lemma 2 is proven and that consequently proves Theorem 3. ��

The following theorem spells the condition for equality in Theorem 3 to hold.
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Theorem 4 In Theorem 3, σ f = σg + σh holds if and only if f is uniform and
f (x) = U(x |a, b), g(x) = U(x |a, c), h(x) = U(x |c, b) where a < c < b.

Proof To ensure that σ f = σg + σh , identities must hold in Eqs. (15) and (16).
In Eq. (15), identity in the first inequality is achievable only if µv1 = · · · = µvn .
Similarly, we must have µw1 = · · · = µwn . As for the second inequality in Eq. (15),
identity holds if and only if vi (x) = U(x | − ki , Ki ) and wi = U(x |Ki , ki ) for all
i . When this occurs, we have |µvi − µwi | = li + mi = ki (or µvi − µwi = ±ki )
for all i . The only possible solution is k1 = · · · = kn and K1 = · · · = Kn . Hence,
the necessary condition is that f is uniform with the prescribed decomposition. The
sufficient condition is trivial. ��

The results in this section can be summarized as follows: “The uniform density
is M-undecomposable. All other symmetric unimodal densities with finite second
moments are strictly M-undecomposable.”

5 Concept demonstrator of clustering multimodal densities

Example 3 (Multimodal density with 3 peaks) Let p be a probability density function
with the following functional form:

p(x) = 1

3
U(x |−3,−2)+ 1

3
U(x |−0.5, 0.5)+ 1

3
U(x |2, 3).

The standard deviation of p is computed as σp = √
4.25 > 2.061. One possible

decomposition pair {q, r} is q(x) = U(x |−3,−2) and r(x) = 0.5 U(x |−0.5, 0.5)+
0.5 U(x |2, 3). Computing standard deviations, we obtain σq = 1/

√
12 < 0.289

and σr = √
79/48 < 1.283, yielding σq + σr < 1.572 < σp. Therefore, p is

M-decomposable. Figure 4 depicts the densities of p, q and r .

It is not necessary to stop here. One of the components, r , is againM-decomposable.
One possible decomposition pair {r1, r2} for r is r1(x) ≡ U(x |−0.5, 0.5) and r2(x) ≡
U(x |2, 3). Computing standard deviations, we have σr1 + σr2 = 1/

√
3 < σr . There-

fore, the original density p can be expressed as a mixture of three densities in the form
of

p(x) = 1

3
q(r)+ 1

3
r1(x)+ 1

3
r2(x).

Here, all three modes are recovered simply by rewriting M-decomposable densities
as mixtures of “simpler” densities. This “toy” example demonstrates the possibility
of applying M-decomposability to mode-finding, which forms a natural criterion to
cluster analysis.

6 Concluding remarks

In this paper, the concept of M-decomposability is introduced. A probability density
function f is defined to be M-decomposable if one can rewrite f as a two-component
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Fig. 4 Densities p, q, r shown in Example 3; denoted by solid, dotted and broken lines respectively

mixture such that the sum of the standard deviations of the components is less than
the standard deviation of f . Otherwise f is M-undecomposable. In general, multi-
modal densities are M-decomposable (see Example 3) and unimodal densities are
M-undecomposable.

The main theoretical result of this paper (Theorem 3) says that all symmetric unimo-
dal densities with finite variances are M-undecomposable. This result encompasses
a wide class of densities, including Gaussian, logistic, Laplace, Von Mises, Student-t ,
uniform and many other artificial densities. Theorem 3 implies the existence of a cer-
tain inherent minimality in symmetric unimodal densities in statistics, making it a
theoretically justificable basis for mode-finding and cluster analysis.

Intuitively, one expects all unimodal densities to be M-undecomposable. However,
a counterexample given in Example 2 shows that unimodality alone is not sufficient
to imply M-undecomposability. To be rigorous, symmetric unimodality in Theo-
rem 3 provides a sufficient but not necessary condition for M-undecomposability.
For practical purposes, densities which are approximately symmetric unimodal are
probably M-undecomposable, though a rigorous proof may be difficult.

As mentioned earlier, one possible usage of the results in this paper is cluster-
ing and mode-finding. By imposing a weak assumption of approximate symmetric
unimodality on clusters or modes, one can use M-undecomposability as a criterion for
cluster analysis. This is because if f is M-undecomposable, then from Theorem 3, f
cannot be symmetric unimodal. Furthermore, it is possible to express f as a two-com-
ponent mixture, each component having a much smaller standard deviation. Example 3
demonstrates the concept of non-parametric clustering or mode-finding. One is able
to find the modes of a trimodal density without assumptions of the functional forms
of modes. Future work in this area should include the extension of M-decomposabil-
ity to d-dimensions (d > 1) and application of M-decomposability in scientific and
engineering fields, e.g., clustering and machine learning, among others.
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