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monopole operator superfield which we use to formulate the additional supersymmetries as

internal symmetries of the N = 6 superspace constraints. From the invariance conditions

of these constraints we derive a system of superspace constraints for the proposed monopole

operator superfield. This constraint system defines the composite monopole operator su-

perfield analogously to the original N = 6 superspace constraints defining the dynamics of

the elementary fields.
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1 Introduction

The construction of three-dimensional N = 8 superconformal field theories of Bagger-

Lambert-Gustavsson (BLG) [1, 2] has triggered an immense body of work on its relation

to the dynamics of multiple M2-branes. While manifest N = 8 supersymmetry singles out

a unique theory with gauge group SO(4), it has been proposed in [3] that N M2-branes

located on a C
4/Zk singularity are described by a matter coupled U(N) × U(N) Chern-

Simons theory of level ±k with manifest N = 6 supersymmetry, the ABJM model. For

level k = 1, 2 the expected enhancement to N = 8 supersymmetry is proposed to rely on

the existence of monopole or ’t Hooft operators.

The purpose of this paper is to develop an N = 6 superspace approach for the formu-

lation and classification of three-dimensional N = 6 theories, to recover the known models

in this formalism and to analyze the structure of the N = 8 supersymmetry enhancement

of the ABJM model by monopole operators by deriving a system of superspace constraints

for these operators.

– 1 –



J
H
E
P
1
0
(
2
0
1
0
)
0
8
0

Previous superspace formulations of the ABJM model include the off-shell formulations

in N = 2 [4] and harmonic N = 3 superspace [5, 6], the N = 6 formulation of [7] based

on pure spinors and some results in on-shell N = 6 superspace announced in [8]. In

the work presented here, we formulate and analyze the N = 6 superspace constraints for

general three-dimensional gauge theories. The matter sector is described by a complex

scalar superfield Φi transforming in the fundamental representation of the SU(4) ∼ SO(6)

R-symmetry group. The gauge sector is described by a vector superfield which is an

SU(4) singlet. These superfields are subject to appropriate constraints to restrict the field

content and we study the possible couplings of the gauge and matter superfields. In close

analogy to the structure of N = 8 superspace constraints which we have worked out in [9],

the set of consistent N = 6 theories can be parametrized by a hermitean SU(4) tensor

W i
j , which is a function of the matter superfields subject to the following concise SU(4)-

projection conditions:

∇α ijW
k
l

∣∣∣
64

= 0 , W i
j · Φ

k
∣∣∣
36

= 0 ,

which will be explained in detail in the main text. The N = 6 superspace formulation

implemented here is necessarily on-shell, so that pure superspace geometrical considera-

tions of the multiplet structure determine the dynamics of the system in terms of super-

field equations of motions. These can be expressed in terms of the tensor W k
l and its

super-derivatives.

We give an explicit class of solutions to the above conditions which describe the su-

perconformal model with gauge group U(N) × U(Ñ ). We work out the superfield and

component field equations and show that the latter reproduce the results of [3, 10–12].

The superspace formulation that we present here provides a setting which allows the study

of possible generalizations of these models and the determination of quantum corrections

(to the e.o.m.) through symmetry considerations and by the rigidness of the N = 6 super-

space, circumventing perturbation theory.

The N = 6 superspace formalism developed in this paper provides a suitable framework

for a closer analysis of the proposed supersymmetry enhancement in the ABJM model in

terms of monopole operators and a more explicit description of such operators. The basic

idea is to formulate the enhanced supersymmetry as an internal N = 2 supersymmetry of

the N = 6 superspace constraint equations rather than for the Lagrangian. The additional

susy is thus an infinitesimal symmetry of the equations of motions, a typical situation for

hidden symmetries. By starting from a general ansatz for the additional supersymmetry

transformations in terms of monopole operators, we analyze their compatibility with the

above superspace constraints and deduce the full set of superspace constraints for these

operators. While we leave a detailed analysis of this system to future work let us stress

that in contrast to previous approaches [14] this system does not involve any additional

conditions on the elementary fields of the theory.

We analyze two different situations. First we study the case of a covariantly constant

monopole operator, an assumption which was also made in the ordinary space-time ap-

proach of [13, 14]. We prove that under this assumptions monopole operators exist only

in the case that the gauge group is U(2) × U(2) and recover the superspace version of
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the result given in [13]. We argue on generals reasons that susy enhancement based on

this particular operator ceases to exist in the quantum theory. Next we relax the assump-

tion of covariant constancy and derive a system of superspace constraints for the proposed

monopole operator which does not impose any apparent restrictions on the dimension of

the gauge group.

Eventually, this system of superspace constraints should lead to space-time equations

of motion for the composite monopole superfield, in analogy to our superspace analysis for

the elementary superfields. These space time e.o.m. for the composite monopole superfield

might then describe the dynamics of a theory dual to the ABJM model, in the sense of the

three-dimensional mirror symmetry [15]. This would finally be a nonabelian gauge theory

analogon of the explicit duality relations for two-dimensional soliton models [16, 17].

The paper is organized as follows. In section 2 we review our conventions for N = 6

superspace and superfields. Section 3 is devoted to an analysis of the gauge sector of three-

dimensional theories and presents the superfield constraints to be imposed on the super

field strength in order to properly restrict the field content and dynamics. We introduce

deformations of the free Chern-Simons constraint which are parametrized by a hermitean

SU(4) tensor W i
j. In section 4, we describe the free matter sector and the interactions

induced by minimal coupling to the gauge sector which are parametrized by the tensor

W i
j . In particular, we derive the full set of consistency constraints which this tensor must

satisfy. We derive the explicit component equations of motion for general W i
j and discuss

their equivalence to the superfield constraints.

In section 5 we classify the conformal solutions to these consistency constraints. We

work out the full set of field equations and show that they reproduce the ABJ model with

gauge group U(N) × U(Ñ) . Section 6 finally addresses the issue of supersymmetry en-

hancement of the ABJM model by monopole operators. After a detailed discussion of the

general properties of such operators we start from the general ansatz for the additional

supersymmetry transformations in terms of the monopole operators and derive the consis-

tency conditions that are implied by compatibility with the superspace constraints derived

in the earlier sections. We show that for covariantly constant monopole operators these

conditions necessarily imply N = Ñ = 2. For covariantly non-constant monopole operators

and general N we derive the full system of superspace constraints for these operators and

their super-derivatives.

Note added: while finishing this work the paper [18] appeared on the arXiv which

analyzes in a complementary approach some of the questions which are addressed also in

the current investigations.

2 N = 6 superspace setup

We briefly introduce the basic setup and our conventions for the N = 6 superspace calculus.

For more explicit details see the appendix. The R-symmetry group of the N = 6 susy

algebra is SO(6) ∼ SU(4), where we will use the SU(4) notation throughout the paper.

The N = 6 superspace R
2,1|12 is parametrized by coordinates (xαβ , θα ij), α, β = 1, 2

– 3 –
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and i, j = 1, . . . , 4, where xαβ is a real symmetric matrix and the fermionic coordinates

θα ij = θα [ij] are in the real 6 of SU(4), i.e. they satisfy the reality property

(θα ij)∗ =
1

2
ǫijklθ

α kl =: θα
ij . (2.1)

With the fermionic derivative ∂α ijθ
β
kl = 1

2ǫijklδ
β
α we define the susy covariant derivatives

and the susy generators as the operators,

Dα ij = ∂α ij + iθβ
ij∂αβ , Qα ij = ∂α ij − iθβ

ij∂αβ , (2.2)

respectively, such that {Dα ij , Qβ kl} = 0 and {Qα ij, Qβ kl} = −{Dα ij ,Dβ kl} = −iǫijkl ∂αβ .

For the formulation of gauge theories we introduce connections, i.e. covariant deriva-

tives, on the considered superspace in the following way:

∇αβ = ∂αβ + Aαβ with (Aαβ)† = −Aαβ ,

∇α ij = Dα ij + Aα ij with (Aα ij)
† =

1

2
ǫijklAα kl . (2.3)

The connection one-forms live in a Lie algebra g and are expanded1 as Aαβ = AM
αβTM

and Aα ij = AM
α ijiTM in terms of the anti-hermitian generators (TM )† = −TM of the

yet unspecified gauge group G. The connection (2.3) defines a super field strength via

(anti)commutators minus torsion terms, whose components are

Fαβ,γδ = [∇αβ ,∇γδ] , Fαβ,γ ij = [∇αβ ,∇γ ij] ,

Fα ij,β kl = {∇α ij,∇β kl} − iǫijkl∇αβ . (2.4)

A given field strength has to satisfy the Bianchi identities, which are simply obtained from

the super-Jacobi identities for the covariant derivatives:2

∑

cyclic

[∇α ij , {∇β kl,∇γ mn}] ≡ 0 ,
∑

cyclic

(−1)π{∇α ij, [∇β kl,∇γδ]} ≡ 0 ,

∑

cyclic

[∇ρ ij, [∇αβ ,∇γδ]] ≡ 0 ,
∑

cyclic

[∇αβ, [∇γδ ,∇ρσ]] ≡ 0 . (2.5)

These identities will lead to consistency conditions for the constraints to be imposed on

the super field strength.

In addition to super gauge fields we will need matter superfields. The N = 6 matter

component multiplet (φi, ψα i) consists of scalar and fermion fields in the 4 and 4̄ of SU(4),

respectively. Accordingly we introduce complex bosonic and fermionic matter superfields

Φi, Ψα i transforming in the representation R of the gauge group which when indicate carry

an upper index from the range a, b, c, . . . . The complex conjugated fields

(Φi a)∗ =: Φ̄i a , (Ψa
α i)

∗ =: Ψ̄i
α a , (2.6)

1We include in general an extra i in such expansions for fermionic superfields in the gauge sector so that

the coefficient superfields satisfy reality conditions corresponding to their SU(4) representations. See the

appendix for more details.
2The exponent π in the second identity counts the cyclic permutations where (anti)commutators are

distributed corresponding to the occurrence of bosonic/fermionic connections
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transform in the representation R̄ and carry a lower gauge index, as indicated here. How-

ever, frequently we will not write the gauge indices explicitly.

In the following sections we will impose constraints on the superfields and investigate

the resulting dynamics.

3 Gauge field constraints

We closely follow the methods developed in [9] for the N = 8 case.3 To eliminate un-

physical degrees of freedom one imposes (partial) flatness conditions on the bi-spinor field

strength [21–24], which is Fα ij,β kl here. In many cases this corresponds to an underly-

ing geometric structure of twistors and pure spinors [23–26]. The bi-spinor field strength

in (2.4) contains the representations4

Fα ij,β kl ∼ ((2,6) ⊗ (2,6))sym = (3,1) ⊕ (1,15) ⊕ (3,20), (3.1)

where the first entry refers to the SO(2, 1) and the second entry to the SU(4) representation.

The SU(4) representations 6 carried by Fα ij,β kl are the real 6 and consequently also the

SU(4) representations appearing on the r.h.s. of (3.1) are the real 15 and 20.5

The (3,1) part in (3.1) corresponds to a second component vector field in the super-

field expansion of Aα ij with the same gauge-transformation as the lowest component of

Aαβ . Setting this part to zero imposes the so-called “conventional constraint” [29, 30] for

the three-dimensional N = 6 case and eliminates this additional component vector field.

Putting further constraints on Fα ij,β kl, in contrast, will not only eliminate component

fields, but also induce equations of motion for the remaining fields. We shall analyze this

in more detail now.

In analogy to [9] we allow the (1,15) in (3.1) to be non-vanishing but set the (3,1) ⊕

(3,20) part to zero (a non-vanishing (3,20) part may be taken into account for studying

higher derivative corrections). Given the definition (2.4) this constraint writes as6

{∇α ij,∇β kl} = i
(
ǫijkl∇αβ + εαβ ǫmij[kW

m
l]

)
, (3.2)

where W i
j is an SU(4) tensor transforming in the real 15 of SU(4) and lives in the Lie

algebra g of the yet unspecified gauge group G. It is therefore traceless (W i
i = 0) and

satisfies the hermiticity conditions

(W i
j)

† = W j
i , (3.3)

3For other N = 8 superfield approaches which specifically describe the BLG model using Nambu-brackets

and pure spinors see [19, 20]
4 Decompositions of tensor products of representations can be computed with the program LiE [27] or

found in [28].
5Reality conditions can be implemented for representations whose Dynkin labels are self-conjugated

under (r, s, t) → (t, s, r), i.e. if r = t. This is the case for the 15 and 20 (denoted 20
′ in [28]) which have

Dynkin labels (1, 0, 1) and (0, 2, 0). In the appendix we give the reality conditions for the tensors appearing

in the following.
6For the symmetry properties of the second term on the r.h.s. see (B.15).
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where W i
j is expanded in the gauge algebra as W i

j = WM i
jTM , see the appendix for more

details. A priori W i
j is an independent superfield but we will see that eventually it will

be a function of the matter superfields (2.6), i.e. W i
j = W i

j(Φ
k,Ψα l). In this regard we

will call W i
j the deformation potential since it represents a deformation of the constraint

Fα ij,β kl = 0 for which the resulting multiplet contains exclusively a free Chern-Simons

component gauge field, i.e. a flat connection on R
2,1, see below.

Bianchi identities. For the constraint (3.2) to be consistent W i
j cannot be chosen

arbitrarily but is itself subjected to certain conditions so that the Bianchi identities (2.5) are

satisfied. The immediate nontrivial conditions on the superfields are given by the first two

Bianchi identities in (2.5), which involve the constrained bi-spinor field strength Fα ij,β kl.

Using the constraint (3.2) the first Bianchi identity imposes the condition

ǫijklFαβ,γ mn + ǫmnijFγα,β kl + ǫklmnFβγ,α ij =

εβγ∇α ijW
p
[m ǫn]klp + εγα∇β klW

p
[i ǫj]mnp + εαβ∇γ mnW

p
[k ǫl]ijp . (3.4)

Decomposing l.h.s. and r.h.s. of this equation according to their SU(4) representation con-

tent, one deduces that solvability requires the representation 64 to vanish within the the

tensor product ∇α ijW
k
l ∼ 6 ⊗ 15 = 6 ⊕ 10 ⊕ 10 ⊕ 64. It also implies the existence

of superfields λα ij = λα [ij] in the real 6, i.e. (λα ij)
† = 1

2ǫ
ijklλα kl, and ρα ij = ρα(ij) in

the complex 10, i.e. (ρα ij)
† =: ρ̄ ij

α ∼ 10, such that the superderivative ∇α ijW
k
l satisfies

the condition

∇α ijW
k
l

∣∣∣
64

= 0

=⇒ ∇α ijW
k
l = δk

[i λαj]l +
1

4
δk
l λα ij + δk

[i ραj]l −
1

2
ǫijln ρ̄

kn
α . (3.5)

This constraint will play a central role in the following. If we consider W i
j as a function

of the matter fields of the theory, this composite superfield must satisfy (3.5) in order for

the system (3.2) to be consistent. The Bianchi identity (3.4) then fixes the fermionic field

strength Fαβ,γ ij to

Fαβ,γ ij = −
1

2
εγ(αλβ) ij . (3.6)

Before investigating the residual Bianchi identities let us assume that we have picked

a W i
j(Φ

k,Ψα l) satisfying (3.5). The integrability condition of (3.5) is then identically

fulfilled and determines the superderivatives of the composite fields λα ij and ρα ij ,

∇α ijλβ kl = iǫijklFαβ + 2i∇αβW
m

[kǫl]ijm + 2iεαβV
m

[kǫl]ijm ,

∇α ijρβ kl = −i∇αβW
m

(kǫl)ijm + iεαβV
m

(kǫl)ijm + Uαβ
m

(kǫl)ijm

+ i εαβ

(
1

2
ǫijmn [Wm

k,W
n

l] +
1

2
ǫmij(k [W n

l),W
m

n]

)
, (3.7)

up to the space-time vectors and scalar Fαβ , Uαβ
i
j and V i

j. The vector (Fαβ)† = −Fαβ

is an anti-hermitian SU(4) singlet, whereas the other two tensors transform in the real
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15 of SU(4) thus satisfying a hermiticity condition as given in (3.3). Comparing the

equations (3.7) with the second Bianchi identity

∇α ijFγδ,β kl + ∇β klFγδ,α ij = i(ǫijklFγδ,αβ + εαβ∇γδW
m

[k ǫl]ijm) , (3.8)

and using (3.6), shows that it is identically fulfilled upon setting the vector Fαβ = εγδFαγ,βδ ,

which thus equals the dual bosonic field strength. With this identification one obtains that

the integrability condition of the first equation in (3.7), besides determining ∇α ijV
k
l,

equals the third Bianchi identity in (2.5).

Super Chern-Simons e.o.m. With a chosen deformation potential W i
j(Φ

k,Ψα l) the

derived superfields λα ij , ρα ij , etc. are given functions of the matter superfields. In par-

ticular, the first equation of (3.7) together with (3.5) gives the following Chern-Simons

equations of motion for the bosonic field strength:

Fαβ =
1

24 i
ǫijkl∇ij (αλβ) kl =

1

15 i
∇ik

(α∇β) jkW
j
i, (3.9)

which for W i
j = 0 reduces to the free CS-e.o.m. A priori, with (3.9) the fourth Bianchi

identity in (2.5), which takes the form

∇αβFαβ = 0 , (3.10)

might give rise to yet another condition. Evaluating the l.h.s. of (3.10) with Fαβ given

by (3.9) shows that this Bianchi identity is also identically satisfied without any further

conditions and thus (3.5) automatically defines a covariantly conserved current, the r.h.s.

of (3.9).

Consequently, with a given choice for the deformation potential W i
j which satisfies

the constraint (3.5) all Bianchi identities are identically fulfilled upon imposing the CS

equations of motion (3.9), the fermionic field strength is given by (3.6). Therefore (3.5)

represents the only restriction on the choice of the deformation potential W i
j(Φ

k,Ψα l) for

the gauge field constraint (3.2) to be consistent. We will address the issue of component

field equations and their equivalence to the constraint (3.2) at a later point when we have

discussed the matter sector which couples non-trivially to the gauge sector.

4 Matter field constraints

The N = 6 matter multiplet (φi, ψα i) consists of scalar and fermion component fields in the

complex 4 and 4̄ of SU(4), respectively. It is therefore natural to encode this multiplet in

a scalar superfield Φi in the 4 to be subjected to appropriate constraints. At first order in

θα jk this superfield contains a fermionic component χ i
α kl which decomposes into irreps as

4 ⊗ 6̄ = 4̄ ⊕ 20. The super- and gauge-covariant way to project out the 20 in accordance

with the field content is to impose the condition

∇α ijΦ
k
∣∣∣
20

= 0 =⇒ ∇α ijΦ
k = i δk

[iΨj]α , (4.1)
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with a fermionic superfield Ψα i in the 4̄, which is defined by this equation. Explicitly this

gives7 χ k
α ij = i δk

[iΨj]α|θ=0 =: i δk
[iψj]α .

In the following we derive the consequences implied by combining (4.1) with the vec-

tor superfield constraint (3.2). Using the latter, the integrability condition of (4.1) takes

the form

ǫijkl∇αβΦm + εαβ ǫnij[kW
n

l] · Φ
m = −∇α ijΨβ [kδ

m
l] −∇β klΨα [iδ

m
j] , (4.2)

where W i
j ·Φ

k denotes the action of the algebra valued W i
j onto the scalar superfield. This

poses an algebraic constraint on the deformation potential W i
j since the unpaired 36 in

W i
j · Φ

k ∼ 15 ⊗ 4 = 4 ⊕ 20⊕ 36 (4.3)

does not drop out of equation (4.2). Explicitly this constraint writes as

W i
j · Φ

k
∣∣∣
36

= 0 ⇐⇒ W (i
j · Φ

k) =
1

5
δ
(i
j W

k)
n · Φn , (4.4)

and thus the deformation potential has to be a function of the matter fields, as mentioned

before. In addition to the super-differential constraint (3.5) this algebraic constraint will

be the main restriction on the possible choices for the deformation potential W i
j(Φ

k,Ψα l),

which fixes the details of the dynamics. In the following we will refer to these two con-

straints (3.5) and (4.4), which determine the set of possible models, as the W -constraints,

as in the N = 8 case [9].

With the condition (4.4) the integrability condition (4.2) can be resolved to determine

the superderivative ∇α ijΨβ k:

∇α ijΨβ k = −2ǫijkl∇αβΦl +
1

2
εαβ

(
ǫijmnW

m
k · Φn +

3

5
ǫijklW

l
n · Φn

)
, (4.5)

The analogous equations of this subsection for the complex conjugated fields (Φi)∗ =:

Φ̄i and (Ψα i)
∗ =: Ψ̄i

α are obtained by complex conjugation. The necessary relations and

conventions are given in the appendix.

Superfield e.o.m. The integrability conditions of (4.5) together with the gauge field

constraint (3.2) and the various constraint relations and Bianchi identities yield the fermion

superfield e.o.m. for Ψα i,

εβγ∇αβΨγ i =
i

2
λαij · Φ

j −
i

10
ραij · Φ

j −
1

5
W j

i · Ψα j . (4.6)

Its superderivative gives the bosonic superfield e.o.m. for Φi:

∇2Φi =
1

4
εαβ

(
λij

α · Ψβ j +
1

5
ρ̄ij

α · Ψβ j

)

+
2

5
V i

j · Φ
j +

1

25
W i

j · (W
j
k · Φk) −

1

20
W j

k · (W k
j · Φ

i) . (4.7)

7Here we anticipate that Aα ij |θ=0 = 0, i.e. we omit the term ǫijlmAα lm · Φk|θ=0. This will be justified

below.
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The check that no other integrability relations descend from (4.6) requires the double

superderivative of the algebraic constraint (4.4). By virtue of the same constraint one can

recast the scalar self-interaction involving W i
j in different forms. Equations (4.6), (4.7)

together with the Chern-Simons equation (3.9) for the field strength constitute the complete

set of superfield e.o.m.

Superfield expansion and equivalence to component e.o.m. We briefly discuss the

component content of the so far developed superspace expressions. This was explained in

detail in [9] for the N = 8 case and we can be rather short here and refer to [9] for more

details. The very same structure and methods as in [9] apply mutatis mutandis to the

N = 6 case considered here.

An essential ingredient in the derivation of component expressions and the proof of

the equivalence between the on-shell component multiplet and the superspace constraints

is the so called “transverse gauge”. It allows one to formulate recursion relations for the

superfield expansion of various expressions, explicitly

θα ijAα ij = 0 ⇒ R := θα ij∇α ij = θα ij∂α ij , (4.8)

so that the recursion operator R satisfies R(θα1i1j1 . . . θαninjn) = n θα1i1j1 . . . θαninjn .

This method was developed in [31, 32] for super Yang-Mills theories, where all su-

perfields have a geometric origin in a (higher dimensional) vector superfield. The cases

considered here and in [9] lead to modifications due to that fact that the matter super-

fields are not in this sense geometrically related to the vector superfields and especially

due to the constraints on the deformation potential W i
j , which is otherwise not specified

at this point.

Contracting the constraints (4.1), (4.5), (3.2) with θα ij and the Bianchi identity (3.6)

with θγ ij one obtains the recursion relations

RΦi = iθαijΨα j ,

RΨβ k = −4θα
kl∇αβΦl +

(
θβ mnW

m
k · Φn +

3

5
θβ klW

l
n · Φn

)
,

(1 + R)Aβ kl = 2i(θα
klAαβ + θαm[kW

m
l]) ,

RAαβ =
1

2
θγ ijεγ(αλβ)ij . (4.9)

These recursion relations define the order n + 1 in θ of the l.h.s. expressions in terms of

the order n in θ of the expressions on the r.h.s. Therefore all superfields are expended in

terms of the lowest component fields8

φi := Φi|θ=0 , ψα i := Ψα i|θ=0 Aαβ := Aαβ|θ=0 , (4.10)

which represent the N = 6 CS-matter component multiplet (note that (4.9) implies that

Aα ij has no component at θ = 0). Consequently, the lowest component of the superfield

e.o.m. (3.9) and (4.6), (4.7) gives automatically the e.o.m. for these component fields.

8The composite fields W i
j and λα ij are given functions of the matter fields Φi, Ψα i and thus their

lowest components are functions of the here given component multiplet.
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It is a general feature of this approach, that many equations can be considered as

component field expressions but are at the same time superfield expressions and thus

automatically susy covariant. There is no need to check supersymmetry via component

field susy transformations. Nevertheless, the component susy transformations are easily

obtained by acting with the susy operators Qα ij (2.2) on the superfields expanded to order

O(θ) (modulo restoring supergauge transformations, see [9] for details). As a matter of fact

the situation is even simpler. The recursions (4.9) actually resemble the component susy

transformations. By replacing in (4.9) RΦi, RΨα i, RAαβ with the susy transformations

of the component fields, i.e. δφi, δψα i, δAαβ , and all fermionic coordinates θα ij on the r.h.s.

with susy-parameters ǫα ij one directly obtains the susy transformations for the component

multiplet (4.10).

This shows that the basic constraints (4.1), (3.2) imply the on-shell component multi-

plet (4.10) with respective susy transformations. To prove that these two descriptions are

actually equivalent, i.e. that the superspace constraints do not imply any further condi-

tions, one has to show that the on-shell component multiplet implies superfields satisfying

the given constraints. We will not outline this here but refer the reader to [9] where the

proof was given for the N = 8 case, to convince oneself along the same lines that the same

is true for the here considered N = 6 case.

5 Conformal gauge theories, ABJM

We start by reviewing the structure of superspace constraints identified so far. The matter

sector of these three-dimensional gauge theories is described by a scalar superfield subject

to the constraint (4.1)

∇α ijΦ
k
∣∣∣
20

= 0 . (5.1)

The full theory is then identified by specifying their gauge algebra g and by choosing

W i
j(Φ,Ψ) in (3.2) as a function of the matter superfields of the theory. This choice of

the deformation potential W i
j is not arbitrary but must satisfy two independent superfield

conditions, the W -constraints (3.5) and (4.4):

∇α ijW
k
l

∣∣∣
64

= 0 , (5.2)

W i
j · Φ

k
∣∣∣
36

= 0 . (5.3)

The first equation requires that the deformation potential W i
j depends on the matter fields

in such a way that (5.2) is satisfied as a consequence of (5.1). In contrast, equation (5.3)

also explicitly contains the action of the gauge group on the matter fields and will thus put

further restrictions on the possible gauge groups.

5.1 Conformal deformation potentials

In the following we explicitly indicate the gauge group structure. The matter superfields Φi,

Ψα i are taken to transform in some representation R (which we denote by an upper index
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from the range a, b, . . .) of the to be specified gauge group G. They are thus denoted by Φi a,

Ψa
α i, whereas the superfields of the gauge sector, which are in the adjoint representation,

are represented as matrices Aαβ
a
b etc. and act by matrix multiplication on the matter

fields. The complex conjugated matter fields transform in the conjugate representation R̄

and thus carry a lower index, see (B.10).

The constraint (3.2) implies that the composite field W i
j has canonical dimension

one. Given that the scalar fields in three dimensions have canonical dimension 1
2 , scale

invariance implies that with a polynomial ansatz W i
j is bilinear in the scalar superfields9

Φi a. The most general ansatz in the 15 of SU(4) is given by

(W i
j)

a
b := fac

bd

(
Φi dΦ̄j c −

1

4
δi
j Φk dΦ̄k c

)
(5.4)

with dimensionless constants fac
bd. The potential (W i

j)
a
b is supposed to be the matrix

that acts on fields in the representation R. The hermiticity condition (3.3) requires that

(fac
bd)

∗ = f bd
ac. By construction W i

j has to be an element of the Lie algebra g of G,

therefore gauge covariance requires that fac
bd is an invariant tensor of the gauge group.

Before specifying further the allowed gauge groups G and representations R we check the

the W -constraints (5.4), (5.2).

It is straightforward to see that (5.4) is a solution to (5.2) as a consequence of (5.1):

since ∇α ijW
k
l is composed of a single Φi and a single Ψ̄j

α (or their complex conjugates)

it transforms in the tensor product 4 ⊗ 4 = 6 ⊕ 10 and the c.c. thereof, which does not

contain a 64 . To solve the algebraic constraint (5.3) we evaluate the action of (5.4) on a

scalar field and extract the contribution 36 (4.4):

(W i
j · Φ

k)a
∣∣
36

= fac
bd

(
δl
jΦ

i(bΦd)k −
2

5
δ
(i
j Φk)(bΦd)l

)
Φ̄l c . (5.5)

This shows that the tensor fac
bd has to be antisymmetric in its indices [bd] and thus by

complex conjugation also in its upper indices [ac], i.e.

fac
bd = f

[ac]
[bd] . (5.6)

Interestingly, this solution to the W -constraints occupies all of the allowed SU(4)

representation content, i.e. W i
j · Φk ∼ 4⊕ 20. This differs from the conformal solution in

the N = 8 case, where W · Φ has no component in the allowed 8 of SO(8) [9].

What are the restrictions on the gauge group G and the representation R ? Since

W i
j ∈ g, gauge covariance translates into the quadratic condition [33]

(fac
bd f

dg
eh − f gc

hd f
da
eb) + (f ca

ed f
dg
bh − f ga

hd f
dc
be) = 0 , (5.7)

which can be obtained by comparing W i
j ·W

k
l evaluated as commutator and by the action

of W i
j on the scalars in W k

l, respectively. This condition is identical with the fundamental

9This dimensional analysis excludes a possible dependence on the fermionic superfields Ψα i, which

have dimension one, for a polynomial ansatz. Higher order corrections with non-polynomial deformation

potentials allow for more possibilities.
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identity of (hermitean) three-algebras [34, 35] and shows how our result is related to this

structure. We will not elaborate on this point, but rather make a more definite statement:

Writing the Lie algebra valued deformation potential as (W i
j)

a
b = WM i

j(TM )ab and using

the hermiticity condition for fac
bd and that it is an invariant tensor one obtains

fac
bd →

L⊕

l=1

1

g(l)
κMN

(l) T
(l)
M

a
b T

(l)
N

c
d , (5.8)

where we assumed a product G = G1 × . . .×GL for the gauge group. The quantities κMN
(l)

are the inverse of κ
(l)
MN = TrR(T

(l)
M T

(l)
N ) for each factor in the gauge group and g(l) are so

far arbitrary constants.

This very same expression with the antisymmetry conditions given in (5.6) was classi-

fied in a beautiful analysis in [12]. The allowed groups are U(N)×U(Ñ), SU(N)× SU(N)

with matter fields in the bifundamental representation and g(1) = −g(2) =: g, as well as

U(N), Sp(N) with matter in the fundamental representation. most of the time we will ex-

press our results in a more compact notation using the symbol fac
bd. Of particular interest

will be the U(N) × U(Ñ) case for which we give here the solution [12] and we also indi-

cate how to translate the compact notation into the explicit U(N)×U(Ñ ) notation. Every

gauge index encountered so far becomes a double index of the bifundamental representation

R = (N, Ñ) as follows:

Φi a → Φi a
ã , Φ̄i

b → Φ̄i b̃
b, etc. ,

fac
bd →

1

g

(
δa
d δ

c
b −

1

N
δa
b δ

c
d

)
δb̃
ã δ

d̃
c̃ −

1

g
δa
b δ

c
d

(
δb̃
c̃ δ

d̃
ã −

1

Ñ
δb̃
ã δ

d̃
c̃

)

+
1

g

(
1

N
−

1

Ñ

)
δa
b δ

c
d δ

b̃
ã δ

d̃
c̃ =

1

g

(
δa
d δ

c
b δ

b̃
ã δ

d̃
c̃ − δa

b δ
c
d δ

b̃
c̃ δ

d̃
ã

)
. (5.9)

The first expression for fac
bd gives the explicit decomposition according to the contri-

butions of the different group factors. The first two terms are su(N) ⊗ 1 and 1 ⊗ su(Ñ)

whereas the third term depicts the respective u(1) contributions. As one can see, for

Ñ = N the u(1) factors cancel and SU(N) × SU(N) is contained as a special case in (5.9)

and cannot be distinguished from U(N) × U(N) on the basis of the tensor fac
bd. Also the

case U(N) is contained as a special case by setting the range for the tilded indices Ñ = 1.

In the last equality we collect the terms in a more compact form.

We have thus classified all conformal N = 6 gauge theories. We want to emphasize that

this classification is more complete than previous ones in the sense that we did not have

to assume that the theory descends from a particular N = 2 theory [3]. This is a genuine

N = 6 classification. Our result is in accordance with a complementary approach [36],

where possible scattering amplitudes for conformal N = 6 theories where studied, also

without any reference to a particular theory with less susy. We would also like to mention

that parts of the structure developed here were already discussed in [8].

We will now evaluate the general expressions derived in the previous sections for the

conformal deformation potential (5.4).
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5.2 Superfield equations and lagrangian

To obtain the explicit form of the superfield e.o.m. one first needs the composite fields ap-

pearing in (4.6), (4.7) and (3.9) for the deformation potential (5.4). They can be extracted

from (3.5) and the first equation in (3.7):

λα ij =
4

5
∇αk[iW

k
j] , ρα ij =

2

3
∇α k(iW

k
j) , V i

j = −
i

8
ǫiklm∇α klλ

α
mj . (5.10)

The explicit expressions, evaluated for (5.4) are given in the appendix (B.18). Inserting

these in (4.6), (4.7) and (3.9) gives the superfield e.o.m. for the superconformal theories

classified above. For the Chern-Simons (3.9), the fermionic (4.6) and the bosonic (4.7)

equations of motions one obtains:

Fαβ
a
b =

1

2
fac

bd

(
Φk d∇αβΦ̄k c −∇αβΦk dΦ̄k c +

i

2
Ψd

k (αΨ̄k
β) c

)
, (5.11)

εβγ∇αβΨa
γ i =

1

4
fac

bd

(
Ψb

α i(ΦΦ̄)dc − 2(ΨαΦ)bd Φ̄i c − ǫijklΦ
j bΦk dΨ̄l

α c

)
,

∇2Φi a = V i a
bos +

+
i

4
εαγfac

bd

(
(ΦΨα)bd Ψ̄i

γ c −
1

2
Φi b(ΨαΨ̄γ)dc +

1

2
ǫijklΦ̄j cΨ

b
αkΨ

d
γ l

)
, (5.12)

where (ΦΦ̄)dc = ΦdkΦ̄k c etc. is short for contracted SU(4) indices. The dual field strength

Fαβ
a
b is the matrix in the representation R acting on fields Φi a, for example. Under the

identification (5.9) with R = (N, Ñ) it thus decomposes as

Fαβ
a
b → Fαβ

a
b δ

b̃
ã − δa

b F̃αβ
ã
b̃ . (5.13)

and the covariant derivative, also acting in the bifundamental representation, is given by

∇αβΦi a
ã = ∂αβΦi a

ã + Aαβ
a
bΦ

i b
ã − Φi a

b̃ Ãαβ
b̃
ã . (5.14)

The self-interaction in the scalar field e.o.m., V i a
bos, is a derivative of the

bosonic potential

V i a
bos = −

1

4

(
fac

hdf
dg
eb −

1

2
f ca

edf
dg
bh

)
(ΦΦ̄)ec(ΦΦ̄)hgΦ

i b . (5.15)

We can now integrate back these e.o.m. to obtain the Lagrangian from which they can

be derived. To make contact with the existing literature we write space-time vectors for

the bosonic part in the vector notation, see appendix D. The result is:

LABJM = − tr∇µΦi∇µΦ̄i −
i

4
tr Ψ̄α i∇αβΨα

i − Vbos + LYuk

− 2 g εµνλ tr

(
Aµ∂νAλ +

2

3
AµAνAλ − Ãµ∂νÃλ −

2

3
ÃµÃνÃλ

)
, (5.16)
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where Aµ, Ãµ are the gauge fields (in vector notation) as given below (5.11). The sextic

bosonic potential writes as

Vbos =
1

24

(
fac

hdf
dg
eb −

1

2
f ca

edf
dg
bh

)
(ΦΦ̄)ec(ΦΦ̄)hg(ΦΦ̄)ba

= −
1

48g2
tr (ΦiΦ̄iΦ

jΦ̄jΦ
kΦ̄k + Φ̄iΦ

iΦ̄jΦ
jΦ̄kΦ

k

+ 4ΦiΦ̄jΦ
kΦ̄iΦ

jΦ̄k − 6ΦkΦ̄iΦ
iΦ̄kΦ

jΦ̄j) , (5.17)

and the Yukawa interaction written in the compact notation is

LYuk =
i

8
εαγfac

bd

{
(ΦΨα)bd (Φ̄Ψ̄γ)ac −

1

2
(ΦΦ̄)ba(ΨαΨ̄γ)dc

+

(
1

4
ǫijkl Φ

i bΦj dΨ̄k
α aΨ̄

l
γ c − c.c.

)}
, (5.18)

where we again indicated summed SU(4) indices by parentheses. In lowest order in the θ

expansion these expressions reproduce the component Lagrangians of [3, 10, 11].

Consistency of the quantum theory requires the gauge invariance of exp(iSCS) and

thus determines the coupling constant to be

g =
k

8π
with k = 1, 2, . . . , (5.19)

where we used that our anti-hermitian Lie-algebra generators, given below (5.13), are

normalized as tr(TMTN ) = −1
2 δMN and tr(T̃M̃ T̃Ñ ) = −1

2 δM̃Ñ . Here we also assumed

that there are no contributions from boundary terms in the gauge transformation of the

CS-action [37]. We will comment on this in the following section.

The Lagrangian (5.16) is formally written in superspace. If the superfield equations

imply the constraint equations this Lagrangian would provide an off-shell superspace for-

mulation at least in the sense that on-shell the field content describes the ABJM model.

Independently of this formal observation, the superfield expansions (4.9) implies that the

lowest component in the θ-expansion of this Lagrangian gives directly the ABJM La-

grangian and that the lowest component of the superfield equations (5.11), (5.12) give the

associated component equations or vice versa, respectively. We emphasized already that

in our formalism the superfield expressions are often formally identical to their component

field counterparts. This fact will be convenient also in the following sections.

6 N = 8 enhancement, monopole operators

6.1 General properties of monopole operators

With the formulation of the ABJM model and its proposed AdS/CFT duality relation

to M2 branes sitting at the singularity of C
4/Zk it was also argued that for CS-coupling

k = 1, 2, supersymmetry should be enhanced to N = 8 and that monopole operators might

play a crucial role in this enhancement [3]. Before we implement this structure into our

formalism we discuss some general properties of these monopole operators.
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Monopole operators were first introduced by ’t Hooft for 3D- and 4D- gauge theories

to define an alternative criterion for confinement [38]. Therefore monopole operators are

often called ’t Hooft operators.10 We rephrase here some of the illustrative arguments given

in [38]. The basic idea of ’t Hooft was to introduce an operator that creates/annihilates

topological quantum numbers, i.e. magnetic fluxes. For solitons (monopoles, vortices) it

is known that the associated fields can be written as pure gauge configurations which are

singular at the position of the soliton. Following this observation one can define an operator

that acts as a gauge transformation Ω[x0](ϕ) ∈ G which is singular at the insertion point

x0, ϕ is the spatial angular coordinate with center x0. Such gauge transformations have

a nontrivial monodromy (winding), given by a center element of the gauge group G, for

example if G = SU(N):

Ω[x0](2π) = e2πi n/N Ω[x0](0) , e2πi n/N ∈ Z(G) , (6.1)

with n being an integer. Such a prescription defines an operator whose action can be

described in a Hilbert space basis |Ai(~x),H(~x)〉, which are eigenstates of the (spatial)

gauge field operator Âi and matter field operators Ĥ (e.g. Higgs field, etc.) with given

eigenvalues Ai(x) and H(x). The so defined monopole operator is then given by

M(x0)|Ai(~x),H(~x)〉 = |AΩ[x0]

i (~x),HΩ[x0]
(~x)〉 , (6.2)

where AΩ[x0]

i (~x), HΩ[x0]
(~x) are the fields obtained by the gauge transformation described

in (6.1). From this representation it is clear that that the monodromy (6.1) requires the

matter fields denoted by H to be invariant under the center Z(G) of the gauge group, for

example to transform in the adjoint representation. Otherwise the states obtained by the

action of the monopole operator (6.2) are multi-valued and the monopole operator cannot

be defined directly in this way. For Z(G)-invariant matter it was shown in [38] that this

prescription defines a local operator and that the class of gauge transformations which

have nontrivial monodromy (6.1) in case that the insertion point is encircled and trivial

monodromy otherwise is generated by the Cartan subalgebra. Further it was shown in [38]

that operator insertion of such kind can be described as the prescription of appropriate

singularities in the elementary fields when integrated in the path integral (also for Z(G)

variant matter).

It turns out to be a general method to define local operators by requiring the elementary

fields in the path integral to have certain singularities at the insertion point, a point

of view very much appreciated in [39]. In a CFT , such as the ABJM model, one has

in addition the operator-state correspondence, so that local operators can be described

(in radial quantization) by states corresponding to the specified boundary conditions of

the elementary fields. Monopole operators are understood as singularity prescriptions

in the gauge field11 which create magnetic U(1) flux embedded in the gauge group under

consideration. With this understanding one can compute perturbatively quantum numbers

(expectation values) for these operators by simply expanding the quantum fields around the

10Though the concept of ’t Hooft operators is more general, as they might also be non-topological [39].
11For symmetry reasons also the matter fields might have corresponding singularity prescriptions.
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specified singularities. This was done for different models in [40–42], whereas considerable

effort was necessary to circumvent the problem of strong coupling in the ABJM model [43,

44]. This procedure is in complete analogy to quantum computations for solitons, where

the theory under consideration is quantized in a soliton background and posses surprising

effects, see [45–47] for example.

The explicit prescription for monopole operator insertion in a three-dimensional gauge

theory is as follows. The gauge field is supposed to have a Dirac monopole singularity at

the insertion point, i.e

AN/S =
H

2

±1 − cos θ

r
dϕ , (6.3)

such that it produces magnetic flux in a U(1) subgroup through a sphere surround-

ing the insertion point in three dimensions.12 Hence such an operator prescription cre-

ates/annihilates topological quantum numbers. It was shown in [48] (for static monopoles

in 4D gauge theories which is equivalent to the situation considered here) that H has to

satisfy the quantization condition e2π i H = 1G and therefore is an element of the Cartan

subalgebra t ⊂ g of the form H = diag(q1, . . . , qN ). The integers qi are the fluxes in

the U(1) subgroups. The GNO charges Lw = (q1, . . . , qN ), form a highest weight state

of the GNO - or Langlands dual group LG, where Weyl-reflection can be used to choose

q1 ≥ . . . ≥ qN , see also [39, 49]. Therefore monopole operators are classified by irreps of

the dual gauge group LG and come in representations specified by the highest weight Lw.

In the presence of a Chern-Simons term with CS-level k the GNO charges are of the

form qi = k ni, with integers ni, as will be seen in a specific situation below. Taking also into

account that L(G1 ×G2) = LG1 ×
LG2 and that U(N) is selfdual, i.e. LU(N) = U(N) one

finds that for the U(N)×U(Ñ) ABJM model monopole operators are in the representation

(Lw, Lw̃) with qi = k ni and q̃i = −k ñi. In the following, monopole operators of the form

Mab
ãb̃

are of particular interest, i.e. we choose13 Lw̃ = Lw, the conjugate representation.

Then one has the possible weights

Lw = (2, 0, . . . , 0) and Lw = (1, 1, 0, . . . , 0) , (6.4)

the associated representations have Young tableaux and [51, 52]. The first weight

in (6.4) is possible for k = 1, 2 with n1 = 2, 1 and the associated monopole operator is

in the (N2
sym, N̄

2
sym) representation, whereas the second weight allows only for k = 1 with

n1 = n2 = 1 and the monopole operator is in the (N2
asym, N̄

2
asym) representation.

The prescription given above defines operator insertions which create topological quan-

tum numbers, i.e. magnetic fluxes. Such a prescription is very different from the definition

of a local (composite) operator as a polynomial local function of the elementary fields and

in general such a description will not be available. Nevertheless it would be of great in-

terest to have a more explicit formulation for such operators, especially with regard to the

12The signs correspond to N-/S-pole of the surrounding sphere. The surrounding sphere and the as-

sociated flux quantization, see below, may be best understood in the euclidean setting or in the radial

quantization picture, where R
3 → S2 × R.

13Due to the dynamics of the ABJM model the fluxes Lw, Lw̃ have to satisfy certain constraints, see

e.g. [50] which is the case with the here given choice which also implies Ñ = N .
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conjectured dualities between different gauge theories. It is believed that such dualities

have the same origin as for example the well understood duality between the sine-Gordon

and massive Thirring model [16, 17] which arises from reformulating the model in terms

of local operators which are non-polynomial non-local functionals of the elementary fields

and create topological quantum numbers. So far such an explicit formulation for higher

dimensional (D > 2) (nonabelian) gauge theories has not been found. In three dimensions

such a duality is mirror symmetry, which was first proposed in [15].14 In the following we

give a step in the direction of an explicit description of such dual degrees of freedom in

terms of monopole operators. The reason why this is possible is susy enhancement which is

supposed to be triggered by monopole operators and thus results in very specific conditions

which allow to specify these operators to a certain extent.

Before implementing monopole operators into the structure of superspace constraints

we mention an example where monopole operators can be constructed explicitly [37, 53, 54],

without going into details. For this we come back to idea of singular gauge transformations

as described in the beginning of this section. In the case of pure Chern-Simons theory

(perhaps with matter invariant under the center Z(G)) one can define an operator insertion

by defining a singular gauge transformation at the (spacial) insertion point. This carves

out a tube of space time and as mentioned below (5.19), the CS-action has boundary

contributions from a gauge transformation which gives a nonvanishing contribution for

singular gauge transformations even if the tube shrinks to zero. This change in the action

can be interpreted as an operator insertion. For G = U(N) this operator is a Wilson line

of the form,

M(x) =
1

d(R)
P exp

(
−

∫ x

∞
AR

)
. (6.5)

Here d(R) is the dimension of the representation R in which the connection A is given

and the highest weight of R is wR = kwfund with wfund being the highest weight of

the fundamental representation N of U(N). Under gauge transformations M transforms

as R(g)(x)MR(g−1)(∞) and thus w.r.t. genuine gauge transformations (g(∞) = 1) the

monopole operator transforms in the (Nk
sym) representation. Due to the special dynamics

of pure CS-theory this operator is local, i.e. it depends only on the endpoint of the path,

but this construction does not work in the case charged matter is present. However, the

principal structure is an appealing guideline.

Monopole operator superfields. In the following we investigate the possible super-

symmetry enhancement of the N = 6 ABJM model to N = 8 supersymmetry for the

gauge groups U(N)×U(Ñ) with a priori arbitrary N, Ñ ≥ 2. We start from our basic de-

scription of the model through the superspace constraints (4.1), (3.2) with the deformation

potential (5.4). The principle idea is to realize the additional N = 2 susy as infinitesimal

internal fermionic symmetry of the superspace constraints. The superspace description is

on-shell, and thus any additional supersymmetry obtained in this way will be, a priori,

an (infinitesimal) symmetry of the classical e.o.m. only. This is a situation well known

14Another example is S-duality for N = 4 SYM and it was shown recently that ’t Hooft and Wilson

operators are related under under S-duality [39, 49].
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from two dimensional models with hidden symmetries, or even in four dimensions [55].

Nevertheless, there should exist currents associated with the hidden symmetry which are

conserved on-shell, i.e. dynamically. We assume the existence of a (composite) monopole

operator superfield to be able to formulate these additional symmetries and derive super-

space constraints which this operator has to satisfy in order to obtain susy enhancement.

In the following it will be convenient to use the more compact notation as employed

before, with a single index labelling the matter field representation R. Only when necessary

translate the expressions to the explicit notation as described in (5.9). The starting point

is the transformation behaviour for the bosonic superfield under the additional supersym-

metry, which we define as follows:

δΦi a := ǫαMab Ψ̄i
α b , δΦ̄ i a := −ǭαM̄ab Ψb

α i (6.6)

where ǫα is a complex anti-commuting constant spinor and Mab =: (M̄ab)
∗ is the proposed

monopole operator superfield. It is supposed to be a local composite superfield but in

general non-polynomial in and a nonlocal functional of the elementary superfields. It is

necessary that the superfields Φi transform into superfields Ψ̄i
α to obtain a transformation

different from the original N = 6 susy. Therefore one has to assume the existence of a

monopole operator so that the transformation (6.6) is gauge covariant.

Taking the canonical dimension for the new susy parameter to be the standard one, i.e.

[ǫα] = [θα ij ] = −1
2 , one sees that the monopole operator has canonical dimension zero, i.e.

[Mab] = 0. Given that the monopole operator should have canonical dimension zero and

that the extra susy should commute with the SU(4) R-symmetry (the susy parameter ǫ is

an SU(4) singlet), the transformation rule (6.6) is the only conceivable one. As a matter of

fact, this is the only ansatz that we make, all other relations will be derived. This clearly

shows the effectiveness of the formalism developed here.

As mentioned, the monopole operator has to compensate the different gauge trans-

formation properties of the elementary fields in (6.6), which for the non-abelian part of

the gauge group determines the representation (indices) it carries. In addition, for possi-

ble gauged U(1) factors the monopole operator has to carry appropriate U(1) charges so

that (6.6) is gauge covariant. We will discuss this point in more detail below.

6.2 U(2) × U(2): fake monopole operators

Having defined the transformations for the bosonic superfields we have to determine

the transformations of the residual elementary superfields such that the superfield con-

straints (3.2), (4.1) are invariant under these transformations. This will necessarily impose

also conditions on the monopole operator superfield. In this subsection we will assume

that the monopole operator is covariantly constant, an assumption which has been consid-

ered also in [13] and [14]. We will show that this eventually restricts the gauge group to be

U(2)×U(2) (or SU(2)×SU(2)). Later we will relax this condition and derive superspace con-

straints for the monopole operator without any obvious restriction on the dimension/rank

of the gauge group. The main point is that we do not allow any additional condition on

the elementary component or superfields of the theory, i.e. for Φi,Ψα i,Aα ij ,Aαβ, since
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this would change the theory. This is a major difference to the considerations in [14] where

numerous nontrivial conditions (called “identities”) are imposed on the elementary fields.

While finding nontrivial solutions for these conditions represents a formidable task the very

presence of such conditions inevitably changes the original model.

Matter constraint. We first consider the matter constraint (4.1) which for the trans-

formation of the fields reads
{
∇α ijδΦ

k + δAα ij · Φ
k
} ∣∣

20

!
= 0 . (6.7)

Thus one has to define δAα ij such that for the given transformation δΦk (6.6) the 20

contribution in the product 6̄ ⊗ 4 = 4̄ ⊕ 20 in (6.7) vanishes. The remaining part, trans-

forming in the 4̄ defines the enhanced susy transformation of the fermionic superfield Ψα i,

see (4.1). Explicitly one finds with the complex conjugate of (4.5),

δAα ij
a
d Φk d − ǫβ

(
∇α ijM

ab Ψ̄k
β b − ǫαβ Mabf ce

bd Φ̄i cΦ̄j eΦ
k d

)
!
∼ 4̄ , (6.8)

where we have used that for the conformal deformation potential (5.4) (W k
[i · Φ̄j])b =

f ce
bd Φ̄i cΦ̄j eΦ

k d, up to terms transforming in the 4̄.

At this point we impose the condition that the monopole operator is

covariantly constant,

∇α ijM
ab = 0 . (6.9)

Covariant constancy is defined here with respect to the fermionic covariant derivative. We

will discuss in a moment the implications of the integrability conditions of (6.9) and show

that as a consequence the monopole operator is also covariantly constant w.r.t. the bosonic

covariant (super) derivative. Imposing (6.9) it seems to be trivial to choose δAα ij such

that the invariance condition for the matter constraint (6.8) is satisfied, but there is an

additional obstacle. The transformation of the gauge superfield Aα ij has to conserve the

reality condition (2.3), so that

δAα ij
a
d = ǫα (M· f)a,ce

dΦ̄i cΦ̄j e +
1

2
ǭα εijkl(M̄ · f)d,ce

aΦk cΦl e , (6.10)

where we introduced the abbreviation (M · f)a,ce
d := Mabf ce

bd and analogously for the

complex conjugate expression. The first term in (6.10) is determined by the invariance

condition (6.8) whereas the second term is necessary to obey the reality condition (2.3).15

Inserting the transformation (6.10) back into the invariance condition (6.8) results in the

following condition:

(M̄ · f)d,ce
aΦk cΦl eΦk d !

∼ 4̄ ⇔ (M̄ · f)d,ce
a !

= (M̄ · f)[dce]
a . (6.11)

With the explicit solution (5.9) for fab
ce and employing the explicit notation of (5.9) for the

monopole operator one finds a unique solution to this condition:

N = Ñ = 2 and M̄ãb̃
ab ∼ εãb̃εab . (6.12)

15There is still the freedom to add a term δÃα ij for which one has to assume that it satisfies δÃα ij ·Φ
k

˛̨
20

=

0, but such a term does not play a role in the following considerations. We will comment on this in the

succeeding section when we consider covariant non-constant monopole operators.
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The only other possibility is the trivial case N = Ñ = 1. Before we discuss the possible

proportionality factor for the monopole operator in (6.12) we investigate the invariance

of gauge field constraint (3.2). Here we just notice, that the monopole operator (6.12)

transforms in the (N2
asym,N

2
asym).

Gauge field constraint. We have now defined the enhanced susy transformation for

the scalar and fermionic vector superfields Φi,Aα ij (and for the fermionic superfield Ψα i,

though we did not write it explicitly), such that the matter constraint is invariant with

a covariantly constant monopole operator. This imposed the restrictions (6.12) on gauge

group and the monopole operator. The invariance of the gauge field constraint (3.2) requires

∇α ij δAβ kl + ∇β kl δAα ij
!
= i (εijkl δAαβ + εαβεmij[k δW

m
l]) , (6.13)

where δWm
l is the susy transformation of the conformal deformation potential (5.4) ob-

tained from the transformation of the scalar superfields (6.6). Inserting the transforma-

tion (6.10) and using the matter constraint (4.1) one obtains for the transformation of the

bosonic super vector field

δAαβ
a
d =

1

2
(M · f)a,ce

d Φ̄k c ǫ(αΨ̄k
β)e +

1

2
(M̄ · f)d,ce

a Φk c ǭ(αΨe
β)k , (6.14)

where we have used the conditions (6.9), (6.12) for the monopole operator and did not

encounter any further restrictions.

SU(2) × SU(2): the assumption that the monopole operator is covariant constant re-

sulted in the restriction16 N = Ñ = 2 and the particular form for the monopole operator

as given in (6.12). For the gauge group SU(2)×SU(2) there is no local U(1) transformation

which has to be compensated by the operator Mab in the transformation rules (6.6), (6.10)

and (6.14) so that the proportionality factor in (6.12) is an arbitrary number which can be

absorbed in the susy parameter ǫ. Thus one has

Mab
ãb̃

= εabεãb̃ . (6.15)

Clearly this “operator” is covariantly constant, i.e. satisfies (6.9), and the gauge field con-

straint (3.2) is consistent with the fact that this SU(2)×SU(2) invariant is also covariantly

constant w.r.t. the bosonic covariant derivative. This is not a monopole operator in the

sense discussed above (it does not create any magnetic flux), but rather shows that for the

gauge group SU(2)×SU(2) the supersymmetry is “kinematically” enhanced to N = 8. This

case actually describes the BLG model [1–3]. In [56] a SU(2) × SU(2) formulation of the

BLG model with manifest SO(8) R-symmetry was given but at the cost of an additional

condition on the matter fields, which reads for the scalar fields as εãb̃ X̄
I b̃

a ε
ab = XI b

ã,

I = 1, . . . 8, and similar for the fermions. In the equivalent formulation of ABJM, as given

16The mentioned trivial solution N = eN = 1 refers to the U(1)×U(1) case which was considered in detail

in [3] and [13]. The considerations become become rather trivial in this case since fac
bd = 0 for U(1)×U(1).
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here, no such constraint is present, but therefore the manifest R-symmetry is only SU(4).

The fields in the two different descriptions are related as follows,

Φi a
b̃ = Xi a

b̃ + iXi+4 a
b̃ , Φ̄i

b̃
a = X̄i

b̃
a − i X̄i+4

b̃
a , i = 1, . . . , 4 , (6.16)

which shows that the ABJM formulation resolves the mentioned condition at the price of

loosing manifest SO(8) R-symmetry according to

SO(8) → U(1) × SU(4) (6.17)

with remaining manifest SU(4) R-symmetry. Furthermore, in the case of an U(2) × U(2)

gauge group the U(1) factor in (6.17) is also gauged. This is the case that we discuss next.

U(2)×U(2): the U(1) sectors of the the Lagrangian (5.16) are of a very particular form.

The bifundamental action of the covariant derivative (5.14) implies that the matter fields

couple exclusively to the difference of the two U(1) gauge fields,17

Abar
αβ =

1

2
(trAαβ − trÃαβ) , (6.18)

where the superscript “bar” stands for baryonic. Thus the U(1) factor described in (6.17)

is the baryonic U(1)b gauge symmetry. The matter fields (Φi,Ψi) have U(1)b charge +1

while the c.c. thereof have U(1)b charge −1. Denoting the opposite combination of the

U(1) gauge fields, i.e. the diagonal U(1) in U(2)×U(2), by Adiag
αβ = 1

2(trAαβ + trÃαβ), the

U(1) sector of the CS-Lagrangian in (5.16) writes as

dVolL
U(1)
CS = −

k

4π
(Abar ∧ dAdiag + Adiag ∧ dAbar) . (6.19)

The gauge field Adiag appears only at this place and its variation imposes a flatness con-

dition for the baryonic U(1) connection. Explicitly, the e.o.m. (5.11) for the U(1) sectors

write as

∗ Fbar = 0 ,
k

2π
∗ Fdiag = −jbar , (6.20)

where jbar is the current associated with the U(1)b symmetry. It has been shown in several

places, e.g. [3], that the diagonal U(1) field strength Fdiag = dAdiag which appears as a

Lagrange multiplier (up to a surface term) in (6.19) can be considered as a fundamental

field and treated in for a dual 2π-periodic scalar τ , such that the flatness condition for the

baryonic connection is expressed as Abar = 1
kdτ .

From the point of view of the classical dynamics the U(1) factors are irrelevant, only

the baryonic connection Abar couples to the matter but due to its flatness it can be gauged

away locally. The “dynamics” of the diagonal field strength (6.20), appearing as a Lagrange

multiplier, is just the attachment of magnetic “flux” in the diagonal U(1) factor to the

“electric” U(1)b current, an effect well known in the presence of a CS-field [57]. This e.o.m.

17In accordance with our normalization of the generators, see below (5.19), the U(1) generators are given

by T 0 = i√
2N

1 with N = 2 in the considered case.
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implies that magnetic flux and U(1)b charge obey a Dirac-quantization condition according

to (see also footnote 12)

k

2π

∫

S2

Fdiag = k n =

∫

S2

∗jbar = qbar , (6.21)

which is understood to be read for the lowest component of the superfield expressions.

Though dynamically irrelevant the gauged U(1) factors have an important impact on the

moduli space of the theory, in particular on the possible vacua in the quantum theory. The

additional identification due to the U(1) gauge symmetry reduces the naive moduli space

C
4 to the orbifold C

4/Zk [3].

We now describe the effect for the monopole operator of the just discussed U(1) fac-

tors. In the case that the gauge group is U(2) × U(2) the operator (6.15) cannot be

the whole answer, it is neither covariantly constant nor does it carry the right U(1)b
charge. One therefore sets Mab

ãb̃
= Tεabεãb̃, so that covariant constance implies for the

allowed (6.12) pre-factor

∇α ijM
ab
ãb̃

= 0 ⇒ Dα ijT + 2Abar
α ij T = 0 . (6.22)

The integrability condition for this equation gives with the gauge constraint (3.2)

∇αβM
ab
ãb̃

= 0 ⇒ ∂αβT + 2Abar
αβ T = 0 , (6.23)

where for the particular form of Mab
ãb̃

the conformal deformation potential (5.4) does not

give any contribution. Thus also in the U(2) × U(2) case covariant constance w.r.t to the

fermionic connection implies covariant constance in the usual sense. This in fact results

in yet another integrability condition, i.e. the existence of non-trivial solutions to (6.23)

requires Fbar = 0, which is satisfied due to the e.o.m. (6.20).

Solutions to equations of the form (6.22), (6.23) are given by local, i.e. path in-

dependent, Wilson lines which are abelian here. To implement this in superspace an

unimportant but necessary little formality has to be introduced. The super connec-

tions AA = (Aαβ,Aα ij), as usual in supersymmetric theories, is defined w.r.t to the

non-holonomic basis DA = (∂αβ ,Dα ij). The relation to the holonomic coordinate basis

∂M = (∂αβ , ∂α ij) is given by a super vielbein, i.e. ∂M = eM
ADA. For more details on

superspace Wilson lines see [58]. For the purpose of the present consideration, there is no

need to go into further detail.18 The solution to (6.22), (6.23) is then given by

T (x, θ) = exp

{
− 2

∫ τx

τ∞

dτ żM (τ) eM
AAbar

A (z(τ))

}
, (6.24)

where zM (τ) = (xαβ(τ), θα ij(τ)) is a path in superspace with zM (τx) = (xαβ , θα ij) being

the insertion point and otherwise to be specified in a moment. The lowest component of

the superfield T is just an ordinary Wilson line, i.e. T |θ=0 = e−2
R

C A. In this form the

superfield T satisfies the equation

żM eM
A(DA T + 2Abar

A T )τ=τx = 0 , (6.25)

18For completeness, the super vielbein is given by eM
A =

"
δ

γ

(αδδ
β) 0

−iθ
(δ
ij δ

γ)
α δγ

αδkl
ij

#
.
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and under a U(1)b super-gauge transformation δAbar
A = −1

2DA(tr Ω − tr Ω̃) =: −DAΩbar

behaves as

T → e 2 (Ωbar(τx)−Ωbar(τ∞)) T . (6.26)

The requirement that equation (6.25) implies (6.22), (6.23) is equivalent to the requirement

that the operator T is local, i.e. T = 1 for any closed path and thus żM can be arbitrary.

This is guaranteed by the e.o.m. (6.20) which implies the already below (6.23) mentioned

integrability condition. The requirement that the monopole operator has U(1)b charge 2,

so that the transformation (6.6) is gauge covariant, requires that xαβ(τ∞) → ∞ so that

the monopole operator has charge +2 under genuine gauge transformations for which then

Ωbar(τ∞) = 0, a structure similar to (6.5).

We thus have for the U(2) × U(2) model the monopole operator superfield

Mab
ãb̃

= T (x, θ) εabεãb̃ , (6.27)

with T given in (6.24). At zero order in θ this agrees with the result of [13]. The obtained

monopole operator is in the (N2
asym,N

2
asym) representation, a puzzling fact as we discuss in

a moment. In [13] it is also argued that this monopole operator exists for k = 1, 2, but our

general discussion below (6.4) indicates that it exists actually only for k = 1. The criterion

given in [13] is perhaps not specific enough.

One may ask if covariant constancy w.r.t. the super-derivative (6.9) is a stronger (or

too strong) requirement compared to covariant constancy w.r.t. the bosonic connection, as

it was implemented in an ordinary space-time approach in [13]. To answer this question

we look at the proposed enhanced R-symmetry current [44, 52]. Employing the compact

notation the enhancement current of [44, 52] can be promoted to a superfield expression

in the form

J ij
αβ = iM̄ab

{
2Φa[i ∇αβ Φj]b −

1

4
εijkl Ψa

k(αΨb
β)l

}
. (6.28)

This current can be understood as the enhanced current superfield, with the enhanced R-

and susy-current at the lowest and first order in the θ expansion. For this current actually

representing new symmetries it has to be conserved (on-shell). Under the assumption that

the monopole operator is covariantly constant w.r.t. to the bosonic (or ordinary space-time)

connection this requirement leads to the same condition as given in (6.11) for two inde-

pendent reasons. First, using the e.o.m. (5.12) one finds that the current is conserved only

if (6.11) is satisfied. Second, ∇αβM
ab = 0 implies an integrability condition for the bosonic

field strength, which together with the e.o.m. (5.11) again leads to the condition (6.11).

Therefore it is clear that the assumption of a covariantly constant monopole operator is

consistent only for U(2) × U(2) gauge group.

However, as mentioned before the monopole operator (6.27) gives rise to a puzzle.

The current (6.28) is a dimension 2 conformal primary and thus as a vector has to be

conserved in a unitary CFT . For this to be true the monopole operator has to have

dimension zero, also in the quantized theory. This was proved in [44] for the case of a

monopole operator in the (N2
sym,N

2
sym), i.e. corresponding to the first weight in (6.4).

Further it was argued in [52] that with such a monopole operator one can form the 20
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missing dimension 1 operators to match the SUGRA spectrum on S7 for k = 1. Given that

there is an monopole operator in the (N2
asym,N

2
asym) representation (6.27), this would mean

that one would double the number of enhancement currents (6.28). Further, one could build

additional dimension 1 operators of the form Φ̄iMΦ̄j and their complex conjugates, which

would give additional (too many) 10 + 10 states. We therefore assume that the dimension

of the monopole operator (6.27) is not protected and therefore is not connected to susy

enhancement in the full theory. We therefore call this operator in the context of susy

enhancement “fake monopole operator”.19

6.3 U(N) × U(N): monopole operator superspace constraints

We have shown in the previous section, that the assumption that the monopole operator

is covariantly constant is too restrictive. We now relax this assumption and derive su-

perspace constraints for the (composite) monopole operator superfield, analogously to the

formulation of the constraint equations for the matter and vector superfields (4.1), (3.2),

such that the supersymmetry is enhanced to N = 8 without any restriction on the rank of

the gauge group factors.

Matter constraint. We again start from our basic and only assumption, the transforma-

tion rule for the bosonic superfield (6.6) which leads to the invariance condition (6.7), (6.8)

for the matter constraint. Invariance of the matter constraint, equ. (6.7), implies that the

ǭ-part of enhanced susy transformation for the fermionic connection δAα ij has to satisfy

an algebraic condition whereas the ǫ-part can now be absorbed in the super-derivative of

the monopole operator. Explicitly we have the algebraic condition

δAα ij
a
d = δǫAα ij

a
d +

1

2
εijkl[δǫAα ij

d
a]

∗ with
1

2
εijkl[δǫAα ij

d
a]

∗ Φk d !
∼ 4̄ , (6.29)

where the first equation implements the reality condition (2.3).

We now solve the algebraic condition (6.29) and then determine the super-derivative

of the monopole operator superfield. To this end we introduce a structure, which will be

extremely useful following, in terms of the determinant of mesonic operators:

Xi
j := tr ΦiΦ̄j = Φi aΦ̄j a , |X| := det(Xi

j) . (6.30)

The mesonic operators Xi
j form a hermitian matrix and transform in the (4, 4̄) under

the R-symmetry SU(4). We collect a number of curious relations which are needed in the

following in the appendix C. For the understanding of the main text we introduce here

a part of this structure, where we use the abbreviations ∂i a := ∂
∂Φi a and ∂̄i a := ∂

∂Φ̄i a
in

the following. First, with the help of the determinant of the mesonic operators one can

translate an SU(4) index of any quantity into the SU(4) index of a scalar superfield, i.e.

Oi|X| = Φi a Oj ∂j a|X| and Oi|X| = Φ̄i a Oj ∂̄
j a|X| . (6.31)

19We want to mention however, that monopole operators in the (N2
asym,N2

asym) representation were

considered in the context of mass deformations of the ABJM model [51]
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Second, we introduce the hermitian projection operators

Fa
b :=

1

|X|
Φi a ∂i b|X| =

1

|X|
Φ̄i b ∂̄

i a|X| and Pa
b := δa

b −Fa
b , (6.32)

which have the properties

F · F = F , P · P = P , P · F = 0 and F · Φi = Φi , P · Φi = 0 , (6.33)

where the gauge indices are contracted in an obvious way, indicated by a dot. The last two

identities have a hermitian conjugated counterpart for the fields Φ̄i. In these definitions

appears the inverse of the mesonic determinant |X|. For generic configurations this is a

well defined superfield, only for isolated points in the field configuration space it might be

singular. In general we allow such operators in our considerations. The field configurations

where these operators become singular might be of special interest but we leave this question

for future studies.

With the introduced structure we can write down the general solution for the algebraic

constraint (6.29). According to (6.29) there exists a (composite) superfield G a
αβ m in the 4̄

of SU(4) such that

[δǫAα ij
d
a]
∗ Φk d = ǭβ εijkm |X| G a

αβ m , (6.34)

where for convenience we pulled out a factor |X|, which is pure convention (c.f. the remarks

above regarding the existence of the inverse |X|−1). Transforming the index k on the r.h.s.

onto a scalar superfield according to (6.31) and using the projection operators (6.33) we can

write down the general solution to (6.34). Consequently, the enhanced susy transformation

of the fermionic connection is of the form:

δAα ij
a
d = ǫβ

(
εijmn ∂̄

m a|X| Ḡn
αβ d + Pa

cHαβ ij
c
d

)

+
1

2
ǫijkl ǭ

β
(
εklmn∂m d|X|G a

αβ n + Pc
d H̄

kl
αβ

a
c

)
, (6.35)

where following our general conventions Ḡn
αβ d = (G d

αβ n)∗ and Hαβ ij
c
d is a (composite)

superfield in the 6̄.

With this general solution to the algebraic part of the invariance condition (6.8) for the

matter constraint one obtains the following constraint for the monopole operator superfield:

∇α ijM
ab Ψ̄k

β b|20
=

(
εijmn ∂̄

m a|X| Ḡn
αβ dΦ

k d + Pa
cHαβ ij

c
dΦ

k d

+ εαβ(Mf)a,ce
d Φ̄i cΦ̄j eΦ

k d
)
|
20
, (6.36)

which defines the super-derivative monopole operator field (though contracted with the

fermionic superfield) up to a contribution in the 4̄, in terms of the yet unconstrained

composite superfields G and H. The unspecified 4̄ contribution combines with all the

other 4̄ contributions which were not written explicitly to the enhanced susy variation of

the fermionic superfield, see (4.1).
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A few comments are in order:

i.) Contrary to the previous case with a covariantly constant monopole operator now

there is no algebraic condition on the monopole operator at this stage. One might

think that the more general procedure presented here would also help for the case of

a covariantly constant monopole operator. In this case, equation (6.36) imposes an

algebraic condition on the superfields G, H and M which has no other obvious solu-

tion then the one considered in the previous subsection. In particular the invariance

of the gauge constraint cause further problems.

ii.) The composite superfields G and H are not further specified yet. The requirement

that the also the gauge field constraint (3.2) is invariant under the enhanced susy

will determine also the super-derivatives of these fields, and thus in combination

with (6.36) form a system of superspace constraints for the monopole operator su-

perfield. This is what we consider next.

iii.) To obtain the super-derivative for the monopole operator without being contracted

with the fermionic field one has to factor out a fermionic superfield in the whole

equation. This can be done in an obvious way for the composite fields G and H but

not for the monopole operator field itself without any further assumption/derivation

of the composite structure of the monopole operator. We leave this question for a

followup investigation, where we analyze the complete monopole operator constraint

system, which we develop here.

Gauge field constraint. To complete the invariance of our original constraint sys-

tem, (4.1), (3.2), the enhanced susy variations determined so far have to satisfy the in-

variance condition (6.13). In deriving the susy variation of the fermionic connection (6.35)

we demonstrated explicitly the principle methods which are needed. The derivations of the

following expressions, though more lengthy, work out in a similar way. All needed identities

involving the above introduced mesonic operators are given in appendix C.

Due to the properties under complex conjugation it is sufficient to consider the part of

the invariance condition (6.13) proportional to ǫ, the ǭ-part is then automatically satisfied.

Writing the enhanced susy variation of the bosonic connection as

δAαβ
a
b := ǫγBαβ,γ

a
b − ǭγ(Bαβ,γ

b
a)

∗ , (6.37)

so that it respects the reality condition (2.3) and Bαβ,γ = B(αβ),γ , the ǫ-part of the invari-

ance condition (6.13) writes as

∇α ijδǫAβ kl
a
b + ∇β klδǫAα ij

a
b =

i ǫγ
{
εijklBαβ,γ

a
b +

1

2
ǫαβ(Mf)d,ca

d (εm,ij[kΦ̄l]c − εm,kl[iΦ̄j]c) Ψ̄m
γ d

}
, (6.38)

– 26 –



J
H
E
P
1
0
(
2
0
1
0
)
0
8
0

where δǫAα ij
a
b is the ǫ-part in the enhanced susy variation given in (6.35). Explicitly, in

terms of the composite superfields G and H one finds

∇α ijδǫAβ kl
a
b + ∇β klδǫAα ij

a
b =

− ǫγ
{(

εijmn∂̄
m a|X|∇β klḠ

n
αγ b − i εijmnḠ

n
αγ bΨ

c
β[k∂l]c∂̄

m a|X| + i∇α ij(P
a
cHβγ kl

c
b)

+
(α
ij

)
↔

(β
kl

))
−
i

2
εijmn εklrs (Ḡn

αγ bΨ̄
r
β c − Ḡ r

βγ bΨ̄
n
α c) ∂̄

s c∂̄m a|X|

}
. (6.39)

The invariance condition (6.38), with the l.h.s. given by (6.39), has to be satisfied so

that also the gauge field constraint is invariant under the enhanced supersymmetry. This

defines superspace constraints for the composite fields G and H which together with (6.36)

form a constraint system for the monopole operator superfield Mab. We now extract the

constraints for the composite superfields G and H.

Contracting (6.39) with a scalar superfield Φ̄p a one obtains an equation which contains

only the super-derivative of the G-field, without any (non-invertible) field dependent pre-

factor. To achieve this one uses Φ̄p a∂̄
m a|X| = δm

p|X|, see appendix C, and further, that

with (6.33) and the matter constraint (4.1)

Φ̄p a∇α ij(P
a
cHβγ kl

c
b) = −

i

2
εijpqΨ̄

q
α a(P

a
cHβγ kl

c
b) . (6.40)

The resulting equation has a unique solution for the super-derivative of the G-field, which

is given by

∇α ijḠ
n
βγ b =

1

|X|

{
2 i δn

[iΦ̄j]aBαβ,γ
a
b +

i

2
εαβ(Mf)d,ce

b (δn
[iΦ̄j]cΦ̄m eΨ̄

m
γ d + Φ̄icΦ̄jeΨ̄

n
γ d)

+ i Ḡn
βγ bΨ

c
α[i ∂j]c|X| +

i

2
Ψ̄n

β c P
c
aHαγ ij

a
b

+
i

2
εijrs (Ḡn

βγ bΨ̄
r
α c − Ḡ r

αγ bΨ̄
n
β c) ∂̄

s c|X|

}
. (6.41)

Inserting this solution back into the original invariance condition (6.38) gives a superspace

constraint equation for the H-field:

Pe
a∇α ijHβγ kl

a
b|(3,1⊕20)⊕(1,15) =

Pe
a

{
i εijmn Ḡ

n
αγ bΨ

c
β[k ∂l]c ∂̄

m a|X| −
1

|X|
Ψa

α[i ∂j]c|X|Hβγ kl
c
b

−
i

2

(
εijklBαβ,γ

a
b + εαβ(Mf)d,ca

b εmij[kΦ̄l]cΨ̄
m
γ d

)}
|(3,1⊕20)⊕(1,15), (6.42)

which fixes the (3,1 ⊕ 20) ⊕ (1,15) content of the super-derivative of the H-field, but only

the projection onto the eigenspace of the projector Pe
a defined in (6.32).

The constraint equations for the G- and H- field (6.41), (6.42) together with the

constraint equation for the monopole operator M (6.36) define the constraint system for
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the monopole operator superfield. This constraint system was derived starting from a single

assumption, namely the transformation (6.6), and the requirement that this transformation

is part of the enhanced supersymmetry implemented as an internal fermionic (N = 2 super)

symmetry of our matter-gauge constraint system (4.1), (3.2).

At this stage we did not encounter any algebraic condition on the monopole operator

field M, as it is the case for a covariantly constant monopole operator and which allowed

only for the gauge group U(2) × U(2). Actually, we did not encounter any condition on

the gauge group yet, so in principle all gauge groups of the classification below (5.8) are

allowed. We expect that a further study of the monopole constraint system will select

the gauge group to be U(N) × U(N). The allowed CS-levels are in principle given by

the general analysis following (6.4). To see this condition explicitly one might have to

consider the operators, at least in principle, as quantum fields, as for example in the case

for the quantization condition of the CS-level itself. See also the discussion below (6.27).

In this regard we just want to mention that in the equations of the constraint system for

the monopole operator superfield, i.e. (6.41), (6.42) and (6.36), an (abelian)20 covariantly

constant operator can be factored out.

A number of things remains to be done. First one has to analyze the monopole superfield

constraint system (6.41), (6.42), (6.36) analogously to the procedure applied to the matter-

gauge constraint system as done in sections 4 and 5 and as it was presented in greater detail

in [9] for the N = 8 case. One has to see if it will be necessary to strip off the fermionic

field in equ. (6.36) and if so, if the analysis of the constraint system provides enough

information about the composite structure of the monopole operator field M to do so or

if further assumptions are necessary.

Second, we did not write down explicitly the enhanced susy transformation for the

fermionic superfield, which is given by all the 4̄ contributions in the invariance condition

of the matter constraint (6.7). Given the transformation rule for the fermionic superfield

one can check the algebra of the enhanced symmetry transformations which might give

additional information to specify the monopole operator superfield further.

We leave these points for a follow up investigation to the structure developed here.

Eventually, a detailed analysis of the here developed constraint system will lead also to

space-time e.o.m. for the composite monopole superfield, as we obtained the superfield

e.o.m (5.12) from the matter- and gauge constraint (4.1), (3.2). These space-time e.o.m.

for the composite monopole superfield might then describe the dynamics of a theory dual

to the ABJM model, in the sense of the three-dimensional mirror symmetry [15]. This

would finally be a nonabelian gauge theory analogon of the explicit duality relations for

two-dimensional soliton models [16, 17]. We will address these issues in future work.
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20Or a covariantly constant operator living in the eigenspace of the projector P
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A SO(6) ∼ SU(4) conventions

SO(6) Γ-matrices. Dirac spinors of SO(6) have eight components. The irreducible rep-

resentations are given by four component Weyl spinors (though SO(6) provides also Majo-

rana spinors). The Weyl representation of the hermitian SO(6) Γ-matrices is of the form

Γ̂I =

[
0 ΓI

Γ̄I 0

]
, (A.1)

where hermiticity implies Γ̄I = (ΓI)† and these matrices satisfy Γ(I Γ̄J) = δIJ
1. We denote

the components of these matrices by

ΓIij , Γ̄I
ij with i, j = 1, . . . , 4 . (A.2)

A particular representation which makes the relation to SU(4) transparent is given by [59]

Γ1 = σ2 ⊗ 12 Γ2 = −iσ2 ⊗ σ3 Γ3 = iσ2 ⊗ σ1

Γ4 = −σ1 ⊗ σ2 Γ5 = σ3 ⊗ σ2 Γ6 = −i12 ⊗ σ2 (A.3)

These matrices are anti-symmetric, i.e. ΓIij = −ΓIji and satisfy the reality condition

(ΓIij)∗ =
1

2
ǫijklΓ

Ikl = −Γ̄I
ij , (A.4)

further, the contractions satisfy

Γij
I Γ̄I

kl = −4δij
kl , Γij

I ΓIkl = 2ǫijkl , (A.5)

where δi1...in
k1...kn

= δ
[i1
k1
. . . δ

in]
kn

and the totally antisymmetric epsilon symbol is defined as

ǫ1234 = ǫ1234 = 1 so that

ǫi1...inj1...jD−nǫi1...ink1...kD−n
= (D − n)! n! δ

j1...jD−n

k1...kD−n
, (A.6)

with D = 4 in this case. This is all that wee need of Γ-matrix relations to show how SO(6)

representations are related to SU(4) representations. The main text is formulated in terms

of SU(4) representations thus avoiding any explicit Γ-matrix relations.

SU(4) representations. The SO(6) generators write with (A.1) as

Σ̂IJ :=
1

2
[Γ̂I , Γ̂J ] =

[
ΓIJ 0

0 Γ̄IJ

]
, (A.7)

where the irreducible 4 times 4 blocks

ΓIJi
j := Γ[IikΓ̄

J ]
kj , Γ̄IJ

i
j := Γ̄

[I
ikΓ

J ]kj, (A.8)

satisfy tr ΓIJ = 0 and (ΓIJ)† = −ΓIJ = ΓJI , with the same relations for Γ̄IJ . These

matrices are therefore the 15 anti-hermitian generators of SU(4) and SU(4̄) transformations,

respectively (the SU(4) algebra is implied by the SO(6) algebra). The above given relations

for ΓI and Γ̄I imply the conjugation properties

(ΓIJi
j)

∗ = Γ̄IJ
i
j = −ΓIJj

i . (A.9)

We give here the notation for some SU(4) representations which occur frequently in

the main text but without taking the gauge group structure into account. Modifications for

fields in the adjoint representation of the gauge group are given at the end of appendix B.
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Representations 4 and 4̄: according to the conventions as given in (A.8) a field in

the 4 carries an upper index, e.g. Φi, and a field in the 4̄ carries a lower index, e.g. Ψi.

Complex conjugation maps one representation into the other, see (A.9), which we denote

by

(Φi)∗ =: Φ̄i , (Ψi)
∗ =: Ψ̄i . (A.10)

Representations 6, 6̄ and their real form: the 6 appears in the product 4 ⊗ 4 (the

6̄ in the complex conjugated thereof) and it is therefore natural to use the conventions

6 : vij with vij = v[ij] , 6̄ : uij with uij = u[ij] . (A.11)

These are 6 dimensional complex representations. Complex conjugation relates this repre-

sentation to each other and thus we have the convention (vij)∗ =: v̄ij and accordingly for

uij . SO(6) has a real representation 6 which translates into a real 6 or 6̄ of SU(4) by

vij :=
1

2
ΓI ijvI or vij := −

1

2
Γ̄I

ijvI =
1

2
ǫijklv

kl , (A.12)

where we have used (A.4). This implies the reality condition

v̄ij := (vij)∗ =
1

2
ǫijklv

kl = vij . (A.13)

Since ǫijkl is an invariant SU(4) tensor this reality condition is invariant. In fact it is

the natural condition to impose on representations 6 of SU(4). Due to the identifica-

tion (A.12), (A.13) of the real forms of the 6 and 6̄ it is unnecessary to differentiate

between them and we will generally speak if the real 6 in either case.

Representations 15, 15 and their real form: the 15 appears in the product 4⊗4̄ (the

15 in the complex conjugated thereof) and it is therefore natural to use the conventions

15 : W i
j with W i

i = 0 , 15 : Ui
j with Ui

i = 0 . (A.14)

These are 4 × 4 − 1 = 15 dimensional complex representations. Complex conjugation

we denote according to (A.9) by (W i
j)

∗ =: W̄i
j and similar for Ui

j. SO(6) has also a

representation 15 which is real, WIJ = W[IJ ]. This is translated into a real 15 or 15 of

SU(4) by

W i
j := −

1

2
ΓIJi

jWIJ or Wi
j = −

1

2
Γ̄IJ

i
jWIJ . (A.15)

This then implies with (A.9) the reality condition

W i
j := (W i

j)
∗ = −W j

i = Wi
j . (A.16)

It is easy to see that this reality condition is invariant under SU(4) transformations. Again

there is no reason to differentiate between this two real forms and we will express everything

in terms of the real form of the 15.
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B Superspace and connections

The N = 6 susy algebra without (non)-central charges is given by six 3D-Majorana spinors

transforming in the 6 of SO(6) and satisfying the algebra21

{QI
α, Q

J
β} = 2δIJPαβ . (B.1)

Accordingly, the susy parameters ǫIα and the superspace coordinates θIα are also given by

3D-Majorana spinors in the 6 (I = 1, . . . , 6). Our 3D conventions are such that Majorana

spinors are real (see appendix D). To represent the the algebra (B.1) and to form susy

covariant expressions one introduces the following differential operator,

Dα I := ∂α I + iθβ
I ∂αβ , Qα I := ∂α I − iθβ

I ∂αβ , (B.2)

such that {Dα I , Qβ J} = 0 and

{Qα I , Qβ J} = −{Dα I ,Dβ J} = −2iδIJ∂αβ , (B.3)

where ∂αIθ
βJ = δα

β δ
J
I . These operators are hermitian in the Hilbert space of superfields

and have the following definite properties under complex conjugation (therefore the i in

the definition):

(Dα IX)∗ = (−)|X|+1Dα IX̄ , (∂αβ)∗ = ∂αβ , (B.4)

where |X| is the fermion parity of a superfield X (= 0, 1 for bosonic/fermionic).

We now write the 6 of SO(6) in these definitions as real 6 of SU(4) according to (A.12):

θα ij =
1

2
Γij

I θ
αI , Dα ij = −

1

2
Γ̄I

ijDαI . (B.5)

With this definitions θα ij satisfies the conjugation property (A.13). The relations (A.9)

and (B.4) imply for the superderivative

(Dα ijX)∗ = (−)|X|+1 1

2
ǫijklDα klX̄ =: (−)|X|+1Dij

α X̄ . (B.6)

For the fermionic derivative one has now ∂α ijθ
β
kl = 1

2ǫijklδ
β
α and the anti-commutator (B.3)

writes as

{Dα ij ,Dβ kl} = −{Qα ij, Qβ kl} = iǫijkl∂αβ . (B.7)

Covariant derivatives. We introduce connections on superspace in the following way

∇αβ := ∂αβ + Aαβ with Aαβ = AM
αβTM

∇α I := Dα I + Aα I with AαI = AM
αIiTM , (B.8)

with anti-hermitian generators (TM )† = −TM . With these definitions and taking the coef-

ficient fields AM
αβ, AM

αI to be real superfields, the connection one-forms are (anti)hermitian,

i.e. (Aαβ)† = −Aαβ and (Aα I)
† = AαI and so are the resulting field strengths (Fαβ,γδ)

† =

21SO(6) vector indices I, . . . are raised and lowered with the Kronecker delta and therefore one does not

have to pay any attention to their position.
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−Fαβ,γδ and (Fα I,β J)† = Fα I,β J . The 6 of SO(6) we again write as real 6 or 6̄ of SU(4)

according to (A.12) as

∇α ij := −
1

2
Γ̄I

ij∇α I , ∇ij
α :=

1

2
ΓI ij∇α I . (B.9)

For the action of the generators of the gauge group in a representation R and R̄,

respectively, we introduce the following convention:

TM ·Xa := TM
a
bX

b , TM · Yb := −TM
a
bYa , (B.10)

where we denote a field in the representation R/R̄ with an upper/lower index from the

range a, b, . . .. The action on R̄ follows from the action on R by complex conjugation

where (Xa)∗ =: X̄a. The action on tensor products of these representations is defined

accordingly. The covariant derivatives of a field in the R and its complex conjugate thus

write as (suppressing space-time and SU(4) indices)

∇Φa = DΦa + A · Φa = DΦa + Aa
bΦ

b ,

∇Φ̄b = DΦ̄b + A · Φ̄b = DΦ̄b −Aa
bΦ̄a , (B.11)

where D stands either for Dα ij or ∂αβ .

With the definitions (B.9) we thus obtain the following properties under

complex conjugation:

(∇αβX
a)∗ = ∇αβX̄a = ∂αβX̄a −Aαβ

b
aX̄b (B.12)

(∇α ijX
a)∗ = (−)|X|+1 1

2
ǫijkl∇α klX̄a = (−)|X|+1∇ij

α X̄a . (B.13)

The fermionic field strength in SU(4) notation has therefore the conjugation property

(Fαβ,γ ij)
† = 1

2ǫ
ijklFαβ,γ kl.

Gauge field constraint. Analogous to the N = 8 case [9] we impose the constraint

{∇α I ,∇β J} = 2i(δIJ∇αβ + εαβWIJ) . (B.14)

Translating this into SU(4) representations we multiply this equation with (−1
2 Γ̄I

ij)(−
1
2 Γ̄J

kl).

Using above relations one has

Γ̄I
ijΓ̄

J
klWIJ = 2ǫmij[kW

m
l] = −2ǫmkl[iW

m
j] , (B.15)

where we chose the real 15 of SU(4), a similar relation holds for the real 15. The con-

straint (B.14) thus writes as

{∇α ij,∇β kl} = i(ǫijkl∇αβ + εαβǫmij[kW
m

l]) (B.16)

Fields in the gauge sector like W i
j and λα ij , ρα ij etc. (see the main text) live in the Lie

algebra g. We expand bosonic superfields like W i
j as W i

j = WMi
jTM and fermionic ones

with an extra i, i.e. as λα ij = λM
α ijiTM etc., with anti-hermitian generators (TM )† = −TM .

– 32 –



J
H
E
P
1
0
(
2
0
1
0
)
0
8
0

This means in replacing complex conjugation by hermitian conjugation the conditions due

to SU(4) representations as given in appendix A are unchanged for fermionic fields and

receive an extra minus for bosonic fields. For example

(W i
j)

† = W j
i and (λα ij)

† =
1

2
ǫijklλα kl , (B.17)

for a bosonic field in the real 15 and a fermionic field in the real 6. For conformal theories

the potential W i
j is explicitly given in (5.4). For this potential the derived composite fields

in the gauge sector, see section 3, are obtained according to (5.10) as follows:

(λα ij)
a
b = ifac

bd

(
Ψd

α [iΦ̄j] c +
1

2
ǫijklΦ

k dΨ̄l
α c

)
, (ρα ij)

a
b = ifac

bd Φ̄c (iΨ
d
j)α ,

(V i
j)

a
b =

i

4
εαβfac

bd

(
Ψd

α jΨ̄
i
β c −

1

4
δi

j(ΨαΨ̄β)dc

)
−

1

4
f gc

hdf
da
eb

(
Φi hΦ̄j g(ΦΦ̄)ec

)

−
1

4
fac

bdf
dg
eh

(
Φi hΦ̄j g(ΦΦ̄)ec −

1

2
δi

j(ΦΦ̄)hg(ΦΦ̄)ec

)
, (B.18)

where (ΦΦ̄)dc = Φd kΦ̄k c etc. is short for contracted SU(4) indices.

C Mesonic operators

We develop and collect here in some detail the structure of mesonic operators, in particular

the SU(4) determinant thereof, which were introduced in the main text in (6.30). We define

the mesonic operators as the gauge invariant quantities

Xi
j := Φi aΦ̄j a ⇒ (Xi

j)
∗ = Xj

i , (C.1)

which transform in the (4, 4̄) under SU(4). With this definition the determinant of the

mesonic operators can be written as

det(Xi
j) =: |X| =

1

24
εijkl(Φ

i aΦj bΦk cΦl d) εmnpq(Φ̄m aΦ̄n bΦ̄p cΦ̄q d) , (C.2)

which is a real SU(4)-invariant. This way of writing the determinant is very useful in the

derivation the following identities, since it heavily uses the completeness of SU(4) indices,

i.e. total anti-symmetrization in five/four indices gives zero/the epsilon tensor. In the main

text we introduced already the hermitian projection operators P and F and associated

identities (6.32), (6.33). Other useful relations are:

Basic relations.

Φi a∂a,j |X| = δi
j |X| ,

∂[i|a|X| ∂j]b|X| =
|X|

2
∂i a∂j b|X| ,

1

|X|
∂i a∂̄

j b|X| = Fa
c ∂i a∂̄

j c|X| = Fc
b ∂i c∂̄

j a|X| , (C.3)

where ∂i a := ∂
∂Φi a and ∂̄i a := ∂

∂Φ̄i a
= (∂i a)

∗. By complex conjugation of these relations

one obtains a similar set of identities.
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Super-derivatives.

∇α ij ∂k a|X| = ∂k a∇α ij|X|

∇α ij|X| = −i

(
Ψc

α[i ∂j]c|X| +
1

2
εijkl Ψ̄

k
αc ∂̄

l c∂̄k a|X|

)

∇α ijP
a
b = −∇α ijF

a
b

=
i

|X|

(
Pa

cΨ
c
α[i ∂j]b|X| +

1

2
εijklΨ̄

k
α cP

c
b∂̄

l a|X|

)
. (C.4)

These are basically the relations used to derive the expressions given in the main text.

D SO(2,1) spinor conventions

All spinors appearing in the main text, superspace coordinates or fields, are Majorana

spinors in 2 + 1-dimensional space-time. Our metric convention is ηµν = (−,+,+) and we

choose a Majorana representation for the gamma-matrices22

{γµ, γν}α
β = 2ηµνδα

β . (D.1)

Thus the matrices γµ α
β are real and the Majorana condition on spinors imply that they

are real two component spinors. Spinor indices are raised/lowered by the epsilon symbols

with ε12 = ε12 = 1 and choosing NW-SE conventions

εαγεβγ = δα
β , λα := εαβλβ ⇔ λβ = λαεαβ . (D.2)

Introducing the real symmetric matrices σµ
αβ := γµ ρ

β ερα and σ̄µ αβ := εαγεβδσµ
γδ =

εβρ γµ α
ρ a three vector in spinor notation writes as a symmetric real matrix as

vαβ := σµ
αβ vµ ⇒ vµ = −

1

2
σ̄µ αβ vαβ , vαβwαβ = −2 vµwµ . (D.3)

Another useful formula is

εµνλAµBνCλ =
1

2
εαβAγδBαγCδβ . (D.4)
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