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Abstract As a generalization of Preston’s kernel normal systems, P -kernel nor-
mal systems for P -inversive semigroups are introduced, and strongly regular
P -congruences on P -inversive semigroups in terms of their P -kernel normal systems
are characterized. These results generalize the corresponding results for P -regular
semigroups and P -inversive semigroups.

Keywords E-inversive semigroup · P -inversive semigroup · Strongly regular
P -congruence · P -kernel normal system

1 Introduction

For standard terminology and notation in semigroup theory see Howie [11]. As usual,
E(S) is the set of idempotents of a semigroup S,V (a) = {a′ ∈ S : aa′a = a, a′aa′ =
a′} is the set of all inverses of a ∈ S.

A semigroup S is E-inversive if for every a ∈ S there exists x ∈ S such that ax

is idempotent. This concept was introduced by Thierrin [25]. A semigroup is an E-
semigroup if its idempotents form a subsemigroup. Basic properties of E-inversive
semigroups were given by Blyth and Almeida Santos [1], Catino and Miccoli [2],
Hayes [9, 10], Mitsch and Petrich [18] and Mitsch [15–17]. From Lemma 3.1 in [15],
a semigroup S is E-inversive if and only if

(∀a ∈ S) W(a) = {a′ ∈ S : a′ = a′aa′} �= ∅.

The elements of W(a) are called weak inverses of a.
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Preston [21] introduced kernel normal systems to characterize congruences on in-
verse semigroups. Meakin [14] gave a generalization of kernel normal systems for or-
thodox semigroups. Imaoka [12] obtained a generalization of Preston’s kernel normal
systems for regular *-semigroups. A semigroup S is a regular *-semigroup if S with
a unary operation * satisfies (a∗)∗ = a, (ab)∗ = b∗a∗ and aa∗a = a for any a, b ∈ S

(see [12, 19]). We have seen that orthodox semigroups and regular *-semigroups are
within the class of P -regular semigroups. A P -regular semigroup S(P ) is a regu-
lar semigroup S whose set of idempotents E(S) includes a subset P with properties
P 2 ⊆ E(S),pPp ⊆ P for all p ∈ P, and {a′ ∈ V (a) : aP 1a′ ∪ a′P 1a ⊆ P } �= ∅ for
all a ∈ S, where P 1 = P ∪ {1} (see [28, 29]). Sen [23] gave a characterization of P -
congruences (the terminology a P -congruence for a usual congruence on a P -regular
semigroup [28]) on P -regular semigroups in terms of their P -kernel normal systems.

The existence of the least group congruence on an E-inversive semigroup was
noted by Hall and Munn [8]. An explicit description of this congruence was given
by Mitsch [15]. The least group congruence on an E-inversive E-semigroup was
characterized by Reither [22]. Further characterizations of group congruences on
an E-inversive semigroup has been obtained by the author [30]. An alternative de-
scription of this congruence on an E-inversive E-semigroup was given by Weipolt-
shammer [27]. Blyth and Almeida Santos [1] gave an alternative description of group
congruences on an E-inversive semigroup.

Weipoltshammer [27] described some congruences on E-inversive E-semigroups.
References [4, 5] and [3] refer to work by Fan and Chen in which P -inversive semi-
groups where first studied (using the so called P -kernel normal systems) and the
regular P -congruences on P -inversive semigroups. A P -inversive semigroup is an
E-inversive semigroup whose set of idempotents includes a subset P with properties
that make it suitable in a “kernel normal systems” that generalizes the systems of
Preston [21] and Meakin [14] in their respective congruence theories for inverse and
orthodox semigroups.

Definition 1.1 (see [3–5]) An E-inversive semigroup S is called a P -inversive semi-
group, if there exists a nonempty subset P of E(S) such that

(1) P 2 ⊆ E(S);
(2) (∀p ∈ P) pPp ⊆ P ;
(3) (∀a ∈ S) WP (a) = {a′ ∈ W(a) : aP 1a′ ∪ a′P 1a ⊆ P } �= ∅, where P 1 = P ∪ {1}.

The subset P of E(S) satisfying (1)–(3) above is called a characteristic set (C-set,
for short) of S, each element in WP (a) is called a weak P -inverse of a. Clearly, for
any p ∈ P, we have p ∈ WP (p). Because of the central role of P in S we denote a
P -inversive semigroup S with the C-set P by S(P ). Throughout this paper, S(P ) is
always an arbitrary P -inversive semigroup.

From Definition 1.1 it follows that all P -regular semigroups and E-inversive
E-semigroups are within the class of P -inversive semigroups. We have seen that
there exist P -inversive semigroups which are neither P -regular nor E-inversive E-
semigroups (see [4] and [7]).

A regular P -congruence ρ on S(P ) is a congruence ρ with property aρaa′a for
all a ∈ S(P ) and all a′ ∈ WP (a) in the sense of [3].
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In [7], the strong P -congruences and some sublattices of the strong P -congruence
lattice on a P -inversive semigroup were studied. A strong P -congruence ρ on S(P )

is a congruence ρ with properties for all a, b ∈ S(P ), aρb implies a′ρb′ for all
a′ ∈ WP (a), b′ ∈ WP (b), and aρaa′a for all a ∈ S(P ) and all a′ ∈ WP (a) in the
sense of [4]. Siripitukdet and Sattayaporn [24] characterized the maximum idempo-
tent separating congruence on an E-inversive E-semigroup.

The article [13] by Lou, Fan and Li is a major comprehensive paper on this topic.
In it, any regular congruence on an arbitrary E-inversive semigroup is uniquely spec-
ified in terms of its trace and kernel (generalizing results for regular semigroups by
Feigenbaum [6], Trotter [26] and especially by Pastijn and Petrich [20]). In the final
section of [13], the regular congruences on E-inversive semigroups are characterized
in terms of kernel normal systems.

The purpose of this paper is to generalize Preston’s kernel normal systems to P -
inversive semigroups, and to give a description of strongly regular P -congruences
on P -inversive semigroups in terms of their P -kernel normal systems. The type of
technique used here is basically the one used in [23]. These results generalize the cor-
responding results for P -regular semigroups [23] and P -inversive semigroups [3, 5].

By using the weak inverses in semigroups, Lou etc. [13] described regular con-
gruences on E-inversive semigroups in terms of their kernel normal systems. In this
paper we show that weak P -inverses indeed can replace weak inverses in a congru-
ence theory for P -inversive semigroups, in a neater manner than that obtained in [13].

Recall that a congruence ρ on a semigroup S is said to be regular if S/ρ is a
regular semigroup. Obviously, a congruence satisfying the property

(∀a ∈ S) (∃a′ ∈ WP (a)) aρaa′a (P)

on S(P ) is regular. In general, regular congruences on S(P ) may not satisfy the
property (P). For example, let S = (N, ·) be the multiplicative semigroup of all non-
negative integers and ρ be the congruence determined by the partition:

{0}, {m ∈ N : m > 0}.

Then S is an E-inversive semigroup with E(S) = {0,1}, and S/ρ = {0,1} is a band.
Let P = {0}. Certainly, S(P ) is P -inversive, and ρ is regular. But there is no weak
P -inverse x of 1 such that 1ρ1x1. In this paper we shall be interested in the regular
congruences which possesses the property (P) and we call such congruences strongly
regular. That is,

Definition 1.2 A congruence ρ on S(P ) is called a strongly regular P -congruence,
if it satisfies

(∀a ∈ S) (∃a′ ∈ WP (a)) aρaa′a.
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Example 1.3 Let S be the semigroup with Cayley table [27, Example 5.1]):

S a b c d e f g

a e g a e e g e

b c d e d e e f

c e f c e e f e

d e d e d e e e

e e e e e e e e

f c e e e e e f

g a e e e e e g

Then S is an E-inversive E-semigroup with E(S) = {c, d, e, g}. Let P = E(S).

Then S(P ) is P -inversive. Let ρ be the congruence determined by the partition
{a}, {b,f }, {c}, {d, e}, {g}. Notice that b is the only non-regular element of S, a ∈
WP (b), and bab = fρb, we have that ρ is a strongly regular P -congruence on S(P ).

Now d ∈ WP (b) and bdb = d, but d and b are not ρ-related. This implies that ρ

is not a regular P -congruence on S(P ). Certainly, ρ is not a strong P -congruence
on S(P ).

The previous example illustrates that the concept of strong regular P -congruences
on P -inversive semigroups is a generalization of the concept of strong P -congruences
and regular P -congruences on this class of semigroups.

2 P-kernel normal systems

The set B = {Bi : i ∈ I } of subsemigroups of S(P ) is said to be a P -kernel normal
system for S(P ) if the following conditions hold:

(K1) Bi ∩ Bj = ∅ if i �= j ∈ I.

(K2) Each Bi contains an element of P and each element of P is contained in some
Bi.

(K3) For any a ∈ S(P ) there exists a′ ∈ WP (a) such that

(∀x, y ∈ S1) (∀B ∈ B) xay ∈ B ⇔ xaa′ay ∈ B.

(K4)

(∀x, y ∈ S1) (∀i1, i2, . . . , in, j ∈ I )

xBi1Bi2 · · ·Biny ∩ Bj �= ∅ ⇒ xBi1Bi2 · · ·Biny ⊆ Bj .

The weak P -inverse a′ of a satisfying (K3) above is called a weak B-inverse
of a, and WB(a) denotes the set of weak B-inverses of a. Now WB(a) �= ∅ for any
a ∈ S(P ).

Let ρ be a strongly regular P -congruence on S(P ). The set {pρ : p ∈ P } is de-
noted by Bρ. The following lemma also gives the examples of P -kernel normal sys-
tems for S(P ).
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Lemma 2.1 If ρ is a strongly regular P -congruence on S(P ), then Bρ is a P -kernel
normal system for S(P ).

Proof (K1) and (K2) are clear.
(K3) Since ρ is a strongly regular P -congruence, for any a ∈ S(P ) there exists

a′ ∈ WP (a) such that aρaa′a. Obviously, a′ ∈ WB(a).

(K4) Let b = xbi1bi2 · · ·biny ∈ xBi1Bi2 · · ·Biny ∩ Bj , where bit ∈ Bit , t =
1,2, . . . , n, and let Bj = pρ,p ∈ P. Then bρp. For any c = xci1ci2 · · · ciny ∈
xBi1Bi2 · · ·Biny, where cit ∈ Bit , t = 1,2, . . . , n, we have that bit , cit ∈ Bit implies
bit ρ = cit ρ, and so that cρ = xρ ci1ρ ci2ρ · · · cinρ yρ = xρ bi1ρ bi2ρ · · ·binρ yρ =
bρ = pρ. Hence c ∈ Bj . �

We have the following results on P -kernel normal systems which will be useful in
the sequel.

Lemma 2.2 Let B = {Bi : i ∈ I } be a P -kernel normal system for S(P ).

(1) If a′ ∈ WB(a), b′ ∈ WB(b), then aa′a ∈ WB(a′), b′a′ ∈ WB(ab).

(2) Let x, y ∈ S1, i1, i2, . . . , in ∈ I. If xBi1Bi2 · · ·Biny ∩ P �= ∅, then there exists
j ∈ I such that xBi1Bi2 · · ·Biny ⊆ Bj .

(3) For a ∈ S(P ), a′ ∈ WB(a) and i ∈ I, there exist j, k ∈ I such that aBia
′ ⊆ Bj ,

and a′Bia ⊆ Bk.

(4) If a ∈ Bi, a
′ ∈ WB(a) then there exist j, k ∈ I such that a′Bi ⊆ Bj and

Bia
′ ⊆ Bk .

(5) If a, ab ∈ Bi and ab′, bb′ ∈ Bj for some b′ ∈ WB(b), i, j ∈ I, then b ∈ Bi.

(6) If a, ba ∈ Bi and b′a, b′b ∈ Bj for some b′ ∈ WB(b), i, j ∈ I, then b ∈ Bi.

Proof (1) Let a′ ∈ WB(a), b′ ∈ WB(b). It is easy to see that aa′a ∈ V (a′) and aa′a ∈
WP (a′). Thus aa′a ∈ WB(a′).

Now a′ ∈ WP (a), b′ ∈ WP (b). It follows from [4, Lemma 1.4] that b′a′ ∈ WP (ab).

Let x, y ∈ S1. Then

xabb′a′aby ∈ Bi ⇔ xaa′abb′a′abb′by ∈ Bi (since a′ ∈ WB(a) and b′ ∈ WB(b))

⇔ xa(a′abb′)2by ∈ Bi

⇔ xaa′abb′by ∈ Bi (since a′abb′ ∈ P 2 ⊆ E(S))

⇔ xaby ∈ Bi (since a′ ∈ WB(a) and b′ ∈ WB(b)).

Hence b′a′ ∈ WB(ab).

(2) By (K2), each element of P is contained in some Bj . The result follows from
(K4).

(3) Suppose that Bi contains some element p ∈ P. Then apa′ ∈ P. Hence
aBia

′ ∩ P �= ∅. Now it follows from (2) that there exists j ∈ I such that aBia
′ ⊆ Bj .

Similarly, we can show the other result.
(4) Since a ∈ Bi and a′ ∈ WB(a), a′a ∈ a′Bi ∩ P. It follows from (2) that there

exists Bj ∈ B such that a′Bi ⊆ Bj . Similarly, we can prove the other result.
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(5) Since ab ∈ Bi, abb′b ∈ Bi. Now b′b ∈ P, by (K2), there exists Bk ∈ B such
that b′b ∈ Bk. Hence ab′b, abb′b ∈ BiBk, and so BiBk ∩ Bi �= ∅. By (K4), BiBk ⊆
Bi, so that ab′b ∈ Bi. Now ab′b ∈ Bjb. Thus Bjb ∩ Bi �= ∅. By (K4), Bjb ⊆ Bi.

Since bb′ ∈ Bj , bb′b ∈ Bi, that is, b ∈ Bi.

(6) Similar to the proof of (5), we can obtain (6). �

We now introduce the following notation. Let B = {Bi : i ∈ I } be a P -kernel nor-
mal system for S(P ) and a, b ∈ S(P ). By a ∼ b we mean that a and b are contained
in a same Bi. Define a relation ρB on S(P ) by

aρB b ⇔ (∃a′ ∈ WB(a))(∃b′ ∈ WB(b))ba′
∼ aa′ & b′a ∼ b′b.

Clearly, ρB is a reflexive relation on S(P ).

In order to obtain the main result in this paper, we shall set up a series of lem-
mas.

Lemma 2.3 ρB is a symmetric relation on S(P ).

Proof Let aρB b. Then there exist a′ ∈ WB(a), b′ ∈ WB(b) such that ba′
∼ aa′ and

b′a ∼ b′b. Then there exist Bi1 ,Bi2 ∈ B such that ba′, aa′ ∈ Bi1 and b′a, b′b ∈ Bi2 .

Let a+ ∈ WB(a) and b+ ∈ WB(b). Now by Lemma 2.2(1), aa′ab+ ∈ WB(ba′).
Then by Lemma 2.2(4), Bi1(aa′ab+) ⊆ Bi3 for some i3 ∈ I. Now aa′ab+ =
(aa′)aa′ab+ ∈ Bi1(aa′ab+) ⊆ Bi3 . By (K3), ab+ ∈ Bi3 . Also, ba′ab+ =
(ba′)(aa′a)b+ ∈ Bi3 . Then by b′ ∈ WB(b), b(b′b)(a′a)b+ ∈ Bi3 . Hence bBi2Bi4b

+ ∩
Bi3 �= ∅, where a′a ∈ Bi4 . By (K4), bBi2Bi4b

+ ⊆ Bi3 . Hence bb′aa′ab+ ∈ Bi3 ,

that is, bb′ab+ ∈ Bi3 . Hence ab+, bb′ab+ ∈ Bi3 . Now b′a ∼ b′b implies that
b(b′b)b+

∼ b(b′a)b+ by Lemma 2.2(3). Therefore ab+
∼ bb′ab+

∼ bb′bb+
∼ bb+,

and so ab+
∼ bb+. Similarly, we can prove that a+b ∼ a+a. Hence bρB a, and so

that ρB is symmetric. �

Remark In the proof of Lemma 2.3, we also prove that if there exist a′ ∈ WB(a), b′ ∈
WB(b) such that ba′

∼ aa′ and b′a ∼ b′b, then ab+
∼ bb+ and a+b ∼ a+a for

all a+ ∈ WB(a), b+ ∈ WB(b). In the similar way, we can prove that if there exist
a+ ∈ WB(a), b+ ∈ WB(b) such that ab+

∼ bb+ and a+b ∼ a+a, then ba′
∼ aa′ and

b′a ∼ b′b for all a′ ∈ WB(a), b′ ∈ WB(b). In the previous definition of ρB we can
substitute “there exists” by “for all”.

Lemma 2.4 If (a, b), (b, c) ∈ ρB, then a(c′c)a′
∼ aa′, c(a′a)c′

∼ cc′, a′(cc′)a ∼

a′a, b′(aa′)b ∼ b′b for all a′ ∈ WB(a), b′ ∈ WB(b), c′ ∈ WB(c).

Proof Since (a, b), (b, c) ∈ ρB, ba′
∼ aa′, b′a ∼ b′b, a′b ∼ a′a, ab′

∼ bb′, cb′
∼

bb′, c′b ∼ c′c, b′c ∼ b′b, bc′
∼ cc′ for all a′ ∈ WB(a), b′ ∈ WB(b) and c′ ∈ WB(c)

(from the remark after Lemma 2.3). So there exist Bi1,Bi2 ,Bi3,Bi4 ,Bi5,Bi6,Bi7

and Bi8 in B such that ba′, aa′ ∈ Bi1, b
′a, b′b ∈ Bi2, a

′b, a′a ∈ Bi3 , ab′, bb′ ∈
Bi4, cb

′, bb′ ∈ Bi5 , c
′b, c′c ∈ Bi6 , b

′c, b′b ∈ Bi7 and bc′, cc′ ∈ Bi8 . From (K1),
Bi2 = Bi7 and Bi4 = Bi5 .
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We first show that a(c′c)a′
∼ aa′. Now a(a′b)(b′b)(c′c)a′, a(a′b)(b′c)(c′c)a′,

a(a′a)(b′c)(c′b)a′ ∈ aBi3Bi2Bi6a
′. Since a(b′c)(c′b)a′ ∈ P, by (K2), there exists

i9 ∈ I such that a(b′c)(c′b)a′ ∈ Bi9, and so a(a′a)(b′c)(c′b)a′ ∈ Bi9 by (K3).
Thus aBi3Bi2Bi6a

′ ∩ Bi9 �= ∅. Hence from (K4), aBi3Bi2Bi6a
′ ⊆ Bi9, so that

a(a′b)(b′b)(c′c)a′, a(a′b)(b′c)(c′c)a′ ∈ Bi9 , that is, a(a′b)(c′c)a′, a(a′b)(b′c)a′ ∈
Bi9 .

Now a(a′a)(c′c)a′, a(a′b)(c′c)a′ ∈ aBi3Bi6a
′. Since a(c′c)a′ ∈ P, there ex-

ists i10 ∈ I such that a(c′c)a′ ∈ Bi10 . Then by (K3), a(a′a)(c′c)a′ ∈ Bi10 . Hence
aBi3Bi6a

′ ∩ Bi10 �= ∅. Then by (K4), aBi3Bi6a
′ ⊆ Bi10 . Thus a(a′b)(c′c)a′ ∈ Bi10 .

By (K1), Bi10 = Bi9 . Hence a(a′a)(c′c)a′ ∈ Bi9, and so a(c′c)a′ ∈ Bi9 .

Now a(a′b)(b′b)a′, a(a′b)(b′c)a′, a(a′a)(b′b)a′ ∈ aBi3Bi7a
′. Note a(b′b)a′ ∈ P,

there exists i11 ∈ I such that a(b′b)a′ ∈ Bi11 . By (K3), a(a′a)(b′b)a′ ∈ Bi11, and
so aBi3Bi7a

′ ∩ Bi11 �= ∅. Then by (K4), aBi3Bi7a
′ ⊆ Bi11 . Hence a(a′b)(b′c)a′ ∈

Bi11 . By (K1), Bi11 = Bi9 . Then a(c′c)a′
∼ a(a′b)(b′b)a′

∼ a(a′b)a′. Now a′b ∼ a′a
implies (by Lemma 2.2(3)) that a(a′b)a′

∼ a(a′a)a′ = aa′. Hence a(c′c)a′
∼ aa′.

Similarly, we can prove the other results. �

Lemma 2.5 ρB is a transitive relation on S(P ).

Proof Here we use all the notation of Lemma 2.4. Let (a, b) ∈ ρB and (b, c) ∈ ρB.

Let x = bc′cb′aa′. Now (cb′)(aa′), (bb′)(ba′) ∈ Bi5Bi1 and (bb′)(ba′) ∼ ba′ ∈ Bi1 .

Hence Bi5Bi1 ∩ Bi1 �= ∅. Then by (K4), Bi5Bi1 ⊆ Bi1 . Hence (cb′)(aa′) ∈ Bi1 . This
implies that x = (bc′)(cb′aa′), (cc′)(cb′aa′) ∈ Bi8Bi1 . But cb′aa′

∼ (cc′)(cb′aa′).
Hence Bi8Bi1 ∩ Bi1 �= ∅. Then by (K4), Bi8Bi1 ⊆ Bi1 . Hence x ∈ Bi1 .

Let y = ca′. By Lemma 2.2(1), aa′ac′ ∈ WB(y). Let y′ = aa′ac′. Now a′b ∼ a′a
implies (by Lemma 2.2(3)) c(a′b)c′

∼ c(a′a)c′. From Lemma 2.4, ca′ac′
∼ cc′.

Hence c(a′b)c′, cc′ ∈ Bi8 . Now (cb′)(aa′), (bb′)(ba′) ∈ Bi5Bi1 . But (bb′)(ba′) ∼

ba′ ∈ Bi1 . Hence Bi5Bi1 ∩Bi1 �= ∅, and so (cb′)(aa′) ∈ Bi1 . Then (ca′bc′)(cb′)(aa′),
(cc′)(cb′)(aa′) ∈ Bi8Bi1 . But (cc′)(cb′)(aa′) ∼ (cb′)(aa′) ∈ Bi1 . Thus Bi8Bi1 ∩
Bi1 �= ∅, so that Bi8Bi1 ⊆ Bi1 . Hence

yx = ca′bc′cb′aa′ ∈ Bi1 .

Now x, yx ∈ Bi1 implies that

yx ∼ x. (2.1)

To show that y′y ∼ y′x, we notice that

a(c′b)(c′c)(b′c)a′, a(c′b)(c′c)(b′a)a′, a(c′c)(c′b)(b′b)a′ ∈ aBi6Bi6Bi7a
′.

Here a(c′b)(c′c)(b′c)a′ = a(c′(b(c′c)b′)c)a′ ∈ P. Hence by Lemma 2.2(2), there
exists i12 such that aBi6Bi6Bi7a

′ ⊆ Bi12 . Hence a(c′c)(c′b)(b′b)a′ ∈ Bi12, that is,
ac′ba′ ∈ Bi12 .

Now c′c ∼ c′b. Hence by Lemma 2.2(3), a(c′c)a′
∼ a(c′b)a′. But a(c′c)a′, aa′ ∈

Bi1 by Lemma 2.4. Hence a(c′b)a′ ∈ Bi1 . By (K1), Bi1 = Bi12 . Consequently,
ac′bc′cb′aa′ ∈ Bi1, and so, aa′ac′bc′cb′aa′ ∈ Bi1 . Hence y′x, x ∈ Bi1 . Again
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ac′ca′
∼ aa′. Then y′y = aa′ac′ca′

∼ ac′ca′
∼ aa′

∼ x. Therefore

y′x ∼ y′y. (2.2)

From (2.1), (2.2), by Lemma 2.2(6), we have y ∼ x. Then

ca′
∼ x ∼ aa′.

Next we show that c′a ∼ c′c. Let x1 = c′cb′aa′b, y1 = c′a. Now a′cc′c ∈ WB(y1).

Let y′
1 = a′cc′c. From Lemma 2.4, b′aa′b ∼ b′b ∈ Bi7 . Hence (c′c)(b′aa′b),

(c′c)(b′a), (c′b)(b′b) ∈ Bi6Bi7 . But (c′b)(b′b) ∼ c′b ∈ Bi6 , and so Bi6Bi7 ∩ Bi6 �= ∅.

Then (K4) implies that Bi6Bi7 ⊆ Bi6, so that x1 = (cc′)(b′aa′b) ∈ Bi6 .

Now x1y1 = (c′cb′a)(a′b)(c′a) = (c′c)(b′a)(a′bc′a). Here a′(bc′)a ∼ a′(cc′)a
(by Lemma 2.2(3)) ∼ a′a (by Lemma 2.4) ∈ Bi3 . Notice that (c′c)(b′a) ∈ Bi6 and
so x1y1 ∈ Bi6Bi3 . Also, (c′c)(b′a)(a′a) ∈ Bi6Bi3 , and (c′c)(b′a)(a′a) ∼ (c′c)(b′a) ∈
Bi6 . Hence Bi6Bi3 ⊆ Bi6, so that x1y1 ∈ Bi6 . Now x1, x1y1 ∈ Bi6 implies that

x1y1 ∼ x1. (2.3)

To show that x1y
′
1 ∼ y1y

′
1, notice that x1y

′
1 = c′cb′aa′ba′cc′c. Now (cb′)(aa′),

(bb′)(ba′) ∈ Bi5Bi1 . But (bb′)(ba′) ∼ ba′ ∈ Bi1 . Hence (cb′)(aa′), ba′ ∈ Bi1 . So
cb′aa′ba′ = (cb′aa′)(ba′) ∈ Bi1Bi1 ⊆ Bi1 (since Bi1 is a subsemigroup). Then
cb′aa′ba′

∼ aa′. It follows from Lemma 2.2(3) that c′(cb′aa′ba′)c ∼ c′(aa′)c.
Hence c′(cb′aa′ba′)cc′c ∼ c′(aa′)cc′c, that is,

x1y
′
1 ∼ y1y

′
1. (2.4)

From (2.3), (2.4), by Lemma 2.2(5), we have that x1 ∼ y1, and so c′c ∼ x1 ∼ c′a.

Hence (a, c) ∈ ρB. �

Lemma 2.6 ρB is a strongly regular P -congruence on S(P ).

Proof It follows from Lemma 2.3 and Lemma 2.5 that ρB is an equivalence re-
lation on S(P ). Let us show that ρB is left compatible. Let (a, b) ∈ ρB , c ∈ S,
a′ ∈ WB(a), b′ ∈ WB(b) and c′ ∈ WB(c). Then ba′

∼ aa′, b′a ∼ b′b,a′b ∼ a′a,
ab′

∼ bb′. So there exist Bi1 ,Bi2,Bi3,Bi4 ∈ B such that ba′, aa′ ∈ Bi1 , b
′a, b′b ∈

Bi2, a
′b, a′a ∈ Bi3, ab′, bb′ ∈ Bi4 . Now ba′

∼ aa′ implies that c(ba′)c′
∼ c(aa′)c′

(by Lemma 2.2(3)).
We show that b′c′ca ∼ b′c′cb as follows. Let x = b′c′cba′a, y = b′c′ca, y′ =

a′c′cbb′b. Then y′ ∈ WB(y). Notice that b′c′cb ∈ P. Let b′c′cb ∈ Bi5 ∈ B. Now
(b′c′cb)(b′a), (b′c′cb)(b′b) ∈ Bi5Bi2 . Since (b′c′cb)(b′b) ∼ b′c′cb ∈ Bi5 , Bi5Bi2 ∩
Bi5 �= ∅. Hence by (K4), Bi5Bi2 ⊆ Bi5 . Then (b′c′cb)(b′a) ∈ Bi5 .
Now (b′c′cb)(b′b)(a′a), (b′c′cb)(b′a)(a′a) ∈ Bi5Bi3 . But (b′c′cb)(b′a)(a′a) ∼

(b′c′cb)(b′a) ∈ Bi5 shows that Bi5Bi3 ∩ Bi5 �= ∅. Then Bi5Bi3 ⊆ Bi5 and
(b′c′cb)(b′b)(a′a) ∈ Bi5, that is, x = b′c′cba′a ∈ Bi5 .

Now ab′
∼ bb′, and b′c′c ∈ WB(c′cb). Hence by Lemma 2.2(3), b′(c′c(ab′)c′c)b

∼ b′(c′c(bb′)c′c)b. Since b′c′cb ∈ P ⊆ ES , b′(c′c(bb′)c′c)b = (b′c′cb)2 = b′c′cb.



P -kernel normal systems for P -inversive semigroups 465

Now b′c′cb ∈ Bi5, hence b′(c′c(ab′)c′c)b ∈ Bi5 . Then yx = (b′c′ca)(b′c′cba′a) =
(b′(c′cab′c′c)b)(a′a) ∈ Bi5Bi3 . But Bi5Bi3 ⊆ Bi5 and so yx ∈ Bi5 . Then

yx ∼ x ∼ b′c′cb. (2.5)

To show that y′x ∼ y′y, notice that (c′c)(bb′)(c′c) ∈ P. Then there exists Bi6 ∈ B
such that (c′c)(bb′)(c′c) ∈ Bi6 . Now y′x = a′c′cbb′bb′c′cba′a = a′(c′cbb′c′c)(ba′)a,
a′(c′cbb′c′c)(aa′)a ∈ a′Bi6Bi1a. Notice that y′y = a′c′cbb′bb′c′ca =
a′(c′cbb′c′c)a ∈ P. Then there exists Bi7 ∈ B such that y′y ∈ Bi7, and so
a′(c′cbb′c′c)(aa′)a ∈ Bi7 . Hence a′Bi6Bi1a ⊆ Bi7 . Then

y′x ∼ y′y. (2.6)

From (2.5), (2.6), by Lemma 2.2(6), y ∼ x ∼ b′c′cb, that is, b′c′ca ∼ b′c′cb.

By Lemma 2.2(1), a′c′ ∈ WB(ca), b′c′ ∈ WB(cb). Hence (ca, cb) ∈ ρB, and so
ρB is left compatible. A similar argument shows that ρB is right compatible.

It is easy to verify that a′ ∈ WB(aa′a) and (a, aa′a) ∈ ρB. Hence ρB is a strongly
regular P -congruence on S(P ). �

Lemma 2.7 If p ∈ Bi ∩ P, then pρB = Bi.

Proof Let a ∈ pρB. Then pρBa. Since p ∈ WB(p), ap ∼ pp = p and a′p ∼ a′a for
any a′ ∈ WB(a). Hence by Lemma 2.2(6), a ∈ Bi.

Conversely, let b ∈ Bi. Since Bi is a subsemigroup, pb ∈ Bi. Then pb ∼ pp.

Let b′ ∈ WB(b). By Lemma 2.2(4), there exists Bj ∈ B such that Bib
′ ⊆ Bj .

Hence pb′, bb′ ∈ Bj , and so pb′
∼ bb′. By the definition of ρB, (b,p) ∈ ρB. Thus

b ∈ pρB . �

Lemma 2.8 Let ρ and σ be two strongly regular P -congruences on S(P ). Then
ρ = σ if and only if Bρ = Bσ .

Proof It suffices to show the “if” part. Let aρb. Since σ is a strongly regular P -
congruence, there exists a′ ∈ WP (a) such that aσaa′a. Now aa′ρba′. Note aa′ ∈ P.

By the assumption, there exists p ∈ P such that aa′ρ = pσ. Hence aa′ρ = aa′σ, and
so ba′ ∈ aa′σ, that is, aa′σba′. Similarly, we have that bσbb′b and b′aσb′b for some
b′ ∈ WP (b). Thus

aσaa′aσba′aσbb′ba′aσbb′aa′aσbb′aσbb′bσb.

Hence aσb, and so ρ ⊆ σ. Similarly, we have σ ⊆ ρ. Thus ρ = σ. �

The following theorem is the main result in this paper.

Theorem 2.9 If B is a P -kernel normal system for S(P ), then ρB is a strongly
regular P -congruence on S(P ) and BρB = B. Conversely, if ρ is a strongly regular
P -congruence on S(P ), then Bρ is a P -kernel normal system for S(P ) and ρBρ

= ρ.
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Proof Direct part. Let B = {Bi : i ∈ I } be a P -kernel normal system for S(P ). By
Lemma 2.6, ρB is a strongly regular P -congruence on S(P ).

Let p ∈ P. Then there exists Bi ∈ B such that p ∈ Bi. Hence by Lemma 2.7,
pρB = Bi, and so BρB ⊆ B. Conversely, suppose that Bi ∈ B. Then Bi contains some
element p ∈ P. By Lemma 2.7 again, Bi = pρB, so that BρB = B as required.

Converse part. Let ρ be a strongly regular P -congruence on S(P ). Then it follows
from Lemma 2.1 that Bρ is a P -kernel normal system for S(P ). From the direct part
of this theorem, we have that ρBρ

is also a strongly regular P -congruence on S(P )

and BρBρ
= Bρ. Hence by Lemma 2.8, ρBρ

= ρ. �

The set of all strongly regular P -congruences on S(P ) and the set of all P -kernel
normal systems for S(P ) are denoted by SRCP (S) and KNSP (S), respectively.

Define a relation ≤ on KNSP (S) by

A ≤ B ⇔ (∀A ∈ A) (∃B ∈ B) A ⊆ B.

It is clear that ≤ is a partial order on KNSP (S).

Now the next result follows immediately.

Corollary 2.10 The mappings

ϕ : SRCP (S) → KNSP (S)

ρ �→ Bρ

and

ψ : KNSP (S) → SRCP (S)

B �→ ρB

are mutually inverse order preserving bijections.
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