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1 Introduction

The theory of vertex operator algebras (VOA) is an enormously rich subject with a long

history. Recently, a new way to study VOAs and to connect them with various physical

and mathematical applications was initiated in [1] based on the previous work of [2, 3] and

it was further explored in [4, 5]. The new perspective is based on a realization of VOAs as

algebras of local operators within a topological twist of a particular configuration in the

four-dimensional N = 4 super Yang-Mills theory [6–9]. Configurations of interest are (p, q)

webs [10] of supersymmetric interfaces studied in [11–13]. Local operators of the twisted

theory turn out to live at the two-dimensional junction and give rise to VOAs [1].

The simplest configuration of the triple junction of D5, NS5 and (1, 1) interfaces be-

tween U(N1), U(N2), U(N3) gauge theories leads to the VOA labeled as YN1,N2,N3 . These

corner algebras were originally identified in terms of a BRST reduction of Kac-Moody

super-algebras in [1]. Later, it was argued in [5] that the algebras can be also viewed as

truncations (quotients) of the W1+∞ algebra. The study of this algebra has a very long

history. Originally, a linear version of the algebra was constructed as N → ∞ of WN

algebras [14–17]. Later, it was gradually realized that there exists in fact a two-parametric

family of non-linear algebras [18–25]. Recently, this algebra appeared in connection with

equivariant cohomology of instanton moduli spaces [26–29] and its equivalence to Yan-

gian of affine gl(1) was found [27, 29–32]. This makes it possible to use the techniques of

integrability to study the properties of vertex operator algebras.
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Apart from local operators living at the corner, line operators supported at inter-

faces [6, 8, 9] and surface defects [9, 33] supported in the bulk survive the twisting pro-

cedure. If we let line operators to end at the junction, the fusion of the endpoint with

local insertions at the junction generates a module for the corresponding VOA. Similarly,

Gukov-Witten (GW) surface defects ending at interfaces also play the role of VOA mod-

ules. The main objective of this paper is the study of modules associated to such higher

dimensional operators together with free field realization of the algebras.

Free field realization. In this work, we identify YN1,N2,N3 with algebras defined previ-

ously in terms of a kernel of screening charges by [34, 35]. It is well known that the kernel

of screening charges realizing WN × ĝl(1) = Y0,0,N has an explicit construction in terms

of the Miura transformation [36]. Generators of the algebra are coefficients of an N -th

order differential operator which is a product of first order differential operators R
(3)
i for

i = 1, . . . , N . We generalize this construction to YN1,N2,N3 by introducing two classes of

pseudo-differential operators R
(1)
i and R

(2)
i and taking the product of N1 operators of the

first type, N2 of the second type and N3 of the first order differential operators R
(3)
i . This

provides us with a simple way to determine the free field realization of YN1,N2,N3 generators.

Generic modules. The representation theory of WN × ĝl(1) = Y0,0,N algebras is rela-

tively well-understood. Generic modules are parametrized by N complex numbers modulo

the action of Weyl group. On the other hand, maximally degenerate modules are known

to be parametrized by a pair of Young tableau [30]. Gukov-Witten defects for the corre-

sponding gauge theory configuration are parametrized by a complex N -dimensional torus

which is a product of N tori with the modular parameter being the canonical parameter

of the Kapustin-Witten twist Ψ. These lead to generic modules. On the other hand, max-

imally degenerate modules correspond to a pair of line operators (parametrized by finite

dimensional representations of U(N)) supported at the two boundaries. Note that line

operators can be fused with the end-line of the Gukov-Witten defect. This fusion changes

the boundary condition imposed on the GW defect that has been implicit in the discussion

above. Such a fusion (or the choice of a boundary condition) lifts the N -dimensional torus

to the full CN . We call the corresponding parameters lifted GW parameters.

The situation of a general YN1,N2,N3 seems to be more complicated at first sight. The

representation theory of Y0,1,1 and Y0,1,2 from the point of view of (non-freely generated)

extensions of the Virasoro algebra by generators of spin 1,3 in the first case and by gen-

erators of spin 1,3,4,5 in the second case was studied in [37] and [38]. Generic modules

can be parametrized by a two-dimensional subvariety inside C
3 for Y0,1,1 and by a three

dimensional subvariety inside C5 for Y0,1,2. In general, we argue that generic highest weight

modules of the YN1,N2,N3 algebra should be parametrized by N1 + N2 + N3 dimensional

subvariety (the number of GW parameters in the setup) inside

C
(N1+1)(N2+1)(N3+1)−1. (1.1)

The gauge theory setup suggests that the parametrization of representations should be sim-

pler. Indeed, we find that generic modules can be parametrized by N1 complex parameters

– 2 –
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x
(1)
i , N2 parameters x

(2)
i and N3 parameters x

(3)
i . As discussed above, the algebra W1+∞ is

isomorphic as an associative algebra to the well known affine Yangian of gl(1) generated by

an infinite number of generators ψi, fi, ei. The modules of interest can be defined in terms

of an action of the commuting generators ψi on the highest weight state. Such an action

is encoded in a generating function of ψi charges whose poles are parametrized by x
(κ)
i for

κ = 1, 2, 3. The change of basis of algebra generators allows us to translate ψi charges of

the affine Yangian to (Wi)0 charges (eigenvalues of zero modes of W-algebra generators)

and recover the Zhu varieties from [37] and [38].

Moreover, we identify x
(κ)
i with the three families of lifted GW parameters discussed

above. In terms of the free field realization, one can construct modules of YN1,N2,N3 by

an action of W-algebra generators on the highest weight vector of a tensor product of

N1 +N2 +N3 free-boson Fock modules. Parameters x
(κ)
i can be identified (up to constant

shifts) with such highest weights, giving the third perspective on x
(κ)
i .

Degenerate modules. A generic GW defect breaks the gauge group at the defect to

the maximal torus U(1)Ni . A degeneration of a generic module appears when we specialize

GW parameters such that a Levi subgroup is preserved at the defect. In particular, when

two of the parameters specifying singularity of the complexified gauge field at the interface

are equal, the preserved gauge group is enhanced to the next-to-minimal Levi subgroup

U(2) × U(1)Ni−2. This configuration can be further dressed by turning on a Wilson or ’t

Hooft line of the preserved SU(2) factor. The corresponding degeneration of the module

appears when the lifted GW parameters satisfy1

x
(3)
i − x

(3)
j = h1n+ h2m or x

(3)
j − x

(3)
i = h1n+ h2m (1.3)

for some i, j and positive integers n,m that parametrize the line operators (finite dimen-

sional SU(2) representations) at the two boundaries of the third2 corner.

Further degenerations appear when the following specialization

x
(3)
i − x

(2)
j = −h3 + h1n (1.4)

happens between GW parameters in different corners for any integer n and similarly for

the other pairs of parameters.

When more parameters are specialized, one gets further degenerations associated to

more complicated Levi subgroups. If a maximal number of them are specialized, one

gets maximally degenerate modules that can be identified with the configuration of line

operators with trivial surface defects.

1The parameters hκ are related to the canonical parameter Ψ of the Kapustin-Witten twist by

h1 =
1√
Ψ
, h2 = −

√
Ψ, h3 =

√
Ψ− 1√

Ψ
. (1.2)

2We call the corner between D5 and NS5 interfaces with the gauge theory of the gauge group U(N3) the

third corner. Similarly, the corner between D5 and (1, 1) interfaces is the second and the corner between

(1, 1) and NS5 interfaces is the first.
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Gluing of generic modules. In [5], we proposed a construction that associates a VOA

to an arbitrary (p, q) web of interfaces between U(Ni) gauge theories. The corresponding

VOA is an extension of the tensor product of Y -algebras associated to trivalent juncions

of the diagram by a fusion of bi-modules associated to line operators supported at internal

edges of the diagram. The free field realization discussed above points towards the com-

pletion of the gluing proposal from [5] by finding a way to possibly determine all OPEs of

gluing fields by which we extend the product of Y-algebras. In particular, as discussed in

the section 5.3, one can realize the fundamental and the anti-fundamental representation

associated to each interface as a Fock descendant of a vertex operator of free bosons. There

are actually many possible choices for a given free field realization and we conjecture (and

test in examples) that the result (if non-vanishing) is independent of the choice of the

representant as long as we include contour integrals of screening currents along the lines

of [39, 40].

The gauge theory picture suggests that generic modules of glued algebras can be ob-

tained as a tensor product of corresponding modules of each vertex with GW parameters

correctly identified. The total number of continuous parameters of a generic module is thus

a sum of all the numbers of D3-branes at each face. From the VOA point of view, this

identification of GW parameters is needed for generic modules to have trivial braiding with

bi-modules added in the gluing procedure. As a non-trivial example, we discuss the struc-

ture of generic modules of the ĝl(N) Kac-Moody algebra and corresponding W-algebras.

We conjecture that a subclass of modules coming from GW defects can be identified with

modules induced from generic Gelfand-Tsetlin modules of gl(N) from [41] and their W-

algebra analogues. Generally, one obtains wild classes of irregular modules [42, 43].

2 Gauge theory setup

In this section, we briefly review the gauge theory setup from [1] and comment on the main

players (line operators and Gukov-Witten defects) in the discussion of modules. Finally,

we discuss the simple example of the Y0,0,1 = ĝl(1) Kac-Moody algebra that serves as a

prototype for the general discussion in later sections.

2.1 The corner

There exists a class of half-BPS domain walls between four-dimensional N = 4 super Yang-

Mills theories with gauge groups U(N1) and U(N2) associated to co-prime numbers (p, q).

The gauge theory setup descends from N1 and N2 D3-branes ending from the left and from

the right on a (p, q)-brane.3 The simplest quarter-BPS trivalent junction of NS5, D5 and

(1, 1) interfaces between U(N1), U(N2) and U(N3) gauge theories as shown in the figure 1

was analyzed in [1]. These triple junctions serve as building blocks of more complicated

junctions coming form various (p, q)-web configurations studied in [5].

Let us restrict to Kapustin-Witten twist [6] of the configuration with the canonical

parameter Ψ ∈ CP
1 and deformed boundary conditions in such a way that the Kapustin-

Witten supercharge is preserved. It was argued in [1] that local operators in the cohomology

3One identifies the NS5-brane with (0, 1) and the D5-brane with (1, 0).
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N1

N2

N3

× C

NS5 = (1,0)

D5 = (1,0)

(1,1)

Figure 1. The simplest trivalent junction of NS5, D5 and (1, 1) interfaces between U(N1), U(N2)

and U(N3) gauge theories with a two-dimensional corner. The junction on the left shows the

configuration of interfaces in the x1, x2 plane of the gauge theory with C factor corresponds to the

x3, x4 directions.

of the Kapustin-Witten supercharge are supported at the junction of domain walls and give

rise to the vertex operator algebra YN1,N2,N3 [Ψ]. For each choice of ranks of gauge groups

N1, N2, N3, one obtains a one parameter family of VOAs parametrized by the canonical

parameter Ψ. In the following, we often suppress the dependence on Ψ in YN1,N2,N3 [Ψ].

2.2 Line operators

Apart from the local operators living at the two-dimensional corner, line operators sup-

ported at each of the three interfaces are part of the twisted theory as well. Consider line

operators supported at one of the three interfaces, going from the infinity and ending at

the corner at point z ∈ C. The endpoint z determines the insertion of the corresponding

vertex operator from the CFT point of view. The process of fusing local operators living

at the corner with the line endpoint generates a module for YN1,N2,N3 .

Line operators supported at the NS5-interface can be identified with the Wilson lines

associated to a finite-dimensional representation µ of the Lie super-group U(N1|N3) as

discussed in [9]. Similarly, line operators at the D5-interface are ’t Hooft operators as-

sociated to U(N3|N2) representations and line operators at the (1,1)-interface are Wilson

line operators associated to representations of U(N2|N1). These modules play the role of

degenerate modules of YN1,N2,N3 . The algebra YN1,N2,N3 has a natural grading by spin

and degenerate modules are characterized by the fact that they contain less states in some

graded component compared to a generic module.

2.3 Gukov-Witten defects

Apart from the line operators discussed above, Gukov-Witten (GW) surface defects [33]

also survive the GL twist. Inserting such a GW defect at a point z ∈ C and attaching it to

one of the corners of the Y-shaped junction, one gets a new (continuous) family of modules

for the corner VOA.

GW defects in the U(N) gauge theory are labeled according to [8, 9, 33] by four real

parameters4 (α, β, γ, η) ∈ (T, t, t, T ), where T is the Cartan of the gauge group U(N) and t

the Cartan subalgebra of the Lie algebra u(N). In the GL-twisted theory, parameters β and

4In general, the parameter η lives in the Cartan subalgebra of the Langlands dual gauge group T∨. Since

U(N) is left invariant under the Langlands duality, we do not distinguish them in this work.
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M 2
µ

M 1
ν

M 3
λ

λ
(1)
i

λ
(2)
i

λ
(3)
i

Figure 2. Line operators M i
µ labeled by finite representations of the gauge groups are supported

at interfaces and give rise to degenerate modules of VOA. GW defects attached to the corners of

the diagram are labeled by λ
(1)
i , λ

(2)
i , λ

(3)
i in N1, N2 and N3 complex tori with modular parameters

Ψ and give rise to generic modules.

γ were argued in [9] to deform the integration contour of the complexified Chern-Simons

theory. On the other hand, the combination

λ = Ψα− η (2.1)

parametrizes the monodromy of the complexified gauge connection A = A + ωφ around

the defect, i.e.

A(z) ∼ diag(λ1, . . . , λN )

z
(2.2)

near the defect at the origin z = 0. The parameter ω is related to Ψ in such a way that

A is a closed combination at the interface (modulo a gauge transformation). Since both

α and η live in the Cartan subgroup α, η ∈
(
S1
)N

of the gauge group U(N), we see that

the corresponding monodromies (and Gukov-Witen defects in the GL-twisted theory) are

labeled by points in N complex tori of modular parameter Ψ.

Let us discuss S-duality transformation of the GW parameters identified in [33]. The

pair (β, γ) transforms as

S : (β, γ) → |τ |(β, γ) (2.3)

under the S-transformation and it is unaffected by the T-transformation. On the other

hand, the pair (α, η) relevant to us transforms as

S : (α, η) → (η,−α), T : (α, η) → (α, η − α). (2.4)

The complex parameter λ of the twisted theory transforms as

S : λ = Ψα− η → λ′ = α− 1

Ψ
η, T : λ→ λ. (2.5)

We see that λ is invariant under the T-transformation and the S-transformation simply

multiplies the Gukov-Witten parameter by 1/Ψ and exchanges the role of α and η. In

later sections, we will see that this transformation is consistent with the triality covariance

of YN1,N2,N3 .

– 6 –
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When a GW defect ends at an interface, one needs to further specify a boundary

condition for the defect. We will see later that the choice of the boundary condition

lifts λ(κ) for κ = 1, 2, 3 living in the Nκ complex-dimensional torus of in each corner to

λ̃(κ) ∈ C
Nκ . The boundary line of the surface operator can be fused with line operators

discussed above. Such a fusion changes the boundary condition for the GW defect. For

example in the Y0,0,1 configuration, line operators supported at the NS5 interface produce

a defect with charge n ∈ Z that lifts the parameter η and the line defect supported at the

other interface creates a vortex of monodromy Ψm ∈ ΨZ lifting the parameter α. Similarly

in the other two corners, the fundamental domain of the torus is lifted to the full C by

modules coming from line operators at the corresponding two boundaries.

For generic values of GW-parameters, the defect breaks the gauge group to the maximal

torus at the defect. Corresponding modules are going to be associated to generic modules

for the corner VOA. For special values of parameters, a Levi subgroup of the gauge group

is preserved and we expect the corresponding representations to be (partially) degenerate,

i.e. the associated Verma module contains some null states. For example, if two of the

monodromy parameters are specialized, the next-to-minimal Levi subgroup U(2)×U(1)Ni−2

is preserved. One can decorate such a configuration by line operators in some representation

of the preserved SU(2) gauge group. In the parameter space of the lifted GW parameters,

one gets a discrete set of codimension one walls corresponding to degenerate modules for

each pair of Cartan elements. The full parameter space of generic modules thus has a

chamber-like structure with the modules degenerating at the walls. At the intersection of

more walls, we expect further degeneration to appear. These intersections correspond to

larger Levi subgroups. In the case that GW parameters are maximally specialized, we have

a trivial interface (there are no singularities in the bulk) and we expect the corresponding

modules to be maximally degenerate. The corresponding modules are labeled by finite

representations of gauge groups (labeling line operators at the interfaces).

Finally, let us note that throughout the discussion above, one needs to mod out Weyl

groups of U(Ni) since modules related by the Weyl transformations are gauge equivalent.

2.4 Y0,0,1 = ĝl(1) example

Let us illustrate how above gauge theory elements fit nicely with the simplest example

Y0,0,1 = ĝl(1). This example is extremely important since all the other algebras can be

obtained from a fusion (coproduct) combined with the triality transformation of this sim-

ple algebra.

The insertion of the complexified gauge connection A at the corner can be identified

with the ĝl(1) current J normalized as

J(z)J(w) ∼ Ψ

(z − w)2
. (2.6)

In [1], line operators supported at the NS5-boundary were identified with electric modules

of charge n ∈ Z and conformal dimension 1
2Ψn

2. Line operators at the D5-boundary were

identified with magnetic operators with monodromy Ψm ∈ ΨZ and conformal dimension
Ψ
2m

2. On the other hand, GW defects are parametrized by a complex torus with the

– 7 –
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1

Ψ
λ

λ+ 2 + Ψ

Figure 3. The lattice structure of modules of the ĝl(1) algebra. GW-defects are labeled by a point

in the torus of modular parameter Ψ. Fusion with electric and magnetic modules of charges n and

Ψn lift the torus along the full complex plane parametrizing generic module of the algebra. Lattice

points correspond to dyon modules of the algebra and the position in the fundamental domain

corresponds to the GW-parameter. For example, the modules of charge λ̃ = λ+2+Ψ and λ in the

fundamental domain are related by fusion with the electric module of charge 2 and the magnetic

module of charge 1.

modular parameter Ψ parametrizing the monodromy for the complexified gauge connection

in the bulk. If the GW defect ends at the NS5 boundary, one can fuse the end line of the

defect with line operators supported at the boundary. Such a line operator shifts the charge

by 1 and lifts the torus of the Gukov-Witten defect in the real direction. Similarly, fusing

with modules supported at the D5-boundary lifts it in the Ψ direction tessellating C as

shown in the figure 3. The GW parameter λ thus lifts to λ̃ ∈ C that can be identified with

the J0 eigenvalue. The fusion with an electric module shifts it by one λ̃→ λ̃+ 1, whereas

the fusion with a magnetic module shifts it by Ψ, i.e. λ̃→ λ̃+Ψ. The module coming from

the GW defect has charge λ̃ and conformal dimesion 1
2Ψ λ̃

2.

Note that the S-duality transformation exchanges NS5-brane and D5-brane and the

orientation of the diagram gets reversed. The transformed level of the algebra is 1/Ψ

and the transformed lifted GW parameter becomes λ̃/Ψ. This is consistent both with

the transformation of degenerate modules and the unlifted GW parameter. Note that

conformal dimension of the generic module is invariant under the S-duality transformation

and so is the charge if we renormalize J̃ = 1√
Ψ
J . The roles of α and η interchange.

Let us show that transformations of parameters are also consistent with the triality

relation

Y0,0,1 [Ψ] = Y0,1,0

[
Ψ̃ = 1− 1

Ψ

]
. (2.7)

The insertion of A at the corner of Y0,1,0[Ψ̃] leads to the ĝl(1) Kac-Moody algebra normal-

ized as

J(z)J(w) ∼ 1− Ψ̃

(z − w)2
. (2.8)

Consider a GW defect with the parameter λ̃(2). The charge of the corresponding module

– 8 –
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with respect to the normalized current J/
√
Ψ̃− 1 equals

λ̃(2)√
1− Ψ̃

=
λ̃(2)√

1− 1 + 1
Ψ

=
√
Ψλ̃(2). (2.9)

Comparing it with the charge with respect to the normalized current of Y0,0,1[Ψ] that equals

λ̃(3)/
√
Ψ, we see that the two GW parameters must be indeed related by λ̃(3) = λ̃(2)/Ψ

consistently with the above discussion.

2.5 Reparametrization of GW defects

The trivalent junction of interest is invariant under the S3 subgroup of the SL(2,Z) group

of S-duality transformations. To get manifestly triality invariant parametrization of the

algebra and its modules, let us introduce parameters h1, h2, h3 by

Ψ = −h2
h1
, h1 + h2 + h3 = 0. (2.10)

Note that the parameters hi are determined up to the overall rescaling. The VOA is

independent on such a rescaling. Up to the rescaling, one can relate parameters hi and Ψ

for example as

h1 =
1√
Ψ
, h2 = −

√
Ψ, h3 =

√
Ψ− 1√

Ψ
. (2.11)

Instead of the lifted GW parameter λ̃(3) parametrizing defects in the third corner, one can

consider the combination

x(3) =
1√
Ψ
λ̃(3) = h1α

(3) + h2η
(3) (2.12)

and similar combinations in the other two corners

x(2) = h3α
(2) + h1η

(2)

x(1) = h2α
(1) + h3η

(1). (2.13)

In the Y0,0,1 example, we can identify the parameter x(3) with the coefficient in the

exponent of the vertex operator5

exp
[
x(3)φ(w)

]
(2.14)

in the free field realization of the module with the current J (3) = ∂φ(3) = J/
√
Ψ normal-

ized as

J (3)(z)J (3)(w) ∼ − 1

h1h2

1

(z − w)2
. (2.15)

5In the following we will drop the normal ordering symbols and we assume all the exponential vertex

operators are normal ordered.
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In this parametrization, the electric module M2 of unit charge corresponds to α(3) = 1

whereas the magnetic module to η(3) = 1.

In the other two frames Y1,0,0 and Y0,1,0 with currents J (κ) = ∂φ(κ) normalized as

J (κ)(z)J (κ)(w) ∼ − hκ
h1h2h3

1

(z − w)2
, (2.16)

parameters x(κ) are again exponents of the corresponding vertex operator. We will later

see that parameters x
(κ)
i can be identified with shifts of exponents of N1 +N2 +N3 vertex

operators also for general YN1,N2,N3 .

In the parametrization using hi, the triality tranformation simply permutes hκ together

with parameters α(κ), η(κ). The invariance of the charge of the current normalized to

identity is manifest.

3 Y-algebras and free fields

In this section, we review the definition of YN1,N2,N3 in terms of truncations of the W1+∞
algebra, the kernel of screening charges and the BRST reduction. Furthermore, we gener-

alize the Miura transformation construction of the kernel of screening charges for Y0,0,N ≡
WN × ĝl(1) to arbitrary YN1,N2,N3 .

3.1 Four definitions of Y-algebras

Truncations of W1+∞. The algebra W1+∞ is an extension of the vertex operator al-

gebra of the stress-energy tensor T by primary fields Wi of spin i = 1, 3, 4, . . . . Jacobi

identities fix all the structure constants [23–25] of the algebra up to three parameters

(λ1, λ2, λ3) subject to the constraint

1

λ1
+

1

λ2
+

1

λ3
= 0. (3.1)

It was argued in [5, 30] that for each triple of non-negative integers (N1, N2, N3),

the algebra W1+∞ contains an ideal IN1,N2,N3 generated by a singular vector at level

(N1 + 1)(N2 + 1)(N3 + 1), whenever λi satisfy

N1

λ1
+
N2

λ2
+
N3

λ3
= 1. (3.2)

For these values of λi, one can define the quotient6

YN1,N2,N3 [Ψ] = W1+∞/IN1,N2,N3 for Ψ = −λ1
λ2
. (3.3)

Note that the constraint (3.3) is invariant under a constant shift of all integers

(N1, N2, N3). The first few WN generators of algebras YN1,N2,N3 and YN1+k,N2+k,N3+k

will thus have identical operator product expansions. We expect that the two algebras

differ by higher-spin null generators forming an ideal inside the bigger algebra. One might

6Some truncations of this sort have been recently discussed in [25].
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be tempted to use these shifts and restrict only algebras with one of the integral parame-

ters vanishing (algebras with all null fields removed, the simple quotient). It is convenient

to consider the general case for the following three reasons. First, the general case ap-

pears naturally both in the N = 4 SYM setup when one considers non-trivial line and

surface operators and in the dual geometric picture from [44]. Secondly, our generalized

version of Miura transformation realizing a free field representation of YN1+k,N2+k,N3+k re-

alizes exactly YN1+k,N2+k,N3+k and not its simple quotient YN1,N2,N3 . Finally, even though

YN1+k,N2+k,N3+k contains null states, when glued with another Y -algebra, the additional

gluing fields discussed in later sections makes them not null with respect to the full algebra.

For example, gluing Y2,1,1 with Y0,1,1 and Y0,0,1 as described in the section 4.4 of [5], the

resulting algebra is expected to be the ĝl(2)Ψ algebra that does not contain any null fields

even though Y2,1,1 does.

Apart from the primary basis mentioned above, there exists another useful basis (some-

times called the U -basis or the quadratic basis) related to the Miura transformation [24, 45].

Generating fields of this basis are not quasi-primary and also explicitly depend on a choice

of the triality frame (so there are in fact three different bases of this kind that are inter-

changed by the action of the triality). On the other hand, their main advantage is that

operator product expansions in this basis have only quadratic non-linearity. This allowed

to guess a closed form-formula for all OPEs [24].

The transformation between the primary and the quadratic basis is not known in

general but can be calculated spin by spin, i.e. we can construct primary fields in terms of

the generators in the quadratic basis.7 Because of the presence of the composite primary

fields, the primary basis is not uniquely determined by the primarity condition. Even

if we decouple the spin one field from the rest of the algebra and work with the W∞
subalgebra, one is still not able to uniquely fix the primary generators using only the

condition of being primary. Starting at spin 6, there appears the first primary composite

(W3W3)+. . . field. GeneratorsWi can be the determined (with the normalization ambiguity

still undetermined) by a further requirement of the orthogonality (vanishing two-point

function) with the composite primaries. First few primary fields determined in this way

are given in appendix A.

Identification between the triality-covariant parameters λj and the parameters N and

α0 used in Miura transformation and the structure constants in the quadratic basis is [24]

λ3 = N, α2
0 = −λ1λ2

λ23
. (3.4)

Note that there are indeed three possible identifications (and the corresponding U -bases)

with λi parameters permuted.

Affine Yangian. The vertex operator algebra W1+∞ is isomorphic as an associative

algebra (after a suitable completion) with the Yangian of affine gl(1) as discussed in [26,

7It is interesting that in the semiclassical limit, i.e. when the VOA simplifies to a Poisson vertex algebra,

there is a closed-form determinantal formula for transformation between primary and quadratic basis [46]

which has very similar form to the formula for Virasoro singular vectors.
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27, 29, 30, 32]. The affine Yangian in the basis of [29] is generated by an infinite set of

commuting generators ψi together with an infinite set of raising fi and lowering ei ladder

operators. As we will see below, the representation theory simplifies significantly using

this Yangian point of view. The triality symmetry is manifest, but one loses the manifest

locality and conformal field theory interpretation. The structure of Yangian depends on

three complex parameters h1, h2 and h3 constrained by

h1 + h2 + h3 = 0. (3.5)

The map between these parameters and the λ-parameters of W1+∞ is

λj = −ψ0h1h2h3
hj

(3.6)

where ψ0 is the first (central) element of the commutative Cartan subalgebra of the Yan-

gian. Specializations of the affine Yangian of gl(1) are isomorphic to VOAs YN1,N2,N3

as proved in [26] for WN truncations and [44] in general, based on the previous work

of [5, 26, 29, 30, 47].

Free field realization. Another definition of YN1,N2,N3 studied in [34, 35] is in terms

of subalgebras of free bosons.8 Consider a set of N1 + N2 + N3 free bosons φ
(κ)
i , where

κ = 1, 2, 3 labels a type of the boson and i = 1, . . . , N1 +N2 +N3 with Nκ bosons of type

κ. Let us pick a fixed ordering of φ
(κ)
i . To each neighbouring pair of free bosons, we can

associate a screening charge according to [34, 35] and reviewed later. The explicit form of

the screening charge depends on the type of the neighbouring pair of free bosons. YN1,N2,N3

can be then defined as a commutant of all such N1 +N2 +N3 − 1 screening charges. The

resulting algebra is independent of the choice of ordering but the way it is embedded in

the corresponding Fock space depends on the ordering.

Below, we give an alternative way to construct the free field realization of YN1,N2,N3 .

The construction is based on a generalization of the standard quantum Miura transforma-

tion for Y0,0,N = WN × ĝl(1) [36, 48]. For Y0,0,N , one factorizes an N -th order differential

operator as a product of first order operators. Replacing these elementary first order opera-

tor by certain pseudo-differential operators which we describe below, we obtain the desired

free field realization. One can check that the two constructions give the same free field re-

alization by comparing the results for Y0,0,2 and Y1,1,0 and realizing that both constructions

are essentially local, i.e. involve only operations on the pairs of neighbouring bosons.

BRST construction. Y-algebras were originally introduced in [1] in terms of a BRST

reduction translating the boundary conditions in N = 4 SYM [11–13]. They were defined

as a combination of the Drinfeld-Sokolov reduction and the BRST coset reduction of a

pair of Kac-Moody super-algebras. We refer reader to the original work [1] and [5] for

a summary.

8We are grateful to Mikhail Bershtein and Alexey Litvinov for pointing out this relation.
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3.2 Miura transformation for YN1,N2,N3

Let us now give a generalization of the well-known Miura transformation for Y0,0,N of [36,

48] to general YN1,N2,N3 and relate it to the free field realization of [34, 35].

3.2.1 Review of Y0,0,N

Firstly, we review the standard Miura transformation for Y0,0,N . Consider a set of N gl(1)

currents Jj(z) with OPEs

Jj(z)Jk(w) ∼
δjk

(z − w)2
(3.7)

and define operators Uk(z) via

(α0∂ + J1(z)) · · · (α0∂ + JN (z)) ≡
N∏

j=1

R
(3)
j (z) =

N∑

k=0

Uk(z)(α0∂)
N−k, (3.8)

where the parameter α0 is related to the parameters of W1+∞ by (3.4). Operators Uk

and their normal ordered products and derivatives form a closed algebra under operator

product expansion [45].

3.2.2 The general case

One can extend the Miura transformation to the case where there are nodes of different

types. For that it is important to remember that we have three types of nodes corresponding

to three different free field representations of W1+∞ corresponding to λ1 = 1, λ2 = 1 or

λ3 = 1 (as well as their conjugates). The usual Miura transformation in our conventions

has all nodes of type 3 with λ3 = 1. We will see that the usual procedure works even in

the case of λ1 = 1 or λ2 = 1 but we have to replace the elementary factor

R(3)(z) ≡ α0∂ + J (3)(z) (3.9)

by a pseudo-differential operator with an infinite number of coefficients which are local

fields. This generalization is common in the context of integrable hierarchies of differential

equations (e.g. KdV or KP hierarchies), [49, 50], where differential operators of degree N

of the form
N∑

j=0

Uj(z)(α0∂)
N−j (3.10)

for N integer can be naturally extended to pseudo-differential operators of the form

∞∑

j=0

Uj(z)(α0∂)
λ−j (3.11)

which now make sense for all values of λ (not necessarily positive integer). This is what

we need because the parameter N = λ3 which conventionally appears in the Miura trans-

formation takes a non-integral value for the bosonic representations associated to first and

second asymptotic direction.
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Let us first consider what happens in the case that λ1 = 1. In this situation, we know

from triality that there exists a free field representation of W1+∞ associated to a single

free boson φ(1), but in the quadratic U -basis (which is itself conventionally associated to

the third direction), there is an infinite number of non-trivial Uj generators, all expressed

in terms of φ(1). Choosing for convenience the parametrization as in [30]

h1 = h

h2 = −1

h
(3.12)

h3 =
1

h
− h = α0

ψ0 = λ3 = N

we need to require

1 = λ
(1)
1 , (3.13)

to get a representation on one free boson, i.e.

N (1) = λ
(1)
3 = − h2

h2 − 1
= − h1

h1h2h3
. (3.14)

From the Miura transformation point of view, this N (1) is the order of the pseudo-

differential operator corresponding to the φ(1) representation. In the following, it will

be useful to choose the normalization coefficient of the two-point function of the current

J (1) ≡ ∂φ(1) to be N (1),

J (1)(z)J (1)(w) ∼ N (1)

(z − w)2
. (3.15)

Having fixed all the parameters of algebra, we can now find the expressions for U
(1)
j (z)

fields in terms of J (1), requiring just the commutation relations spelled out in [24]. They

are uniquely determined up to the conjugation J (1) ↔ −J (1) symmetry. Fixing a positive

sign, the expressions for the first few fields are

U
(1)
1 = J (1)

U
(1)
2 =

(
2− 1

h2

)(
(J (1)J (1))

2
+
h∂J (1)

2

)

U
(1)
3 =

(
2− 1

h2

)(
3− 2

h2

)(
(J (1)(J (1)J (1)))

6
+
h(∂J (1)J (1))

2
+
h2∂2J (1)

6

)

U
(1)
4 =

(
2− 1

h2

)(
3− 2

h2

)(
4− 3

h2

)(
(J (1)(J (1)(J (1)J (1))))

24
+

+
h(∂J (1)(J (1)J (1)))

4
+
h2(∂J (1)∂J (1))

8
+
h2(∂2J (1)J (1))

6
+
h3∂3J (1)

24

)
(3.16)

The expressions for higher U
(1)
j fields are uniquely determined from the OPE of U

(1)
3 U

(1)
j−1.

But even the general pattern is not very difficult to understand: first of all, each U
(1)
j has
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an overall multiplicative factor

j−1∏

k=1

[
1 + k

(
1− 1

h2

)]
=

j−1∏

k=1

(
1− k

N (1)

)
. (3.17)

Next, there is a sum of all dimension j operators that we can construct out of a free boson.

The power of h in each term counts the number of derivatives appearing in the operator and

the combinatorial factors can be most easily seen using the operator-state correspondence:

U
(1)
1 → a−1

U
(1)
2 → a2−1

2
+
ha−2

2

U
(1)
3 → a3−1

6
+
ha−1a−2

2
+
h2a−3

3

U
(1)
4 → a4−1

24
+
ha2−1a−2

4
+
h2a2−2

8
+
h2a−1a−3

3
+
h3a−4

4
(3.18)

These are exactly the coefficients appearing in Newton’s identities if we think of Uj to be the

homogeneous symmetric polynomials and aj to be the power sum symmetric polynomials.

One can thus also write a closed-form formula

U
(1)
j =

j−1∏

k=1

(
1− k

N (1)

) ∑

m1+2m2+...+jmj=j

j∏

k=1

1

mk!kmk

(
hk−1

(k − 1)!
∂k−1J (1)

)mk

(3.19)

where everything is normal ordered. The total Miura operator representing the φ(1) node

of the diagram (see figure 4) is thus given by the pseudo-differential operator9

R(1)(z) ≡ (α0∂)
h1
h3 +

∞∑

j=1

U
(1)
j (z)(α0∂)

h1
h3

−j
. (3.20)

In the case of representation of type φ(2) the calculation is entirely analogous and in fact

we can just make a replacement h↔ − 1
h . We require λ

(2)
2 = 1 and so in this case

N (2) = λ
(2)
3 =

1

h2 − 1
= − h2

h1h2h3
. (3.21)

The current is again normalized such that the quadratic pole of the J (2)J (2) OPE is equal

to this value of N (2). Choosing the sign of U
(2)
1 , all other U

(2)
j operators are uniquely

9As observed by A. Litvinov, this Miura factor can be actually interpreted as a dressing of (α0∂)
h1

h3 by

a bosonic exponential vertex operator. This is also discussed in [51].
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φ
(1)
1 φ

(1)
2 φ

(2)
3 φ

(3)
4 φ

(3)
5 φ

(3)
6 φ

(1)
7 φ

(3)
8

S
(1;1)
12 S

(12)
23 S

(23)
34 S

(3;1)
45 S

(3;1)
56 S

(31)
67 S

(13)
78

Figure 4. An example of the ordering of free bosons for Y3,1,4. The algebra can be found by

multiplying the Miura pseudo-differential operators in the order R
(1)
1 (z)R

(1)
2 (z) . . . R

(1)
7 (z)R

(3)
8 (z)

as shown in the figure. Alternatively, one can construct the free field realization as an intersection

of kernels of screening charges S
(1;1)
12 , S

(12)
23 , . . . S13

78 associated to the lines of the chain of free bosons.

determined and we find

U
(2)
1 = J (2)

U
(2)
2 = (2− h2)

(
(J (2)J (2))

2
− ∂J (2)

2h

)

U
(2)
3 = (2− h2)(3− 2h2)

(
(J (2)(J (2)J (2)))

6
− (∂J (2)J (2))

2h
+
∂2J (2)

6h2

)

U
(2)
4 = (2− h2)(3− 2h2)(4− 3h2)

(
(J (2)(J (2)(J (2)J (2))))

24
−

−(∂J (2)(J (2)J (2)))

4h
+

(∂J (2)∂J (2))

8h2
+

(∂2J (2)J (2))

6h2
− ∂3J (2)

24h3

)
(3.22)

The formula for U
(2)
j is now

U
(2)
j =

j−1∏

k=1

(
1− k

N (2)

) ∑

m1+2m2+...+jmj=j

j∏

k=1

1

mk!kmk

(
(−1)k−1

(k − 1)!hk−1
∂k−1J (2)

)mk

(3.23)

and the Miura pseudo-differential operator representing a node of type φ(2) is

R(2)(z) ≡ (α0∂)
h2
h3 +

∞∑

j=1

U
(2)
j (z)(α0∂)

h2
h3

−j
. (3.24)

We can use these newly constructed building blocks to find a free field representation

of any YN1,N2,N3 algebra: pick an arbitrary ordering of Nj bosons of type φ(j) as shown in

the figure 4 for a particular ordering of the Y3,1,4 algebra and multiply the corresponding

Miura operators R
(κj)
j . Commuting all the derivatives to the right (recall that even for

non-integer powers of derivative the generalization of Leibniz rule still applies), we find in

the end a pseudo-differential operator of the form

R(z) = (α0∂)
N1h1+N2h2+N3h3

h3 +

∞∑

j=1

Uj(z)(α0∂)
N1h1+N2h2+N3h3

h3
−j

(3.25)

where Uj are certain normal ordered differential polynomials in the free boson fields. The

statement is that the fields Uj(z), their normal ordered products and derivatives form a
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closed subalgebra of the algebra of N1+N2+N3 free bosons which represents YN1,N2,N3 in

terms of free bosons. Furthermore, OPEs of these Uj fields are still those of the quadratic

U -basis with structure constants given in [24]. Examples will be discussed in later sections.

3.2.3 Miura versus screening

To each ordering of Nκ free bosons φ
(κ)
i of type κ with the corresponding currents J

(κ)
i =

∂φ
(κ)
i normalized as

J
(κ1)
i1

(z)J
(κ2)
i2

(w) ∼ − hκ
h1h2h3

δκ1,κ2

(z − w)2
, (3.26)

we have the associated free field realization of the algebra YN1,N2,N3 . On the other hand,

the authors of [34, 35] construct a free field realization of the same algebra as a kernel of

N1 + N2 + N3 − 1 screening charges acting on the tensor product of the current algebras

above. Let us define screening charges for each such ordering and check that they are of

the form of [35].

Consider a fixed ordering of free bosons such as the one in the figure 4. One associates a

screening charge to each neighboring free bosons (lines connecting two nodes of the chain).

If the two free bosons are of the same type, say κi = κi+1 = 3, the corresponding screening

current can be chosen to be either

S
(3;1)
i,i+1 =

∮
dz exp

[
−h1φ(3)i + h1φ

(3)
i+1

]
(3.27)

or

S
(3;2)
i,i+1 =

∮
dz exp

[
−h2φ(3)i + h2φ

(3)
i+1

]
. (3.28)

These two can be determined from the requirement that the zero mode of the exponential

vertex operator commutes with the free field realization of the spin one and the spin two

fields in the Virasoro algebra Y0,0,2. One gets similar expressions for the other three types

with the hi parameters permuted. To a pair of free bosons of different type (say ordering

φ
(3)
i × φ

(2)
i+1), one associates instead the screening charge10

S
(32)
i,i+1 =

∮
dz exp

[
−h2φ(3)i + h3φ

(2)
i+1

]
(3.29)

and similarly for the other five combinations.

The screening charge Si,i+1 maps the vacuum representation of the product of the

current algebras generated by J
(κ)
i = ∂φ

(κ)
i to a module with the highest weight vector

ji,i+1(0)|0〉, where ji,i+1 is the screening current associated to the screening charge Si,i+1.

The algebra YN1,N2,N3 can be defined as an intersection of kernels of screening charges

YN1,N2,N3 =

N1+N2+N3−1⋂

i=1

kerSi,i+1. (3.30)

10The commutation with the spin one and the spin two field gives two possible solutions as in the case

of the Virasoro algebra but only one is preserved by the requirement of commutativity with the spin three

generator.
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Consider now a triple of free bosons neighbouring in the chain and let us compute the

matrix of inner producs of the corresponding two exponents of the screening currents with

respect to the metric given by the normalization of two-point function

gjk = − hκj

h1h2h3
δjk (3.31)

We will see that the different choices of ordering and different choices of the screening

currents (3.27) and (3.28) lead to different matrices from [35].

If all the three free bosons are of the same type φ
(3)
1 × φ

(3)
2 × φ

(3)
3 , one can pick either

both screening charges to be of the same type (3.27) or (3.28) or one of the first type and

the second one of the second type. In these four cases, one gets respectively the following

two matrices

−h1
h2

(
2 −1

−1 2

)
, −h1

h2

(
2 −h2

h1

−h2
h1

2

)
, (3.32)

together with matrices with the parameters h1 ↔ h2 interchanged. These two matrices are

of the form 1 and 2 from (2.24) of [35].

If one of the three free bosons is of a different type than the other two, say 332, one has

two possible orderings. In the first case, φ
(3)
1 × φ

(3)
2 × φ

(2)
3 , one has again a choice between

the screening currents (3.27) and (3.28) leading to the following two overlap matrices

(
−2h1

h2
1

1 1

)
,

(
−2h2

h1

h2
h1

h2
h1

1

)
(3.33)

that are of the form 4 and 3 of [35]. The last, symmetric ordering φ
(3)
1 × φ

(2)
2 × φ

(3)
3 gives

an overlap matrix of the form

(
1 h3

h1
h3
h1

1

)
(3.34)

which is of the form 5. Finally, if all the bosons are of a different type, one gets the matrix

of overlaps

(
1 1

1 1

)
. (3.35)

Comparing the free field realizations of Y0,0,2 and Y0,1,1 from the Miura transformation and

from the kernel of screening charges together with the triality symmetry permuting the

Y-algebra labels, one can see that the two free field realizations are the same.

4 Generic modules

Let us turn to the discussion of generic modules of YN1,N2,N3 associated to Gukov-Witten

defects. We start with a review of the algebra of zero modes and how to parametrize
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modules of a VOA induced from modules of the zero mode algebra. In the section 4.2, we

review a compact way to parametrize highest weights in terms of Yangian generating func-

tions ψ(u). The section 4.3 describes a general structure of the variety of highest weights

parametrizing generic representations of YN1,N2,N3 in the primary basis. The next two

sections state the generating function for such representations and related its parameters

with Gukov-Witten parameters and parameters of Fock modules in the corresponding free

field realization of modules. Finally, we give two examples of variety of highest weights in

the section 4.6.

4.1 Zero modes and generic modules

A rich class of YN1,N2,N3 representations can be induced from representations of the subal-

gebra of zero modes

X0 =
1

2πi

∮
dzzh(X)−1X(z) (4.1)

for X a field of spin h(X). Starting with a highest-weight vector anihilated by all positive

modes, one can show that the algebra of zero modes of truncations of W1+∞ acting on the

highest weight vector is commutative [25]. We can thus define a one-dimensional module

for the zero-mode algebra by prescribing how zero modes of the strong generators Wj act.

If there are relations in the space of fields (which show as singular vectors of the vacuum

Verma module), the zero mode of the corresponding null fields must vanish when acting

on the highest weight state. The existence of null fields thus constrains possible highest

weights leading to a variety of highest weights.

Let us add few comments:

1. In the math literature, the algebra of zero modes acting on the highest weight state

appears under the name of the Zhu algebra11 [53]. If the Zhu algebra is commutative

(as in the YN1,N2,N3 case [25]) the variety of highest weights is the spectrum of the

Zhu algebra.

2. Not all the modules produced by gluing are induced from the algebra of zero modes

with trivial action of the positive modes on the highest weight vectors. Gluing of

highest weight modules of YN1,N2,N3 leads in general to irregular modules of the

glued algebra. We will later illustrate this phenomenon on the simplest example of

the ĝl(2) Kac-Moody algebra.

3. Even in the case when the module of the glued algebra has a trivial action of positive

modes on the space of highest weights, the space of highest weights itself generically

forms an infinite-dimensional representation of the zero mode algebra.

11The Zhu commutative product is defined as a modified normal ordered product [X] ⋆ [Y ] = (X,Y ) +

corrections. The corrections are the commutators [Y1, Y−1] + [Y2, Y−2] + . . . from the mode expansion of

the normal ordered product acting on the highest weight state. For a more precise comparison see [52].
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Example — Ising model. As an illustration of possible restrictions that arise in the

presence of null states that are quotiened out, let us consider the c = 1/2 representation of

the Virasoro algebra

T (z)T (w) ∼ 1/4

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
. (4.2)

It is well-known [54] that the vacuum representation contains a singular vector at level 6

with the corresponding primary field

φ6 = 128(T (TT )) + 186(∂T∂T )− 264(∂2TT )− 9∂4T. (4.3)

The requirement of vanishing of the null field in any correlator constrains possible modules

for the VOA. In our case, let us consider a generic primary field χ(z) of dimension h,

T (z)χ(w) ∼ hχ(w)

(z − w)2
+
∂χ(w)

z − w
, (4.4)

and require the operator product expansion of φ6 and χ to vanish. The most singular (sixth

order) term is precisely the zero mode of φ6 acting on the highest weight discussed above

1

2πi

∮
dzz5φ6(z)|h〉 = 4h(2h− 1)(16h− 1)|h〉 = 0 (4.5)

and the variety of highest weights consists of three points h = 1/2, h = 1/16, and h = 0.

These are the allowed primary fields of the Ising model.

It is interesting to look also at the conditions following from the vanishing of the lower

order poles in the OPE

φ6(z)χ(w) ∼ 4h(2h− 1)(16h− 1)χ(w)

(z − w)6
+

12(2h− 1)(16h− 1)∂χ(w)

(z − w)5
(4.6)

+
48h(8h− 17)(Tχ)(w)

(z − w)4
+

6(64h+ 7)∂2χ(w)

(z − w)4
+O((z − w)−3).

The quintic pole vanishes for h = 1/2 and h = 1/16, while for h = 0 it requires ∂χ0 = 0

which is the usual singular vector of the vacuum representation at level 1 (translation

invariance of the vacuum).

Let us look at the quartic pole more closely. For h = 0 it does not give us anything

new while for h = 1/2 it requires

4(Tχ1/2)(z)− 3∂2χ1/2(z) (4.7)

to be zero and for h = 1/16

3(Tχ1/16)(z)− 4∂2χ1/16(z) (4.8)

to be zero. These are just the singular vectors of h2,1 and h1,2 Virasoro primaries. We

could proceed further and find other relations coming from the lower order poles.

From this simple example we see that the singular vectors of the vacuum representation

carry interesting information that constrains the spectrum of primaries of the theory. If

we impose that φ6 vanishes in all the correlation functions (which we would need to do for

example in a unitary theory), we find that there are only three possible primary fields and

we also find their singular descendants.
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4.2 Generating function of highest weights for YN1,N2,N3

Generic highest weight modules of a VOA with a commutative algebra of zero modes are

parametrized by the action of such zero modes on the highest weight state. For example,

modules of the ĝl(1)×WN ≡ Y0,0,N algebra are labeled by N highest weights, i.e. eigenval-

ues of Wi zero modes for 1, 2, 3, . . . N . Analogously, a generic representation of W1+∞ is

specified by an infinite set of higher spin charges of the highest weight state, one for each

independent generator of spin 1, 2, 3, . . .. To label a generic highest weight representation

of W1+∞ and its truncations, it is convenient to introduce a generating function of the

highest weight charges.

Generating function of highest weights. We will not be able to write down explicitly

the generating function of highest weights in the primary basis of the algebras. Instead, we

will see that the modules can be easily parametrized using the Yangian description in temrs

of generators ψi, fi, ei from [29, 30]. We will specify the module by the eigenvalues of the

commuting ψi generators on the highest weight state encoded in the generating function

ψ(u) = 1 + h1h2h3

∞∑

j=0

ψj

uj+1
. (4.9)

Another possibility to encode the highest weight charges is in terms of the generating

function of U -charges of the quadratic basis12 of W1+∞. U -basis is particulary usefull for

description of Y0,0,N with the generating function given by

U(u) =
N∑

k=0

uk
(−u)(−u+ α0) · · · (−u+ (k − 1)α0)

(4.10)

where uj are the eigenvalues of zero modes of the Uj-generators of Y0,0,N and u0 ≡ 1. The

generating function is a ratio of two N -th order polynomials in u-plane, so we may factorize

it and write

U(u) =
N∏

j=1

u− Λj − (j − 1)α0

u− (j − 1)α0
. (4.11)

As shown in [30], the transformation between generating function U(u) and ψ(u) is given by

ψ(u) =
u−Nα0

u

U(u− α0)

U(u) (4.12)

if we identify the parameters as

h1h2 = −1, h3 = α0, ψ0 = N. (4.13)

These relations allow us to translate between ψj charges of the highest weight state and

the corresponding uj charges.

12OPEs of the W1+∞ algebra in the U-basis contain only quadratic non-linearities with all the structure

constants fixed in [24].
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Plugging in the product formula for U , we find

ψ(u) =
(u− Λ1 − α0)(u− Λ2 − 2α0) · · · (u− ΛN −Nα0)

(u− Λ1)(u− Λ2 − α0) · · · (u− ΛN − (N − 1)α0)
. (4.14)

Defining

xj = Λj + (j − 1)h3 (4.15)

we can rewrite this as

ψ(u) =

N∏

j=1

u− xj − h3
u− xj

, (4.16)

i.e. the parameters xj specify the positions of poles of ψ(u) in the spectral parameter

plane while the zeros are at positions xj + h3. Using the variables xj , we have a manifest

permutation symmetry of the generating function, while the shifted variables Λj are chosen

such that the vacuum representation has Λj = 0.

4.3 Zero mode algebra of YN1,N2,N3

The algebras YN1,N2,N3 are finitely (generically non-freely) generated vertex operator alge-

bras by fields W1,W2, . . . ,Wn, where

n = (N1 + 1)(N2 + 1)(N3 + 1)− 1. (4.17)

The finite generation can be seen from the structure of null states of the algebra. The first

state of W1+∞ that needs to be removed in order to get the algebra YN1,N2,N3 appears at

level n + 1. Assuming that the coefficient in front of Wn+1 does not vanish, one can use

this null field to eliminate the Wn+1 field from the OPEs. At the next level, three more

null fields appear. Two of them are the derivative of the null field at level n + 1 and its

normal ordered product with W1 but one also gets one extra condition. This condition can

be used to remove the field Wn+2. One can continue this procedure and (assuming that

there are enough conditions at each level) one can remove all Wi for i > n from OPEs.

In this way, one can solve many null state conditions by restricting to a finite

number of W-generators but generically (apart from the case of YN,0,0, Y0,N,0, Y0,0,N )

some null states remain. These are going to be composite primary fields formed by

the restricted set of W -generators and need to be removed as well. The first con-

straint appears generically already at level n + 2. For large enough values of Ni, one

can see from the box-counting that there are be 12 null states at this level but only

∂2Wn, (Wn∂J), (J, ∂Wn), (J, (J,Wn)), (T,Wn), ∂Wn+1, (J,Wn+1),Wn+2 are removed by the

above argument. One has still 4 constrains that lead to a non-trivial conditions on the al-

gebra of zero modes. Note that for small values of of Ni, there will be less states at this

level as can be easily seen from the box-counting and as we will see in examples below.

We will also see that some constraints will be trivially satisfied and only some of them are

actually non-trivial.

One can see that for generic values of N1, N2, N3 the problem outlined above becomes

rather complex. The null states have been fully identified only in the case Y0,1,1 and Y0,1,2 in
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the literature [37, 38] and lead to nontrivial constraints on the allowed highest weights.13

From the discussion above, one can still draw the conclusion what will be the general

structure of the variety of highest weights. As argued above, the possible highest weights

are given by a subvariety inside the space of the highest weights of zero modes

(Wi)0|wi〉 = wi|wi〉. (4.18)

The highest weights are constrained by the existence of null states Xi
null and we conjecture

that the resulting variety of highest weights of the algebra of zero modes

(Xi
null)0|wi〉 = f i(wi)|wi〉 = 0 (4.19)

is N1 + N2 + N3 dimensional subvariety inside C
n. Although we will not be able to

explicitly construct the null states in general in terms of primary fields, we will give an

explicit parametrization of the variety by generalizing the generating function of ψi charges

of the WN algebra. The conjecture for the dimensionality comes from the existence of

N1 +N2 +N3 continuous parameters of surface defects available in the configuration. The

number N1 + N2 + N3 can be also guessed from the free field realization of the algebra

YN1,N2,N3 inside Y
⊗N1
1,0,0 ⊗Y ⊗N2

0,1,0 ⊗Y ⊗N3
0,0,1 , where modules of each of the factors are parametrized

by N1, N2 and N3 parameters respectively. The dimensionality indeed matches in examples

of Y0,1,1 and Y0,1,2 from the literature.

Note that the above discussion also implies that the character of the module with

generic highest weights counts N1 +N2 +N2-tuples of partitions, i.e.

χN1+N2+N3(q) =
∞∏

n=1

1

(1− qn)N1+N2+N3
. (4.20)

A general state of a generic module of the algebra can be constructed by an action of

negative modesWi on the highest weight state subject to the null state conditions. As in the

case of zero modes, where the null states were used to carve out an N1+N2+N3 dimensional

subvariety, one can use negative modes of the null conditions to remove appropriate states

at higher levels. Only N1+N2+N2 of the modes at each level are independent, giving rise

to the above character.

4.4 Generating function for YN1,N2,N3

As we have just seen, truncations YN1,N2,N3 are finitely generated by W1, . . . ,Wn where n

is given by (4.17). In particular, generic representations have a finite number of states at

level one. Following the usual notion of quasi-finite representations of linear W1+∞ [17, 59],

it was argued in [30] that a highest weight representation of W1+∞ has a finite number

of states at level 1 if and only if generating function ψ(u) equals a ratio of two Drinfeld

polynomials of the same degree. This is indeed true for Y0,0,N . We will now generalize

the formula (4.16) to a generating function ψ(u) that parametrize generic representations

for all YN1,N2,N3 . In particular, we conjecture that the complicated variety parametrizing

modules of the algebra YN1,N2,N3 can be simply parametrized.

13The cases YN,N,0, YN,N−1,0 and YN,N−2,0 have been considered rigorously in math literature [25, 55–58].
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Such a parametrization of the variety of highest weights is natural the from point of

view of the coproduct structure of the affine Yangian, but also from free field realization

viewpoint and the gauge theory perspective. After stating these motivations, we write

down an explicit formula for the generating function of ψi charges for arbitrary YN1,N2,N3

in 4.23. A parametrization of the variety of highest weights can be recovered after changing

the variables from the affine Yangian generators ψi to the zero modes of Wi generators

according to the appendix A.

Free field realization. Both the Miura transformation for YN1,N2,N3 and the definition

in terms of a kernel of screening charges give an embedding of the algebras of the form

YN1,N2,N2 ⊂ YN1,0,0 × Y0,N2,0 × Y0,0,N3 ⊂ Y ⊗N1
1,0,0 × Y ⊗N2

0,1,0 × Y ⊗N3
0,0,1 . (4.21)

Each factor Y0,0,1 in the free field realization above can be identified with one multiplica-

tive factor in (4.16). The full free field realization therefore suggests that the generating

function of a generic module of YN1,N2,N3 should be simply a product of three WN factors

corresponding to YN1,0,0, Y0,N2,0 and Y0,0,N3 . Note that the parameter α0 remains the same

in the fusion procedure. From the formula (3.4), we see that this requires (λ
(1)
1 , λ

(1)
2 , λ

(1)
3 )

and (λ
(2)
1 , λ

(2)
2 , λ

(2)
3 ) to be proportional and the fusion is simply additive in λ-parameters.

Yangian point of view. Using the map between W1+∞ modes and Yangian genera-

tors [30], we can translate the fusion to Yangian variables. The coproduct of ψj generators

with j ≥ 3 is no longer a finite linear combination of other generators and their products,

but involves an infinite sum. This is related to the non-local terms that enter the map be-

tween VOA description and the Yangian description. Fortunately, when acting on a highest

weight state (corresponding to a primary field via the operator-state correspondence) these

additional terms drop out and we obtain a simple formula

ψ(u) = ψ(1)(u)ψ(2)(u) (4.22)

analogous to the usual ones in finite Yangians.14 This coproduct of the affine Yangian also

suggests a simple form of the generating function in terms of a product of three WNi
factors

associated to each corner. The compatibility of parameters in this case requires that h1, h2
and h3 parametrizing the algebra are the same while the ψ0 is additive under the fusion.

In terms of λ-parameters this is the same condition as found above.

Gauge theory and brane picture. The gauge theory setup suggests that the modules

should be parametrized linearly. The GW parameters that label modules live in the N1 +

N2 +N3 dimensional tori (modulo Weyl group) that we expect to be lifted to C
N1+N2+N3

by boundary conditions imposed on the GW defect ending at the interfaces. Moreover,

this picture suggests that generically the contribution from GW-parameters in each corner

should be independent.

14Since the Yangian has a non-trivial automorphisms, like the spectral shift automorphism translating

the parameter u, we can precompose this with the coproduct if needed to obtain slightly more general

coproducts. This is actually what is needed if we want the fusion of two vacuum representations to produce

a vacuum representation.
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The coproduct from the point of view of the gauge theory corresponds to increasing

the rank of gauge groups in the three corners of the diagram. One can look at it as an

inverse process to Higgsing the theory that corresponds to separation of D3-branes and

reduces the gauge group. This procedure can be performed in each corner suggesting that

the coproduct of WN should have a natural generalization for YN1,N2,N3 [Ψ]. The process

is independent on the gauge coupling suggesting that Ψ is constant in agreement with the

other pictures discussed above.

Generating function. The discussion above motivates us to write down an explicit

formula for the generating function of ψi charges for YN1,N2,N3 acting on the highest weight

state by simply multiplying contributions from WN algebras from each corner

ψ(u) =

N1∏

j=1

u− x
(1)
j − h1

u− x
(1)
j

N2∏

j2=1

u− x
(2)
j − h2

u− x
(2)
j

N3∏

j3=1

u− x
(3)
j − h3

u− x
(3)
j

. (4.23)

Note that the expression is manifestly triality invariant, depends on the correct number of

parameters and the truncation curves are reproduced correctly. In particular, extracting

ψ0 from the expression above, one gets

h1h2h3ψ0 = −N1h1 −N2h2 −N3h3. (4.24)

Identifying the scaling-independent combinations15

λ1 = −ψ0h2h3, λ2 = −ψ0h1h3, λ3 = −ψ0h1h2, (4.25)

one gets the correct expression

N1

λ1
+
N2

λ2
+
N3

λ3
= 1 (4.26)

satisfied by parameters of YN1,N2,N3 .

Parameters x
(κ)
i can be identified with the lifted Gukov-Witten parameters in the third

corner. This can be seen from the comparison of the U(1) charge for Y0,0,1 and the fact

that each multiplicative factor corresponds to one such factor. The unlifted Gukov-Witten

parameters themselves can be identified by modding out by the lattice h1n + h2m for

n,m ∈ Z. We will later see that that x
(3)
i = h1n + h2m corresponding to the trivial GW

defect (and a possibly non-trivial line operator) corresponds to a degenerate module. We

will also see that the fusion of a degenerate module with a generic module labeled by a

parameter x(3) amounts to a shift of x(3) by a lattice vector.

Note also that the generating function is manifestly invariant under the Weyl group

associated to the three gauge groups U(Ni).

15The algebra is invariant under the simultaneous rescaling of ψ0 and hi, see [29, 30].
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Applications. To illustrate the power of the simple generalization of (4.23) let us discuss

one simple application and find primaries of the Ising model once again. The Ising model,

being a c = 1/2 minimal model of Virasoro algebra, lies on two intersection curves. Its

λ-parameters are (2/3,−1/2, 2) and can be thought of simultaneously as a truncation of

Y002 algebra as well as Y210 algebra. Choosing the hj parameters to be integers,

h1 = 3, h2 = −4, h3 = 1 (4.27)

and ψ0 = 1/6 so that (3.6) holds, the formula (4.23) implies that it should be possible to

write ψ(u) as product of two zero-pole pairs separated by distance h3 = 1 (Y002 point of

view) or alternatively as two zero-pole pairs separated by distance h1 = 3 and one zero-pole

pair separated by distance h2 = −4 (Y210 point of view). Up to an overall translation in

the u-space (spectral shift) there are only three possible solutions:

ψ0(u) =
u− 2

u
, ψ1/16(u) =

(u− 1/2)(u− 5/2)

(u− 3/2)(u+ 1/2)
, ψ1/2(u) =

(u− 4)(u+ 1)

(u− 3)(u+ 2)
. (4.28)

Extracting the conformal dimensions [29, 30], we find them to be h = 0, h = 1/16 and

h = 1/2 which are exactly the conformal dimensions of the Ising model.

4.5 Relation to the free boson modules

The parameters x
(κ)
i from the generating function of ψi charges that have been already

related to the Gukov-Witten parameters can be also related to exponents in the expression

for the vertex operators in free field realization. A highest weight vector in free field

representation with generic charges can be obtained by acting on the vacuum state with

the vertex operator

|q1, . . . , qN 〉 = exp




N∑

j=1

qjφj


 |0〉 . (4.29)

Acting on this state with the zero mode of current Jj = ∂φj , we find

Jj,0 |q1, . . . , qN 〉 = gjkq
k |q1, . . . , qN 〉 ≡ qj |q1, . . . , qN 〉 (4.30)

where gjk is the metric extracted from the two-point functions of the currents,

Jj(z)Jk(w) ∼
gjk

(z − w)2
∼ −

hκ(j)

h1h2h3

δjk
(z − w)2

. (4.31)

Our conventions for charges are such that qj are the charges that appear in the exponents

of vertex operators (and in positions of zeros and poles of ψ(u)) while qj are the coefficients

of the first order poles of OPE with currents Jj . We reintroduce the −h1h2 factors in order

to make the expressions manifestly triality invariant and also of definite scaling dimension

under the scaling symmetry of the algebra [30].

The U(1) current of W1+∞ whose zero mode is ψ1 is given by

U1(z) =
N∑

j=1

Jj(z) (4.32)
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so ψ1 acts on the highest weight state by

ψ1 |q1, . . . , qN 〉 =




N∑

j=1

qj


 |q1, . . . , qN 〉 . (4.33)

To find the total stress-energy tensor of W1+∞, we first use the Miura transform to find

the free field representation of U2(z):

U2(z) =
1

2

∑

j≥1

(
1− h3

hκj

)(
(JjJj)(z) + hκj

∂Jj(z)
)
+
∑

j<k

(JjJk)(z) +
∑

j<k

hκj
∂Jk (4.34)

from which we can find the total W1+∞ stress-energy tensor

T1+∞(z) = −1

2

∑

j

h1h2h3
hκj

(JjJj)(z) +
1

2

∑

j<k

hκk
∂Jj −

1

2

∑

j>k

hκk
∂Jj (4.35)

Let us now Consider one free boson φ(κ)(z) in κ-th direction associated to elementary

Miura factor R(κ). It is easy to verify that the state created by the vertex operator

: exp
(
qφ(κ)

)
: (4.36)

from the vacuum is a highest weight state with the generating function of highest weight

charges ψ(u) equal to

ψ(κ)(u) =
u− q − hκ
u− q

. (4.37)

For a longer chain with more free bosons, we have an analogous product of the corre-

sponding simple factors, but the spectral parameter is shifted between the nodes: ψ(u)

corresponding to Y0,0,2 with ordering of fields R(z) = R
(3)
1 (z)R

(3)
2 (z)

ψ(u) =
u− q1 − h3
u− q1

u− q2 − 2h3
u− q2 − h3

. (4.38)

Analogously, ψ(u) corresponding to Y1,1,0 with ordering of fields R(z) = R
(1)
1 (z)R

(2)
2 (z) has

ψ(u) =

(
u− q1 − h1

)

(u− q1)

(
u− q2 − h1 − h2

)

(u− q2 − h1)
. (4.39)

In other words, the Miura factor on the left affects the factors that come on the right of it

by shifting the u-parameter. The general formula for an arbitrary ordering

R(z) = R
(κ1)
1 (z) · · ·R(κN1+N2+N3

)

N1+N2+N3
(z) (4.40)

has the generating function of charges equal to

ψ(u) =

N1+N2+N3∏

j=1

u− qj −∑k≤j hκk

u− qj −∑k<j hκk

. (4.41)

We see that up to constant shifts and rescalings (depending on ordering of free fields) the

zeros and poles of the generating function ψ(u) of highest weight state correspond to zero

modes qj of the free bosons, in particular

x
(κ(j))
j = qj +

∑

k<j

hκk
. (4.42)
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4.6 Examples of varieties of highest weights

Finally, we are ready to show how the generating function (4.23) nicely parametrizes the

variety of highest weights in the examples Y1,1,0 and Y2,1,0 studied in [37, 38]. Using the

free field realization, we can construct all modules (there are no further restrictions on the

variety of highest weights). The knowledge of the generating function allows to determine

the variety for all the other YN1,N2,N3 examples without the necessity of going through the

tedious calculation of the null constraints in the primary basis and translating them to the

constraints on the zero modes of the null fields.

4.6.1 Y1,1,0 — singlet algebra of symplectic fermion

The algebra Y1,1,0 is the simplest truncation of W1+∞ which is not a WN algebra, although

as we will see, it can be understood as (a simple quotient of) W3 algebra at a special value

of the central charge. First of all, the Y1,1,0 truncation requires

1

λ1
+

1

λ2
= 1 (4.43)

as well as the usual constraint
1

λ1
+

1

λ2
+

1

λ3
= 0. (4.44)

From these constraints, we learn that λ3 = −1. Plugging this into the central charge

formula, we find

c∞ = −2 (4.45)

independently of the value of λ1.

Considering Y1,1,0 algebra as truncation of W1+∞, the first singular vector in the vac-

uum representation appear at level 4 = 2 · 2 · 1. Generically, starting from spin 4 we can

use these singular vectors to eliminate the higher spin generators of spin 4, 5, . . ., obtaining

an algebra that is generated by fields of spins 1, 2 and 3. Therefore we identify Y1,1,0 with

a quotient of the W3 algebra at c = −2 times a free boson as further discussed at the level

of generating functions ψ(u) in appendix B. The OPEs of W3 are given by the Virasoro

algebra coupled to a spin 3 current which has OPE

W3(z)W3(w) ∼ C0
33

(
✶

(z − w)6
− 3T (w)

(z − w)4
− 3∂T (w)

2(z − w)3
− 4(TT )(w)

(z − w)2

+
3∂2T (w)

4(z − w)2
− 4(∂TT )(w)

z − w
+

∂3T (w)

6(z − w)

)
. (4.46)

We kept the normalization of W3 generator free for later convenience. We could absorb

the structure constant C0
33 by rescaling the W3 generator.

We are now interested in constraints on generic representations of Y1,1,0. From the

physical reasoning as well as from the free field representations, we would expect the

generic representation of Y1,1,0 to be parametrized by two continuous parameters, while

the U(1) × W3 algebra have in general three highest weights. We thus need to find a

singular vector in W3 that would reduce the number of parameters by one. From the
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general reasoning, we expect the first relation to appear at level 6. In fact, there are two

singular primaries at level 6. We can see this by looking at characters: the character of the

vacuum representation of U(1) ×W3 is

3∏

s=1

∞∏

j=0

1

1− qs+j
≃ 1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 40q6 + 67q7 + 117q8 + . . . (4.47)

while the vacuum representation of Y1,1,0 has

χvac(q) =

∞∑

j=0

qj
∏j

k=1(1− qk)2
=

∑∞
j=0(−1)jqj(j+1)/2

∏∞
k=1(1− qk)2

(4.48)

≃ 1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 38q6 + 63q7 + 106q8 + 170q9 + . . .

We see that at level 6 there are two null states in Y1,1,0 compared to the situation in

U(1) × W3 at the generic value of the central charge. The first null state is the even

quadratic primary composite field

N6e = (W3W3) + C0
33

(
8

9
(T (TT )) +

19

36
(∂T∂T ) +

7

9
(∂2TT )− 2

27
∂4T

)
(4.49)

and the second one is the odd field

N6o = 8(T∂W3)− 12(∂TW3)− ∂3W3. (4.50)

Requiring that the action of the zero mode of N6o on the generic highest weight state

vanishes gives us identical zero while the similar requirement for N6e gives us a non-

trivial constraint

0 = w2
3 +

C0
33

9
h2(8h+ 1). (4.51)

This is the constraint we were looking for. It reduces the dimension of the space of generic

primaries from three to two which is in accordance with what we expect. In principle, we

could proceed further by studying the singular vectors at higher levels and possibly discover

new (independent) constraints. In order to show that (4.51) is necessary and sufficient,

we will construct a free field realization of Y1,1,0 and check that the generic modules can

indeed by realized.

Free field realization. From the general fusion ideology we expect that Y1,1,0 ⊂ Y1,0,0×
Y0,1,0, i.e. that there exists a representation of Y1,1,0 in terms of two U(1) currents J1 and

J2 with OPE

Jj(z)Jk(w) ∼
δjk

(z − w)2
. (4.52)

With this normalization, we are still free to make O(2) rotations in the space of free bosons

so we may with no loss of generality align the U(1) current of Y110 to be in J1+J2 direction,
16

J = J1 + J2. (4.53)

16In this section we are temporarily using a different normalization of U(1) currents than in the rest of

the paper.
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Denoting the normalized orthogonal combination

J− ≡ 1√
2
(J1 − J2), (4.54)

the unique stress-energy tensor T∞(z) commuting with J(z) and with central charge c∞ =

−2 is

T∞(z) =
1

2
(J−, J−)(z) +

1

2
∂J−(z). (4.55)

We can also find one spin 3 primary field commuting with J ,

W3(z) = (J−(J−J−))(z) +
3

2
(J−∂J−)(z) +

1

4
∂2J−(z). (4.56)

The normalization coefficient is now C0
33 = −9. We can verify that there are no fields other

than descendants of the identity in the OPE of W3 current with itself and also that the

dimension 6 singular primaries vanish identically. Note that we did not need to require

c∞ = −2 and the requirement of existence of spin 3 primary constructible from J− would

force us to choose c∞ = −2 anyway.

Consider now the highest weight representation of the U(1) × U(1) algebra such that

the J− charge is q−. We find that the conformal dimension with respect to T∞ and the

spin 3 charge of W3 are

h∞ =
q−(q− − 1)

2
, w3 =

q−(q− − 1)(2q− − 1)

2
(4.57)

and the relation (4.51) is satisfied if and only if C0
33 = −9 which is indeed the case. This

means that all the generic representations of Y1,1,0 with (4.51) are realizable in terms of

two free bosonic currents.

Free field realization from Miura. Let us see what free field representation we find by

applying the Miura transformation explained above. The total Miura operator is a product

of two basic Miura factors associated to first and second asymptotic direction

R(z) = ∂−1 + U1(z)∂
−2 + U2(z)∂

−3 + . . .

=
[
✶+ U

(1)
1 (α0∂)

−1 + U
(1)
2 (α0∂)

−2 + . . .
]
(α0∂)

h1/h3 ×

×
[
✶+ U

(2)
1 (α0∂)

−1 + U
(2)
2 (α0∂)

−2 + . . .
]
(α0∂)

h2/h3 (4.58)

By commuting the derivatives to the right we find

U1 = U
(1)
1 + U

(2)
1

U2 = U
(1)
2 + U

(2)
2 + U

(1)
1 U

(2)
1 + h1∂U

(2)
1 (4.59)

U3 = U
(1)
3 + U

(2)
3 + U

(1)
1 U

(2)
2 + U

(1)
2 U

(2)
1 + (h1 − h3)U

(1)
1 ∂U

(2)
1

+h1∂U
(2)
2 +

h1(h1 − h3)

2
∂2U

(2)
1
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Plugging in expressions for Uj in terms of free bosons, we find

U1 = J1 + J2

U2 =
2h2 − 1

2h2
(J1J1) + (J1J2) +

2− h2

2
(J2J2) +

2h2 − 1

2h
∂J1 +

3h2 − 2

2h
∂J2

U3 =
(2h2 − 1)(3h2 − 2)

6h4
(J1(J1J1)) +

2h2 − 1

2h2
(J1(J1J2))−

h2 − 2

2
(J1(J2J2))

+
(h2 − 2)(2h2 − 3)

6
(J2(J2J2)) +

(2h2 − 1)(3h2 − 2)

2h3
(∂J1J1) (4.60)

+
2h2 − 1

2h
(∂J1J2) +

5h2 − 4

2h
(J1∂J2)−

(h2 − 2)(4h2 − 3)

2h
(∂J2J2)

+
(2h2 − 1)(3h2 − 2)

6h2
∂2J1 +

11h4 − 16h2 + 6

6h2
∂2J2

in the normalization

J1(z)J1(w) ∼ −h1/h1h2h3
(z − w)2

, J2(z)J2(w) ∼ −h2/h1h2h3
(z − w)2

(4.61)

and with conventions in (3.12). There is an infinite number of non-zero Uj operators with

j ≥ 4 but they can all be read off from OPE of Uj fields with j = 1, 2, 3. Finally using the

transformations of appendix A we find in the primary basis

W1 = −J1 − J2

W2 =
1

2h2
(J1J1) + (J1J2) +

h2

2
(J2J2)−

1

2h
∂J1 −

h

2
∂J2

W3 = −h
2 + 1

3h4
(J1(J1J1))−

h2 + 1

h2
(J1(J1J2))− (h2 + 1)(J1(J2J2)) (4.62)

−h
2(h2 + 1)

3
(J2(J2J2)) +

h2 + 1

2h3
(∂J1J1) +

h2 + 1

2h
(∂J1J2)

+
h2 + 1

2h
(J1∂J2) +

h(h2 + 1)

2
(∂J2J2)−

h2 + 1

12h2
∂2J1 −

h2 + 1

12
∂2J2

with all other Wj currents, j ≥ 4 vanishing (as they should). To compare to the previous

discussion, where the current J was chosen to be J1 + J2 with unit normalization and T

andW3 were expressed in terms of the orthogonal combination, if we choose the orthogonal

combination to be the current

J− = −h−1J1 − hJ2 (4.63)

we exactly reproduce the formulas of the previous section up to an overall normalization.

4.6.2 Y0,1,2 — Parafermions

Another interesting truncation of W1+∞ is the chiral algebra of parafermions Y0,1,2. Boot-

strap construction of W-algebras generated by primaries of spin 3, 4, 5 was carried out

in [60], where two solutions were found. The first one is the standard W5 algebra. There
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exists one more solution corresponding to Y0,1,2 with a singular vectors starting at level 8

that need to be factorized in order the bootstrap equations to be satisfied.17

Let us consider W-algebra generated by fields of spin 3, 4 and 5. We can also assume

the Z2 symmetry under which the spin 3 and 5 fields are odd. The ansatz for operator

product expansions of primary families is

W3W3 → C0
33✶+ C4

33W4

W3W4 → C3
34W3 + C5

34W5

W4W4 → C0
44✶+ C4

44W4 + C
(33)
44 [W3W3]

W3W5 → C4
35W4 + C

(33)
35 [W3W3] (4.64)

W4W5 → C3
45W3 + C5

45W5 + C
(34)
45 [W3W4] + C

(34)′

45 [W3W4]
′

W5W5 → C0
55✶+ C4

55W4 + C
(33)
55 [W3W3] + C

(33)′′

55 [W3W3]
′′

+C
(44)
55 [W4W4] + C

(35)
55 [W3W5] + C

(35)′

55 [W3W5]
′

We only list the primary fields appearing in the OPE, the coefficients of descendants are

always fixed by the Virasoro algebra. We also denote the primary composites by brackets,

e.g. [W3W3] denotes the primary operator which is the leading regular term of W3W3

OPE after subtracting descendants of primaries appearing in the singular part of the OPE.

Analogously for the composites involving derivatives which we extract from subleading

regular terms, i.e.

[W3W4]
′(z) = −3

7
(W3∂W4)(z) +

4

7
(∂W3W4)(z) + . . . . (4.65)

We can conveniently extract these primaries using the function OPEPPole of OPEdefs [62]

which automatically performs the primary projection. Our next goal would be to fix the

20 free coefficients appearing in the ansatz for OPE using the Jacobi identities. Not all

of these coefficients can actually be fixed, because we still have the freedom to change the

normalization of the generators, i.e. we have 3-parametric gauge freedom. Since the first

primary composite appears at spin 6 while our algebra is generated by primaries of spins

3, 4 and 5, there are no additional redefinitions possible. We fix our conventions such that

the coefficients C0
33, C

4
33 and C5

34 remain undetermined and we express all the remaining

structure constants fixed by Jacobi identities in terms of these three constants and the

central charge c. With this spin content, there are two algebras that solve the Jacobi

identities. One of them is the algebra W5 which is freely generated by primaries of spin

3, 4 and 5. The other one is Y012 which has for generic c two singular vectors at level 8 so

the Jacobi identities are satisfied only up to these singular vectors. As a consequence of

this, the constants C
(34)′

45 , C
(33)′′

55 and C
(35)′

55 are indeterminate. The expressions for other

structure constants are given in appendix C.

We are interested in the generic highest weight modules of Y012. From the general dis-

cussion of the fusion procedure, we expect these to be parametrized by 3 complex numbers.

17Coset representation of Y0,1,2 as a quotient SU(2)/U(1) was discussed in [22]. The algebra was further

studied in [61].
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Including the U(1) degree of freedom, we have 5 generators of Y012 with spin 1 to 5. We

thus need to find two constraints that reduce the space of highest weight representations

to expected 3-dimensional subvariety.

The first constraint appears at level 8. There are two singular vectors at this level, one

even and one odd under ❩2 symmetry. The even spin 8 field is the linear combination

N8e = [W3W3]
′′ +

3c(2c− 1)(7c+ 114)C4
33C

5
34

8(c+ 10)(29c2 + 533c− 870)C0
33

[W3W5]

− c(c+ 7)(2c− 1)(7c+ 114)(C4
33)

2

2(c+ 10)2)(29c2 + 533c− 870)C0
33

[W4W4]. (4.66)

Its zero mode when acting on the highest weight state gives us a constraint

0 = 72h2(c+ 10)2(7c+ 114)(56h− 3c− 2)(17ch+ 2h− c2 − 2c− 4)C0
33

−36c(c+ 10)2(2c− 1)(5c+ 22)2(−31ch+ 218h+ c2 − 2c+ 12)w2
3

−12ch(c+ 10)(2c− 1)(5c+ 22)(7c+ 114)(−22ch− 388h+ c2 + 19c+ 6)C4
33w4

−4c2(c+ 7)(2c− 1)2(5c+ 22)2(7c+ 114)
(C4

33)
2

C0
33

w2
4 (4.67)

+3c2(c+ 10)(2c− 1)2(5c+ 22)2(7c+ 114)
C4
33C

5
34

C0
33

w3w5

on higher spin charges of the highest weight state. The odd spin 8 singular field is [W3W4]
′

and its action on the highest weight state is identically zero. This means that to find the

second relation of the variety of highest weights we need to look at level 9. Here we have

again one odd and one even field. This time the even field [W3W5]
′ gives identical zero if

we act with its zero mode on the highest weight state. On the other hand, the odd field

N9o = [W3W3W3] +
(c+ 13)(45c2 + 1214c− 2832)C4

33

18(c+ 10)(c+ 24)(7c+ 114)
[W3W4]

′′

−c(2c− 1)(C4
33)

2C5
34

54(c+ 10)2C0
33

[W4W5] (4.68)

gives us the second algebraic relation

0 = −36h(10 + c)2(1288c2h2 + 44264ch2 + 3376h2 − 117c3h− 4063c2h− 6392ch

−7468h+ 4c4 + 118c3 + 380c2 + 464c+ 288)C0
33w3

+54c(c+ 7)(c+ 10)2(2c− 1)(5c+ 22)(7c+ 114)w3
3 (4.69)

−c2(c+ 7)(2c− 1)2(5c+ 22)(7c+ 114)
(C4

33)
2C5

34

C0
33

w4w5

+6c(c+ 7)(c+ 10)(2c− 1)(5c+ 22)(−314ch− 3668h+ 9c2 + 117c+ 138)C4
33w3w4

−3ch(c+ 7)(c+ 10)(2c− 1)(7c+ 114)(−56h+ 2c+ 2)C4
33C

5
34w5.
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Although the result is complicated, we achieved what we wanted: we reduced the dimension

of the variety of possible higher spin charges from (2+ 1)(1+ 1)− 1 = 5 to 2+ 1 = 3 using

two constraints coming from the singular vectors. In the next section, using an explicit

free field representation of Y0,1,2 we will actually check that there exists a three-parametric

family of primaries whose higher spin charges satisfy our constraints, so there cannot be

any other constraints on higher spin charges that could reduce the dimension further.

Free field representation. We can construct a free field representation of Y0,1,2 in

terms of three bosons using the Miura operators. We will choose two Miura operators in

3rd direction and one associated to the second direction with the ordering

R(z) = R
(3)
1 (z)R

(3)
2 (z)R

(2)
3 (z) (4.70)

= (α0∂ + J1(z))(α0∂ + J2(z))(✶+ U
(2)
1 α0∂ + . . .)(α0∂)

h2
h3

The advantage of this ordering is that the differential operators on the left which we need

to pass to the right are just first order, so it is simpler than other orderings. We use the

same normalization as in the general discussion of Miura transformation. Commuting the

derivatives to the right, we find for the first three U -currents

U1 = J1 + J2 + J3

U2 = (J1J2) + (J1J3) + (J2J3) +
2− h2

2
(J3J3)−

h2 − 1

h
∂J2 −

3h2 − 2

2h
∂J3

U3 = (J1(J2J3)) +
2− h2

2
(J1(J3J3)) +

2− h2

2
(J2(J3J3))

+
(h2 − 2)(2h2 − 3)

6
(J3(J3J3))−

h

2
(J1∂J3)−

h

2
(J2∂J3) (4.71)

−h
2 − 1

h
(∂J2J3) +

(h2 − 2)(2h2 − 1)

2h
(∂J3J3) +

2h2 − 1

6
∂3J3

All the higher Uj currents are non-zero but they can be calculated in a straightforward way

by calculating the OPEs of Uj with j ≤ 3 (the OPEs of Uj currents are those of W1+∞
as discussed in [24]). If we are interested in primary fields, we can use the formulas given

in appendix A or apply directly the orthogonalization procedure and the result for Wj

generators is

W1 = −J1 − J2 − J3

W2 =
h2

2(2h2 − 1)
(J1J1) +

h2

2(2h2 − 1)
(J2J2) +

(h2 − 1)2

2h2 − 1)
(J3J3)

− h2 − 1

2h2 − 1
(J1J2)−

h2 − 1

2h2 − 1
(J1J3)−

h2 − 1

2h2 − 1
(J2J3)

−h
2
∂J1 +

h2 − 2

2h
∂J2 +

h2 − 1

h
∂J3 (4.72)

The current W3 has already quite a long expression which we don’t need to write explic-

itly. It can be checked that Wj generators of spin 6 and higher are identically zero when

expressed in terms of this free field representation. This is something that was expected to

hold more generally from the discussion of YN1,N2,N3 algebras and their singular vectors.
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Acting on the highest weight state, the eigenvalues of Wj zero modes are

w1 = −q1 − q2 − q3

w2 =
h2

2(2h2 − 1)
q21 +

h2

2(2h2 − 1)
q22 +

(h2 − 1)2

2h2 − 1
q23 −

h2 − 1

2h2 − 1
q1q2

− h2 − 1

2h2 − 1
q1q3 −

h2 − 1

2h2 − 1
q2q3 +

h

2
q1 −

h2 − 2

2h
q2 −

h2 − 1

h
q3 (4.73)

The spin 3 charges is given in the appendix C. To verify the identities one needs also w4

and w5 charges, but their expressions are too long. What is important is that plugging

these explicit formulas in equations (4.67) and (4.69), we find that they are identically

satisfied (for any values of qj). This means that we have an explicit parametrization of

the variety of highest weights of allowed primary charges in terms of 3 free boson charges.

This parametrization linearizes the variety of highest weights, but is not one-to-one. For

example, as we will see later, for the vacuum representation there are (2+1)! = 6 choices for

qj charges which give vanishing wj charges. The situation is analogous to parametrization

of the characteristic polynomial of a matrix in terms of its eigenvalues or parametrization

of the Casimir elements of gl(N) in terms of eigenvalues of the Cartan generators.

4.7 A comment on null states of Y1,1,1

As reviewed above, the algebras YN1,N2,N3 and YN1+k,N2+k,N3+k differ by a set of null

primary generators. Let us illustrate appearance of such null states on the simplest exam-

ple Y1,1,1.

The free field realization can be constructed simply by starting with the pseudo-

differential operator

R
(1)
1 (z)R

(2)
2 (z) = (α0∂)

−1 + U1(z)(α0∂)
−2 + U2(z)(α0∂)

−3 + U3(z)(α0∂)
−4 + . . . (4.74)

with U1, U2, U3 generators (4.61) from the example Y1,1,0 above. The generators of the

algebra Y1,1,1 can be then obtained by a multiplication of R
(1)
1 (z)R

(2)
2 (z) by the simple

Miura factor R
(3)
3 (z), i.e.

R
(3)
3 (z)R

(1)
1 (z)R

(2)
2 (z) = (α0∂ + J

(3)
3 )R

(1)
1 (z)R

(2)
2 (z) (4.75)

= 1 + Ũ1(z)(α0∂)
−1 + Ũ2(z)(α0∂)

−2 + Ũ3(z)(α0∂)
−3 + . . .

with the generators

Ũ1 = U1 + J
(3)
3 = J

(1)
1 + J

(2)
2 + J

(3)
3 ,

Ũ2 = U2 +
(
J
(3)
3 U1

)
+ α0∂U1,

Ũ3 = U3 +
(
J
(3)
3 U2

)
+ α0∂U2.

Note for example that the spin one field Ũ1 is indeed null since its OPE is propor-

tional to

− 1

h1h2
− 1

h1h3
− 1

h2h3
= −h1 + h2 + h3

h1h2h3
= 0. (4.76)
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Similarly, all the two-point functions of the Ũi generators vanish since they are always

proportional to N = h1+h2+h3
h3

= 0.

On the other hand, the algebra itself is far from being trivial and Ui are not null in

a generic module. For example the OPE of Ui with a generic exponential vertex operator

exp
(
q1φ

(1)
1 + q2φ

(2)
2 + q3φ

(3)
3

)
is generally proportional to

− q1

h1h2
− q2

h1h3
− q3

h2h3
6= 0. (4.77)

One can furthermore check that there exists a composite field at level 8 that is identically

zero in the free field realization as expected, i.e. the free field realization of Y111 automat-

ically realizes the quotient of W1+∞ by a submodule generated by level 8 singular vector

and not the simple quotient which would in this case be the trivial Y000 with the only local

field being the identity.

5 Degenerate modules

5.1 Surface defects preserving Levi subgroups

A generic Gukov-Witten defect breaks the gauge group at the defect to the maximal torus

U(1)N , but a larger symmetry group can be preserved if the GW-parameters are specialized.

In particular, if the parameters x
(κ)
i and x

(κ)
j specifying the singularity of the ith and jth

factors are equal x
(κ)
i = x

(κ)
j (modulo the lattice), the next-to minimal Levi subgroup

U(2)×U(1)N−2 is preserved by the configuration. On the VOA side, these specializations

are going to correspond to degenerate modules. For a fixed value of the specialized GW

parameters, one can still turn on a Wilson and ’t Hooft oporator in some representation

of the preserved U(2) at each boundary. Different choice of the line operators will label

different degenerate modules. Similarly, if parameters in different corners are specialized,

U(1|1) supergroup is preserved at the boundary Chern-Simons theory by the defect and

one gets different classes of degenerate modules as we will see below.

We can see that the parameter space parametrizing generic modules is divided into

domains with a degeneration appearing at the boundaries of the domains. At intersections

of such domain walls (where more parameters are specialized), we expect further degen-

eration of the module. These more complicated representations correspond to larger Levi

subgroups decorated by line operators in a representation of the preserved Levi subgroup

on the gauge theory side.

A maximal degeneration appears when N − 1 parameters are specialized and the full

gauge group U(N) is preserved at the defect. Note that the value of the overall U(1)

charge does not affect the structure of modules and breaking of the gauge symmetry. On

the other hand, maximally degenerate modules with generic values of the U(1) charge still

correspond to a nontrivial GW defect with a prescribed singularity for the U(1) factor.

Modules associated to line operators with a trivial GW defect correspond to maximal

specializations of all the N parameters with quantized values of the U(1) charge.
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5.2 Minimal degenerations

Let us start with the analysis of domain walls of minimal degenerations associated to the

next-to-minimal Levi subgroup.

As we discussed in connection with (4.23), the N1+N2+N3 lifted GW parameters x
(κ)
i

correspond to positions of poles of the generating function ψ(u) in the u-plane. The poles

are determined up to a permutation of order of poles in each group. A natural question to

ask is for which values of parameters x
(κj)
j do we obtain a degenerate module.

5.2.1 Singular vectors at level 1

The discussion is easy at the first level. A generic module has N1 + N2 + N3 states at

this level. We can detect the appearance of a singular vector by studying the rank of the

Shapovalov form

〈hw| fkej |hw〉 = −〈hw|ψj+k |hw〉 (5.1)

(where we used the basic commutation relation between ej and fj generators of Y ). The

matrix on the right is a Hankel matrix and we can use a variant of the basic theorem by

Kronecker which tells us that (in general infinite dimensional) Hankel matrix has a finite

rank if and only if the associated generating function
∑

j

ψjz
j (5.2)

is a Taylor expansion of a rational function. Furthermore, the rank of the Hankel matrix

is equal to one plus the degree of this rational function. In our case we have a slightly

different version of this theorem because the coefficients ψj are Taylor coefficients of

ψ(u)− 1

σ3
(5.3)

but the result is the same: the number of vectors at level 1 in the irreducible module

with highest weight charges ψ(u) is equal to the degree (i.e. number of zeros counted with

multiplicities) of ψ(u). This is automatically consistent with the form of the generating

function (4.23) which has generically N1 + N2 + N3 zeros and poles. In this way we also

rederive the result of [30] that the vacuum representation has exactly one zero and one

pole. The distance between them is fixed by the parameters of the algebra. The absolute

position of the zero in u-plane is determined by U(1) charge of the highest weight vector

and is translated under the spectral shift transformation.

This also refines the statement it [30] that the representation is quasi-finite (i.e. has

only a finite number of states at each level) if and only if ψ(u) is a rational function. In

the case of YN1,N2,N3 the quasi-finiteness is automatically satisfied.

Applying the results of the previous discussion to the highest weight vector of the

generic YN1,N2,N3 module with weights parametrized by (4.23), we conclude that we have

a singular vector at level 1 if one of the following conditions is satisfied

x
(τ)
j − x

(σ)
k = −hτ , (5.4)

i.e. a zero of type j collides with a pole of type k.
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5.2.2 Higher levels

At higher levels the discussion is not so simple because the commutation relations used to

evaluate the ranks of Shapovalov matrices become more involved. But from the structure

of the Shapovalov matrices, we expect the highest singular vectors to appear only if the

distance between a zero and a pole of (4.23) is an integer linear combination of hj pa-

rameters. If this assumption of locality (i.e. pairwise interaction between zeros and poles)

is satisfied, we can learn more about the relation between the level where such a singu-

lar vector appears and the corresponding distance between the zero-pole pair. It is then

enough to look at the case of the zero-pole pair of the same type in the algebra Y0,0,2 and

of different type in the case of Y1,1,0.

5.2.3 Virasoro algebra

The first case is simple — we are interested in singular vectors of the Virasoro algebra for

which we have a known classification: for generic values of the central charge the Verma

module has a singular vector at level rs if and only if the highest weight equals ∆r,s [54].

The generating function of charges ψ(u) is

ψ(u) =
(u− x

(3)
1 − h3)(u− x

(3)
2 − h3)

(u− x
(3)
1 )(u− x

(3)
2 )

(5.5)

We can extract the conformal dimension ∆ with respect to the T∞ Virasoro subalgebra

(decoupled from the U(1) field)

∆ =
h23 −

(
x
(3)
1 − x

(3)
2

)2

4h1h2
. (5.6)

This is equal to ∆r,s if and only if

x
(3)
1 − x

(3)
2 = sh1 + rh2, or x

(3)
2 − x

(3)
1 = sh1 + rh2. (5.7)

Therefore, a singular vector of the algebra Y0,0,2 appears at level rs if and only if the distance

between two poles of the 3rd type is a positive or negative integer linear combination of h1
and h2. Similarly for the other two types of poles.

5.2.4 WN algebras

The Kac determinant and singular vectors of WN are known as well [48, 63]. The singular

vectors (zeros of the Kac determinant) at level rs (where r, s ≥ 1 are integers) are labeled

by roots of SU(N). Choosing the standard ordering (J1 the leftmost field in the Miura

transformation), the equations for vanishing hyperplanes are

qj − qk + (j − k)h3 = sh1 + rh2 (5.8)

where 1 ≤ j 6= k ≥ N label the (positive and negative) roots of SU(N). The poles of

ψ(u) are related to U(1) charges qj (still assuming the standard ordering and using the

conventions of (3.12)) by

x
(3)
j = qj + (j − 1)h3 (5.9)
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so we can rewrite the equations for vanishing hyperplanes as

x
(3)
j − x

(3)
k = sh1 + rh2. (5.10)

This is exactly of the same form as the condition that we found in the case of the Virsoro

algebra. We see is that the positive or negative roots in the WN language determine which

poles of ψ(u) approach each other and the integers s and r determine the distance between

these poles, quantized in the units of h1 and h2. Therefore, in the case of WN , we have

an independent confirmation of the fact that the leading singular vectors in degenerate

modules correspond to pairwise interactions between poles of ψ(u).

In the gauge theory language, we see that (at least in the case of WN -algebras) de-

generations appear when the GW parameters are specialized in such a way that a next-

to-minimal Levi subgroup is preserved. The parameters r, s then label representations of

the preserved SU(2) subalgebra associated to the corresponding line operators supported

at the two interfaces.

5.2.5 Algebra Y1,1,0

The remaining elementary case that we need to analyze is Y1,1.0. In this case, the parameter

space of generic modules is two-dimensional, so after decoupling the overall U(1), we are left

with a one-dimensional parameter space. Analogously to the case of the Virasoro algebra,

there is no difference between minimally and maximally degenerate modules. We can look

for degenerate modules in at least three possible ways: directly studying the Shapovalov

form (Kac determinant), using box counting [5, 30] or using the BRST construction of the

algebra [1].

A direct calculation (which we explicitly checked up to level 4) leads to the following

condition: given n ≥ 1, we have a leading singular vector at level n if

x
(1)
1 − x

(2)
2 = −h1 − nh3, or x

(1)
1 − x

(2)
2 = h2 + nh3. (5.11)

Note that these two conditions are exchanged if we formally replace n ↔ 1 − n. We can

thus use only one of the conditions with n running over all integers, but for non-positive

values of n the level at which corresponding singular vector appears is 1 − n.

In Y110 there is no difference between the maximally degenerate and minimally de-

generate modules. For the maximally degenerate modules we can use the box counting

(plane partition) interpretation of modules.18 The maximally degenerate modules of Y110
in this picture correspond to plane partitions (with possible asymptotics) which have no

box at position (2, 2, 1). In other words, they can be thought of as pairs of partitions glued

together by the first column (assuming for the moment that there is no asymptotics in 3rd

direction). The degenerate modules are labeled by two integers, the heights of asymptotic

18In general the box counting works only for so called covariant modules which have asymptotics made

of boxes (tensor products of the fundamental representation). In general it is important to consider a more

general class of representations where there are both asymptotic boxes and anti-boxes. Fortunately in the

case of Y1,1,0 the anti-box in first direction is equivalent to a box in the second direction and vice versa, so

the simple box counting picture is applicable.
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Young diagrams in 1st and 2nd directions. But only the difference of these two integers

matters, the modules with the same difference of heights differ only by the overall U(1)

charge. Finally, the parameter n appearing in (5.11) can be identified with one plus the

difference of the heights of the asymptotic Young diagrams. It is easy to check that this

interpretation predicts the correct level of the null vector, the correct irreducible character

and the conformal dimension.

Turning on a non-trivial asymptotics in 3rd direction decouples the pair of Young

diagrams so the box counting predicts a generic module (i.e. character equal to the square

of the free boson character). The conformal dimensions of these modules also don’t produce

any additional zero of the Shapovalov form, confirming the whole box-counting picture.

The same structure of maximally degenerate modules can also be seen from the BRST

analysis of [1]. In particular, the BRST analysis of the algebra have not found any other

degenerate modules and the degenerate ones appear exactly for the above values of generic

parameters. From the gauge theory point of view, the value n can be identified with the

difference of charges of the U(1) line operators supported at the boundary 1 and 2. Turning

on the Wilson line operator at the boundary 3 lifts the degeneration.

5.2.6 Summary

The hyperplanes (5.10) and (5.11) that we found (together with their images under the

triality) therefore divide the full space of xj parameters parameterizing the generic modules

of YN1,N2,N3 into domains. The points lying on the union of these hyperplanes correspond

to degenerate modules while the remaining points label the generic modules. The degree

of degeneration of a given module depends on the number of hyperplanes on which the

corresponding xj lie. Translating all xj by a same constant corresponds to the spectral shift

transformation that only changes the U(1) charge of the whole module and in particular

does not change the structure of the singular vectors.

5.2.7 Free field representation of degenerate primaries

Let us briefly comment on the realization of the degenerate modules of Y1,1,0 in a given

free field realization. The highest weight primaries of all the representations (including the

generic ones) can be realized as simple exponential vertex operators with exponents given

by the parameters qj (related to x
(κj)
j by constant shifts). It turns out that a half of the

degenerate modules associated to the degenerations (5.11) can be also realized in terms of

a free boson descendant of an exponential vertex operator. For example, in the φ
(1)
1 × φ

(2)
2

ordering, the modules in the 2nd direction specialized to n = 1 and n = 2 can be realized as
(
h2J

(1)
1 − h1J

(2)
2

)
exp

[
qφ

(1)
1 + (q + h3)φ

(2)
2

]
,

−1

2

((
h2J

(1)
1 − h1J

(2)
2

)2
− ∂

(
h2J

(1)
1 − h1J

(2)
2

))
exp

[
qφ

(1)
1 + (q + 2h3)φ

(2)
2

]
. (5.12)

Similarly, for any n > 0, one can realize the corresponding degenerate modules in terms of

a level n descendant. The descendants are generally given in terms of Bell polynomials

∑

m1+2m2+···+nmn=n

n∏

k=1

1

mk!kmk

( −1

(k − 1)!
∂k−1J

)mk

exp
[
qφ

(1)
1 + (q + nh3)φ

(2)
2

]
(5.13)

– 40 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
9

for J = h2J
(1)
1 − h1J

(2)
2 . This is analogous to expressions for singular vectors in free field

representations of Virasoro algebra which are given in terms of Jack polynomials [64, 65].

In the case of Y110 these reduce to Schur polynomials whose special case are the Bell

polynomials (5.13). Higher level specializations will be further discussed in the next section

in the context of maximally degenerate representations but note that the issue is present

already for the partially degenerate modules associated to specializations of GW parameters

at different corners.

5.3 Maximally degenerate modules

In the previous section, we have discussed the general structure of degenerations of Y-

algebra modules and concentrated mostly on the minimally degenerate ones. On the other

hand, we will now discuss briefly free field realization of the maximally degenerate modules

associated to line operators supported at the interfaces, i.e. trivial GW defects. These

modules play an important role in the gluing construction that allows to engineer more

complicated VOAs by extensions of tensor products of YN1,N2,N3 algebras [1, 5, 66].

5.3.1 Identity, box and anti-box

In this section, we mostly concentrate on the free field realization of the identity operator

together with the modules associated to the line operators in the fundamental and the

anti-fundamental representation. All the other maximally degenerate representations can

be obtained from the fusion of these two (and a shift of U(1) charge). We will further

restrict to the case when N3 = 0. The general case is a bit more complicated because of

the appearance of continuous families of free field realizations. We will briefly comment

on this issue later. Let us start with writing down the generating function ψ(u) for such

representations.

The generating function for the vacuum representation has a single factor

ψ•(u) =
u+ h1h2h3ψ0

u
=
u−N1h1 −N2h2 −N3h3

u
(5.14)

where we used the identity

h1h2h3ψ0 = −N1h1 −N2h2 −N3h3. (5.15)

On the other hand the generating function for the fundamental representation in the first

direction can be written as

ψ�1(u) =
(u+ h1h2h3ψ0)(u+ h1)

(u− h2)(u− h3)
(5.16)

and similarly for the fundamental representation in the other two directions [5, 30].

The generating function of the anti-fundamental representation can be obtained from

the formula for the generating function ψ(u) of a conjugate representation [67]

ψ̄(u) = ψ−1 (−u− h1h2h3ψ0) . (5.17)
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This is a composition of the inverse anti-automorphism and the reflection in spectral param-

eter and produces an automorphism just as in the case of finite Yangians. The additional

spectral shift is necessary in order to have self-conjugate vacuum representation. It is easy

to verify that the effect of conjugation is to flip the sign of all odd primary highest weight

charges. Note that there exists a conjugation automorphism of the whole affine Yangian

(not just acting on the highest weight state), but the ψj generators transform in a more

complicated way, mixing with ej and fj generators.

Applying the conjugation to the generating function (5.16), we get the generating

function for the anti-fundamental representation

ψ
�̄1

=
(u+ h2 + h1h2h3ψ0)(u+ h3 + h1h2h3ψ0)

u(u− h1 + h1h2h3ψ0)
(5.18)

and similarly for the other two directions.

5.3.2 Analysis at the level of generating functions

We will now identify the triple (identity, fundamental representation, anti-fundamental

representation) for YN1,N2,0 in terms of a specialization of the parameters of the generic

generating function

ψ(u) =

N1∏

i=1

u− x
(1)
i − h1

u− x
(1)
i

N1+N2∏

i=N1+1

u− x
(2)
i − h2

u− x
(2)
i

. (5.19)

For such an analysis, it is useful to introduce a diagrammatic picture for zeros and poles

in the spectral parameter plane. Each factor in the generating function ψ(u) contributes

by a pole at position x
(κi)
i and a zero at x

(κi)
i +hκi

. One can draw such a combination as a

diatomic polar molecule (with a circle corresponding to the pole and a full dot corresponding

to zero) separated by the distance hκi
. In the generating function ψ(u), we have N1

molecules of length h1 and N2 molecules of length h2. To realize the generating function of

the vacuum, the fundamental or the anti-fundamental representation, most of the factors

of the generic generating function must cancel. At the level of the interaction of molecules,

such a cancellation appears when a circular node coincides with a filled node of a different

molecule. In our diagrams, we denote such a zero-pole pair by a cross. The study of

realizations of various degenerate representations thus translates into the analysis of paths

between zeros and poles in the u-plane.

Identity representation. Let us start with a discussion of possible realizations of the

identity representation (5.14). In the molecular picture, we want to connect the pole at

zero with the zero at N1h1 +N2h2 by N1 steps in the h1 direction and N2 steps in the h2
direction. There are clearly

(
N1 +N2

N1

)
=

(N1 +N2)!

N1!N2!
(5.20)

such paths (note that the molecules of one type are indistinguishable if we mod out by

the Weyl group in each corner, i.e. if we identify the permutations of x
(κj)
j with the same
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Figure 5. The structure of zeros and poles of the generating function ψ0(u) for the vacuum

representation of Y5,2,0[Ψ]. We draw one example of the snake configuration connecting the zero

and the pole.

Figure 6. The structure of zeros and poles of the generating function ψ(u) for the fundamental

representation in direction h3 of Y5,2,0[Ψ]. We draw one example of the snake configuration.

value of κj). One such path for the algebra Y5,2,0 is drawn in the figure 5. If we treat the

molecules to be distinguishable, we get (N1 + N2)! solutions which nicely corresponds to

(N1 +N2)! possible orderings in the Miura transformation.

Turning on all three parameters YN1,N2,N3 leads to a more complicated story. In such

cases, we expect to obtain continuous families of realizations corresponding to the con-

tinuous centre of mass of the triple (x
(1)
i = α, x

(2)
j = α + h1, x

(3)
k = α + h1 + h2) whose

contribution cancels in any generating function ψ(u) for any choice of α. In the picture of

molecules, such a factor corresponds to a triangular loop that can be freely moved in the

u-plane. In general, we get as many of these continuous moduli as is the minimum of Nj .

Fundamental representation. Let us now move to the more complicated discussion

of the fundamental representation in the direction h1 with the generating function (5.16).

The discussion of the anti-fundamental representation completely mirrors the fundamental

one. To find the realization in terms of the generating function (5.19), we need to connect

the two poles and two zeros with two snakes composed of N1 molecules of length h1 and

N2 molecules of length h2. The only possibility is to connect the pole at u = h3 with the

zero at u = −h1 and then draw a snake connecting the other zero and the pole using N1

segments of length h1 but only N2 − 1 segments of length h2. One has

(
N1 +N2 − 1

N1

)
(5.21)
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α

Figure 7. hexagon factor from (5.22).

Figure 8. Generating function of the exponential factor in the realization of the fundamental

representation in the first direction at level one.

possible configurations. An example of such a realization for the algebra Y5,2,0 is shown in

the figure 6.

It turns out that compared to the vacuum representation, the fundamental represen-

tation can be generically realized at higher levels in the bosonic Fock space. Recall that

when acting on the states in W1+∞ with ladder operators ej and fj , the eigenvalue of the

generating function ψ(u) changes by products of elementary factors

ϕ(u− α) =
(u− α+ h1)(u− α+ h2)(u− α+ h3)

(u− α− h1)(u− α− h2)(u− α− h3)
. (5.22)

These factors play a role of the structure constants of the affine Yangian [29, 30]. The

possible values of parameter α depend on the state on which we act. The number of such

factors determines the level of the descendant. Here we will call this factor a hexagon factor

is because it forms a hexagon in the u-plane as illustrated in the figure 7.

In the generic modules the states that we get by acting with ladder operators ej are

never highest weight states. But in the case of degenerate modules, the action of ladder

operators ej can produce singular vectors which are annihilated by all raising operators fj ,

i.e. they are primary. In the irreducible modules we identify these states with zero. In the

free field representation, these singular vectors can be mapped either to an identical zero,

or to a non-trivial primary state which is a free boson descendant of the exponential vertex

operator. We can therefore find free field representatives of primary states which are not

pure exponential vertex operators but are dressed by the action of bosonic ladder operators.

Even though the attaching hexagon factors by itself does not ensure that the descen-

dant field is singular, we will now sketch few configurations for Y5,2,0 that we expect to be

realized for some ordering of free bosons. If we place the (the inverse) hexagon factor at
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Figure 9. Generating function of the exponential factor in the realization of the fundamental

representation in the first direction at level two.

the origin, three nodes cancel out and three new ones are created. The new configuration

is shown in the figure 8. One can now realize this new configuration in various ways in

terms of the generic generating function of the exponential factor (5.19). Going to one

level higher, one gets after the division by the two hexagon factors a combination from the

figure and similarly at higher levels. We will see that all the solutions at level zero are

realized for each ordering of the free bosons but only some of the realizations at higher

levels are present for a given ordering of free fields.

Finally, let us discuss the situation of the fundamental representation in the third

direction. It turns out that there are (N1+N2)! realizations and one can find them already

at level zero. There are two possibilities. The first option is to connect the pole at h1 with

the zero at −h3 by a molecule of type h2 and create a snake between the pole at h2 and

the zero at N1h1 +N2h2. The other possibility is to connect the pole at h2 with the zero

at −h3 by a molecule of type h1 and create a snake connecting the pole at h1 with the

zero at N1h1 + N2h2. The two possible snake configurations give the correct number of

realizations
(
N1 +N2 − 1

N1

)
+

(
N1 +N2 − 1

N1 − 1

)
=

(
N1 +N2

N1

)
. (5.23)

5.3.3 Free field realization and OPE of modules

After the identification of possible values of parameters x
(κ)
j for the identity and the fun-

damental and the anti-fundamental representation, let us discuss how are these different

possibilities realized in the context of the free field representation.

There are (N1+N2)! free field realizations of any YN1,N2,0 algebra associated to different

orderings of the free bosons. It turns out that not all the possibilities discussed above at

the level of generating functions are realized for any given choice of ordering.

Moreover, it might be puzzling that we find more than one free field realization of

the same YN1,N2,0 module since it is not clear that all of these have the correct fusion and

braiding properties and lead eaquivalent OPEs of degenerate modules. Following [39, 40],

it turns out that all the realizations seem to be equivalent if we work modulo insertions of

screening charges (contour integrals of screening currents) in all the examples bellow.

To determine the structure constants (and braiding and fusion in particular), one needs

to determine three-point functions of all the degenerate modules. Choosing a particular
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free field realization of degenerate modules within a given three-point function leads to

a zero value if we do not insert a correct number of the screening charges. After such

an insertion, one can show that (in all the examples that we considered) all the free field

realizations lead to the same OPEs (if the correlator was non-vanishing). Note also that

the free field realization gives an explicit construction of all the conformal blocks in terms

contour integrals of meromorphic functions with possible branch-cuts.

A simple realization. Before discussing the fusion and braiding and checking the inde-

pendence on the choice of the free field representative, let us mention one simple realization

of the identity-box-anti-box triple that exists for every free field realization.

As discussed above, the relation between parameters x
(κj)
j and exponents qj of the pure

exponential realization of a module is given for a fixed ordering of free bosons by shifts

x
(κj)
j = qj +

∑

k<j

hκk
(5.24)

We are summing over all free fields that appear to the left of φj in the Miura transformation.

All the (N1 + N2)! solutions for xj for the vacuum representation can be identified with

(N1 + N2)! representations of the free boson vacuum qj = 0 corresponding to (N1 + N2)!

orderings. The free boson vacuum qj = 0 is the simplest realization of the vacuum of the

corresponding YN1,N2,0 algebra.

There’s a similar story also for the fundamental and the anti-fundamental represen-

tation with some extra complications since some of the realizations are not in terms of

pure exponential vertex operators but in terms of their free field descendants. Based on

examples, we conjecture that one can realize the fundamental representation in the first

direction as a descendant of the exponential exp[h3φ
(2)
i ], where φ

(2)
i is the left-most free

boson of the second type in a given ordering. The level of the descendant equals the number

of free bosons of the first type on the left of such φ
(2)
i . The anti-fundamental field is given

by a descendant of exp[−h3φ(2)j ], where φ
(2)
j is the right-most free boson of the second type

and the level is given by the number of free bosons of the first type on the right of φ
(2)
j .

Similar simple realizations can be found also for representations in the second and third

direction: a simple box in the second direction is associated to the left-most free boson of

the first or third type and the level is given by the number of bosons of the second type

on the left of it. For N3 = 0 the box and antibox in the third direction correspond to the

first and last boson and are always on level 0 (there are no obstructions since we have no

bosons of the third type). The charge q appearing in the exponential is given by hσ for box

and −hσ for the anti-box and σ is such that the triple (σ, τ, π) in hσ, φ
(τ) and the direction

π is a permutation of (123).

5.3.4 Y0,0,2 example

Let us start by an illustration how things work in the case of the Virasoro algebra in

ordering R
(3)
1 R

(3)
2 . The two available screening currents are

j1 = exp
[
−h1

(
φ
(3)
1 − φ

(3)
2

)]

j2 = exp
[
−h2

(
φ
(3)
1 − φ

(3)
2

)]
(5.25)
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The two realizations of the identity, the fundamental representation and the anti-

fundamental representation in the first and the second direction are

M1
1
= 1, M2

1
= exp

[
h3

(
φ
(3)
1 − φ

(3)
2

)]
,

M1
�1

= exp
[
h2φ

(3)
1

]
, M2

�1
= exp

[
h2φ

(3)
2 + h3

(
φ
(3)
1 − φ

(3)
2

)]
,

M1
�̄1

= exp
[
−h2φ(3)2

]
, M2

�̄1
= exp

[
−h2φ(3)1 + h3

(
φ
(3)
1 − φ

(3)
2

)]
, (5.26)

M1
�2

= exp
[
h1φ

(3)
1

]
, M2

�2
= exp

[
h1φ

(3)
2 + h3

(
φ
(3)
1 − φ

(3)
2

)]
,

M1
�̄2

= exp
[
−h1φ(3)2

]
, M2

�̄2
= exp

[
−h1φ(3)1 + h3

(
φ
(3)
1 − φ

(3)
2

)]
.

We see that there indeed exists the simple free field realization of the identity, the funda-

mental and the anti-fundamental representation.

Let us now check that two-point functions of different realizations of the identity and

the two-point function of the fundamental with the anti-fundamental field are independent

of the choice of the free field realization. To check all the three-point functions, one would

have to relate normalizations of different realizations of all the degenerate modules and

then compare all the three point funcions. Because we do not aim to do the comparison

here, we disregard such normalizations and only check the braiding properties.

The charge of the identity realized by M2
1
cannot be subtracted by insertions of the

screening charges and thus vanishes. The true identity 1 is the only realization of the

vacuum module giving a non-zero one-point function.

The only combination that gives a non-vanishing two-point function of the fundamental

and the anti-fundamental representation comes from the first realizations and give

〈M1
�2
(z)M1

�̄2
(w)〉Y0,0,2 ∝

∮

z
dz̃〈j1(z̃)M1

�2
(z)M1

�̄2
(w)〉

∝
∮

z
dz̃ (z̃ − z)

h1
h2 (z̃ − w)

h1
h2 ∝

∮

0
dz̃ z̃

h1
h2 (z̃ + z − w)

h1
h2

∝ (z − w)
2
h1
h2

∮

0
dz̃

(
z̃

w − z

)h1
h2

(
1− z̃

w − z

)h1
h2

(5.27)

∝ (z − w)
2
h1
h2

+1
,

where 〈. . . 〉YN1,N2,N3
denotes the correlation function with possible insertions of the screen-

ing charges of YN1,N2,N3 that cancel the charge of the exponential factors. The exponent

is exactly (up to the minus sign) the sum of conformal dimensions of the fundamen-

tal and the anti-fundamental representation which is the expected z-dependence of the

two-point function.

5.3.5 Y1,1,0 example

The second example is the first non-trivial case that contains free field realizations of degen-

erate modules at higher levels and at the same time there is a mismatch between the number

of free field realizations of the fundamental and the anti-fundamental representation. One
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gets the following realizations of the identity, the fundamental and the anti-fundamental

field in the first and second direction for the ordering φ
(1)
1 × φ

(2)
2 of the free bosons

M1
1
= 1, M2

1
= exp

[
h2φ

(1)
1 − h1φ

(2)
2

]

M1
�1

= exp
[
h2φ

(1)
1 + (h3 − h1)φ

(2)
2

]
, M2

�1
= (h2J

(1)
1 − h1J

(2)
2 ) exp

[
h3φ

(2)
2

]
,

M
�̄1

= exp
[
−h3φ(2)2

]
, (5.28)

M�2 = exp
[
h3φ

(1)
1

]
,

M1
�̄2

= exp
[
(h2 − h3)φ

(1)
1 − h1φ

(2)
2

]
, M2

�̄2
= (h2J

(1)
1 − h1J

(2)
2 ) exp

[
−h3φ(1)1

]
.

and the following screening current

j = exp
[
−h2φ(1)1 + h1φ

(2)
2

]
. (5.29)

Note that there is only a single realization of the fundamental field and one of the realiza-

tions (the simple one) of the anti-box is at level one.

Let us first check that one-point function of the identity realized as M2
1
equals the

vacuum amplitude

〈
M2

1
(z)
〉
Y0,1,1

∝
∮

z
dz̃ 〈j(z̃)M2

1
(z)〉 ∝

∮

z
dz̃ (z̃ − z)

h2
h3

+
h1
h3 ∝ 1. (5.30)

Similarly for the two-point function with two contour integrations, one gets

〈
M2

1
(z)M2

1
(w)

〉
Y0,1,1

∝
∮

z
dz̃2

∮

w
dz̃1〈j(z̃1)j(z̃2)M2

1
(z)M2

1
(w)〉

∝
∮

z
dz̃2

∮

w
dz̃1

(z̃1 − z̃2)(z − w)

(z̃1 − z)(z̃1 − w)(z̃2 − z)(z̃2 − w)

∝
∮

z
dz̃2

(w − z̃2)

(z̃2 − z)(z̃2 − w)
∝ 1. (5.31)

Let us now show that the two-point function of both realizations of the anti-

fundamental representation with the fundamental representations are also equal

〈M1
�1
(z)M1

�̄1
(w)〉Y0,1,1 ∝

∮

z
dz̃ 〈j(z̃)M1

�1
(z)M

�̄1
(w)〉 (5.32)

∝
∮

z
dz̃ (z̃ − z)−2(z̃ − w)(z − w)

h1
h3

−1
= (z − w)

h3
h1

−1
.

One gets the same expression from the other realization

〈
M2

�1
(z)M

�̄1
(w)
〉
Y0,1,1

∝
〈
J
(2)
2 exp

[
h3φ

(2)
2

]
(z) exp

[
−h3φ(2)1

]
(w)
〉

∝ (z − w)
h1
h3

−1
, (5.33)

where the −1 factor comes from the contraction with J
(2)
2 .
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5.3.6 Y2,1,0 example

To illustrate the existence of the simple realization of the fundamental and the anti-

fundamental representation, let us now discuss the algebra Y2,1,0. Firstly, the generating

function of ψi charges for the vacuum, the fundamental and the anti-fundamental repre-

sentation in the first asymptotic direction is

ψ•(u) =
u− 2h1 − h2

u

ψ�1(u) =
u− 2h1 − h2

u− h2

u+ h1
u− h3

,

ψ
�̄1
(u) =

u− 2h1
u

u− 3h1 − 2h2
u− 3h1 − h2

. (5.34)

The structure of the generating function in terms of zeros (dots) and poles (circles) is

captured in the figure 10a. From this figure, one can read of possible values of parameters

xi parametrizing the modules

x
(1)
1 = h1 + h2, x

(1)
2 = h2, x

(2)
3 = −h1 − h2 (5.35)

as well as the solution with x
(1)
1 and x

(2)
1 permuted.

One can also realize the same highest weight state as a free field descendant of a differ-

ent exponential primary. Charges of such a module can be deduced from the composition

with hexagon factors ϕ(u − α) for some shift α. If we multiply the configuration 10a by

a hexagon with the center at zero, we get a structure of zeros and poles from the fig-

ure 10b. One can thus realize the same module as a level one descendant of the module

with charges19

x
(1)
1 = 0, x

(1)
2 = h1 + h2, x

(2)
3 = −h2 (5.36)

or with x
(1)
1 and x

(1)
2 possibly permuted. Finally, composing 10b with yet another hexagon

factor with the center at h1, one gets the generating function from the figure 10c with

parameters

x
(1)
1 = 0, x

(1)
2 = h1, x

(2)
3 = h1 − h2. (5.37)

One can do a similar investigation for the anti-fundamental representation and recover

the structure from the figure 11. In terms of the standard parameters x
(κ)
i , one gets

x
(1)
1 = 0, x

(1)
2 = h1, x

(2)
3 = 3h1 + h2

x
(1)
1 = 0, x

(1)
2 = h1 + h2, x

(2)
3 = 2h1 + h2 (5.38)

x
(1)
1 = h1 + h2, x

(1)
2 = h2, x

(2)
3 = h1 + h2

19Note that there exists also a configuration with x
(1)
1 = −h2 and x

(2)
3 = h1 − h2 that does not seem to

correspond to any simple realization. Similarly, we get one extra solution also at level two.
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(a) Level zero. (b) Level one. (c) Level two.

Figure 10. Exponential factors of the fundamental representation in direction 1. The two crosses

in the middle figure correspond to two possible paths.

(a) Level zero. (b) Level one. (c) Level two.

Figure 11. Exponential factors of the anti-fundamental representation in direction 1. The two

crosses in the middle figure correspond to two possible paths.

In total, we found two realizations in terms of level zero, level one and level two

descendants. We will now see that different solutions can be identified with simple real-

izations of the 3! free field realizations. Shifting the simple exponentials according to the

corresponding ordering of free bosons, on recovers:

Representation Level (x
(1)
1 , x

(1)
2 , x

(2)
3 ) charges

R
(1)
1 R

(1)
2 R

(2)
3

� 2 (0, 0, h3) + (0, h1, 2h1) = (0, h1, h1 − h2)

�̄ 0 (0, 0,−h3) + (0, h1, 2h1) = (0, h1, 3h1 + h2)

R
(1)
1 R

(2)
2 R

(1)
3

� 1 (0, 0, h3) + (0, h1 + h2, h1) = (0, h1 + h2,−h2)
�̄ 1 (0, 0,−h3) + (0, h1 + h2, h1) = (0, h1 + h2, 2h1 + h2)

R
(2)
1 R

(1)
2 R

(1)
3

� 0 (0, 0, h3) + (h1 + h2, h2, 0) = (h1 + h2, h2,−h1 − h2)

�̄ 2 (0, 0,−h3) + (h1 + h2, h2, 0) = (h1 + h2, h2, h1 + h2)

Note that the level agrees with our proposal about the number of free bosons of the other

type on the left and right of the left-most and the right-most free boson of the second type.

– 50 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
9

6 Gluing and generic modules

6.1 Gluing using free fields

Starting with YN1,N2,N3 as a building block, one can construct more complicated VOAs

associated to an arbitrary (p, q) web of five-branes and D3-branes attached to them at

various faces. The resulting vertex operator algebra is an extension of tensor product of

Y-algebras associated to each vertex by bi-modules (and their fusion) associated to each

internal line of the web diagram. Existence of such an extension20 was conjectured in [5]

but no explicit construction of OPEs between gluing bi-modules was proposed. The free

field realization discussed above seems to provide us with a way to determine OPEs of such

bi-modules. In the two explicit examples bellow, we will indeed see that this is indeed the

case. Note also that such construction leads to an algorithmic way to determine a free field

realization of the glued algebra. We expect some of the free field realizations to be related

via bosonisation to well-known free-field realizations, such as the Wakimoto realization of

Kac-Moody algebras [74, 75].

Let us briefly review the gluing construction in the case of a single edge. The general-

ization to more complicated configurations is straightforward and will be briefly discussed

later. Consider a (p, q)-brane configuration from the figure 12. The resulting VOA is an

extension of the product

Y −Ã1,−Ã2,Ã1+Ã2

N2,N4,N3
[Ψ]⊗ Y A1,A2,−A1−A2

N4,N2,N1
[Ψ] (6.1)

where Y A1,A2,A3

N1,N2,N3
[Ψ] is related to the standard algebra YN1,N2,N3 [Ψ] by an SL(2,Z) trans-

formation of parameters

Y A1,A2,A3

N1,N2,N3
[Ψ] = YN1,N2,N3

[
−q2Ψ− p2
q1Ψ− p1

]
. (6.2)

The parameters hi of the algebra can be easily determined from

hi = Ai · ǫ, (6.3)

where we have introduced the vector ǫ = (ǫ1, ǫ2) and Ai are the (p, q) charges of the ith

interface with the arrow pointing out of the vertex. Note that ǫi are universal parameters

and in the case of the standard trivalent junction of NS5, D5 and (1, 1) branes, one has

the identification hi = ǫi with ǫ3 = −ǫ1 − ǫ2.
21 The extension is then generated by fusions

of the tensor product of the fundamental representation associated to the first vertex and

anti-fundamental representation associated to the second vertex and vice versa.

20There exists a large list of special examples appearing in various contexts in the literature. The story

of extensions of VOAs dates back to the early days of VOAs, where authors of [68, 69] constructed lattice

extensions of the free boson VOA. Extensions of WN algebras are discussed for example in [70, 71] and

many other places. More recently, gluing at the level of affine Yangians was initiated in [67, 72] and at the

level of quantum toroidal algebras appears in [73].
21If we consider gluing of vertices, we need to distinguish ǫ-parameters and h-parameters. The ǫ-

parameters are determined by Ψ while the h-parameters are associated to each vertex and they are related

to ǫj by SL(2,❩)-transformation which brings the vertex to the standard one. [5].
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Ã1 = (p̃1, q̃1)

Ã2 = (p̃2, q̃2)

A2 = (p2, q2)

A1 = (p1, q1)

(p1 + p2, q1 + q2)
N3

N2

N1

N4

Figure 12. Gluing of two vertices.

In the free field realization, the fundamental and the anti-fundamental representation

have a simple realization in terms of an exponential vertex operator and its descendant.

For simplicity of the discussion, we will restrict to the case N4 = 0 and identify only

the simple realization of the fundamental and the anti-fundamental representation for the

following ordering

R
(2)
1 · · ·R(2)

N2
R

(3)
N2+1 · · ·R

(3)
N1+N2

(6.4)

of free bosons in the right vertex and

R̃
(3)
1 · · · R̃(3)

N2
R̃

(1)
N2+1 · · · R̃

(1)
N2+N3

(6.5)

in the left vertex. The generalization for N4 6= 0, a general ordering and ‘non-simple’

realizations is straightforward but the formulas become more involved.

The gluing fields are the generated from the fundamental and the anti-fundamental

representation associated to lines supported at the internal interface generated by

M� =M3
� ⊗ M̃3

�̄
, M

�̄
=M3

�̄
⊗ M̃3

� (6.6)

where M3
�

and M3
�̄

are the primaries associated to the fundamental and the anti-

fundamental module associated to the third direction of the right vertex and M̃3
�

and

M̃3
�̄
associated to the left vertex. The simple free field realizations in the given ordering

are of the form

M3
� = exp

[
h1 φ

(2)
1

]
M3

�̄
= f(J) exp

[
−h1 φ(2)N2

]
(6.7)

M̃3
� = exp

[
−h̃2 φ̃(3)1

]
M̃3

�̄
= f(J̃) exp

[
h̃2 φ̃

(3)
N2

]
(6.8)

where f(J) is a level N1 and f(J̃) is a level N3 field of the free boson. Even though

we lack a closed form expression for f(J) and f(J̃), they can be easily determined from

the requirement that M3
�
and M̃3

�̄
are primary fields of correct W -charges. All the other

bi-fundamental fields can be constructed from the fusion of M� and M
�̄
.

In configurations with more internal finite interfaces, one can introduce corresponding

fundamental and anti-fundamental representations associated to each finite segment and

extend the tensor product of Y-algebras by fusion of all such generators. We will illustrate

the gluing procedure on two examples bellow.
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6.2 Gluing and generic modules

Let us discuss how to glue generic modules and its interpretation in terms of the physics of

GW defects. The highest weight vector of a generic module of a Y-algebra can be realized

as an exponential vertex operator exp [QµΦµ], where we introduced a vector of free fields

and a dual vector of charges

Φµ =
(
φ
(2)
1 , . . . , φ

(2)
N2
, φ

(3)
N2+1, . . . , φ

(3)
N2+N1

)

Qµ =
(
q1, . . . , qN2 , qN2+1, . . . , qN2+N1

)
(6.9)

and similarly for the other vertex

Φ̃µ =
(
φ̃
(1)
1 , . . . , φ̃

(1)
N2
, φ̃

(3)
N2+1, . . . , φ̃

(3)
N2+N1

)

Q̃µ =
(
q̃1, . . . , q̃N2 , q̃N2+1, . . . , q̃N2+N1

)
(6.10)

A generic module of a glued algebra can be then realized as a tensor product of such

exponentials associated to each vertex in the diagram.

Note that the parameters qi and q̃i correspond to the same GW defect and the gauge

theory setup suggests that they must be identified (up to shifts induced by line operators

supported at the boundary A1 and Ã2), in particular

qi ± q̃i = nih3 (6.11)

for some integers ni and h3 = A3 · ǫ = −Ã3 · ǫ = (−A1 −A2) · ǫ. The relative sign depends

on the relative orientation of the two glued vertices. In [5], we defined the orientation of

a vertex Y A1,A2,A3

N1,N2,N3
as a sign given by (−1)p1p2+q1q2+p2q1 . The relative orientation and the

sign in the above equation22 is given by a product of such factors in the two vertices. In

particular, one gets −1 for the resolved conifold diagram and +1 for the toric diagram of

C/Z2 × C. We will see later in examples that this condition is necessary for the gluing

bi-modules to be local with the GW modules.

Note that inclusion of bi-fundamental fields might change the algebra of zero modes

that might become non-commutative. Moreover, we will see later that the modules are in

general not even modules induced from the modules of the zero-mode algebra. GWmodules

associated to the commutative zero-mode algebra of YN1,N2,N3 are thus building blocks of

modules for more complicated algebras with non-commutative algebra of zero modes.

6.3 Gluing two ĝl(1)’s

Let us consider the first example of gluing of two ĝl(1)Ψ Kac-Moody algebras as shown in

the figure 13. Let φ ≡ φ
(2)
1 be the free boson associated to the right vertex and φ̃ ≡ φ̃

(1)
1

be the one associated to the second one. We normalize them such that J = ∂φ
(2)
1 and

J̃ = ∂φ̃
(2)
1 have the following OPE

J(z)J(w) ∼ − 1

ǫ1ǫ3

1

(z − w)2
, J̃(z)J̃(w) ∼ − 1

ǫ2ǫ3

1

(z − w)2
. (6.12)

22The sign would be opposite if we have glued the fundamental representation of the first vertex with the

fundamental representation of the second vertex and similarly for the anti-fundamental representation.
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Figure 13. The simplest example of gluing of two ĝl(1) Kac-Moody algebras.

Generators that need to be added to the algebra can be identified with the fusion of the

following vertex operators realizing the fundamental and anti-fundamental representation

M� = exp
[
ǫ1φ− ǫ2φ̃

]
, M

�̄
= exp

[
−ǫ1φ+ ǫ2φ̃

]
. (6.13)

One can easily check that the two generators have correct charges with respect to the two

gl(1) subalgebras and that the conformal weight with respect to the sum of the two stress-

energy tensors is 1/2. Moreover, the free field realization gives also an explicit realization

of the OPE between the added fields M� and M
�̄
that has the following simple form

M�(z)M�̄
(w) ∼ 1

z − w
(6.14)

with all the other OPEs trivial. The exponent was determined from the product of the two

exponents (with the metric determined by the normalization of the free bosons)

−(−ǫ1)ǫ1
ǫ1ǫ3

− ǫ2(−ǫ2)
ǫ2ǫ3

= −1. (6.15)

One can immediately see that the BRST definition of the algebra is reproduced. In

particular, the added fields M� and M
�̄
form the free fermion pair and the combination

J+ J̃ can be identified with the decoupled ĝl(1) Kac-Moody algebra. The relation between

free fermions and the vertex operators M�, M�̄
is the well known bosonization.

Having an explicit description of the glued algebra in terms of free fields, we would

like to discuss generic modules of the glued algebra. According to the discussion above, we

expect the correct GW-defect module to be generated by descendants of

M [q, q̃] = exp
[
qφ+ q̃φ̃

]
, (6.16)

where the parameters β, β̃ are related by (6.11), i.e.

q − q̃ = nǫ3 (6.17)

for some integer n. Note that this is exactly the condition following form the locality of

M [q, q̃] with the gluing bi-modules M� and M
�̄
. In particular, requiring the OPE to be of

the following form

M�(z)M [q, q̃](w) ∼ exp [q − ǫ1, q̃ + ǫ2] (w)

(z − w)n
+ . . . (6.18)
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2

1

Figure 14. The web diagram associated to the ĝl(2) Kac-Moody algebra.

where n is an integer, one gets a constraint

ǫ1q

ǫ1ǫ3
− ǫ2q̃

ǫ2ǫ3
= n (6.19)

which is the same constraint as (6.17).

Note that the fusion with gluing fields preserve the constraint (6.17) and only shifts

the coefficient n. FieldsM [q−ǫ1, q̃+ǫ2] andM [q, q̃] are actually vectors of a single module.

The only parameter of the module is thus the gl(1) charge of the decoupled current J + J̃ .

6.4 ĝl(2) from gluing

Let us now discuss the structure of glued generic modules for the algebra ĝl(2) associated

to the figure 14. This example will serve as a prototype for a more general configuration

whose GW-defects give rise to VOA modules induced from the Gelfand-Tsetlin modules of

the zero-modes algebra.

Y0,1,2 vertex. First, let us construct the free field realization of the algebra Y0,1,2. The

algebra has a free field realization in terms of three free bosons normalized as

J
(2)
1 (z)J

(2)
1 (w) ∼ − 1

ǫ1ǫ3

1

(z − w)2
,

J
(3)
2 (z)J

(3)
2 (w) ∼ − 1

ǫ1ǫ2

1

(z − w)2
, (6.20)

J
(3)
3 (z)J

(3)
3 (w) ∼ − 1

ǫ1ǫ2

1

(z − w)2
.

The generators of the algebra Y0,1,2 were already found previously. For the purpose of

our discussion, let us recall the ĝl(1) field

J = J1 + J2 + J3. (6.21)

Let us now discuss the free field realization of the fundamental and the anti-

fundamental module in the third direction that will play the role of J+ and J− generators

after tensoring with the corresponding modules of the other vertex. The fundamental field

can be realized as

M� = exp
[
ǫ1φ

(2)
1

]
. (6.22)

Note that ǫ1 is precisely the charge predicted by the generating function of the ψ-charges

and all the W -charges of the representation match. The anti-fundamental field is more
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complicated since it appears at level two (there are two of free bosons of the third type to

the left of φ
(3)
3 ). One finds the following expression for the fundamental field

M
�̄
=

(
−ǫ1ǫ2

ǫ3
J3J2 + ǫ1J1(J2 + J3)−

ǫ1ǫ3
ǫ2

J1J1 − ∂J2 +
ǫ3
ǫ2
∂J1

)
exp

[
−ǫ1φ(2)1

]
. (6.23)

Note that this asymmetric form of the fundamental and the anti-fundamental field is related

to our asymmetric choice of the free-boson ordering. The symmetric choice would to lead to

both J+ and J− at level one. We expect the two choices to correspond to the symmetric and

the asymmetric Wakimoto realizations. The symmetric Wakimoto realization is a free field

realization of ĝl(2) in terms of two free bosons and parafermionic fields. Parafermionic fields

can be bosonized and we expect to find our symmetric free field realization. Similarly, one

can bosonize the β, γ system of the Wakimoto realization in terms of two free bosons and

a β, γ system and we expect to recover our non-symmetric free field realization. Detailed

discussion of the relation with Wakimoto realization is beyond the scope of this paper.

Y0,0,1 vertex. Let us normalize the free boson J̃ = ∂φ̃
(2)
1 of the second vertex as

J̃(z)J̃(w) ∼ 1

ǫ1ǫ3

1

(z − w)2
. (6.24)

The fundamental and the anti-fundamental representations associated to the second

direction are then

M̃� = exp [ǫ1φ(z)] , M̃
�̄
= exp [−ǫ1φ(z)] . (6.25)

Glued algebra. Having identified the fields and the relevant fundamental and the anti-

fundamental representation of each vertex, one can now easily construct the glued VOA.

The Cartan elements of the ĝl(2) Kac-Moody algebra can be fixed by requiring the correct

OPE between them and with the fields J12 ∝M
�̄
and J21 ∝M�. One finds

J11 = ǫ3J̃ , J22 = −ǫ2
ǫ3
J + ǫ1J̃ . (6.26)

The normalization of generators J12 and J21 can be found from their OPE. One finds

J12 =
ǫ2ǫ3
ǫ1

M
�̄
, J21 =M�.

Note that the OPE of the exponential factors is trivial and both the second order and

the first order pole come from the OPE of the Ji fields with the exponential factor of the

anti-fundamental field. All the OPEs of ĝl(2) Kac-Moody algebra are reproduced.

Generic modules. Generic modules can be now constructed from

M [q1, q2, q3, q4] = exp
[
q1φ

(2)
1 + q2φ

(3)
2 + q3φ

(3)
3 + q4φ̃

(2)
1

]
(6.27)

where q1 and q4 are constrained by the condition

q1 + q4 = ǫ3n (6.28)

for some integer n.
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For each such module, it is simple to compute the action of the ĝl(2) generators on

each such vector. Depending on the number n in the constraint above, one gets different

structure of the modules. For example, for n > 1, one gets

J21(z)M [q1, q2, q3, q4](w) ∝ M [q1 + ǫ1, q
2, q3, q4 − ǫ1]

(z − w)n
+ . . .

J12(z)M [q1, q2, q3, q4](w) ∝ O((z − w)n−2). (6.29)

For n < 1, the singularity is present in the OPE with J12 instead. We expect corresponding

modules to be a special type of the irregular modules discussed in [43].

The most interesting situation appears when n = 1. In such a case both M� and M
�̄

have a simple pole in the OPE with generic modules and one obtains

J11(z)M [−q4 + ǫ3, q
2, q3, q4](w)

∼ q4

ǫ1

M [−q4 + ǫ3, q
2, q3, q4]

z − w

J22(z)M [−q4 + ǫ3, q
2, q3, q4](w)

∼ −q
1 + q2 + q4 + ǫ2

ǫ1

M [−q4 + ǫ3, q
2, q3, q4]

z − w

J12(z)M [−q4 + ǫ3, q
2, q3, q4](w)

∼ −(q1 + q4)(q2 + q4 − ǫ3)

ǫ21

M [−q4 + ǫ3 − ǫ1, q
2, q3, q4 + ǫ1]

z − w

J21(z)M [−q4 + ǫ3, q
2, q3, q4](w) (6.30)

∼ M [−q4 + ǫ3 + ǫ1, q
2, q3, q4 − ǫ1]

z − w
.

We can see that the zero modes of J12 and J21 shift the exponent of M [−q4+ ǫ3, q2, q3, q4].
The representation of the zero-mode subalgebra is thus spanned by M [−q4 + ǫ3 +

nǫ1, q
2, q3, q4 − nǫ1] for n ∈ Z.

Gelfand-Tsetlin modules. In this section, we show that the above action of zero modes

generate a generic Gelfand-Tsetlin module of ĝl(2).

Gelfand-Tsetlin modules for gl(2) are parametrized by a triple of complex parameters

(
λ21 λ22
λ11

)
(6.31)

where λ11 and λ11 + n are vectors of the same module. For generic values of parameters,

the Gelfand-Tsetlin module is spanned by vectors with Gelfand-Tsetlin table of the form

(
λ21 λ22
λ11 + n

)
(6.32)
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N

N − 1

1

Figure 15. The web diagram associated to the ĝl(N) Kac-Moody algebra.

for each n ∈ Z. Generators J11, J22, J12, J21 act on such vectors as

J11

(
λ21 λ22
λ11

)
= λ11

(
λ21 λ22
λ11

)
,

J22

(
λ21 λ22
λ11

)
= (1 + λ22 + λ21 − λ11)

(
λ21 λ22
λ11

)
,

J12

(
λ21 λ22
λ11

)
= −(λ11 − λ21)(λ11 − λ22)

(
λ21 λ22
λ11 + 1

)
,

J21

(
λ21 λ22
λ11

)
=

(
λ21 λ22
λ11 − 1

)
, (6.33)

Comparing parameters λ21, λ22, λ11 with the lifted Gukov-Witten parameters qi
from (6.31), one gets23

λ11 =
q4

ǫ1
,

λ21 = −q
3

ǫ1
,

λ22 = −q
2 − ǫ3
ǫ1

. (6.34)

Note that fusion of a vector of the generic module with J12 and J21 shifts q4 by an integral

multiple of ǫ1, this corresponds exactly to the shift of parameter λ11 by an integer as

expected. Note also that the parameters associated to a given face of the toric diagram

correspond to Gelfand-Tsetlin parameters of a given row of the Gelfand-Tsetlin table.

6.5 Gelfand-Tsetlin modules for ĝl(N) and their W-algebras

ĝl(N) Kac-Moody algebras. In the previous section, we have described the structure

of generic modules for the ĝl(2) Kac-Moody algebra. Let us now comment on the structure

of generic modules for any ĝl(N) Kac-Moody algebra and W-algebras associated to their

Drinfeld-Sokolov reduction.

The Kac-Moody algebra gl(N) can be realized in terms of a web diagram in the fig-

ure 15. The lifted GW parameters associated to internal faces must be again equal up

to shifts induced by line operators supported at the (1, 0) interfaces, i.e. they differ by a

23There are actually two solutions related by an exchange of λ21 ↔ λ22.
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Figure 16. The web diagram associated to the W(2)
3 × ĝl(1) algebra.

multiple of ǫ1 + mǫ2, where −(m, 1) are charges of the finite interface of the given face.

In the same way as in the case of the ĝl(2) Kac-Moody algebra, one should be able to

choose of the shifts of the lifted GW parameters such that the OPEs of Jij for i > j with

generic modules have OPE with a simple pole. Generic modules are then going to be

parametrized by a Gelfand-Tsetlin table of N(N+1)
2 entries. For example, in the case of

ĝl(3), the Gelfand-Tsetlin table will be of the form



λ31 λ32 λ33
λ21 λ22
λ11


 . (6.35)

The parameters in each line will be shifted and renormalized GW parameters associated

to a given face. The full modules is then spanned by the vectors



λ31 λ32 λ33
λ21 + n1 λ22 + n2

λ11 + n3


 (6.36)

for any integers n1, n2, n3. These shifts are generated by the fusion with bi-modules coming

from line operators at each internal face.

W-algebras. The same structure of modules is expected also for similar configurations

with different ranks of gauge groups. The corresponding algebra can be identified with a

W-algebra associated to the Drinfeld-Sokolov reduction of the ĝl(N) Kac-Moody algebra

possibly with extra symplectic bosons as discussed in [5]. The corresponding Gelfand-

Tsetlin modules are parametrized by a generalized Gelfand-Tsetlin table with Ni complex

numbers associated to each face with gauge group U(Ni). Except of the N1 corner pa-

rameters in the upper-right face, all the other parameters can be shifted by fusion with

bi-modules added to the algebra.

For example the algebra W(2)
3 × ĝl(1) associated to the diagram 16. Have the following

Gelfand-Tsetlin table parameterizing generic modules

(
λ31 λ32 λ33

λ11

)
. (6.37)

The full modules is spanned by such vectors with the parameter λ11 shifted by any integer.
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7 Outlook

Finally, let us mention few possible extensions of the discussion from this paper.

AGT for spiked instantons. Recently, partition functions of theories coming from

branes wrapping various four-cycles in Calabi-Yau four-folds have been considered in a

series of papers [76–82]. If one restricts to the toric three-fold case, one can relate the

corresponding geometric setup to the one considered in this paper along the lines of [5, 83].

Generic modules discussed here can be then identified with the equivariant cohomology of

the moduli space of spiked instantons with a geometric origin of the VOA action leading

to AGT correspondence for spiked instantons. This issue, together with the relation with

affine Yangians and the cohomological Hall algebra will be further discussed in [44].

Ramification of geometric Langlands. Gukov-Witten defects were originaly intro-

duced in the context of the ramification (inclusion of punctured Riemann surfaces) of the

geometric Langlands program in [33]. In the recenly introduced corner approach to the

geometric Langlands program from [4, 84], Gukov-Witten defects play the role of generic

modules for kernel VOAs. This work sets foundations for the inclusion of the ramification

in this context.

More general VOA[M4]. The web algebras studied in this paper are associated to

toric surfaces in toric Calabi-Yau threefolds. There are many hints that the story is much

more general as discussed for example in [66, 85, 86]. It would be interesting to extend the

analysis also to non-toric surfaces.

Irregular modules. Apart from modules induced from the algebra of zero-modes dis-

cussed here, one can consider more complicated irregular modules from [42, 43]. It would

be interesting to extend the discussion to such modules. This might also play important

role in the wild ramification of the Geometric Langlands program [87].

Rational levels. As we have seen in the case of the Ising model, null-fields appear at

rational values of parameters hi. Considering quotients of the algebra by such null fields

lead to new constraints on modules. It would be be interesting to address this issue in our

context. Many properties of the non-generic case might have a gauge theory explanation

in terms of an existence of line operators in the bulk.

Ortho-symplectic algebras. In this paper, we restrict our attention to algebras as-

sociated to U(N) gauge theories. There should exist an analogous story associated to

ortho-symplectic groups as briefly sketched in [1].

DIM algebra. There exists a DIM algebra approach [88–97] to the categorification of

DT-invariants associated to toric Calabi-Yau three-folds. The DIM algebra itself is a q-

deformation of the affine Yangian of gl(1). The specializations of the affine Yangian are

isomorphic to the YN1,N2,N3 as proved in [44] based on previous work of [5, 30]. It would

be nice to find a precise relation between the construction of intertwining operators of the

DIM algebra and the gluing of [5].
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Gelfand-Tsetlin modules. We have sketched that Gelfand-Tsetlin modules of W-

algebras naturally appear in the context of gauge theories. It would be interesting to

prove that the glued modules are indeed induced from Gelfand-Tsetlin modules of the

zero-modes algebra and explore the relation further.

Free field realization of degenerate modules. Given a free field realization of the

algebra YN1,N2,N3 , we have various realizations of maximally degenerate modules. When

inserted in a correlator, they all give an equivalent result (if non-vanishing) in all the

examples. It is desirable to explore this issue further as in [40]. Moreover, we do not give

a closed-form expression for the descendant realization of maximally degenerate modules.

It would be nice to find an explicit formula.

R-matrix. The different free field representations corresponding to different ordering of

free fields in the Miura transform are related by an R-matrix [27, 31, 98]. This R-matrix

satisfies the Yang-Baxter equation which is the starting point of many developments in

the quantum integrable models. More detailed exploration of this should strengthen the

relation between the algebraic structures of two-dimensional quantum field theory on one

hand and the theory of quantum integrable models and Yangians on the other hand.
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A Transformation between primary and quadratic bases

We list first few formulas relating the primary basis generators Wj to the generators Uj in

quadratic basis.

W1 = −U1

W2 = −U2 +
N − 1

2N
(U1U1) +

(N − 1)α0

2
U ′
1

W3 = −U3 +
N − 2

N
(U1U2)−

(N − 1)(N − 2)

3N2
(U1(U1U1))−

(N − 1)(N − 2)α0

2N
(U ′

1U1)

+
(N − 2)α0

2
U ′
2 −

(N − 1)(N − 2)α2
0

12
U ′′
1

– 61 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
9

W4 = −U4 +
(N − 3)(N − 2)(N − 1)(5N + 6)α0(α

2
0N

2 − α2
0N − 1)

2N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′
1(U1U1))

+
(N − 3)(N − 2)(N − 1)(α2

0N
2 − α2

0N − 1)(2α2
0N

2 + 3α2
0N − 3)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′
1U

′
1)

−(N − 3)(N − 2)(N − 1)α0(5α
2
0N

2 + 7α2
0N − 5)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′
1U2)

+
(N − 3)(N − 2)(N − 1)(5N + 6)(α2

0N
2 − α2

0N − 1)

4N3(5α2
0N

3 − 5α2
0N − 5N − 17)

(U1, (U1, (U1, U1)))

−(N − 3)(N − 2)(5N + 6)(α2
0N

2 − α2
0N − 1)

N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U1(U1U2))

+
(N − 3)(N − 2)(5α2

0N
2 + 7α2

0N − 5)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

(U2U2)

+
(N−3)(N−2)(N−1)(2α4

0N
4−5α2

0N
3−2α4

0N
2−7α2

0N
2−4α2

0N+5N−2)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′′
1U1)

+
(N−3)(N−2)(N−1)α0(α

4
0N

4−10α2
0N

3−α4
0N

2−14α2
0N

2−2α2
0N+10N−1)

24N(5α2
0N

3 − 5α2
0N − 5N − 17)

U
(3)
1

−(N − 3)(N − 2)(2α4
0N

4 − 2α4
0N

2 − 5α2
0N

2 − 11α2
0N + 3)

4N(5α2
0N

3 − 5α2
0N − 5N − 17)

U ′′
2

−(N − 3)(N − 2)α0

2N
(U1U

′
2) +

(N − 3)

N
(U1, U3) +

(N − 3)α0

2
U ′
3

We choose the normalization such that Wj = −Uj + . . .. Since this choice of normalization

is rather arbitrary, we should also specify the values of structure constants that fix the

relative normalization of the charges:

C0
11 = N

C0
22 =

1

2
(N − 1)(1−N(N + 1)α2

0)

C0
33 =

(N − 1)(N − 2)(1−N(N + 1)α2
0)(4−N(N + 2)α2

0)

6N

C0
44 =

(N − 1)(N − 2)(N − 3)(N + 1)

4N2(5N3α2
0 − 5Nα2

0 − 5N − 17)
× (1−N(N + 1)α2

0)(4−N(N + 2)α2
0)

×(9−N(N + 3)α2
0)(1−N(N − 1)α2

0)

C0
55 =

(N − 1)(N − 2)(N − 3)(N − 4)(N + 1)

10N3(7N3α2
0 − 7Nα2

0 − 7N − 107)
× (1−N(N + 1)α2

0)(4−N(N + 2)α2
0)

×(9−N(N + 3)α2
0)(16−N(N + 4)α2

0)(1−N(N − 1)α2
0)

Acting on the highest weight state, the relation between charges becomes somewhat simpler

w1 = −u1
w2 = −u2 +

N − 1

2N
u21 −

(N − 1)α0

2
u1

w3 = −u3 +
N − 2

N
u1u2 −

(N − 1)(N − 2)

3N2
u31 − (N − 2)α0u2

+
(N − 1)(N − 2)α0

2N
u21 −

(N − 1)(N − 2)α2
0

6
u1
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w4 = −u4 +
N − 3

N
u1u3 +

(N − 3)(N − 2)(5α2
0N

2 + 7α2
0N − 5)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

u22

−(N − 3)(N − 2)(5N + 6)(α2
0N

2 − α2
0N − 1)

N2(5α2
0N

3 − 5α2
0N − 5N − 17)

u21u2

+
(N − 3)(N − 2)(N − 1)(5N + 6)(α2

0N
2 − α2

0N − 1)

4N3(5α2
0N

3 − 5α2
0N − 5N − 17)

u41 −
3(N − 3)α0

2
u3

+
(N − 3)(N − 2)α0(15α

2
0N

3 + 2α2
0N

2 − 17α2
0N − 15N − 29)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

u1u2

−(N − 3)(N − 2)(N − 1)(5N + 6)α0(α
2
0N

2 − α2
0N − 1)

2N2(5α2
0N

3 − 5α2
0N − 5N − 17)

u31

−(N − 3)(N − 2)(6α4
0N

4 − 6α4
0N

2 − 5α2
0N

2 − 19α2
0N − 1)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

u2

+
(N − 3)(N − 2)(N − 1)(α2

0N
2 − α2

0N − 1)(6α2
0N

2 + 7α2
0N + 1)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

u21

−(N − 3)(N − 2)(N − 1)α0(α
2
0N

2 − α2
0N − 1)(α2

0N
2 + α2

0N + 1)

4N(5α2
0N

3 − 5α2
0N − 5N − 17)

u1

As one can see from these expressions, they are becoming increasingly complicated and it

is unfortunate that no closed-form expression for the primary charges is known.

B Y1,1,0 from W3

Since it turns out that Y1,1,0 truncation of W1+∞ is a special case of W3 algebra, it is

instructive to have a look how this happens at the level of the generating function of

higher spin charges. Let us start with W3 algebra with parameters

h1 =

√
2

3
, h2 = −

√
3

2
, h3 =

1√
6
, ψ0 = 3 (B.1)

and as usual

h3 = α0, ψ0 = N (B.2)

This choice in particular means that λ3 = 3 and c∞ = −2 which is the condition for Y1,1,0.

In W3, the generating function of higher spin charges of a highest weight representation is

of the form

ψ(u) =
(u− x1)(u− x2)(u− x3)

(u− x1 + h3)(u− x2 + h3)(u− x3 + h3)
(B.3)

(see 4.23). From this and the formulas of appendix A we can determine the w-charges

w1 = −x1 − x2 − x3 +
√
6

w2 =
1

3

(
x21 + x22 + x23 − x1x2 − x1x3 − x2x3

)
− 1

6

w3 =
1

27
(x1 + x2 − 2x3) (x1 − 2x2 + x3) (−2x1 + x2 + x3) (B.4)
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(and higher primary charges vanishing since we are in W3). We can now impose the Y110
truncation relation (4.51) which leads to a sextic equation in zeros xj ,

0 =

(
(x1 − x2)

2 − 1

6

)(
(x1 − x3)

2 − 1

6

)(
(x2 − x3)

2 − 1

6

)
(B.5)

which has a solution

x2 − x3 =
1√
6
= h3 (B.6)

(and other five permutations of this) with the corresponding generating function

ψ(u) =
(u− x1)(u− x2)(

u− x1 +
1√
6

)(
u− x2 +

√
2
3

) =
(u− x1)(u− x2)

(u− x1 + h3)(u− x2 + h1)
(B.7)

which is exactly what we expect from the algebra Y1,0,1, i.e. x2 and x3 become bound

together and behave as a zero of the first type while x1 remains a zero of the third type.

C More details of Y0,1,2

Structure constants of Y012 in the primary basis

C3
34 =

12(c+ 2)(c+ 10)2(5c− 4)C0
33

c(c+ 7)(2c− 1)(5c+ 22)C4
33

C0
44 =

12(c+ 2)(c+ 10)2(5c− 4)(C0
33)

2

c(c+ 7)(2c− 1)(5c+ 22)(C4
33)

2

C4
44 =

36(c+ 10)(5c3 + 45c2 − 6c− 64)C0
33

c(c+ 7)(2c− 1)(5c+ 22)C4
33

C
(33)
44 =

72(c+ 4)(c+ 10)2C0
33

c(c+ 7)(2c− 1)(C4
33)

2

C5
45 =

30(c+ 10)(85c3 + 1076c2 − 188c− 2304)C0
33

c(2c− 1)(5c+ 22)(7c+ 114)C4
33

C4
35 =

60(c− 1)(c+ 13)(5c+ 22)C0
33

c(2c− 1)(7c+ 114)C5
34

C3
45 =

C5
34C

0
55

C0
33

C
(33)
35 =

90(c+ 10)2(7c+ 68)C0
33

c(2c− 1)(7c+ 114)C4
33C

5
34

C
(34)
45 =

120(c+ 10)(c+ 13)(7c+ 26)C0
33

c(2c− 1)(7c+ 114)C4
33C

5
34

C0
55 =

720(c− 1)(c+ 2)(c+ 10)2(c+ 13)(5c− 4)(C0
33)

3

c2(c+ 7)(2c− 1)2(7c+ 114)(C4
33)

2(C5
34)

2

C4
55 =

1800(c− 1)(c+ 10)(c+ 13)(85c3 + 1076c2 − 188c− 2304)(C0
33)

2

c2(2c− 1)2(7c+ 114)2C4
33(C

5
34)

2

C
(33)
55 =

1800(c+ 10)2(259c4 + 6979c3 + 46628c2 − 26404c− 154512)(C0
33)

2

c2(2c− 1)2(7c+ 114)2(C4
33)

2(C5
34)

2
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C
(35)
55 =

300(c+ 10)(49c4 + 1146c3 + 3222c2 − 32276c− 145776)C0
33

c(2c− 1)(7c+ 114)(29c2 + 533c− 870)C4
33C

5
34

+
3c(2c− 1)(7c+ 114)C4

33C
5
34C

(33)′′

55

8(c+ 10)(29c2 + 533c− 870)C0
33

C
(44)
55 =

600(c+ 7)(c+ 13)(35c3 + 914c2 + 2412c+ 2568)C0
33

c(2c− 1)(7c+ 114)(29c2 + 533c− 870)(C5
34)

2

−c(c+ 7)(2c− 1)(7c+ 114)(C4
33)

2C
(33)′′

55

2(c+ 10)2(29c2 + 533c− 870)C0
33

Spin 3 charge in terms of u(1) charges in the free field representation

w3 = − h2q31
3(2h2 − 1)2

+
(h2 − 1)q21q2
(2h2 − 1)2

+
(h2 − 1)q21q3
(2h2 − 1)2

− hq21
2(2h2 − 1)

+
(h2 − 1)q1q

2
2

(2h2 − 1)2
− 4(h2 − 1)q1q2q3

(2h2 − 1)2
+

2(h2 − 1)q1q2
h(2h2 − 1)

+
(h2 − 1)2(2h2 − 3)q1q

2
3

(2h2 − 1)2
− (h2 − 1)(h2 − 2)q1q3

h(2h2 − 1)

− h2q32
3(2h2 − 1)2

+
(h2 − 1)q22q3
(2h2 − 1)2

+
(h2 − 2)q22
2h(2h2 − 1)

+
(h2 − 1)2(2h2 − 3)q2q

2
3

(2h2 − 1)2

−(h2 − 1)(3h2 − 4)q2q3
h(2h2 − 1)

+
(5h2 − 6)q2

6h2
− 2(h2 − 1)3(2h2 − 3)q33

3(2h2 − 1)2

+
(h2 − 1)2(2h2 − 3)q23

h(2h2 − 1)
− (h2 − 1)(2h2 − 3)q3

3h2
− q1

6
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