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Abstract

We describe applications of a MATHEMATICA-based package for the study
of Lie algebras and their cohomology such as (1) the possibility to write Su-
pergravity Equations for any N-extended Minkowski superspace and to find
out the possible models for these superspaces; (2) the possibility of study-
ing stability of nonholonomic systems (ballbearings, gyroscopes, electro-
mechanical devices like a rotor collector with a gliding contact; waves in
plasma, etc.); (3) description of the analogue of the curvature tensor for
nonlinear nonholonomic constraints and the fields of solids or their sur-
faces, e.g., cones, as in optimal control; (4) a new method for the study of
integrability of dynamical systems.

The above problems are particular instances of the general problem to
compute cohomology or homology of the given Lie algebra or superalge-
bra with various coefficients. The package SuperLie makes it possible to
determine (1) Lie algebras via defining relations, from the Cartan matrix,
realized via vector fields, as polynomials with Poisson or contact (Legen-
dre) bracket, etc., (2) various modules over these Lie algebras (tensors, with
vacuum vector, etc.), (3) list central extensions and deformations and even
(4) back up the Leites conjecture (an analog of Kostrikin-Shafarevich con-
jecture) classifying simple Lie algebras over the algebraically closed field of
characteristic 2 with new examples. For the details see references.
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1 History. Formulation of problems

1.1 Supergravity

In 1972 Leites introduced [L1] the what is now called superscheme or al-
gebraic supervariety. This was an answer to a question of Berezin ([BL],
[L2]) together with whom he was slightly ahead of the time, see Minlos’
recollections in [D]. Now supermanifold theory is fully recognized thanks to
its part, supersymmetry, considered in theoretical physics as the language
of the future unified theory of all fundamental forces. The discovery of su-
persymmetry, hence, the realization that we live on Minkowski superspace
is one of the most fundamental steps in physics.

One of the leading modern theoretical physicists, Witten wrote: “Direct
experimental confirmation of supersymmetry is one of the prime missions
of the proposed Superconducting supercollider.” And then added: “More
fundamentally, I believe that the main obstacle is that the core geometrical
tdeas — which must underline string theory the way Riemannian geometry
underlines general relativity — have not yet been unearthed.”

We believe that Leites was lucky to have discovered these ideas. They
are related to (a) nonholonomic mechanics and (b) the presentation of the
curvature tensor via cohomology. The first cirumstance is occasioned by
the fact that Minkowski superspaces (whatever it is, see [WB], [SS]; there is
a hierarchy of models, labeled by an inner parameter N running 1 to 8) are
nonholonomic. The importance of Lie algebra cohomology for the study
of supergravity was felt and is clearly stated by several authors (e.g., [CDF))
but the description of the curvature tensor in nonholonomic case was never
given so far.

1.2 Mechanics

In XIX century Hertz [H| divided the dynamical systems into holonomic
(no constraints on velocities) and nonholonomic (with (nonintegrable) con-
straints on velocities). Analytical study of holonomic systems has pro-
gressed much further than that of nonholonomic.

Though nonholonomic systems are important in various branches of ap-
plied physics end engineering, they have not been sufficiently studied in
mathematics, even the best text books on analytical mechanics just men-
tion several examples and pass to holonomic systems, cf. {Al], [A2]. One
of the reasons: the qualitative study, such as stability problems, require
the notion of curvature tensor which is not defined for the nonholonomic
systems in the literature, cf. [S], the best for this purpose.

Examples of nonholonomic systems. 1) In mechanics. A ball on
a rough plane; ballbearings and gyroscopes; any vehicle with wheels (the
point at which the moving body is tangent to the surface has zero velocity).
A car with a cruise control switched ON is an example of a nonholonomic
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system with a nonlinear constraint. For further (numerous) examples we
refer the reader to Netscape, especially to papers by H. Kleinerts as well as
[G] and refs. therein.

Related problems: general description of the movement and stability of
a rapidly rotating hole body with a liquid or gyroscope inside it; orbital
stability of a missile with liquid inside it. (The linear approximation does
not work here.)

For several interesting practical applications (e.g., how a cat, when
dropped, uses nonholonomicity to fall on its paws) see [M].

2) In electromechanics (see, e.g., the book by Nejmark and Fufaev
[NF] or [BF]) an early example was provided by Gaponov who, in 1952,
found that a conductor connected to a gliding contact (as in a rotor collec-
tor) is equivalent to imposing nonholonomic constraints on the distribution
of the electric current.

For comprehensive reviews of nonholonomic problems, see the books
[NF] and [VG]. They list numerous problems which go back to Euler, Gauss,
Carnot, Hertz, Appell, Caratheodory, Schouten, Synge, et al. In the review,
and in references therein (see also Agrachev’s plenary talk at the 1994 In-
ternational Congress of Mathematicians [Ag]), there are mentioned several
problems of optimal control, which lead to nonlinear constraints on gen-
eralized velocities (fields of cones, spheres, etc.). Numerous works on hy-
poelliptic differential equations (by Hérmander, Melin, Malliavin, Bismut,
Bell; for a review see, e.g., [Ar]) also lead to nonholonomic distributions.

3) the magneto-hydrodynamics: waves in plasma. Study of stability
of such waves is extremely important for the development of thermonuclear
power plants.

4) Recent studies of Komech, Spohn and Kunze [KS] show that electron
represents a nonholonomic system with a (Coulomb, Maxwell, etc.) gauge
as a nonholonomic constraint.

1.3 Related problems

e Supersymmetry appears even in seemingly non-super questions, like the
study of the spectrum of the Schrodinger operator [L2] or relation between
the Schrédinger operator and the KdV (Korteveg de Vries) operator [LX].

» Recent studies of Gelfand-Dickey bracket lead us to the discovery of a
new class of simple Lie algebras of polynomial growth — generalization of
Lie algebras of matrices of “complex size” [GL1], [GL2]. Simultaneously, to-
gether with Shchepochkina, we announced two classifications ([GLS], [LS}])
of simple Lie superalgebras: (1) of vector fields and (2) stringy or super-
conformal superalgebras. In November 1996 V. Kac wrote about problem
(1) “The problem of classification of all primitive (simple) Lie superalgebras
s a very interesting problem in itself (in view if recent progress in repre-
sentation theory of finite dimensional simple Lie superalgebras, this is the
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last open problem from my Advances in Math. 1977 paper). However, my
feeling is that it is too difficult to be solved in this millenium.”

Amazingly, a solution of these problems was considerably speedified by
means of a computer-aided study. Accordingly, our research splits into
several topics united by the usage of a common MATHEMATICA-based
package SuperLie written by Grozman.

1. Study of nonholonomic mechanics: from supergravity to ballbearings.
Applications to stochastic analysis, media with dislocations and disclina-
tions and optimal control. Study of stability via cohomology.

2. Study of representation theory; in particular, classification simple Lie
superalgebras of vector fields, stringy or superconformal and generalizing
Lie algebra of matrices of complex size. Description of defining relations
via cohomology. Applications to Lie algebras and superalgebras and their
representations over fields of prime characteristic and over integers.

3. Application of representation theory to the study of integrability of
differential equations (KdV, KP, Schrédinger, Liouville, Toda lattice, ete.
and their superizations). Criteria of integrability expressed in terms of Lie
algebra cohomology.

2 Problem Formulation

According to Arnold-Kozlov-Neishtadt [A2], the behavior of nonholonomic
systems is often “surprising”, and its quantitative study is handicapped by
the lack of adequate tools. Let us recall some examples from [A2].

Consider a skate on the inclined plane. Where do you think it will move
if pushed not directly downwards, but sideways? If we ignore friction it will
never reach the floor but will oscillate between certain horizontal lines on the
plane. Similarly, consider a ball rolling along the wall inside a vertical tube.
It seems natural to expect the ball to descend on a spiral trajectory with
increasing steepness. In reality, however, the ball will perform harmonic os-
cillations between two fixed vertical planes. Though individual solutions of
nonholonomic systems are usually known, the stability questions are solved
ad hoc.

2.1 Stability problems

The stability of a holonomic system can be studied in terms of the Riemann
curvature tensor. The sign of the curvature indicates whether the geodesics
converge or diverge: compare meridians on a sphere (positive curvature)
with those on a trumpet (negative curvature).

For nonholonomic manifolds there was no such tool: in the literature
the definition of the analogue of the Riemann tensor is only given in a few
particular cases of little practical value even in pure mathematics, cf. [VG],

T].
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2.2 Difliculties

In the last decades, dozens of publications on dynamical problems in non-
holonomic mechanics appeared each year in technical journals, but very few
in mathematical journals. The main reason is the lack of adequate language
needed to even formulate the problem of calculating the local curvature
tensor (the analogue of the Riemann tensor) in intrinsic terms. The bulky
coordinate expressions used by classics in the 1920s hinder further progress.
Vershik and Gerschkovich gloomily stated ([VG]) that there is no language
to even formulate the integrability problems for nonholonomic systems with
linear constraints (to say nothing about nonlinear constraints).

This as one of the reasons why this important field was abandoned by
mathematicians, and even the interest and occasional works of such leaders
as Faddeev, Griffiths, Chern and Arnold (see [VG], [Br], [A2]) did not attract
any followers.

The only examples of the Riemann tensor calculated in nonholonomic
case is for 3-dimensional manifold (Martinet, see [VG]), whereas according
to E. Cartan the first interesting case is in dimension 5.

3 What is done: a formula and a package

We know the importance of the notion of curvature in drawing very exact
maps; application to stability were already mentioned. How to compute
the curvature? In text books on geometry this is done in terms of Spencer
cohomology that are difficult to calculate. Same cohomology are used in
Goldschmidt’s criteria for (formal) integrability of differential equations.
Observe that these criteria [Br] are only given for “a half of’ the cases. The
point is that by a theorem of Cartan the symmetries of each differential
equation are induced by either point or contact transformations [KLV]. The
latter case belongs to the realm of the simplest nonholonomic manifold —
a contact one — and, apart from partial results of [T}, nothing was known
in this case.

3.1 A formula: Lie Algebra Cohomology

In lectures at ICTP, in 1990, Leites reformulated the definition of the Rie-
mann tensor in terms of Lie algebra cohomology. In these terms, the prob-
lems discussed above can be posed in precise terms and, in principle, solved.
Most important, it becomes possible to generalize the description of the lo-
cal curvature tensor for nonholonomic manifolds with any constraints, like
the fields of surfaces.
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3.2 Pilot Package

During 1992-94, Grozman, working as a guest researcher at Stockholm
University, developed a MATHEMATICA-based pilot package SuperLie for
computing Lie algebras and their cohomology. The package embraces deter-
mination of various types of Lie algebras: matrix algebras, algebras of vector
fields, algebras defined via generators and relations, via Cartan matrices,
via Poisson brackets, etc.; the modules over them, and their cohomology
per se.

The mentioned above reformulation of Spencer cohomology in terms of
Lie algebra cohomology means that much of the time-consuming calcula-
tions become considerably simplified and new ways to diminish the amount
of calculations appear. However, the computation effort is still overwhelm-
ing: to compute the curvature tensor even for the simplest practical exam-
ples of, e.g., a ballbearing, or a bike, we need to develop the package further
and complete its documentation to make available to engineers. Besides,
only version 2 of MATHEMATICA was available to us.

In spite of these drawbacks of the existing pilot package, we used it to
correct several results found analytically by mathematicians (certain coho-
mology from [FL}, [F]) and by physicists (certain Wess—Zumino constraint
in supergravity [WB] turned out to be redundant). The last example is
of particular interest since the scene for supergravity is a nonholonomic
supermanifold.

The results, obtained completely or patly with the help of the package
are described in [GL], [GKLP], [GLS] and used also in {LS], [LX]. Several

more are in preparation.

3.3 Rival and not so rival teams

An alternative package (not so overwhelming but much faster) is now being
developed in JINR, Dubna, by V.Kornyak, our coworker, in C. For results
of REDUCE fans from Twente Univ. see [LP], [PH], refs. in {GKLP].
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