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Abstract— Maximum spatial eigenfiltering improves the accuracy
of maximum likelihood direction-of-arrival estimators for closely-
spaced signal sources but may interchangeably attenuate widely-
spaced signal sources, producing a severe performance degradation.
Although this behavior has been observed experimentally, it still
lacks a mathematical explanation. In our previous work, we
overcame these limitations using a differential spectrum-based
spatial filter but this still caused a small degradation in the DOA
estimate. In this paper, we develop a mathematical analysis of how
the signal source separation and the Karhunen-Loève expansion
affect the passbands of the maximum spatial eigenfilter. The
farther the sources, the less significant is the maximum eigenvalue
of the spatial correlation matrix and its corresponding eigenvector.
Then, the magnitude response of the maximum spatial eigenfilter
no longer approximates the spatial power spectrum and is not
guaranteed to place multiple passbands around the signal sources.
Consequently, we propose a spatial filter built from the
eigenvectors of the entire signal subspace. This filter showed an
overall runtime smaller than that of our previous work. It also
provides a significant reduction in the threshold signal-to-noise
ratio for closely-spaced signal sources and does not hamper the
estimation for widely-spaced signal sources.

Index Terms— Direction of arrival, Maximum likelihood estimation, Noise
reduction, Spatial filtering.

I. INTRODUCTION

Localization techniques enable several types of state-of-the-art commercial and government

applications and services [1]. These techniques are regarded as a core technology in fourth and fifth

generation (4G/5G) wireless telecommunications systems as they allow forming beams to individual

mobile users in a multiple-input multiple-output (MIMO) urban environment [2], increasing spectral

efficiency and the capacity of those systems [3]. They are also useful to estimate the position of

indoor wireless users [1], for target localization and imaging using MIMO radars [4], and even for

localization of long-distance underwater acoustic sources [5].

In this context, direction-of-arrival (DOA) estimation plays a key role, since all these applications

need to know a priori the signal source position. Currently, there are several DOA estimators but the

most representative ones are: Multiple Signal Classification (MUSIC) [6], Estimation of Signal

Mathematical Analysis and Improvement of
the Maximum Spatial Eigenfilter for Direction

of Arrival Estimation
R. P. Lemos1 , H. V. L. Silva2 , E. L. Flores3 , J. A. Kunzler1

1Universidade Federal de Goiás – UFG, Goiânia, Goiás, Brazil, lemos@ufg.br and k_jonasaugusto@ufg.br
2Instituto Federal de Educação, Ciência e Tecnologia de Goiás – IFG, Goiânia, Goiás, Brazil,

hugo.vinicius@ifg.edu.br
3Universidade Federal de Uberlândia – UFU, Uberlândia, Minas Gerais, Brazil, edna@ufu.br

https://orcid.org/0000-0002-6097-550X
https://orcid.org/0000-0002-3180-5827
https://orcid.org/0000-0003-2264-2234
https://orcid.org/0000-0001-5028-5049


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 20, No. 1, March 2021

Brazilian Microwave and Optoelectronics Society-SBMO received 12 May 2020; for review 14 May 2020; accepted 3 Dec 2020
Brazilian Society of Electromagnetism-SBMag © 2021 SBMO/SBMag ISSN 2179-1074

DOI: http://dx.doi.org/10.1590/2179-10742021v20i1874 77

Parameters via Rotational Invariance Techniques (ESPRIT) [7], and Method of Direction Estimation

(MODE) [8].

MODE has advantages to MUSIC and ESPRIT, making it a competitive DOA estimator, such as

maximum likelihood (ML) estimation performance for a large number of snapshot data, but without

requiring a computationally-intensive search for the global minimum. It produces DOA estimates

through polynomial root finding and does not show convergence problems as in iterative methods.

Also, differently from MUSIC and ESPRIT, MODE can handle both uncorrelated and correlated

signals [9].

Additionally, a class of MODE-based estimators called Principal-eigenvector Utilization for Modal

Analysis (PUMA) [10] and Enhanced PUMA (EPUMA) [11] has been proposed in the literature.

However, according to [12], the PUMA criterion is exactly equivalent to the MODE criterion and the

algorithm proposed for EPUMA corresponds to MODE with Extra Roots (MODEX) [13].

MODEX was proposed to overcome the threshold breakdown effect present in MODE, which is a

serious performance degradation due to low signal-to-noise ratio (SNR) and/or insufficient snapshot

data. This is done by increasing the number of generated estimates and employing an additional ML

procedure to select the best set among them, what improves the threshold performance. Although,

some of the extra roots produced by MODEX are associated with the noise subspace and can lead to

wrong results. So, in order to produce better estimates, Modified MODEX [14] generates extra roots

by computing MODE three times, each one with a distinct non-triviality constraint.

Another way to improve even further the threshold performance is by filtering the data in the ML

procedure, such as Krummenauer et al. proposed in [15]. They achieved a significant reduction on the

threshold SNR of the conventional Modified MODEX for closely-spaced signal sources by employing

the maximum spatial eigenfilter [16], [17] during the ML procedure.

On the other hand, we observed that that filter may significantly attenuate any widely-spaced signal

source [18], leading to a severe performance degradation as the signal source separation increases.

This separation relates with the eigendecomposition of the spatial correlation matrix so that the closer

the signal sources, the larger the difference between its two largest eigenvalues [19]-[21].

Then, we proposed in [18] a moving average multiband filter based on the differential spectrum

[19]-[21] to overcome the maximum spatial eigenfilter limitations. This filter improved the DOA

estimation performance for closely-spaced signal sources but it was capable of preserving signal

passbands also for widely-spaced signal sources, performing significantly better than the maximum

spatial eigenfilter. Even so, it still performed slightly worse than the conventional Modified MODEX

in the latter case.

Thus, in the present paper, we provide a mathematical demonstration of how signal source

separation affects the maximum spatial eigenfilter passbands in light of the Karhunen-Loève

expansion [17], [22] to solve definitely this problem. As a consequence, we derive a new, less-time-

consuming, multiband spatial filter that preserves the passbands around the DOA of every signal
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source, regardless of whether they are closely or widely-spaced from each other.

This work is organized as follows: Section II sets up the signal model for DOA estimation, provides

an overview on the conventional Modified MODEX, and depicts the maximum spatial eigenfilter.

Section III analyses the filter behavior, and Section IV presents our new proposition. Section V brings

the experimental results, and Section VI draws conclusions and suggestions for future works.

II. THEORETICAL FRAMEWORK

Let us consider � narrowband far-field signal sources impinging at DOAs ��, � = 1,…,�, on

a uniform linear array (ULA) formed by � half-wavelength-spaced sensors, with � >�. The set of� snapshots of the array output is modeled as [13]:�(�) = �X(�) + �(�), (1)
for � = 1,…,�; � � ∈ ℂ�×1 is the noisy output vector; X � ∈ ℂ�×1 is the vector containing

all � signals and � � ∈ ℂ�×1 is the additive white gaussian noise vector. Both X � and � �
consider the unconditional model [23]; � = � �1 ,…,� �� is the �×� matrix of steering

vectors � �� = 1, �−���,…, �−� � − 1 �� T
for each one of the � frequencies �� =�sin��.

The spatial correlation matrix � from the array output is given by � = ���H +�2�, where �
is an identity matrix; ⋅ H is the conjugate-transpose operator; �2 is the unknown noise power. � ∈ℝ�×� is the signal correlation matrix. Since the signal sources are considered to be equally-

powered and uncorrelated to each other, � = �. Actually, � can be estimated and eigendecomposed

as [14]:

�� = 1� �=1
� � � �H �� = �=1

� ���������H� , (2)

where ��� are its eigenvalues arranged in descending order of magnitude and ��� are their

corresponding eigenvectors. The first �� ������ = min �, rank � eigenvalues along with��1, …, ���� ������ span the signal subspace of �. The remaining �−�� ������ eigenvalues and eigenvectors

span its orthogonal or noise subspace [24].

The conventional Modified MODEX uses MODE to compute three solutions to the DOA problem

in order to keep good asymptotic estimation performance [14]. The first one is calculated from the

complete MODE algorithm, estimating the roots ���1,…,����� ������� of the polynomial � � =�0��� ������ +�1� �� ������−1 +⋯+��� ������ by solving the following non-linear optimization problem:

� = argmin tr �� ��H�� −1��H�������H , (3)

where � = �0, …,��� ������ contains the polynomial coefficients and is subject to the unit-norm

constraint � ≠ � to avoid a trivial solution, and to the conjugate-symmetry constraint ��� ������ =��� ������−�∗ ,� = 1,…,�� ������ , where ⋅ ∗ is the complex conjugate operator [14]; ��� = ��1� ��� ,…, ���� ������ ;
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�= ��� −��2� ���−1 , ��2 = tr(���)/(� −�� ������ ) ; ��� = diag ��1,…,���� ������ ; ��� =
diag �� �� ������+1 ,…,��� and:

� = ��� ������ … �1 �0 �⋱ ⋱ ⋱� ��� ������ … �1 �0
H ∈ ℂ�× �−�� ������ , (4)

such that �H� = �. The other two solutions come respectively from the imposition of the real linear

constraint ℜ �0 = 1 and imaginary linear constraint ℑ ��� ������ = 1 , both computed using the first

solution as a parameter.

However, this procedure generates 3�� ������ estimates. Thus, an ML procedure must take place to

combine those estimates into �-tuples that are included in the set � to select the best one among

them:

�� = argmin� tr � −�� ��H�� −1��H �� , (5)

where �� is a candidate matrix of steering vectors for each �-tuple in �.

Even though the noise will not affect distinct MODE solutions simultaneously and/or the same

estimate in each solution [14], the threshold breakdown effect may occur as the SNR gets below a

critical value [15]. Then, the noise present in �� worsens the ML procedure performance in Eq. (5)

such that the conventional Modified MODEX may not choose the best M-tuple [15].

Since the maximum eigenfilter, i.e. the eigenvector associated with the largest eigenvalue of �� [17],

maximizes the output SNR, Krummenauer et al. [15] proposed using it as a spatial filter [16] to

reduce the noise influence in Eq. (5):

�� = argmin� tr � −�� ��H�� −1��H �� , (6)

where �� = ���; �� = ����H and � is the following �+� ×� convolution matrix:

�= ℎ� … ℎ1 ℎ0 �⋱ ⋱ ⋱� ℎ� … ℎ1 ℎ0
H. (7)

The coefficient vector � = ℎ0,…,ℎ� , 0 < � < � , corresponds to the maximum eigenvector

of the matrix �� ����� given by the average of the �−� submatrices ��� ∈ ℂ �+1 ×(�+1) along the

main diagonal of �� [15]:

�� ����� = 1�−� �= �+1
� ���� . (8)

Then, we can find � from the eigendecomposition of �� ����� :
�� ����� = �=1

�+1�� ��� �� �� ���� ��� ���� �H, (9)

where the eigenvalues �� ��� � are arranged in descending order of magnitude and �� ���� � are their

corresponding eigenvectors. In other words, the maximum spatial eigenfilter is simply given by � =
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�� ����1 [15].

III. PROBLEM STATEMENT AND DIAGNOSIS

We had already stated in [18] that, despite the optimality of this spatial eigenfilter in maximizing

the SNR at its output, its magnitude response may interchangeably attenuate signal sources widely-

spaced from the others even in absence of noise. In such cases, the filter may cause Modified

MODEX to take a wrong decision in the ML selection procedure, yielding a severe degradation in

estimation performance. Although this unexpected behavior has been observed experimentally, it still

lacks an analytical explanation.

To derive a mathematical reasoning about the selectivity of that filter, we must bring our discussion

to the frequency domain. Then, the magnitude response � ��� of the maximum spatial eigenfilter

is given by:

� ��� ≜ �=0
� ℎ��−���� = �=1

�+1�� ��� �,1�−� �−1 �� , (10)

where �� ��� �,1 is the �-th element of �� ����1 and � = �sin�. To assess the effectiveness of � ��� , we

first estimate the spatial power spectrum of the signals impinging on the array by taking the Fourier

transform of the first column of �� as:

�� � ≜ �=0
� − 1�� � �−���� = �=1

� ���, 1�−� � − 1 �� , (11)

where ���, 1 is its �-th element and �� � is the estimated spatial correlation function at lag �.

According to [19]-[21], the difference between �� ��� 1 and �� ��� 2 becomes larger whenever signal sources

are more closely spaced. In this case, �� ��� 1 ≫�� ��� 2 so that �� ��� 1 holds almost all signal energy, as shown

by the upper dashed line in Fig. 1 for �1, �2 = 10∘, 15∘ . Thus, we can write Eq. (9) as:

Fig. 1. Percentage of signal energy in �� ����1 as a function of the separation between two signal sources with DOAs �1 = 10∘
and − 40∘ ≤ �2 ≤ 60∘ for SNR ranging from −15 to 15 dB. The dashed lines regard �1, �2 = 10∘, 15∘ and�1, �2 = 10∘, 45∘ .
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�� ����� ≈ �� ��� 1�� ����1�� ����1H≈ �� ��� 1q� ���1,1∗ �� ����1,…,�� ��� 1q� ��� �+1 ,1∗ �� ����1≈ �� ��� 1,…,�� ��� �+1 , (12)

where �� ��� �, 1 ≤ � ≤ �+ 1 , corresponds to the �-th column of �� ����� .
Therefore, � = �� ����1 ≈ �� ��� 1/�� ��� 1�� ��� 1,1∗ such that � ��� corresponds to the spatial power spectrum

calculated using only �+ 1 samples:

� ��� ≈ 1�� ��� 1�� ��� 1,1∗ �=1
�+1�� ����, 1�−� � − 1 �� . (13)

As a consequence, the filter passband encompasses both DOAs of the signal sources, what explains

why the maximum spatial eigenfilter performed so well for �1, �2 = 10∘, 15∘ in [15]. Fig. 2a

and 2b respectively depict the average spatial power spectrum of the impinging signals on 100
independent experiments and 100 magnitude responses of the maximum spatial eigenfilter. In both

figures, vertical dashed lines indicate the actual DOAs. One can observe that all the magnitude

responses of that filter resemble the average spatial power spectrum of the signal.

On the other hand, this is not true for widely-spaced signal sources. In this case, �� ��� 1 and �� ��� 2 get

close to each other such that �� ��� 1 holds only half of signal energy, as indicated by the lower dashed line

in Fig. 1 for �1, �2 = 10∘, 45∘ . So, Eq. (12) no longer holds, since the first column of �� �����
depends more heavily on �� ����2,…,�� �����+1:

�� ��� 1 = �� ��� 1�� ��� 1,1∗ �� ����1 + �=2
�+1�� ��� ��� ��� �,1∗ �� ���� �� . (14)

Fig. 2. a) Average of 100 signal spatial power spectra and b) superimposition of 100 normalized magnitude responses of the
maximum spatial eigenfilter for �1, �2 = 10∘, 15∘ , both in absence of noise
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Then, the filter coefficient vector � becomes rather different from the spatial correlation vector

and the magnitude response � ��� of the maximum spatial eigenfilter may not sufficiently

resemble � � . Consequently, � ��� is not guaranteed to place multiple passbands around

widely-spaced signal sources. Instead, the filter may interchangeably attenuate them even in absence

of noise, as shown in Fig. 3a and 3b for �1, �2 = 10∘, 45∘ .

In both cases, Fig. 1 shows that the percentage of signal energy in �� ��� 1 gets smaller as the SNR

decreases. So, the maximum eigenvector �� ����1 becomes even less suitable to approximate �� ��� 1 such that

the maximum spatial eigenfilter may not be able to preserve all signal sources at low SNRs.

IV. MAXIMIZING THE OUTPUT SIGNAL POWER WITH A SIGNAL SUBSPACE FILTER

The observations presented in the last section lead us to conclude that the maximum spatial

eigenfilter may, in principle, sacrifice some of the signal sources to maximize the SNR at its output,

causing Modified MODEX to make an incorrect decision in the ML procedure.

In [18], we introduced a Moving Average eigenvalue-based multiband spatial filter computed from

the differential spectrum. That filter is able to place passbands on the DOAs of the signal sources at

the expense of performing multiple eigendecompositions of �� . However, to avoid a prohibitive

growth in runtime, we had to reduce both the spectral resolution and filter order, what weakened its

ability to attenuate noise outside the passbands. Then, for widely-spaced signal sources, even though

that filter performed significantly better than the maximum spatial eigenfilter, it still performed

slightly worse than the conventional Modified MODEX.
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Following from Eq. (14), if a spatial filter whose coefficient vector �� was made dependent on�� ����1,…,�� ���� �+1 in the same way as �� ��� 1:

�� = �=1
�+1���� ���� �� , (15)

then its magnitude response would be supposed to place multiple passbands around the signal sources

regardless of whether they are closely or widely spaced. Additionally, this eigenvector-based

multiband filter would be faster to calculate than that differential spectrum-based filter. So, in order to

preserve all signal sources at the filter output and reduce the noise influence on the filter calculation,

we propose to derive a finite impulse response (FIR) filter that maximizes the output SNR subject to

its coefficient vector �� being dependent on the eigenvectors of only the signal subspace of �� ����� .
According to [26], the output SNR of a FIR filter is given by:

SNR = ��H�� ��������2��H�� . (16)

So, the optimization of the filter coefficient vector can be written as:

�� = argmax��
��H�� ��������2��H�� , subject to �� = �=1

�� ������ ���� ������ . (17)

Since �2 does not influence the maximization, the problem simply becomes:

�� = argmax��
��H�� ���������H�� , subject to �� = �=1

�� ������ ���� ������ . (18)

Then, if we replace �� ����� with Eq. (9), the objective function can be written as:

a)

b)
Fig. 3. a) Average of 100 spatial power spectra and b) superimposition of 100 normalized magnitude responses of the

maximum spatial eigenfilter for �1, �2 = 10∘, 45∘ , both in absence of noise.

https://orcid.org/0000-0002-6097-550X
https://orcid.org/0000-0002-3180-5827
https://orcid.org/0000-0003-2264-2234
https://orcid.org/0000-0001-5028-5049


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 20, No. 1, March 2021

Brazilian Microwave and Optoelectronics Society-SBMO received 12 May 2020; for review 14 May 2020; accepted 3 Dec 2020
Brazilian Society of Electromagnetism-SBMag © 2021 SBMO/SBMag ISSN 2179-1074

DOI: http://dx.doi.org/10.1590/2179-10742021v20i1874 84

�� = argmax��
��H �=1�+1�� ��� ��� ���� ��� ���� �H� ����H��

= argmax�� �=1�+1 ��H �� ��� ��� ���� � ��H �� ��� ��� ���� � H� ��H��
= argmax�� �=1�+1 ��H �� ��� ��� ���� � 2� �� 2

= argmax�� �=1
�+1 ��, �� ��� ��� ���� ���

2� .

(19)

where ⋅ , ⋅ stands for the inner product. But the coefficient vector �� that maximizes Eq. (19) is the

same that maximizes each of its addends, so:

�� = argmax��
��, �� ��� ��� ���� ��� (20)

Since �� ��� � is not a function of ��, we can do:

�� = argmax��
��, �� ��� ��� ���� ��� �� ��� � (21)

such that the expression inside curly brackets is the cosine similarity between �� and �� ��� ��� ���� �. Now, by

imposing the constraint, Eq. (21) becomes:

c� = argmax�� �=1�� ������ ���� ������ , �� ��� ��� ���� �
�=1�� ������ ���� ������ �� ��� � (22)

Considering the cosine similarity is maximum for identical vectors, we conclude that:

�=1
�� ������ ���� ������ = �� ��� ��� ���� � (23)

Pre-multiplying Eq. (23) with �� ���� �H, we get:

�=1
�� ������ ���� ���� �H�� ������ = �� ��� ��� ���� �H�� ���� � (24)
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since �� ���� �H�� ����� = �(� − �) , we find �� = �� ��� �, � = 1,…,�� ������ , such that the solution to Eq. (17) is

given by:

�� = �=1
�� ������ �� ��� ��� ���� �� . (25)

Actually, this solution corresponds to a parallel combination of multiple filters ��� = �� ���� �, � =1, …, �� ������ , each one with magnitude response:

��� ��� = �=1
�+1�� ��� �,��−� � − 1 �� , � = 1,…, �� ������ . (26)

As shown in Fig. 4a, the magnitude responses ��� ��� are complementary and their combination

place passbands around the actual DOAs. However, the corresponding phase responses ∠��� ���
do not match, as can be seen in Fig. 4b. So, before combining the filters, we can equalize the phase

response of each one of them by simply convolving its impulse response with its corresponding time-

reversed, time-shifted, conjugated version, in order to avoid magnitude and phase distortion. Then,

this allows us to derive a filter of order 2� whose coefficient vector �� is given by the following

weighted sum:

�� = �=1
�� ������ λ� ��� �conv ���, ����∗� = �=1

�� ������ λ� ��� �conv �� ���� �, ��� ���� �∗� , (27)

where conv ⋅ stands for the convolution operator, and � is the �+ 1 × �+ 1 co-identity

matrix [25].

a)

b)

Fig. 4. a) Magnitude responses and b) phase responses for ��1 ��� and ��2 ��� in a single experiment in absence of
noise considering �1, �2 = 10∘, 45∘ .
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In frequency domain, the frequency response of this linear phase filter corresponds to:

��(���) = �=1
�� ������ λ� ��� ���� ��� 2� �−���, (28)

In order to evaluate the effectiveness of this filter, we applied it to the cases �1, �2 =10∘, 15∘ and �1, �2 = 10∘, 45∘ , as shown respectively in Fig. 5a and 5b. The magnitude

response of the proposed filter was able to place multiple passbands around the DOAs of the signal

sources, preserving the power of both signals regardless of their spacing.

However, using the entire signal subspace of �� ����� increases the probability of subspace swap [26],

[27]. So, spurious peaks are more likely to arise in the filter magnitude response for closely-spaced

signal sources at low SNR values. This may compromise the ML procedure and cause performance

degradation under severe noise conditions [28].

V. RESULTS

In this section, we compare the estimation performance of Modified MODEX using our present

proposition during the ML procedure to those using the maximum spatial eigenfilter [15], and the

differential spectrum-based filter [18].

To do so, we performed � = 1000 Monte-Carlo experiments for each SNR ranging from −15 to15 dB in steps of 1.25 dB, considering a ULA composed of � = 10 sensors that take �= 100
snapshots of �= 2 narrowband signal sources. We adopted order � = 7 as in [15] for all filters

evaluated in this work. Additionally, the differential spectrum was calculated using 32 samples. Since

the filters were evaluated according to the signal source separation, we considered one signal source

a)

b)
Fig. 5. Superimposition of 100 normalized magnitude responses of the proposed filter in absence of noise for a) �1, �2 =10∘, 15∘ and b) �1, �2 = 10∘, 45∘ .
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fixed at �1 = 10∘ , while the other varied in the interval −40∘ ≤ �2 ≤ 60∘ in steps of 2.5∘ .

Additionally, the case where both signal sources have �1 = �2 = 10∘ was unconsidered.

The estimation performance was evaluated using Root Mean Square Error (RMSE) for each SNR

value. RMSE is compared to Cramér-Rao Lower Bound (CRLB) [29] and the threshold SNR is

discussed.

Figs. 6 to 8 respectively show gray-shaded RMSE surfaces for Modified MODEX using the

maximum spatial eigenfilter, the differential spectrum-based filter, and the filter proposed in this work.

In those figures, the dashed lines represent the reference scenarios �1, �2 = 10∘, 15∘ and�1, �2 = 10∘, 45∘ . The dashed surface corresponds to the CRLB. As a reference, the threshold

SNR of the conventional Modified MODEX is −6.25 dB for �1, �2 = 10∘, 15∘ and −10 dB

for �1, �2 = 10∘, 45∘ .

The maximum spatial eigenfilter significantly improved the estimation performance for closely-

spaced signal sources such that its RMSE surface was below the CRLB, as presented in Fig. 6. The

threshold SNR for �1, �2 = 10∘, 15∘ was −12.50 dB. However, the maximum spatial

eigenfilter caused a severe degradation on estimation performance for widely-spaced signal sources.

For �1, �2 = 10∘, 45∘ , the threshold SNR was 3.75 dB, far above that of the conventional

Modified MODEX.

The differential spectrum-based filter performed a little worse than the maximum spatial eigenfilter

for closely-spaced signal sources, as shown in Fig. 7. For instance, its threshold SNR was −11.25
dB for �1, �2 = 10∘, 15∘ . On the other hand, it significantly improved the estimation

performance for widely-spaced signal sources compared to the maximum spatial eigenfilter. For�1, �2 = 10∘, 45∘ , its threshold SNR was −8.75 dB which is much below that of the

maximum spatial eigenfilter but still slightly above that of the conventional Modified MODEX.

Fig. 6. RMSE surface of Modified MODEX using the maximum spatial eigenfilter, and the corresponding CRLB. The
dashed lines regard �1, �2 = 10∘, 15∘ and �1, �2 = 10∘, 45∘ .
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Finally, Fig. 8 shows that our proposition performed similarly to the other two filters for closely-

spaced signal sources. However, it is worth noting that the RMSE surface attained the CRLB and the

threshold SNR was mostly kept at −10 dB regardless of the signal source separation. For instance, it

achieved −10 dB for both �1, �2 = 10∘, 15∘ and �1, �2 = 10∘, 45∘ . Therefore, the

proposed spatial filter in no way hampered the estimation performance of the conventional Modified

MODEX and significantly improved it for closely-spaced signal sources, keeping the threshold SNR

at −10 dB for almost any signal source separation.

As a total of one million experiments of Modified MODEX were carried out to calculate the RMSE

surfaces for each filter, we took this opportunity to record their respective computation times.

Regarding the computational effort, filtering techniques clearly increase the total computation time,

since additional calculations are needed. Then, we measured the runtime of each experiment for

Modified MODEX taking into account both the DOA estimation time and filter calculation time when

Fig. 7. RMSE surface of Modified MODEX using the filter calculated using the differential spectrum-based filter, and the
corresponding CRLB. The dashed lines regard �1, �2 = 10∘, 15∘ and �1, �2 = 10∘, 45∘ .

Fig. 8. RMSE surface of Modified MODEX using the proposed filter, and the corresponding CRLB. The dashed lines regard�1, �2 = 10∘, 15∘ and �1, �2 = 10∘, 45∘ .
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applicable. As a reference, the mean runtime for the conventional Modified MODEX was 3.19
milliseconds (ms) per experiment. Modified MODEX using maximum spatial eigenfiltering took3.49 ms on average. With the differential spectrum-based filter, this time was 4.11 ms, and using

our present proposition, the mean runtime was 3.62 ms. In relative terms, Modified MODEX using

our present proposition was 13% slower than the conventional version, 4% slower than using the

maximum spatial eigenfilter but 12% faster than using the differential spectrum-based filter.

We also must note that our proposition makes use of the convolution operation – Eq. (27) – and,

with � = 7 , its impulse response vector has 15 coefficients instead of only 8 for the other filters.

This causes �� to assume larger dimensions and, consequently, the amount of time spent to calculate

Eq. (6) in the ML procedure is larger. Even so, our proposition performed faster than the differential

spectrum-based filter, while delivering better results.

VI. CONCLUSIONS AND REMARKS

Although the maximum spatial eigenfilter allowed a significant improvement in the DOA

estimation of closely-spaced signal sources, we observed that its magnitude response may

interchangeably attenuate widely-spaced signal sources, leading to a severe performance degradation

and increasing the threshold SNR. We pointed that out firstly in [18], but without an accompanying

analytical explanation. At that time, we proposed the differential spectrum-based filter that, despite

largely overcoming the limitations of the maximum spatial eigenfilter, it still caused a slightly

increase in the threshold SNR for widely-spaced signal sources.

From Karhunen-Loève expansion, we mathematically explained this unexpected behavior in terms

of the relation between the energy of the principal eigenvalues of the spatial correlation matrix and the

separation between the signal sources, as pointed out in [21]. We proved that, for closely-spaced

signal sources, the maximum eigenvalue concentrates almost all signal energy and the coefficients of

the maximum spatial eigenfilter approximate the signal spatial correlation vector. In this case, the

filter magnitude response places passbands around the DOAs of the signal sources. On the other hand,

for widely-spaced signal sources, half of signal energy spreads through the signal subspace such that

the maximum spatial eigenfilter no longer approximates the spatial power spectrum and can even

suppress any of the signal sources.

As a corollary, to circumvent that problem, we derived a new multiband filter that maximizes signal

power at its output by combining the eigenvectors of the entire signal subspace. To avoid phase

distortion, we performed a phase equalization procedure and the resulting filter was able to place

multiple passbands around the DOAs of all signal sources, regardless of their separation.

Experimental results showed that using our proposition during the ML procedure in no way

hampered the estimation performance of the conventional Modified MODEX and significantly

improved it for closely-spaced signal sources. In addition, it kept the threshold SNR almost

independent of signal source separation at the expense of a small increase in runtime.
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As future work, we plan extending the scope of spatial filtering to other important DOA estimation

methods beyond MODEX-based estimators. In addition, we intend to evaluate the distortion effects

caused by the non-flat gain of the filter passbands on the DOA estimation in two or three dimensions

for wideband systems.
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