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Abstract. We consider the structure of the novel coronavirus (SARS-

Cov-2) in terms of the number of spikes that are critical in bonding with

the cells in the host. Bonding formation is considered for selection cri-

teria with and without any treatments. Functional mappings from the

discrete space of spikes and cells and their analysis are performed. We

found that careful mathematical constructions help in understanding

the treatment impacts, and the role of vaccines within a host. Smale’s

famous 2-D horseshoe examples inspired us to create 3-D visualizations

and understand the topological diffusion of spikes from one human or-

gan to another organ. The pharma industry will benefit from such an

analysis for designing efficient treatment and vaccine strategies.
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1. Introduction

The structure of the virus and spikes of the novel coronavirus (SARS-CoV-

2 or COVID-19) that caused the suffering during 2020-2021 is understood in

this article through topological constructions. We showed how such careful

visualizations help to understand the virus-cell bonding through the distri-

bution of spikes of the SARS-CoV-2. In general, the number of spikes and

distribution of the spikes across various virus particles is found to be key in

the spread of SARS-CoV-2 [1, 2], bonding of the spikes [3, 4, 5], and in un-

derstanding the entry of the virus into key organs like the lungs [7, 8, 9, 10].

We found that such a detailed mathematical analysis will eventually assist

in the careful design of vaccines and medicines. Several studies analyze the

situations of inactivity of the SARS-CoV-2 and the role played by the spikes

[11, 12, 13, 14, 15, 16].

Many experimental results on the spikes and their activation, bonding,

and inactivation assisted in vaccine development [17, 18, 19]. The pharma-

ceutical and the vaccine industry would benefit from such detailed visualiza-

tions of internal structures and bonding, rate of unbonding, and the role of

interventions [20, 21, 22, 23].

In spite of experimental success in identifying a set of vaccine candidates

for SARS-CoV-2 and the activity of the spikes, there exist several uncer-

tainties in measuring successful vaccine impact. Theoretically, if a spike is

completely bonded by an infected cell and this bonding is executed perfectly

then that should lead to a new virus. At the same time, preventing a suc-

cessful bonding and breaking of the spike would leave the virus incapable

of spreading. Experiments leading to the identification of spike structures

and their activities need to be more accurate and our present theoretical

analysis promises to be useful for assisting in the experiments. Pharmaceu-

tical and vaccination industries need to conduct highly accurate laboratory

experiments. These experiments would need to carefully understand the role

played by the spikes in SARS-CoV-2. Vaccines are designed to destroy the

bonding capacity of these spikes or even destroy the spikes. Mathematical

mapping, identification, and analysis of the spikes responsible for virus pro-

duction within a host that are analyzed in this article are highly insightful

for such experiments.

Our article will assist in improved design of vaccine experiments and better

treatment designs that can take care of all the spikes at the time of entry
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into a host. Topological analysis is a rich tool and proper usage of it can

help in avoiding uncertainties.

In this article, we have considered the following four assumptions in our

topological constructions of the SARS-CoV-2:

(i) Not all virus particles in the host are participating in infecting cells;

(ii) Not all the spikes in a single virus may be bonded with cells;

(iii) Each spike within a virus will bond with one and only cell;

(iv) An empty spike (uninfected spike) of a given virus particle can bond

with another cell.

This work provides original applications of topology which is one of the pow-

erful tools of mathematical analysis [24, 25, 26, 27]. We cite here general

references for the basic ideas of point-set topology. But our discrete con-

structions in this article are not explained in those sources. In the next

section, we have described the basic topological space that we define using

the number of spikes per virus particle within a host. We have provided novel

usage of the mathematical analysis principles and topological constructions.

A fraction of the spikes within a host in the space is allowed to get bonding

with the uninfected cells. The entire structure of the space is mapped so that

we can better understand the role of bonded and unbonded spikes within a

host. Section 3 studies the role of treatment and vaccines in prohibiting the

bonding and eliminating the infected host.

2. Topological Structures

Overall structure and topology of the virus and bonding/unbonding by

cells within the host are described through Figure 2.2. Let c
j
i (t0) be the ith

novel coronavirus (ç) particle within a host at time t0 that has j number of

spikes. We choose i = 1, 2, ..., n and j = 1, 2, ..., ji. Each of the spikes within

the host is uniquely identified by this structure because {c11(t0), c
2
1(t0), ..., c

j1
1 (t0)}

is the distinct set of spikes of the first virus particle and so on. In general,

{c1i (t0), c
2
i (t0), ..., c

ji
i (t0)} is the distinct set of spikes of the ith-virus particle

for i = 1, 2, ..., n.. Such a construction also allows us to write the expression:

(2.1)

j1
∑

j=1

c
j
1(t0) +

j2
∑

j=1

c
j
2(t0) + · · ·+

ji
∑

j=1

c
j
i (t0) + · · ·+

jn
∑

j=1

cjn(t0)

The quantity Σn
i=1Σ

ji
j=1c

j
i (t0) in (2.1) represents the total spikes in the

host which are ready to bond with cells within the host. The spikes in the
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expression (2.1) are not yet bonded. Let S(t0) be the collection of all the

spikes which were not yet bonded at time t0. Then

(2.2) S(t0) =













ji
∑

j=1

c
j
i (t0)







for 1 ≤ i ≤ n, 1 ≤ j ≤ ji







Let pi be the fraction of the spikes in the ith-virus particle which are

bonded with uninfected cells at time t1. The quantity pi = 1 indicates that

the ith virus particle is fully bonded with uninfected cells, and each of the

ji spikes is occupied in bonding. The quantity pi < 1 indicates that some of

the spikes out of ji spikes in the virus particle are unoccupied (or empty).

We write

n
∑

i=1

pi =
ϕ(t1)

S(t1)
,

where ϕ(t1) is the total number of spikes in S(t1) which are bonded with

uninfected cells at time t1. The cardinality of the set S(t1) is

|S(t1)| =

n
∑

i=1

ji.

When pi(t1) = 1 for all i, then ϕ(t1) = |S(t1)| and when pi(t1) < 1

for at least one i, then ϕ(t1) < |S(t1)| . Suppose that f1 : S(t0) → S(t1),

where S(t1) consists of the set of all spikes both bonded and unbonded. The

number of spikes that were bonded during [t0, t1] is pi(t1)ji and ji − pi(t1)ji

is the number of spikes at t1 which are not bonded with uninfected cells for

i = 1, 2, ..., n. We assume an occupied spike with an uninfected cell will not

be available for further bonding. So the bonded spikes at t1, i.e., pi(t1)ji,

have completed their virus bonding capacity by time t1, and the remaining

spikes available at time t1 are ji − pi(t1)ji. These unbonded spikes will be

available for bonding during (t1, t2]. Let dki be the kth bonded spike at time

t1 out of ji spikes at time t0 for k = 1, 2, ..., pi(t1)ji such that

(2.3)

pi(t1)ji
∑

k=1

dki +

ji−pi(t1)ji
∑

j=1

c
j
i = ji for i = 1, 2, ..., n.

The number of occupied spikes among all the virus particles during [t0, t1]

which will not be available for further bonding are
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Figure 2.1. Mapping of spikes in the ith virus particle at
time t0 to bonded and unbonded spikes at time t1.

n
∑

i=1

pi(t1)ji
∑

k=1

dki

If pi(t1) = 1 for any i at time t1 then that virus particle has completed

the bonding role in the system. It is assumed that pi(t1)ji number of spikes

for each i (when pi(t1) < 1) would generate pi(t1)ji number of new virus

particles available for bonding during [t0, t1], else (when pi(t1) = 1) it would

generate ji number of new virus particles during the same period. See Figure

2.1.

Hence the newer virus particles produced during [t0, t1] are
∑n

i=1 pi(t1)ji,

so the available virus particles for bonding at time t1 will be

(2.4) n+

n
∑

i=1

pi(t1)ji (if pi(t1) < 1 ∀i) .

The birth rate λi(t1) (w.r.t. n) of the new virus particles during [t0, t1] is

(2.5) λi(t1) =

∑n
i=1 pi(t1)ji

n
.

Not all of the new viruses at time t1 in (2.4) may be available for bonding

during (t1, t2] if one or more of the virus particles (out of n) might have all

its spikes bonded at time t1.
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Suppose that pi′(t1)ji′ = ji′ for i′ = 1, 2, ...,m (m < n) and pi∗(t1)ji∗ < ji∗

for i∗ = 1, 2, ..., n−m, such that

(2.6)
m
∑

i′=1

ji′ +
n−m
∑

i∗=1

ji∗ =
n
∑

i=1

ji.

Based on (2.6), the number of virus particles available at time t1 after

removing completely bonded virus particles during [t0, t1] (i.e., those virus

particles for which all of its spikes were bonded with uninfected cells, and

adding new virus particles created by the n−m virus particles with available

spikes for bonding during [t0, t1]) are

(2.7) n+
n−m
∑

i∗=1

ji∗ −
m
∑

i′=1

ji′ .

The total number of bonded spikes due to
∑n−m

i∗=1 ji∗ and
∑m

i′=1 ji′ are

(2.8)
n−m
∑

i∗=1

pi∗(t1)ji∗ +

m
∑

i′=1

pi′(t1)ji′ =

n−m
∑

i∗=1

pi∗(t1)ji∗ +

m
∑

i′=1

ji′ ,

and, from (2.3),

(2.9)
n−m
∑

i∗=1

pi∗(t1)ji∗ +
m
∑

i′=1

ji′ =

pi(t1)ji
∑

k=1

dki

Let us decompose
∑pi(t1)ji

k=1 dki as

(2.10)

pi(t1)ji
∑

k=1

dki =
n−m
∑

i∗=1

ai∗ +
m
∑

i′=1

bi′ ,

where ai∗ = pi∗(t1)ji∗ and bi′ = ji′ .
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Figure 2.2. Topology of novel coronavirus (SARS-CoV-2), spikes, bonding, reduction in virus bonding due
to treatment. (a) Imaginative description of the SARS-CoV-2, spikes and host cells, (b) Bonding of spikes
to host cells, reduction of viral load due to treatment.
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The total bonded during [t0, t2] is responsible for giving birth to new

viruses as described previously. The total number of remaining spikes, those

|S(t1)| which are available at time t1, are the sum of (i) the number of spikes

unbonded during [t0, t1], and (ii) the number of spikes that are created due

to the birth of new virus particles. The listing of the set S(t1) of spikes

helps in constructing the function f2 : S(t1) → S(t2). Here S(t2) is the set

of spikes created by S(t1) during (t1, t2]. Let us list the elements of the set

S(t1) below:

The list of unbounded spikes J1 during [t0, t1] is obtained as remaining

spikes from the first term of (2.9) as

(2.11) {{ji − ai∗} for i∗ = 1, 2, ..., n−m} .

The list of spikes A1 available at S(t1) because of the first term of the

R.H.S. of (2.10) is

(2.12)
{

{a11, ..., a
a1
1 }, {a12, ..., a

a2
2 }, ..., {a1n−m, ..., a

an−m

n−m }
}

,

where the a
j
i in (2.12) represent the jth spike of the ith virus resulting from

∑n−m
i∗=1 ai∗ in (2.10). That is, as per the set in (2.12), there are a1 number of

spikes for the first virus, a2 numbr of spikes for the second virus, and so on

an−mspikes for the (n−m)th virus. The list of spikes B1 available at S(t1)

due to the resultant of the second term of the R.H.S. of (2.10) is

(2.13)
{

{b11, ..., b
b1
1 }, {b12, ..., b

b2
2 }, ..., {b1m, ..., bbmm }

}

,

where the b
j
i in (2.13) represent the jth spike of ith virus resulting out of

∑m
i′=1 bi′ in (2.10). That is, as per the set in (2.13), there are b1 number of

spikes for the first virus, b2 numbr of spikes for the second virus, and so on

bm spikes for the mth virus. The domain S(t1) of the function f2 will have

the collection of all the elements of the sets J1, A1 and B1, i.e.

(2.14) S(t1) = J1 ∪A1 ∪B1 .

The collections S(t0) and S(t1) constructed above can be treated as two

spaces and S(t1) in (2.14) is now seen as a disconnected space.

Lemma 1. The function f1 is not 1–1 when bonding occurs during [t0, t1].
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Proof. We have f1 : S(t0) → S(t1), where S(t0) and S(t1) are the sets of

all the distinct spikes at time t0 and time t1. When bonding occurs during

[t0, t1], the set of all spikes at time t1 will be S(t1) as seen in (2.14). This

implies that

|S(t1)| = |J1 ∪A1 ∪B1|

= |J1|+ |A1|+ |B1|

From (2.11) to (2.13) we can write

(2.15) |J1|+ |A1|+ |B1| >
n
∑

i=1

ji = S(t0)

Because of the inequality (2.15), f1 cannot be 1–1. �

Corollary 2. The function f1 is 1–1 when no bonding occurs during [t0, t1].

When the bonding does not occur then |S(t0)| = |S(t1)| and the elements of

S(t0) and S(t1) are not different.

Since we can consider

S(t0) =

n
⋃

i=1

ji
⋃

j=1

{

c
j
i

}

and the elements of s(t0) are distinct, we treat here S(t0) as a discrete topo-

logical space with |S(t1)| =
∑n

i=1 ji elements in the space S(t0). Let SX(t0)

and SY (t1) be two subsets of S(t0) such that SX(t0) represents bonded spikes

and SY (t0) represents unbonded spikes during [t0, t1]. Then, by the construc-

tion of S(t0), the two subsets SX(t0) and SY (t0) form two disjoint subspaces

of S(t0). The space S(t1) as well is a discrete topological space and three

subsets of it J1, A1 and B1, form three disjoint topological discrete subspaces

of S(t1).

Definition 3. Topological diffusion: We define here the topological dif-

fusion Ds(t0) of the space created due to newer spikes during [t0, t1], as

(2.16) Ds = (S(t0) ∪ S(t1)) \S(t0) .

Theorem 4. The topological diffusion Ds(t0) during [t0, t1] is A1 ∪B1.
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Proof. We have

(2.17) Ds = (S(t0) ∪ S(t1)) \S(t0)

The set Ds(t0) indicates the newer elements created in the combined space

(S(t0) ∪ S(t1)). The collection of elements of S(t0) and S(t1) in (2.17) are

further expressed using (2.14) as follows:

=(SX(t0) ∪ SY (t0)) ∪ (J1 ∪A1 ∪B1) \ (SX(t0) ∪ SY (t0))

=SX(t0) ∪ J1 ∪A1 ∪B1\ (SX(t0) ∪ SY (t0))

=J1 ∪A1 ∪B1\SY (t0)

=A1 ∪B1

�

The collection A1 ∪B1 is the newer space created during [t0, t1].

Example 5. Suppose S(t0) has 10 spikes. The topological diffusion occured

during [t0, t1] to arrive at |S(t1)| = 21. See Figure 2.3 for mapping of bonded

cells into new spikes and carrying forward the unbonded spikes.

Every singleton set within S(t0) is an open subset. That means that each

spike in S(t0) is considered as a singleton set and SX(t0) and SY (t0) form

two open subsets of S(t0). In fact, according to discrete topology SX(t0) and

SY (t0) can also be treated as closed subsets (so the space is disconnected).

The transformations of the space S(t0) during [t0, t1] would lead to newer

spaces due to bonding (also argued as in the proof of Lemma 1). Such

a creation of new topological spaces and their cardinality can be influenced

with a treatment intervention at some time t for t ∈ [t0, t1]. Treatment works

in reducing the value of pi or the death rates of the virus particles cji or both.

3. Treatment and Vaccinations

We assume a treatment to kill the virus population (viral load within a

host) would increase the mortality rate of the virus population and reduce

the bonding of the uninfected cell population with SARS-CoV-2. At time

t0 the viral load would be lower and treatment during [t0, t1] would have a

higher impact on reducing the viral load than if the treatment was introduced
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Figure 2.3. Numerical example of mapping of bonded and
unbonded spikes. A1 ∪ B1 = 16 as shown is the topological
diffusion of the space.

during [t1, t2]. We assume a longer time to introduce a treatment after time

t0 according to the longer time the virus population is restricting the virus

growth. Since |S(t0)| < |S(t1)| in the absence of treatment, S(t0) = S(t1)

can be achieved (Corollary 2) when treatments are introduced during [t1, t2].

We assume the host will be dominated by the virus when virus growth is

not controlled and the virus will be eliminated either naturally or due to

treatment impact. Let pi be defined as earlier and let qi(t1) be the fraction

of the spikes in the ith virus which are bonded during [t0, t1] and treatment

was introduced at some time s for s ∈ (t0, t1]. Here, 0 ≤ qi(t1) < pi(t1).

The quantity qi(s) = 0 means there are no bonded spikes at s. The quantity

qi(s) would never reach pi(t1). Since the treatment would also increase the

mortality rate of the c
j
i population, we assume that qi(t1) = 0 if ith virus

dies at s for s ∈ (t0, t1] or qi(t1) = 0 if no bonding with the spikes of the ith

virus occurs. When qi(t1) = 0, then all the spikes of the ith virus at t0 will

be available for bonding during (t0, t1].
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Theorem 6. Consider the sequence of functions (fn)n≥1, where fn : S(tn−1) →

S(tn). Suppose a treatment is introduced at tm for some m ≥ 1. Then the

sizes of S(ti) are increasing until tm and the sizes of S(ti) are decreasing

until S(tm−1) and fm : S(tm−1) → φ (empty set).

Proof. When treatment prohibits bonding then virus population having no

host would eventually die. Treatment would also kill bonded cells with spikes.

Suppose the treatment is introduced at time s for s > t0 and

s ∈ {t0, t1, ...tm, ...}.

The time intervals were partitioned as {[t0, t1], (t1, t2], ..., } . Given that

s = tm, we assume impact of the treatment can be measured in prohibiting

the bonding at tm for m > 0. Similarly the treatment would have impact on

killing the bonded cells with spikes at tm. Hence

(3.1) |S(t0)| < |S(t1)| < ... < |S(tm−1)|

and

(3.2) |S(tm−1)| > |S(tm)| > |S(tm+1)| > ...

The sequence S(tm−1)m≥1 in (3.2) is monotonic and 0 ≤ |S(tm)| for all

m ≥ 0. Hence, by the monotone convergence theorem, the sequence (3.2) is

convergent to φ (empty set). �

Theorem 7. Consider the sequence of functions (fn)n≥1, where fn : S(tn−1) →

S(tn). Suppose the host is vaccinated prior to t0. Then the sequence S(tm)m≥0

is decreasing and limn→∞ |S(tm)| = 0.

Proof. Given fn : S(tn−1) → S(tn) for all n. When the host is vaccinated

prior to t0 the system will prohibit the spikes to get bonded with cells.

Unbounded spikes and virus particles dying over time lead to the decreasing

sequence

(3.3) |S(t0)| > |S(t1)| > ... > |S(tm)| > · · · .

Similar to the argument of the proof of the Theorem 6, we have

(3.4) lim
n→∞

|S(tm)| = 0.
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�

Remark 8. A vaccinated host would alter the range of f1 in Example 5 but

the domain of f1 consisting of vaccinated and not vaccinated hosts remains

the same. COVID-19 vaccinations would not prevent virus to enter an un-

protected host, but a vaccinated host prevents the virus from getting bonded

with the virus spikes.

Given Theorem 7, this sequence of inequalities will emerge:

|S(t0)| − |S(t1)| =

n
∑

i=1

κ1i > 0

|S(t1)| − |S(t2)| =
n
∑

i=1

κ2i > 0

...

|S(tm−1)| − |S(tm)| =

n
∑

i=1

κmi
> 0

...

Since (3.4) is true, we will have

|S(tn)| − |S(tn+1)| → 0 as n → ∞.

Here κmi
for m = 1, 2, ... is the remaining number of spikes unbounded

during [ti−1, ti] for i = 1, 2, ..., n. We can create the elements similar to

(2.11) to (2.13) for the periods {[t0, t1], (t1, t2], ..., }. Let Jτ , Aτ , Bτ be the

sets defined on the intervals {[t0, t1], (t1, t2], ..., } similar to J1,A1,B1 which

were defined from (2.11) to (2.13) for the emenets defined on the interval

[t0, t1]. The topological diffusion created until the treatment initiated at tm is
⋃m−1

τ=1 Aτ∪Bτ . Hence the diffusion of the elements created will start declining

with the initiation of the treatment. The smaller the value of tm, the lesser

the quantity
⋃m−1

τ=1 Aτ ∪Bτ .

Theorem 9. Topological structures of the virus populations and spikes will

be different under vaccination and treatment of hosts even though |S(tn)| −

|S(tn+1)| → 0 as n → ∞.
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Proof. Suppose the treatment is initiated within a host at tm for m ≥ 1.

The topological structure of spikes would first have the increasing property

in (3.1), and then will start decreasing as in (3.2). This leads to |S(tn)| −

|S(tn+1)| → 0 as n → ∞.

Under a vaccinated host, as soon as the SARS-CoV-2 virus enters at t0,

the topological structure of the spike population spread within the host obeys

(3.3), and that leads to |S(tn)| − |S(tn+1)| → 0 as n → ∞.

Hence, two topological structure described above will be different although

the limiting number of spikes diminishes. �

3.1. Horseshoe mapping. Inspired by Stephen Smale’s original famous

horseshoe example [28, 30, 31], we have visualized a discretized version of

the same idea with plastic beads in a container. Let us consider a hollow

cube and fill it with plastic beads. Suppose all the beads in this cube are

transferred into a horseshoe-shaped pipe. See Figure 3.1. Note that the

original horseshoe mapping is continuous and is a diffeomorphism between

a square and horseshoe-shaped space. Let us imagine the size of the S(t1)

SARS-CoV-2 spikes are located in the throat area of a human host. Suppose

during the interval (t1, t2] these spikes are spread into the lung area. Assume

that the treatment to control the virus is initiated at t2 such that the throat

area spikes are eliminated during (t2, t3] and the number of spikes at t3, is

the set S(t3). This leads to

|S(t1)| = |S(t3)| .

Transformation of the number of spikes of S(t1) in the throat area into

number of spikes of lungs area is demonstrated in Figure 3.2. Suppose the

size of the spikes at t1 are located in the throat area of a host. We have

f1 : S(t0) → S(t1). Under the no treatment assumption during (t1, t2], we

have f2 : S(t1) → S(t2), where |S(t2)| > |S(t1)|. The newer space created

during (t1, t2] is

(3.5) A2 ∪B2.

The topological diffusion in (3.5) gives us,

S(t2) = S(t1) ∪A2 ∪B2

= J1 ∪ (A1 ∪A2) ∪ (B1 ∪B2) .
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Suppose the treatment for SARS-CoV-2 is introduced at t2 such that

(3.6) |S(t2)| > |S(t3)|

is attained. There are now three possibilities that will arise due to (3.6):

(i) |S(t3)| > |S(t1)|

(ii) |S(t3)| = |S(t1)|

(iii) |S(t3)| < |S(t1)|

Above possibility (ii) we associate with that of Smale’s horseshoe type of

example and is also demonstrated in Figure 3.2. During (t2, t3] the number

of spikes killed in the throat due to the treatment initiated at t2 and due to

the creation of the topological diffusion A2 ∪ B2 reaches the size |S(t1)| at

t3. Then this kind of discrete topological transformation of the number of

spikes at t1 into the number of spikes at t3 in a different location of a host is

topologically visualized as an horseshoe type of example. Of course, we are

aware in a true sense Smale’s horseshoe is a diffeomorphism between two open

spaces (a square and a a horseshoe). The current analysis of transformations

of the number of spikes located at t1 in the throat area and the number of

spikes at t3 in the lungs within a host handles the points (elements) of the

space discretely.

The horseshoe example transforms the points of an open square into an

equivalent area horseshoe using continuous mapping. The implications of

the horseshoe are plenty—for example, the squeezing and stretching of a

square to a horseshoe-shaped space in the creation of hyperbolic dynamics

and chaos. In our analogy, the spikes in the throat within a human host

do not get transferred to the lungs because virologically spikes do not travel

within the host but they grow over time under a no-treatment scenario.

Only after treatment is initiated are the spikes in the throat killed and an

equivalent number of newer spikes born to remain active for some time in

the lungs. We imagine this phenomenon as described through Figure 3.2 as

the transformation of spikes of the throat to that of the lungs.

The geometry of the horseshoe is especially meaningful for us because

spikes from the throat area due to the initial infected virus population are

all located in one place. Then, due to the spread of the virus over the
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Figure 3.1. Transformation of a cube containing beads
into a horseshoe-shaped pipe containing the same number
of beads. (a) A cube container of green color beads, (b)
Beads in (a) are transferred into a horseshoe shaped pipe.
The number of beads in (a) and (b) are equal. The beads in
(b) can be transferred into (a). The beads occupying capac-
ities of containers in (a) and (b) are equal and it is assumed
that no free space left to add an additional bead into these
containers. The original example of Stephen Smale is a dif-
feomorphism between two 2-D objects, namely, a square and
a horseshoe, famously known as Smale’s horseshoe.

intervals {[t0, t1], (t1, t2], ..., }, they diffuse into different organs which have

geometrically a different shape than the throat. With the example of beads

(Figure 3.1), and assuming no scope for adding a new bead in the cube, the

corresponding pipe would take the 2D horseshoe to a 3D similar-shaped pipe

through discrete topology. Our spikes analogy is that the horseshoe example

was built on 2D and diffusion of spikes within the human organs is imagined

in 3D.
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4. Discussion

Our study provides the most accurate mathematical structuring of the

space of the SARS-CoV-2 virus and its spikes within the host. See the

expression S(t0) =
{{

∑ji
j=1 c

j
i (t0)

}

for 1 ≤ i ≤ n, 1 ≤ j ≤ ji

}

in section 2

and the clustering of spikes into bonded and unbonded spikes. The advantage

of such a structure is to provide a detailed scope for mapping a spike that is

available for bonding with an uninfected cell. Not a single unbonded spike

will be left out in this process. The procedure also helps in tracking a bonded

virus in such a way that the birth of newer virus particles through bonded

spikes is monitored. See the expression S(t1) = J1 ∪A1 ∪B1, where J1, A1,

and B1 form three disjoint topological discrete subspaces mapped out from

S(t0). The set J1 emerges out of unbonded spikes in a previous time point

and A1 ∪B1 is the collection of spikes generated due to bonding spikes with

cells at a previous time point. Our clear-cut visualization of the theoretical

constructions helps in understanding the structure of the spike-cells within

the space.

Laboratory experiments on the virus particles and bonding are usually

done on a group of viruses. Our procedure provides deeper insight for better

design in conducting experiments on isolated individual viruses. Such a

method will help in aggregating the virus population along with their number

of spikes and measuring bonded and unbonded spikes for each virus particle.

Lemma 1 provides the growth of spikes and their mapping of initial spikes

that can create newer spaces within a time interval.

One of the central features of our construction is the development of a

new measure that we call “topological diffusion.” In general topology, no

such measure exists. Using this measure, one can study the growth of spikes

over time. The topological diffusion introduced in this article not only iden-

tifies the new spikes that emerge but how many of those were due to virus

particles that had partial bonding of the spikes. These novel ideas make

our work more practically implementable in pharmaceutical and vaccine in-

dustrial experiments. We have theoretically established this value within a

small interval A1 ∪B1 and also over a large interval. The descriptions of A1

and B1 are recorded in previous paragraphs and also in section 2. Figure 2.3

provides an example of measuring the topological diffusion.

Theorem 6 provides the impact of a treatment in eliminating virus parti-

cles and Theorem 7 provides the impact of the vaccine on eliminating viruses
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after entry into a host. We also generalize our results over multiple time inter-

vals and the timing of initiation of therapy. Topological diffusion constructed

in the article is also associated with Stephen Smale’s famous horseshoe type

of example. The original example by Smale was constructed as a diffeomor-

phism of two open spaces, namely, a square and corresponding sized area of

a horseshoe. However, the current article considered a transformation of a

discrete collection of spikes in one organ of a human host into the equiva-

lent number of spikes in a different organ. Moreover, the demonstration we

provided was between two 3-D shaped organs within a human host. Such

visualization of the horseshoe example is new in the literature.

Concluding Remarks

The study presented in this paper is original and incisive. It uses powerful

mathematical techniques—most notably ideas from topology—to analyze the

bonding of corona virus cells. Our emphasis on discrete topology is somewhat

novel.

As a result we obtain insights that will be useful in the production of new

and more effective vaccines. We believe that the use of mathematical anal-

ysis in a medical context is a new and effective technique for epidemiology

that will become recognized and solidly established in future work.
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