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MATHEMATICAL ANALYSIS OF A DISCRETE FRACTURE MODEL
COUPLING DARCY FLOW IN THE MATRIX WITH DARCY–FORCHHEIMER

FLOW IN THE FRACTURE ∗

Peter Knabner1 and Jean E. Roberts2

Abstract. We consider a model for flow in a porous medium with a fracture in which the flow
in the fracture is governed by the Darcy−Forchheimer law while that in the surrounding matrix is
governed by Darcy’s law. We give an appropriate mixed, variational formulation and show existence
and uniqueness of the solution. To show existence we give an analogous formulation for the model in
which the Darcy−Forchheimer law is the governing equation throughout the domain. We show existence
and uniqueness of the solution and show that the solution for the model with Darcy’s law in the matrix
is the weak limit of solutions of the model with the Darcy−Forchheimer law in the entire domain when
the Forchheimer coefficient in the matrix tends toward zero.
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1. Introduction

Numerical modeling of fluid flow in a porous medium, even single-phase, incompressible fluid flow, is compli-
cated because the permeability coefficient characterizing the medium may vary over several orders of magnitude
within a region quite small in comparison to the dimensions of the domain. This is in particular the case when
fractures are present in the medium. Fractures have at least one dimension that is very small, much smaller than
a reasonable discretization parameter given the size of the domain, but are much more permeable (or possibly,
due to crystalization , much less permeable) than the surrounding medium. They thus have a very significant
influence on the fluid flow but adapting a standard finite element or finite volume mesh to handle flow in the
fractures poses obvious problems. Many models have been developed to study fluid flow in porous media with
fractures. Models may employ a continuum representation of fractures as in the double porosity models derived
by homogenization or they may be discrete fracture models. Among the discrete fracture models are models
of discrete fracture networks in which only the flow in the fractures is considered. The more complex discrete
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fracture models couple flow in the fractures or in fracture networks with flow in the surrounding medium. This
later type model is the type considered here.

An alternative to the possibility of using a very fine grid in the fracture and a necessarily much coarser grid
away from the fracture is the possibility of treating the fracture as an (n− 1)-dimensional hypersurface in the
n-dimensional porous medium. This is the idea that was developed in [2] for highly permeable fractures and
in [16] for fractures that may be highly permeable or nearly impermeable. Similar models have also been studied
in [6, 11, 17]. These articles were all concerned with the case of single-phase, incompressible flow governed by
Darcy’s law and the law of mass conservation. In [14] a model was derived in which Darcy’s law was replaced
by the Darcy−Forchheimer law for the flow in the fracture, while Darcy’s law was maintained for flow in the
rest of the medium. The model was approximated numerically with mixed finite elements and some numerical
experiments were carried out.

The use of the linear Darcy law as the constitutive law for fluid flow in porous media, together with the con-
tinuity equation, is well established. For medium-ranged velocities it fits well with experiments ([8], Chapter 5)
and can be derived rigorously (on simpler periodic media) by homogenization starting from Stokes’s equa-
tion [3, 4, 19]. However, for high velocities experiments show deviations which indicate the need for a nonlinear
correction term ([8, 12], Chapter 5). The simplest proposed is a term quadratic in velocity, the Forchheimer
correction. In fractured media, the permeability (or hydraulic conductivity) in the fractures is generally much
greater than in the surrounding medium so that the total flow process in the limit is dominated by the fracture
flow. This indicates that a modeling different from Darcy’s model is necessary and leads us to investigate models
combining Darcy and Darcy−Forchheimer flow.

In this paper we consider existence and uniqueness of the solution of corresponding stationery problems.
Assumptions on coefficients should be weak so as not to prevent the use of the results in more complex real
life situations. Therefore we aim at weak solutions of an appropriate variational formulation, where we prefer a
mixed variational formulation, due to the structure of the problems and a further use of mixed finite element
techniques. For a simple d-dimensional domain Ω and for the linear Darcy flow the results are well known
(cf. [9]) and rely on the coercivity of the operator A coming from Darcy’s equation on the kernel of the
divergence operator B coming from the continuity equation and the functional setting in H(div, Ω) for the
flux and L2(Ω) for the pressure. For the nonlinear Darcy−Forchheimer flow the functional setting has to be
changed to W 3(div, Ω) (see Appendix A.1) for the flux so that A will remain (strictly) monotone and to
L

3
2 (Ω) for the pressure. This makes it possible to extend the reasoning for the linear case to the homogeneous

Darcy−Forchheimer problem and via regularization, using the Browder−Minty theorem for maximal monotone
operators, also to prove unique existence in the inhomogeneous case. This work is carried out in the thesis [18];
see also [5, 10, 15] for related results. Here we extend this reasoning to the situation of two subdomains of the
matrix separated by a fracture with various choices of the constitutive laws in domains and fractures. One
would expect that the Darcy−Forchheimer law is more accurate than Darcy’s law (and this will be partially
made rigorous); therefore, (and for technical reasons) we start with a model having the Darcy−Forchheimer law
throughout the domain (though with strongly variable coefficients) and extend the aforementioned reasoning
for existence and uniqueness to this case, (Sect. 3). By its derivation, Darcy’s law should be a limit case of the
Darcy−Forchheimer law. This is made precise in Section 4 by showing that the solution of the Darcy model is
a weak limit of solutions of the Darcy−Forchheimer model with the Forchheimer coefficient (multiplying the
nonlinear term) going to 0. This was shown earlier in [5] under slightly different assumptions, but we include
it here for completeness. This opens up the possibility of treating various combinations of the constitutive
laws. As rapid transport is more likely to take place in the fractures, we explicitly treat the case of Darcy’s
law in the matrix and the Darcy−Forchheimer law in fractures. By using the full Darcy−Forchheimer model
as a regularization and deriving corresponding a priori bounds we can show the existence of a solution as a
weak limit of the regularizing full models (Sect. 5). Uniqueness again follows as in all the other cases from the
monotone structure of the problem (see Appendix A.2). Technical difficulties stem from the different functional
settings for the linear case and the nonlinear case. It may be envisaged to extend this basic procedure in various
directions. An obvious extension is to the case of a finite number of fractures and subdomains, as long as the
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fractures do not intersect, which is quite restrictive. But also a general case where d-dimensional subdomains
are separated by (d-1)-dimensional fractures, which are separated by (d-2)-dimensional fractures, etc. may be
attacked with this approach. Another extension could be the investigation of other nonlinear correction terms
to Darcy’s law: cf. [7].

The outline of this article is as follows: in Section 2 the model problem with Darcy flow in the matrix and
Darcy−Forchheimer flow in the fracture as well as the problem with Darcy−Forchheimer flow in the matrix
and in the fracture will be given. In Section 3 the existence and uniqueness of the solution to the problem with
Darcy−Forchheimer flow in the matrix and in the fracture will be shown. Section 4 is concerned with showing
that in a simple domain (one without a fracture) that the solution of the Darcy problem is obtained as the limit
of the Darcy−Forchheimer problem when the Forchheimer coefficient tends to zero. Then Section 5 takes up
the problem for extending the result of Section 4 to the case of a domain with a fracture in which it is shown
that the problem with Darcy−Forchheimer flow in the fracture but with Darcy flow in the matrix is obtained as
the limit of the problem with Darcy−Forchheimer flow everywhere as the Forchheimer coefficient in the matrix
tends to zero.

2. Formulation of the problems

2.1. Formulation with Darcy−Forchheimer flow in the fracture and darcy flow
in the matrix

Let Ω be a bounded domain in Rd with boundary Γ , and let γ ⊂ Ω be a (d − 1)-dimensional surface that
separates Ω into two subdomains: Ω ⊂ Rd, Ω = Ω1 ∪ γ ∪ Ω2, γ = (Ω1 ∩ Ω2) ∩ Ω, Γ = ∂Ω, and Γi =
Γ ∩∂Ωi. We suppose for simplicity that γ is a subset of a hyperplane; i.e. that γ is flat. Taking the stratification
of natural porous media into account this seems to be a feasible assumption covering a variety of situations.
The extension to the case that γ is a smooth surface should not pose any major problems but would be
considerably more complex as the curvature tensor would enter into the definitions of the tangential gradient
and the tangential divergence. We consider the following problem, which was derived in [13, 14]:

αiui + ∇pi = 0 in Ωi
div ui = qi in Ωi

pi = pd,i on Γi
(2.1)

together with
(αγ + βγ |uγ |)uγ + ∇pγ = 0 on γ

div uγ = qγ + [u1 · n− u2 · n] on γ

pγ = pd,γ on ∂γ

(2.2)

and the interface condition

pi = pγ + (−1)i+1κ(ξui · n + ξ̄ui+1 · n), on γ, i = 1, 2, (2.3)

where n is the unit normal vector on γ, directed outward from Ω1, κ is a coefficient function on γ related directly
to the fracture width and inversely to the normal component of the permeability of the physical fracture, the
parameter ξ is a constant greater than 1/2 and ξ̄ = 1 − ξ, and for convenience of notation the index i of the
subdomains is considered to be an element of Z2 (so that if i = 2, then i + 1 = 1). The tensor coefficients
αi, i = 1, 2, and αγ are related to the inverse of the permeability tensors on Ωi, i = 1, 2, and γ, respectively,
and the coefficient βγ is the Forchheimer coefficient on γ, assumed to be scalar. We assume that the functions
αi : Ωi −→ Rd,d, αγ : γ −→ Rd−1,d−1, are all symmetric and uniformly positive definite:

αi|x|2 ≤ x · αi(y)x ≤ αi|x|2 ∀y ∈ Ωi, x ∈ Rd

αγ |x|2 ≤ x · αγ(y)x ≤ αγ |x|2 ∀y ∈ γ, x ∈ Rd−1

and β
γ
≤ βγ(y) ≤ βγ ∀y ∈ γ,

(2.4)
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where αi, αγ , βγ〉0, and that the real valued coefficient function κ : γ −→ R is bounded above and below by
positive constants:

0〈κ ≤ κ(y) ≤ κ ∀y ∈ γ. (2.5)

Note that only minimal assumptions concerning αi, i = 1, 2, αγ and βγ reflecting the structure of the problem
are required and no further regularity, allowing for general heterogeneous media. However this means that the
standard functional setting of the linear case has to be modified and thus also the regularity requirements
concerning the source and boundary terms.

We make the following assumptions concerning the data functions q and pd corresponding respectively to an
external source term and to Dirichlet boundary data:

q = (q1, q2, qγ) ∈ L3(Ω1) × L3(Ω2) × L3(γ)

pd = (pd,1, pd,2, pd,γ) ∈ (W
1
3 ,

3
2 (Γ1) ∩H 1

2 (Γ1)) × (W
1
3 ,

3
2 (Γ2) ∩H 1

2 (Γ2)) ×H
1
2 (∂γ),

(2.6)

where we have used the standard notation for the Lebesgue spaces Lp, p ∈ R, p ≥ 1, and for the Sobolev
spaces W k,p, k, p ∈ R, p ≥ 1; see [1]. Following standard practice we often write Hk for the Sobolev space
W k,2, k ∈ R. We have required more regularity of the data functions than necessary for a weak formula-
tion of problem (2.1)−(2.3) in order to use the same data functions for problem (2.1)−(2.3) and for prob-
lem (2.11)−(2.13) given below.

To give a weak mixed formulation of problem (2.1), (2.2), (2.3), we introduce several spaces of functions:

M =
{
p = (p1, p2, pγ) : pi ∈ L2(Ωi), i = 1, 2, and pγ ∈ L3/2(γ)

}
‖p‖M =

2∑
i=1

‖pi‖0,2,Ωi + ‖pγ‖0, 32 ,γ
.

The space M being a product of reflexive Banach spaces is clearly a reflexive Banach space with the dual space

M′ = {f = (f1, f2, fγ) : fi ∈ L2(Ωi), i = 1, 2, and fγ ∈ L3(γ)}
‖f‖M′ =

2∑
i=1

‖fi‖0,2,Ωi + ‖fγ‖0,3,γ .

We also define
V = {v = (v1,v2,vγ) : vi ∈ (L2(Ωi))d, i = 1, 2, and vγ ∈ (L3(γ))d−1}

‖v‖V =
2∑
i=1

‖vi‖0,2,Ωi + ‖vγ‖0,3,γ

and its dual space

V′ = {g = (g1,g2,gγ) : gi ∈ (L2(Ωi))d, i = 1, 2, and gγ ∈ (L
3
2 (γ))d−1}

‖g‖V′ =
2∑
i=1

‖gi‖0,2,Ωi + ‖gγ‖0, 32 ,γ
.

Remark 2.1. For f = (f1, f2, fγ) ∈ M′, respectively g = (g1,g2,gγ) ∈ V′, we have used the 
1 norm on R3

to give the norm of f , respectively g, in terms of its three components f1, f2 and fγ , respectively g1,g2 and gγ ,
whereas the actual norm for the dual space would have used the 
∞ or maximum norm. However these norms
are equivalent since R3 is of finite dimension and we have found it more convenient to use the 
1 norms here.

For the domains Ω1, Ω2 in Rd and γ in Rd−1, respectively, we need minimal regularity to make some of the
expressions used below well defined. In particular, we need exterior normal vector fields on the boundaries. To
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assume that the domains are Lipschitzian will be sufficient, and this will be done henceforth. We will need in
addition the space W defined by

W = {u = (u1,u2,uγ) ∈ V : Div u := (divu1, divu2, divuγ − [u1 · n − u2 · n]) ∈ M′
and ui · n ∈ L2(γ), i = 1, 2}

‖u‖W = ‖u‖V + ‖Divu‖M′ +
2∑
i=1

‖ui · n‖0,2,γ).
(2.7)

One can show that W is also a reflexive Banach space and that

D = (D(Ω1))d × (D(Ω2))d × (D(γ))d−1 (2.8)

is dense in W (see e.g. [18], Lem. 3.13), where by D(O) is meant {ψ|O : ψ ∈ C∞(Rn)}, for O a bounded domain
in Rn. We also have that for v ∈ W,vi ∈ H(div, Ωi), i = 1, 2, and vγ ∈ H(div, γ) (since L3(γ) ⊂ L2(γ)) so
that vi · ni ∈ H− 1

2 (∂Ωi) and vγ · nγ ∈ H− 1
2 (∂γ), where ni, i = 1, 2, and nγ are the exterior normal vectors on

∂Ωi, i = 1, 2, and on ∂γ, respectively.
Define the forms a : W × W −→ R and b : W ×M −→ R by

a(u,v) =
2∑
i=1

∫
Ωi

αiui · vi dx+
∫
γ

(αγ + βγ |uγ |)uγ · vγ ds+
2∑
i=1

∫
γ

κ(ξui · n + ξ̄ui+1 · n)vi · n ds,

b(u, r) =
2∑
i=1

∫
Ωi

divuiri dx+
∫
γ

(divuγ − [u1 · n− u2 · n] )rγ ds = 〈Div u, r〉M′ ,M.

Note that the form a is continuous and linear in its second variable while the form b is clearly continuous and
bilinear. Define the continuous, linear forms g ∈ W′ and f ∈ M′ by

g : W −→ R

g(v) = −
2∑
i=1

〈pd,i,vi · ni〉
H

1
2 (Γi),H

− 1
2 (Γi)

− 〈pd,γ ,vγ · nγ〉
H

1
2 (∂γ),H− 1

2 (∂γ)

and f : M −→ R

f(r) =
2∑
i=1

∫
Ωi

qiri dx+
∫
γ

qγrγ ds.

(2.9)

The weak mixed formulation of (2.1), (2.2) and (2.3) is

(P)
Find u ∈ W and p ∈ M such that
a(u,v) − b(v, p) = g(v) ∀v ∈ W
b(u, r) = f(r) ∀r ∈ M.

Define also, for the moment only formally (see Lem. 3.1),

A : W −→ W′ and B : W −→ M′
〈A(u),v〉W′ ,W = a(u,v) ∀v ∈ W 〈B(u), r〉M′ ,M = b(u, r) ∀r ∈ M

and note that B : W −→ M′ is simply Div : W −→ M′ so that for W̃, the kernel of B,

W̃ = {v = (v1,v2,vγ) ∈ W : Div v = B(v) = 0},
we have that

‖v‖W = ‖v‖V +
2∑
i=1

‖vi · n‖0,2,γ ∀v ∈ W̃.
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2.2. Formulation with Darcy−Forchheimer flow in the matrix and in the fractures

With Ω, γ,Ωi, Γi,ni, i = 1, 2,nγ and n as well as αi, αγ , βγ , κ, qi, qγ , pd,i, pd,γ, ξ, and ξ̄ as in the preceding
paragraph, and with βi : Ωi −→ R a function satisfying

β
i
≤ βi(y) ≤ βi ∀y ∈ Ωi, (2.10)

where β
i
, βi〉0, we now consider the following problem:

(αi + βi|ui|)ui + ∇pi = 0 in Ωi
div ui = qi in Ωi

pi = pd,i on Γi
(2.11)

together with
(αγ + βγ |uγ |)uγ + ∇pγ = 0 on γ

div uγ = qγ + [u1 · n− u2 · n] on γ
pγ = pd,γ on ∂γ

(2.12)

and the interface conditions

pi = pγ + (−1)i+1κ(ξui · n + ξ̄ui+1 · n), i = 1, 2. (2.13)

Due to the Forchheimer regularization in the matrix equations, the spaces in the earlier definitions need to be
replaced by spaces appropriate for the functional setting of the Forchheimer equations, i.e. L2(Ωi) by L

3
2 (Ωi),

and consequently L2(Ωi) by L3(Ωi) for the dual spaces, thus obtaining a β-version of the earlier spaces, i.e.
Mβ instead of M, etc. For the sake of clarity we state explicitly:

Mβ =
{
p = (p1, p2, pγ) : pi ∈ L3/2(Ωi), i = 1, 2, and pγ ∈ L3/2(γ)

}
‖p‖Mβ

=
2∑
i=1

‖pi‖0, 32 ,Ωi
+ ‖pγ‖0, 32 ,γ

.

The space Mβ is clearly a reflexive Banach space with dual space

M′
β =

{
f = (f1, f2, fγ) : fi ∈ L3(Ωi), i = 1, 2, and fγ ∈ L3(γ)

}
‖f‖M′

β
=

2∑
i=1

‖fi‖0,3,Ωi + ‖fγ‖0,3,γ .

We also define

Vβ =
{
v = (v1,v2,vγ) : vi ∈ (L3(Ωi))d, i = 1, 2, and vγ ∈ (L3(γ))d−1

}
‖v‖Vβ

=
2∑
i=1

‖vi‖0,3,Ωi + ‖vγ‖0,3,γ ,

which is similarly a reflexive Banach space, with its dual space

V′
β = {g = (g1,g2,gγ) : gi ∈ (L3/2(Ωi))d, i = 1, 2, and gγ ∈ (L3/2(γ))d−1}

‖g‖V′
β

=
2∑
i=1

‖gi‖0, 32 ,Ωi
+ ‖gγ‖0, 32 ,γ

.

Again we have used the equivalent 
1 norm instead of the 
∞ norm to construct the product space norm for
M′

β and W′
β. We also need the space Wβ defined by

Wβ = {u = (u1,u2,uγ) ∈ Vβ : Div u = (divu1, divu2, divuγ − [u1 · n − u2 · n]) ∈ M′
β

and ui · n ∈ L2(γ), i = 1, 2}
‖u‖Wβ

= ‖u‖Vβ
+ ‖Div u‖M′

β
+

2∑
i=1

‖ui · n‖0,2,γ.
(2.14)
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One can show that Wβ is a reflexive Banach space, that D, given by (2.8), is dense in Wβ, that for v ∈ Wβ,

for i = 1, 2,vi ∈ H(div, Ωi) and vγ ∈ H(div, γ) so that vi · ni ∈ H− 1
2 (∂Ωi) and vγ · nγ ∈ H− 1

2 (∂γ). Further
vi ∈W 3(div, Ωi) (see Appendix A.1). Define the forms aβ : Wβ × Wβ −→ R and bβ : Wβ ×Mβ −→ R by

aβ(u,v) =
2∑
i=1

∫
Ωi

(αi + βi|ui|)ui · vi dx+
∫
γ

(αγ + βγ |uγ |)uγ · vγ ds+
2∑
i=1

∫
γ

κ(ξui · n + ξ̄ui+1 · n)vi · n ds,

bβ(u, r) =
2∑
i=1

∫
Ωi

divuiri dx +
∫
γ

(divuγ − [u1 · n − u2 · n] )rγ ds = 〈Div u, r〉M′
β ,Mβ

.

Note that the form aβ is continunous and linear in its second variable while bβ is continuous and bilinear. Define
the linear forms

g : Wβ −→ R and f : Mβ −→ R

as in (2.9) but with g ∈ W′
β and f ∈ M′

β which is valid with the regularity assumptions in (2.6). The mixed
weak formulation of (2.11), (2.12) and (2.13) is given by

(Pβ)
Find u ∈ Wβ and p ∈ Mβ such that
aβ(u,v) − bβ(v, p) = g(v) ∀v ∈ Wβ

bβ(u, r) = f(r) ∀r ∈ Mβ.

Define again

Aβ : Wβ −→ W′
β and Bβ : Wβ −→ M′

β

〈Aβ(u),v〉V′ ,V = aβ(u,v) ∀v ∈ Wβ 〈Bβ(u), r〉M′
β
,Mβ

= bβ(u, r) ∀r ∈ Mβ

for an equivalent operator equation and

W̃β = {u = (u1,u2,uγ) ∈ Wβ : Div u := Bβ(u) = 0},
and note that

‖u‖Wβ
= ‖u‖Vβ

+
2∑
i=1

‖ui · n‖0,2,γ ∀u ∈ W̃β. (2.15)

Remark 2.2. Note that none of the spaces Wβ,Vβ,W̃β, or Mβ and neither of the operators bβ nor Bβ depends
on the coefficient β. The index β is used simply to indicate that these are the spaces and operators used to
define the problem (Pβ).
To obtain some of the estimates that we will derive in the following sections we shall make use of the following
technical lemma given in ([15], Lem. 1.1 and 1.4).

Lemma 2.3. For x and y in Rn, we have the following inequalities:

| |x|x − |y|y | ≤ (|x| + |y|) |x − y|, (2.16)
1
2
|x − y|3 ≤ (|x|x − |y|y) · (x − y), (2.17)∣∣∣ |x|− 1

2 x− |y|− 1
2 y
∣∣∣ ≤ √

2 |x− y| 12 , (2.18)

|x − y|2√|x| +√|y| ≤
(

x√|x| −
y√|y|

)
· (x − y). (2.19)
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In (2.18) and hereafter x �→ |x|− 1
2 x on Rn means the continuation of this function on Rn \ {0} to Rn obtained

by defining |0|− 1
2 0 := 0, which by (2.18) is indeed Hölder continuous with exponent 1

2 .
Here we introduce some notation that we will use throughout the remainder of the article: for any positive

integer n and any bounded domain O in Rn, we know that L3(O) ↪→ L2(O) and that the inclusion map is
continuous so that there is a constant CL,O depending on n and the measure of the space such that if φ ∈ L3(O)
then ‖φ‖L2 ≤ CL,O‖φ‖L3. Here we shall assume that CL is a constant with CL,O ≤ CL for all of the spaces O
that we deal with. (There are only a finite number for each problem.) Also we know that if s and t are such
that 1 ≤ s ≤ t ≤ ∞ then the 
s and 
t norms on Rn are equivalent (since all norms on finite dimensional spaces
are equivalent), and we shall assume that there are positive real numbers C� and c� such that if x ∈ Rn then
c�‖x‖�t ≤ ‖x‖�s ≤ C�‖x‖�t for all dimensions n and all norms 
s and 
t with 1 ≤ s ≤ t ≤ ∞, that we encounter
in the problems that follow. (Again there will only be a finite number.)

3. Existence and uniqueness of the solution of the problem (Pβ)
Darcy−Forchheimer flow in the fracture and in the subdomains

To show the existence and uniqueness of the solution of (Pβ), following the argument of [15], Section 1 we show
that the operator Aβ : Wβ −→ W′

β is continuous and monotone and is uniformly monotone on W̃β to obtain a
solution to the homogeneous problem with f = 0. (That Bβ : Wβ −→ M′

β satisfies the inf-sup condition follows
just as in the linear case, cf. [16], however for completeness a demonstration is given in Appendix A.3). Then
taking any solution to the second equation of (Pβ) (whose existence is guaranteed by the inf-sup condition) an
auxiliary homogeneous problem is constructed whose solution can be used to produce the solution of (Pβ).

Lemma 3.1. The operator Aβ : Wβ −→ W′
β is continuous and strictly monotone and is furthermore uniformly

monotone on W̃β.

Proof. To see that ∀u ∈ Wβ, Aβ(u) ∈ W′
β i.e. that ∀u ∈ Wβ, Aβ(u) is bounded, suppose that u ∈ Wβ. Then,

using the equivalence of norms in a finite dimensional space and Hölder’s inequality, we have, for each v in Wβ,

∫
Ωi

βi|ui|ui · vi dx ≤ βiC
3
�

∫
Ωi

|ui|23|vi|3dx ≤ βiC
3
�

(∫
Ωi

(|ui|23)
3
2 ds
) 2

3
(∫

Ωi

|vi|33ds
) 1

3

≤ βiC
3
� ‖ui‖2

0,3,Ωi
‖vi‖0,3,Ωi .

(3.1)

We also have ∫
Ωi

αiui · vi dx ≤ αi‖ui‖0,2,Ωi‖vi‖0,2,Ωi ≤ αiC
2
L‖ui‖0,3,Ωi‖vi‖0,3,Ωi . (3.2)

As we have similar inequalities for the norms on γ and as ξ ≥ ξ̄ we conclude that for each v ∈ Wβ,

‖Aβ(u)‖W′
β

= sup
v∈Wβ
v �=0

|〈Aβ(u),v〉W′
β ,

Wβ
|

‖v‖Wβ

≤ sup
v∈Wβ
v �=0

{
2∑
i=1

(
αiC

2
L‖ui‖0,3,Ωi‖vi‖0,3,Ωi + βiC

3
� ‖ui‖2

0,3,Ωi
‖vi‖0,3,Ωi

)
+ αγC

2
L‖uγ‖0,3,γ‖vγ‖0,3,γ + βγC

3
� ‖uγ‖2

0,3,γ‖vγ‖0,3,γ

+ ξ κ

(
2∑
i=1

‖ui · n‖0,2,γ

)(
2∑
i=1

‖vi · n‖0,2,γ

)}/
‖v‖Wβ

(3.3)



COUPLING DARCY AND DARCY–FORCHHEIMER FLOW IN A DFM 1459

≤
2∑
i=1

(
αiC

2
L‖ui‖0,3,Ωi + βiC

3
� ‖ui‖2

0,3,Ωi

)
+ αγC

2
L‖uγ‖0,3,γ + βγC

3
� ‖uγ‖2

0,3,γ + ξ κ
2∑
i=1

‖ui · n‖0,2,γ

≤ αC2
L‖u‖Vβ

+ βC3
� ‖u‖2

Vβ
+ ξ κ

2∑
i=1

‖ui · n‖0,2,γ

≤ (max {αC2
L , ξ κ} + βC3

� ‖u‖Vβ

)‖u‖Wβ
,

where α is the max {α1, α2, αγ}, and similarly for β.
To see that Aβ : Wβ −→ W′

β is continuous suppose that u and w are elements of Wβ. Using Hölder’s
inequality and then inequality (2.16) along with the equivalence of norms in finite dimensional spaces, we see
that, for any v ∈ Wβ and for i = 1, 2,∫

Ωi

βi(|ui|ui − |wi|wi) · vi dx ≤ βi‖ |ui|ui − |wi|wi ‖0, 32 ,Ωi
‖vi‖0,3,Ωi

≤ βiC
3
� ‖ (‖ui‖0,3,Ωi + ‖wi‖0,3,Ωi)‖ui − wi‖0,3,Ωi‖vi‖0,3,Ωi .

Then using the analogous inequality for the nonlinear term on γ we have

‖Aβ(u) − Aβ(w)‖W′
β

= sup
v ∈ Wβ

v �= 0

〈Aβ(u) −Aβ(w) , v〉W′
β ,

Wβ

‖v‖Wβ

≤
((
αC2

L‖u− w‖Vβ
+ βC3

� (‖u‖Vβ
+ ‖w‖Vβ

)‖u − w‖Vβ

) ‖v‖Vβ

+ ξ κ
2∑
i=1

‖(ui − wi) · n‖0,2,γ

2∑
i=1

‖vi · n‖0,2,γ

)/
‖v‖Wβ

≤
(
max {αC2

L , ξ κ} + βC3
� (‖u‖Vβ

+ ‖w‖Vβ
)
)
‖u− w‖Wβ

.

To see that Aβ : Wβ −→ W′
β is strictly monotone suppose again that u and w are elements of Wβ. Then

using inequality (2.17), for i = 1, 2,∫
Ωi

βi(|ui|ui − |wi|wi) · (ui − wi) dx ≥ β
i
c3�
2

‖ui − wi‖3
0,3,Ωi

. (3.4)

We also note that if x, y ∈ R then ξ(x2 + y2) + 2ξ̄xy ≥ min {1, 2ξ− 1}(x2 + y2). It follows that ∀u,w ∈ Wβ

〈Aβ(u) −Aβ(w) , u− w〉W′
β ,

Wβ
≥ βc3�

2
‖u− w‖3

Vβ
+ κmin {1, 2ξ − 1}

2∑
i=1

‖(ui − wi) · n‖2
0,2,γ

≥ C(β, κ, ξ)

(
‖u− w‖3

Vβ
+

2∑
i=1

‖(ui − wi) · n‖2
0,2,γ

)
≥ 0,

(3.5)

where β = min {β
1
, β

2
, β

γ
}, and where we have equality only if u = w.

To see that Aβ is uniformly monotone on W̃β it suffices to note that if u and w belong to W̃β then

〈Aβ(u) −Aβ(w) , u− w〉W′
β ,

Wβ
≥ G(‖u − w‖Wβ

)‖u− w‖Wβ
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with

G(‖u‖Wβ
) := C(β, κ, ξ)

‖u‖3
Vβ

+
2∑
i=1

‖ui · n‖2
0,2,γ

‖u‖Wβ

= C(β, κ, ξ)

‖u‖3
Vβ

+
2∑
i=1

‖ui · n‖2
0,2,γ

‖u‖Vβ
+

2∑
i=1

‖ui · n‖0,2,γ

−→ ∞ as ‖u‖Wβ
−→ ∞,

where we have used (2.15). �
Lemma 3.2. The linear form bβ : Wβ×Mβ −→ R satisfies the following inf-sup condition: there is a positive
constant θβ such that ∀r ∈ Mβ

θβ‖r‖Mβ
≤ sup

v∈Wβ

bβ(v, r)
‖v‖Wβ

· (3.6)

Proof. See Appendix A.3. �
Proposition 3.3. The homogeneous problem

(P0
β)

Find u0
β ∈ Wβ and p0

β ∈ Mβ such that
aβ(u0

β ,v) − bβ(v, p0
β) = g(v) ∀v ∈ Wβ

bβ(u0
β , r) = 0 ∀r ∈ Mβ

has a unique solution.

Proof. That there is a unique solution in W̃β to aβ(u0
β ,v) = g(v), ∀v ∈ W̃β , i.e. to Aβ(u0

β) = g, now follows
from the Browder−Minty theorem ([20], Thm. 26.A). That there is a unique p0

β ∈ Mβ such that (u0
β , p

0
β) is the

unique solution of (P0
β) then follows as in the linear case as the operator Bβ is still linear. �

To handle a source term in the continuity equation we start from any solution to this equation and construct
an auxiliary homogeneous problem whose solution is then combined with the solution to the (nonhomogeneous)
continuity equation to produce the desired solution to the full problem.

Theorem 3.4. The problem (Pβ) admits a unique solution (uβ , pβ) ∈ Wβ ×Mβ.

Proof. Since, according to Lemma 3.2, bβ satisfies the inf-sup condition, the subproblem of (Pβ)
Find u ∈ Wβ such that
bβ(u, r) = f(r) ∀r ∈ Mβ

has a (non-unique) solution. Let u∗ ∈ Wβ denote one such. We consider the auxiliary problem

(P∗
β)

Find ũ ∈ Wβ and p ∈ Mβ such that
aβ(ũ + u∗,v) − bβ(v, p) = g(v) ∀v ∈ Wβ

bβ(ũ, r) = 0 ∀r ∈ Mβ .

Just as in Proposition 3.3, this problem has a unique solution, as one can show, just as in Lemma 3.1, that

a∗β(u,v) := aβ(u + u∗,v)

defines a continuous operator, strictly monotone on Wβ and uniformly monotone on W̃β. Then, due to the
bilinearity of bβ, u := ũ + u∗, together with p is a solution of (Pβ).

To show uniqueness we refer to Lemma A.1 in Appendix A.2. �
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4. Darcy as a limit of Darcy−Forchheimer – Simple domain

Suppose here that O is a bounded domain in Rd with boundary ∂O. The object of this section is to show
that the solution of the Darcy problem

αOu = −∇p in O
divu = qO in O
p = p

∂,O on ∂O
may be obtained as the limit of a sequence of solutions of the Darcy−Forchheimer problems

αOuβ + βO |uβ|uβ = −∇pβ in O
divuβ = qO in O
pβ = p

∂,O on ∂O,

as βO → 0. As before we assume that the tensor coefficient function αO : O −→ Rd,d, is such that

αO |x|2 ≤ x · αO (y)x ≤ αO |x|2 ∀y ∈ O, x ∈ Rd, (4.1)

and the coefficient βO of the nonlinear term is assumed to be a positive real parameter as we are merely
interested in obtaining the Darcy problem as a limit of Forchheimer problems. Let

W(O) = H(div,O) M(O) = L2(O)

Wβ(O) = W 3(div,O) Mβ(O) = L
3
2 (O),

and recall that the image of the normal trace map on W(O) is H− 1
2 (∂O) while the image of the normal trace

map on Wβ(O) is W− 1
3 ,3(∂O). Also as before the data functions are assumed to be such that q ∈ L3(O) and

p
∂,O ∈ W

1
3 ,

3
2 (∂O) ∩W 1

2 ,2(∂O).
Define the bilinear forms aO and bO by

aO : W(O) × W(O) −→ R and bO : W(O) ×M(O) −→ R

(u,v) �→
∫
O
αOu · v dx (v, r) �→

∫
O
div(v) r dx,

and the linear forms gO ∈ W(O)′ and fO ∈ M(O)′ by

gO : W(O) −→ R and fO : M(O) −→ R

v �→ 〈p
∂,O ,v · n〉

H
1
2 (∂O),H− 1

2 (∂O)
r �→

∫
O
qOr dx,

so that the problem (PDarcy) can be written as

(PDarcy)
Find u ∈ W(O) and p ∈ M(O) such that
aO (u,v) − bO(v, p) = gO (v) ∀v ∈ W(O)
bO (u, r) = fO (r) ∀r ∈ M(O).

Since aO is elliptic (coercive) on the subset W̃(O) = {v ∈ W(O) : bO(v, r) = 0, ∀r ∈ M(O)} and bO satisfies
the inf-sup condition on W(O) ×M(O):

αO‖v‖W(O) ≤ aO (v,v) ∀v ∈ W̃(O) and θO‖r‖M(O) ≤ sup
v∈W(O)

bO(v, r)
‖v‖W(O)

, ∀r ∈ M(O),

the Darcy problem (PDarcy) has a unique solution (uO , pO ) ∈ W(O) ×M(O), [9].
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To give the weak formulation of the Forchheimer problem note that since Wβ(O) ⊂ W(O) the bilinear form
aO is also defined on Wβ(O) ×Wβ(O) and that the bilinear form bO is also defined on Wβ(O) ×Mβ(O) (even
though Mβ(O) �⊂ M(O)). Further bO also satisfies the analogous inf-sup condition onWβ(O)×Mβ(O) for some
constant θ

β,O ; see [18] or the more general version in Lemma 3.2. Now define the mapping a
β,O , linear in its

second variable, by
a

β,O : Wβ(O) × Wβ(O) −→ R

(u,v) �→
∫
O

(αO + βO |u|)u · v dx,

and note that due to the regularity requirements on the data functions p
∂,O and qO that the linear forms gO

and fO are defined and continuous on Wβ(O) and Mβ(O), respectively, (as well as on W(O) and M(O)), so
that the problem (PForch) can be written as

(PForch)
Find uβ ∈ Wβ(O) and pβ ∈ Mβ(O) such that
a

β,O (uβ ,v) − bO (v, pβ) = gO (v) ∀v ∈ Wβ(O)
bO (uβ , r) = fO (r) ∀r ∈ Mβ(O).

It is shown in [15] that the form a
β,O is continuous, strictly monotone on Wβ(O), and coercive on W̃β(O) =

{v ∈ Wβ(O) : bO(v, r) = 0, ∀r ∈ Mβ(O)} [15], Proposition 1.2 and that the Forchheimer problem (PForch) has
a unique solution (u

β,O , pβ,O ) ∈ Wβ(O) ×Mβ(O), [15], Theorem 1.8. Again see the more general vesion of this
reasoning in Lemma 3.1.

The demonstration that the solutions of the problems (PForch) converge to the solution of (PDarcy) is based
on a priori bounds for u

β,O and p
β,O independent of the parameter β. In this section we will drop the spaces in

the notation for the norms as only O or ∂O appears.

Lemma 4.1. There is a constant C independent of β such that for β sufficiently small

‖p
β,O‖Mβ(O) + ‖u

β,O‖W(O) + β
1
3 ‖u

β,O‖0,3 ≤ C.

In addition,
β‖u

β,O‖0,3 −→ 0, as β −→ 0.

Proof. Taking u
β,O for the test function v in the first equation of (PForch) and noting that Wβ(O) ⊂ W(O), as

in Section 3 (cf. estimate (3.5)) one obtains

αO‖uβ,O‖2
0,2 +

c3�
2
β‖u

β,O‖3
0,3 ≤ gO (u

β,O ) + b(u
β,O , pβ,O )

≤ ‖gO‖W(O)′‖uβ,O‖W(O) + ‖div(u
β,O )‖0,3‖pβ,O‖0, 32

≤ ‖gO‖W(O)′
(‖u

β,O‖0,2 + ‖div(u
β,O )‖0,2

)
+ ‖div(u

β,O )‖0,3‖pβ,O‖0, 32
.

Next directly from the second equation of (PForch) (regarded as an equation in Mβ(O)′ = L3(O)), we obtain

‖div(u
β,O )‖0,3 = ‖fO‖0,3, (4.2)

and, as there is a continuous embedding M(O) ↪→ Mβ(O), i.e. L2(O) ↪→ L
3
2 (O) so that the second equation

of (PForch) holds for test functions in L2(O) as well as for those in L
3
2 (O), we also have

‖div(u
β,O )‖0,2 = ‖fO‖0,2. (4.3)

Combining these last three inequalities we obtain

αO‖uβ,O‖2
0,2 +

c3�
2
β‖u

β,O‖3
0,3 ≤ ‖gO‖W(O)′(‖uβ,O‖0,2 + ‖fO‖0,2) + ‖fO‖0,3‖pβ,O‖0, 32
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and
1
2αO‖uβ,O‖2

0,2 +
c3�
2
β‖u

β,O‖3
0,3 ≤ 1

2αO
‖gO‖2

W(O)′ + ‖gO‖W(O)′‖f‖0,2 + ‖fO‖0,3‖pβ,O‖0, 32

≤ D1 + ‖fO‖0,3‖pβ,O‖0, 32
,

(4.4)

where D1 is a constant depending only on the coefficient αO and the data functions determining gO and fO .
Then with the first equation of (PForch), we obtain, ∀v ∈ Wβ(O),

|bO (v, p
β,O )| ≤ |a

β,O (u
β,O ,v)| + |gO (v)|

≤ αO‖uβ,O‖0,2‖v‖0,2 + C3
� β‖uβ,O‖2

0,3‖v‖0,3 + ‖gO‖W(O)′‖v‖Wβ(O)

≤
(
αOCL‖uβ,O‖0,2 + C3

� β‖uβ,O‖2
0,3 + ‖p

∂,O‖ 1
3 ,

3
2

)
‖v‖Wβ(O),

where we again use CL, respectively C�, here specifically for the continuity constant for the embedding L3(O) ↪→
L2(O), respectively 
3(Rd) ↪→ 
2(Rd). Using the inf-sup condition for b on Wβ(O) ×Mβ(O) we have

θ
β,O‖r‖0, 32

≤ sup
v∈Wβ(O)

bO(v, r)
‖v‖Wβ(O)

·

and thus
θ

β,O‖pβ,O‖0, 32
≤
(
αOCL‖uβ,O‖0,2 + C3

� β‖uβ,O‖2
0,3 + ‖p

∂,O‖ 1
3 ,

3
2

)
. (4.5)

Plugging this estimate for pβ into (4.4) we obtain

1
2αO‖u

β,O‖2
0,2 +

c3�
2
β‖u

β,O‖3
0,3 ≤ D1 +

1
θ

β,O
‖fO‖0,3

(
αOCL‖uβ,O‖0,2 + C3

� β‖uβ,O‖2
0,3 + ‖p

∂,O‖ 1
3 ,

3
2

)
.

Now using the inequality

αOCL
θ

β,O
‖fO‖0,3‖uβ,O‖0,2 ≤ 4

αO

(
αOCL
θ

β,O

)2

‖fO‖2
0,3 +

1
4
αO‖u

β,O‖2
0,2

≤ D2 +
1
4
αO‖u

β,O‖2
0,2

it is easy to see that

1
4
αO‖u

β,O‖2
0,2 +

c3�
2
β‖u

β,O‖3
0,3 ≤ D1 +

4
αO

(
αOCL
θ

β,O

)2

‖fO‖2
0,3 +

1
θ

β,O
‖fO‖0,3C

3
� β‖uβ,O‖2

0,3

+
1
θ

β,O
‖fO‖0,3‖p∂,O‖ 1

3 ,
2
3

≤ D1 +D2 + C4β‖uβ,O‖2
0,3 +D3,

with constant terms D2, which depends on fO , CL, αO , αO and θ
β,O , and D3, which depends on fO , p∂,O and

θ
β,O , and a constant coefficient C4, which depends on fO , θ

β,O and C�. Now using Young’s inequality, (if p > 0
and 1

p + 1
q = 1 then ab ≤ ap

p + bq

q ) with a = (βs‖u
β,O‖0,3)2, b = 1, p = 3

2 and q = 3 one obtains

1
4
αO‖u

β,O‖2
0,2 +

c3�
2
β‖u

β,O‖3
0,3 ≤ D1 +D2 +D3 +

2
3
C4β

1−2s(βs‖u
β,O‖0,3)3 +

1
3
C4β

1−2s

and that

1
4
αO‖u

β,O‖2
0,2 +

(
c3�
2
β1−3s − 2

3
C4β

1−2s

)
(βs‖u

β,O‖0,3)3 ≤ D1 +D2 +D3 +
1
3
C4β

1−2s
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or, in particular, that (with s = 1
2 )

1
4
αO‖u

β,O‖2
0,2 +

(
c3�
2
β− 1

2 − 2
3
C4

)
(β

1
2 ‖u

β,O‖0,3)3 ≤ D1 +D2 +D3 +
1
3
C4 := D4. (4.6)

Thus for β sufficiently small, we obtain an a priori bound on α
1
2
O‖uβ,O‖0,2:

α
1
2
O‖uβ,O‖0,2 ≤ 2 (D4)

1
2 , (4.7)

and also that

(β
1
2 ‖u

β,O‖0,3)3 ≤
(
c3�
2
β− 1

2 − 2
3
C4

)−1

D4

so that
β

1
2 ‖u

β,O‖0,3 −→ 0 as β −→ 0. (4.8)

Rewriting (4.6) as
1
4
αO‖u

β,O‖2
0,2 +

c3�
2
β‖u

β,O‖3
0,3 ≤ D4 +

2
3
C4(β

1
2 ‖u

β,O‖0,3)3,

we obtain in turn an a priori bound for β
1
3 ‖u

β,O‖0,3:

β
1
3 ‖u

β,O‖0,3 ≤ (D4 + ε)
1
3 , (4.9)

with ε > 0 arbitrarily small for β ≤ β̄ε for some β̄ε > 0. Now combining (4.5), (4.7) and (4.9) one obtains the
following a priori bound on p

β,O in L
3
2 (O):

‖p
β,O‖0, 32

≤ 2αOCL

θ
β,Oα

1
2
O

(D4)
1
2 +

C3
L

θ
β,O

β
1
3 (D4 + ε)

2
3 +

1
θ

β,O
‖p

∂,O‖ 1
3 ,

3
2
. (4.10)

With (4.10), (4.7) and (4.3) the lemma is completed. �

From (4.7) and (4.10), we conclude that if {βj} is a sequence converging to 0 then there is a subsequence still
denoted {βj} such that the sequences {u

βj,O} and {p
βj,O} are weakly convergent in (L2(O))d and in L

3
2 (O),

respectively:
u

βj,O ⇀ ũ in (L2(O))d and p
βj,O ⇀ p̃ in L

3
2 (O), (4.11)

i.e. explicitly∫
O
αu

βj ,O · v dx→
∫
O
αũ · v dx ∀v ∈ (L2(O))n and

∫
O
p

βj,Oq dx→
∫
O
p̃q dx ∀q ∈ L3(O). (4.12)

Further, (4.8) implies that {β 1
2
j u

βj,O} converges strongly to 0 in L3(O). Thus

∣∣∣∣∫O βj |uβj,O |uβj,O · v dx
∣∣∣∣ ≤ ‖v‖0,3‖βj|uβj,O |uβj,O‖0, 32

= ‖v‖0,3

(∫
O
β

3
2
j |uβj,O |3 dx

) 2
3

= ‖v‖0,3‖β
1
2
j u

βj,O‖2
0,3 → 0 as βj → 0.

(4.13)

Lemma 4.2. Assume that the spatial dimension d satisfies d ≤ 6. Then the pair (ũ, p̃) defined by (4.11) is a
solution to (PDarcy) and hence is the unique solution of (PDarcy): ũ = uO and p̃ = pO .
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Proof. A priori, ũ ∈ Wβ(O) ⊂ W(O) and p̃ ∈ Mβ(O) �⊂ M(O). It follows from (4.13) and (4.12) that∫
O
αO ũ · v dx−

∫
O

div(v)p̃ dx = −〈p
∂,O ,v · n〉

H
1
2 (∂O),H− 1

2 (∂O)
∀v ∈ Wβ(O). (4.14)

However, if v ∈ D(O), then
∫
O
αO ũ · v dx −

∫
O
div(v)p̃ dx = 0 so that ∇p̃ = −αO ũ ∈ (L3(O))d, and thus

p̃ ∈ W 1, 32 (O). By the Sobolev embedding theorem, [1] , we have, if d ≤ 6, then W 1, 32 (O) ⊂ L2(O) = M(O).
Also we have supposed that p

∂,O belongs to W
1
2 ,2(∂O) as well as to W

1
3 ,

3
2 (∂O). Thus each of the terms of (4.14)

is well defined for v ∈ W(O), and we have since Wβ(O) is dense in W(O) that∫
O
αO ũ · v dx−

∫
O

div(v)p̃ dx = −〈p
∂,O ,v · n〉

H
1
2 (∂O),H− 1

2 (∂O)
∀v ∈ W(O). (4.15)

Turning now to the second equation of (PDarcy), we recall that fO = qO belongs to L3(O) = Mβ(O)′, and
thus also to L2(O) = M(O)′. As we have seen, the second equation of (PForch) implies that for each β > 0,
div(u

β,O ) = f ∈ L3(O). This with (4.7) implies that u
β,O is bounded in the W(O) norm and that for a

subsequence {β�} of {βj},uβ�
converges weakly to ũ in W(O). It follows that∫

O
div(ũ)r dx =

∫
O
qOr ∀r ∈ M(O).

Thus the pair (ũ, p̃) in W(O) ×M(O) is a solution of (PDarcy) and (ũ, p̃) = (uO , pO ) by uniqueness. �

5. Darcy as a limit of Darcy−Forchheimer – Domain with a fracture

The object of this section is to obtain the original problem (P) (with Darcy flow in the subdomains Ω1

and Ω2 but Forchheimer flow in the fracture γ) as the limit of the problem (Pβ) (with Forcheimer flow in the
subdomains and in the fracture) studied in Section 3 when the Forchheimer coefficient in the subdomains β
decreases to 0. In this section, as in Section 4, for simplicity we shall assume that βi is the same constant,
positive, real parameter for i = 1 and i = 2:

β1 = β2 = β > 0.

(The tensors βγ , αi and αγ (2.4), as well as κ (2.5), remain as in Sect. 3.) For each β sufficiently small, let
(uβ , pβ) ∈ Wβ ×Mβ be the solution of (Pβ). We will derive a priori bounds on (uβ , pβ) which are independent
of β, thus obtaining a limit function which we shall show is a solution to (P).

Lemma 5.1. There is a constant C independent of β, such that, for each β sufficiently small,

‖uβ‖W + ‖pβ‖Mβ
+ β

1
3

2∑
i=1

‖uβ,i‖0,3,Ωi ≤ C.

In addition,

β
1
2

2∑
i=1

‖uβ,i‖0,3,Ωi −→ 0, as β −→ 0.
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Proof. The proof follows closely the lines of the proof of Lemma 4.1. Taking for test function v = uβ in the
first equation of (Pβ), noting that uβ ∈ W and that g ∈ W′, and letting Cξ denote κmin(1, 2ξ − 1) we obtain

2∑
i=1

(
αi‖uβ,i‖2

0,2 +
c3�
2
β‖uβ,i‖3

0,3

)
+ αγ‖uβ,γ‖2

0,2 +
c3�
2
β
γ
‖uβ,γ‖3

0,3 +
2∑
i=1

Cξ‖uβ,i · n‖2
0,2

≤ aβ(uβ ,uβ) = g(uβ) + bβ(uβ , pβ)

≤ ‖g‖W′‖uβ‖W + ‖Div uβ‖M′
β
‖pβ‖Mβ

= ‖g‖W′

(
‖uβ‖V + ‖Div uβ‖M′ +

2∑
i=1

‖uβ,i · n‖0,2,γ

)
+ ‖Div uβ‖M′

β
‖pβ‖Mβ

,

and from the second equation we have Div uβ = f so that

‖Div uβ‖M′
β

= ‖f‖M′
β

‖Div uβ‖M′ = ‖f‖M′.
(5.1)

Combining these estimates, analogously to (4.4) we obtain

2∑
i=1

(
αi‖uβ,i‖2

0,2 +
c3�
2
β‖uβ,i‖3

0,3

)
+ αγ‖uβ,γ‖2

0,2 +
c3�
2
β
γ
‖uβ,γ‖3

0,3 +
2∑
i=1

Cξ‖uβ,i · n‖2
0,2

≤ ‖g‖W′

(
‖uβ‖V + ‖f‖M′ +

2∑
i=1

‖uβ,i · n‖0,2,γ

)
+ ‖f‖M′

β
‖pβ‖Mβ

≤ ‖g‖W′

( 2∑
i=1

‖uβ,i‖0,2 + ‖uβ,γ‖0,3,γ +
2∑
i=1

‖uβ,i · n‖0,2,γ

)
+ ‖f‖M′

β
‖pβ‖Mβ

+D1,

where the constant term D1 depends on g and on f . Then, using Young’s inequality we have

2∑
i=1

(
1
2
αi‖uβ,i‖2

0,2 +
c3�
2
β‖uβ,i‖3

0,3

)
+ αγ‖uβ,γ‖2

0,2 +
2
3
c3�
2
β
γ
‖uβ,γ‖3

0,3 +
1
2

2∑
i=1

Cξ‖uβ,i · n‖2
0,2

≤ ‖f‖M′
β
‖pβ‖Mβ

+D1 +D2,

where D2 depends on g, αi, βγ , and Cξ. The inf-sup condition for bβ : Wβ ×Mβ −→ R together with the first
equation of (Pβ) yields

θβ‖pβ‖Mβ
≤ sup

v∈Wβ

b(v, pβ)
‖v‖Wβ

≤ sup
v∈Wβ

aβ(uβ ,v) − g(v)
‖v‖Wβ

,

and using (3.1)

|aβ(uβ ,v) − g(v)| ≤
2∑
i=1

(
αi‖uβ,i‖0,2‖vi‖0,2 + C3

� β‖uβ,i‖2
0,3‖vi‖0,3

)
+ κξ

(
2∑
i=1

‖uβ,i · n‖0,2,γ

)(
2∑
i=1

‖vi · n‖0,2,γ

)
+αγ‖uβ,γ‖0,2,γ‖vγ‖0,2,γ + C2

� βγ‖uβ,γ‖2
0,3,γ‖vγ‖0,3,γ + ‖g‖W′

β
‖v‖Wβ

.
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Then combining the last two estimates, analogously to (4.5) we have

θβ‖pβ‖Mβ
≤

2∑
i=1

(
CLαi‖uβ,i‖0,2 + C3

� β‖uβ,i‖2
0,3 + κξ‖uβ,i · n‖0,2,γ

)
+CLαγ‖uβ,γ‖0,2,γ + C2

� βγ‖uβ,γ‖2
0,3,γ + ‖g‖W′

β
.

(5.2)

So
2∑
i=1

(
1
2
αi‖uβ,i‖2

0,2 +
c3�
2
β‖uβ,i‖3

0,3

)
+ αγ‖uβ,γ‖2

0,2 +
c3�
3
β
γ
‖uβ,γ‖3

0,3 +
1
2

2∑
i=1

Cξ‖uβ,i · n‖2
0,2

≤ D1 +D2 +D3 +
‖f‖M′

β

θβ

( 2∑
i=1

(
CLαi‖uβ,i‖0,2 + C3

� β‖uβ,i‖2
0,3 + κξ‖uβ,i · n‖0,2,γ

)
+CLαγ‖uβ,γ‖0,2,γ + C2

� βγ‖uβ,γ‖2
0,3,γ

)
,

where D3 depends on g, θβ, and f . Then using Young’s inequality (three times with exponents 2 and 2 and
twice with exponents 3 and 3

2 ) we obtain

2∑
i=1

(
1
4
αi‖uβ,i‖2

0,2 +
c3�
2
β‖uβ,i‖3

0,3

)
+

1
2
αγ‖uβ,γ‖2

0,2 +
c3�
3
β
γ
‖uβ,γ‖3

0,3 +
1
4

2∑
i=1

Cξ‖uβ,i · n‖2
0,2

≤ D1 +D2 +D3 +D4 +
2
3
C5

2∑
i=1

(
β

1
2 ‖uβ,i‖0,3

)3

,

(5.3)

with D4 depending on αi, αi, αγ , αγ , βγ , βγ , κ, κ, ξ, θβ , and f , and, analogously to (4.6),

2∑
i=1

(
1
4
αi‖uβ,i‖2

0,2 +
(
c3�
2
β− 1

2 − 2
3
C5

)(
β

1
2 ‖uβ,i‖0,3

)3

+
1
4
Cξ‖uβ,i · n‖2

0,2

)
+

1
4
αγ‖uβ,γ‖2

0,2

+
c3�
3
β
γ
‖uβ,γ‖3

0,3 ≤ D1 +D2 +D3 +D4.

(Recall that θβ does not depend on β.) Hence

β
1
2 ‖uβ,i‖0,3 −→ 0 as β −→ 0, i = 1, 2,

as in (4.8), and, as in (4.7), (4.9) each of the terms ‖uβ,i‖0,2, ‖uβ,i · n‖0,2,γ , ‖uβ,γ‖0,2,γ , ‖uβ,γ‖0,3,γ and
β

1
3 ‖uβ,i‖0,3 is bounded by a positive constant D5, depending on αi, αγ , βγ , κ, ξ, f and g but independent of β:

‖uβ,i‖0,2 + ‖uβ,i · n‖0,2,γ + ‖uβ,γ‖0,2,γ + ‖uβ,γ‖0,3,γ + β
1
3 ‖uβ,i‖0,3 ≤ D5. (5.4)

Combining (5.1) and (5.4) yields an a priori bound on uβ,i in the H(div, Ωi)-norm. Equation (5.1) also gives
an a priori bound on divuβ,γ − [uβj,1 · n− uβj,2 · n] in the L3(γ)-norm, which completes the a priori bound of
‖uβ‖W.

To bound pβ we recall (5.2)

θβ

(
2∑
i=1

‖pβ,i‖0, 32
+ ‖pβ,γ‖0, 32 ,γ

)
≤

2∑
i=1

(
CLαi‖uβ,i‖0,2 + C3

� β‖uβ,i‖2
0,3 + ξ κ‖uβ,i · n‖0,2,γ

)
+CLαγ‖uβ,γ‖0,2,γ + C2

� βγ‖uβ,γ‖2
0,3,γ + ‖g‖W′

β
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and obtain for a positive constant D6, depending on αi, αγ , βγ , κ, ξ, f,g and θβ but independent of β :

2∑
i=1

‖pβ,i‖0, 32
+ ‖pβ,γ‖0, 32 ,γ

≤ D6, (5.5)

which gives the a priori bound on ‖pβ‖Mβ
. �

Theorem 5.2. Suppose d ≤ 6. There exists a unique solution (u, p) ∈ W×M of problem (P), and (u, p) is a
weak limit of solutions (uβ , pβ) ∈ W ×M in the sense made precise below.

Proof. The proof follows from the error bounds (5.4), (5.5) obtained in Lemma 5.1. As the spaces H(div, Ωi),
L

3
2 (Ωi), L3(γ), L

3
2 (γ) and L2(γ) are reflexive Banach spaces they are sequentially weakly compact. Thus

from (4.7) and (4.10), we conclude that if {β�} is a sequence converging to 0 then there is a subsequence {βj}
such that the sequences {uβj,i}, {pβj ,i}, {uβj,γ}, {pβj ,γ}, {uβj ,i · n} and divuβj ,γ − [uβj ,1 · n − uβj ,2 · n] are
weakly convergent in H(div, Ωi), L

3
2 (Ωi), L3(γ), L

3
2 (γ), L2(γ) and in L3(γ) respectively:

uβj,i ⇀ ũi in H(div, Ωi) pβj,i ⇀ p̃i in L
3
2 (Ωi)

uβj,γ ⇀ ũγ in L3(γ) pβj,γ ⇀ p̃γ in L
3
2 (γ)

divuβj ,γ − [uβj ,1 · n − uβj ,2 · n] ⇀ ûγ in L3(γ) uβj,i · n ⇀ ûi in L2(γ)

and
β

1
2 uβ,i −→ 0 in L3(Ωi).

We remark that since ‖uβ,i·n‖
H− 1

2 (∂Ωi)
≤ C‖uβ,i‖H(div,Ωi) is bounded independently of β that uβj,i·n converges

weakly to ũi · n in H− 1
2 (∂Ωi). Then since uβj ,i · n converges weakly to ûi in L2(γ), we have ûi = ũi · n

We also note that divuβj ,γ ∈ L2(γ) so that uβj ,γ ∈ H(div, γ). Further, ‖divuβj ,γ‖L2(γ) and thus
‖uβj ,γ‖H(div,γ) is bounded independently of β so that uβj ,γ converges weakly to ũγ in H(div, γ). Following
the same lines of reasoning we conclude that

ûγ = divũγ − (ũ1 · n− ũ2 · n).

Thus with ũ = (ũ1, ũ2, ũγ) we have ũ ∈ W, and it is clear that

b(ũ, r) = 〈Div ũ, r〉M′ ,M = f(r), ∀r ∈ M,

i.e. the second equation of (P) is satisfied by ũ.
For each β > 0, the first equation of (Pβ) is

aβ(uβ ,v) − b(v, pβ) = g(v), ∀v ∈ Wβ,

2∑
i=1

∫
Ωi

(αi + β|uβ,i|)uβ,i · vi dx+
∫
γ

(αγ + βγ |uβ,γ |)uβ,γ · vγ ds

+
2∑
i=1

∫
γ

1
κ

(ξuβ,i · n + ξ̄uβ,i+1 · n)vi · n ds− b(v, pβ) = g(v), ∀v ∈ Wβ,

or
2∑
i=1

∫
Ωi

β|uβ,i|uβ,i · vi dx+
∫
γ

βγ |uβ,γ |uβ,γ · vγ ds = −
2∑
i=1

∫
Ωi

αiuβ,i · vi dx−
∫
γ

αγuβ,γ · vγ ds

−
2∑
i=1

∫
γ

1
κ

(ξuβ,i · n + ξ̄uβ,i+1 · n)vi · n ds+ b(v, pβ) + g(v), ∀v ∈ Wβ.
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Then taking the limit as β goes to 0 we have, due to (3.1) and Lemma 5.1

lim
β→0

∫
γ

βγ |uβ,γ |uβ,γ · vγ ds = −
2∑
i=1

∫
Ωi

αiũi · vi dx−
∫
γ

αγũγ · vγ ds

−
2∑
i=1

∫
γ

1
κ

(ξũi · n + ξ̄ũi+1 · n)vi · n ds+ b(v, p̃) + g(v), ∀v ∈ Wβ,

and in particular, for test functions v ∈ (D(Ω1))d × (D(Ω2))d × {0},
2∑
i=1

∫
Ωi

αiũi · vi dx−
2∑
i=1

∫
Ωi

divvi p̃i dx = 0.

Thus ∇p̃i = −αiũi ∈ L2(Ωi) and therefore p̃i ∈W1, 32
(Ωi). From the Sobolev embedding theorem we then have

p̃i ∈ L2(Ωi) (for d ≤ 6) which means that p̃ ∈ M. Now from the density of Wβ in W we conclude that

lim
β→0

∫
γ

βγ |uβ,γ |uβ,γ · vγ ds = −
2∑
i=1

∫
Ωi

αiũi · vi dx−
∫
γ

αγ ũγ · vγ ds

−
2∑
i=1

∫
γ

1
κ

(ξũi · n + ξ̄ũi+1 · n)vi · n ds+ b(v, p̃) + g(v), ∀v ∈ W.

Now there remains to see that

lim
β→0

∫
γ

βγ |uβ,γ |uβ,γ · vγ ds =
∫
γ

βγ |ũγ |ũγ · vγ ds, ∀vγ ∈ L3(γ).

Toward this end we define a mapping on L3(γ) × L3(γ) by

(wγ ,vγ) �→
∫
γ

βγ |wγ |wγ · vγ ds

and the associated mapping C : L3(γ) −→ L
3
2 (γ). That the mapping C is monotone and continuous can be

shown as in the proof of Lemma 3.1 where the monotonicity and continuity of Aβ are shown. Therefore C
maps weakly convergent sequences to convergent sequences; see [20]. Thus, since uβ,γ ⇀ ũγ , we have that
C(uβ,γ) → C(ũγ) in L3(γ) which now yields that

a(ũ,v) − b(v, p̃) = g(v), ∀v ∈ W.

Thus (ũ, p̃) ∈ W ×M is a solution of (P).
As in (3.5) we see that A is strictly monotone on W. Thus we can refer to Lemma A.1 for uniqueness. �

Appendix A

In this appendix for the sake of completeness we give the definition and some basic properties of the spaces
W p(div, Ω), and we include the demonstrations of some lemmas needed in the previous sections.

A.1. The spaces W p(div, O)

We recall the definition given in [15, 18] of the spaces W p(div,O) for O ⊂ Rd a bounded domain in Rd and
p ∈ R a number with 1 ≤ p:

W p(div,O) := {v ∈ (Lp(O))d : divv ∈ Lp(O)} (A.1)
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with norm
‖v‖Wp(div,O) := ‖v‖Lp(O) + ‖divv‖Lp(O).

As pointed out in [15] and in [18] it suffices to note that W p(div,O) is a closed subset of (Lp(O))d to see that
W p(div,O) is a reflexive Banach space. Further, normal traces of elements of W p(div,O) belong to W− 1

p ,p(∂O).

A.2. A general uniqueness result

The object here is to show a uniqueness result that is used in the proofs of Theorems 3.4 and 5.2: that if A,
B and Bt are the operators associated with a mixed formulation and A is strictly monotone and B is surjective,
then the mixed problem has no more than one solution; more precisely

Lemma A.1. Let X and Y be Hilbert spaces and let a be a form, linear in its second variable, on Y × Y and
b a bilinear form on Y ×X and let A : Y −→ Y ′ and B : Y −→ X ′ be the associated linear operators defined by
〈A(v), w〉Y ′,Y = a(v, w), ∀w ∈ Y and 〈B(v), r〉X′,X = b(v, r), ∀r ∈ X, respectively. Suppose further that f ∈ X ′

and g ∈ Y ′. Then if A is strictly monotone and B is surjective, the problem

(P)

Find u ∈ Y and p ∈ X such that

a(u, v) − b(v, p) = g(v) ∀v ∈ Y

b(u, r) = f(r) ∀r ∈ X

(A.2)

has at most one solution.

Proof. Suppose that (u, p) and (w, s) ∈ Y ×X are solutions to (P). Then

a(u, v) − a(w, v) − b(v, p− s) = 0, ∀v ∈ Y

b(u− w, r) = 0, ∀r ∈ X,

and taking as test functions v = u−w and r = p−s we obtain a(u, u−w)−a(w, u−w) = 0 or 〈A(u)−A(w), u−
w〉Y ′,Y = 0. Then, as A is strictly monotone we have u = w. To see that p = s we suppose the contrary and
use the surjectivity of B to obtain an element v ∈ Y with 〈B(v), p− s〉X′,X �= 0. However, as u = w we have
0 = a(u, v) − a(w, v) = b(v, p− s) = 〈 B(v), p− s〉X′,X contradicting the choice of v. �

A.3. Some inf-sup conditions

In this paragraph we give proofs of the fact that some of the bilinear operators considered in the text satisfy
the inf-sup condition.

Proof of Lemma 3.2. This proof is just as that for the problem with Darcy flow in the fracture and in the
subdomain (see the proof of [16], Thm. 4.1), only modified for the inf sup condition in the W 3(div)×L 3

2 setting
as in the proof of ([15], Lem. A.3). It clearly suffices to show that the induced mapping Bβ = Div : Wβ −→ M′

β

is surjective and has a continuous right inverse. Given an element ψ = (ψ1, ψ2, ψγ) ∈ M′
β , to construct an

element vψ = (v1,v2,vγ) ∈ Wβ with Bβvψ = ψ and ‖vψ‖Wβ
≤ C‖ψ‖M′

β
one solves the auxiliary problem

Δφ = ψ̂ in Ω, φ = 0 on Γ , with right hand side ψ̂ ∈ L3(Ω), the function that agrees with ψi on Ωi. The
solution φ is in W 2,3(Ω) if Ω is sufficiently regular (otherwise we solve the same homogenous Dirichlet problem
on a larger more regular domain and take the restriction of the solution to Ω), and ‖φ‖2,3,Ω ≤ C‖ψ̂‖0,3,Ω with
a constant C that depends only on Ω. Then v̂ := ∇φ ∈ (W 1,3(Ω))d ⊂ W 3(div, Ω) and divv̂ = ψ̂ ∈ L3(Ω) so
that ‖v̂‖W 3(div,Ω) ≤ (1+dC)‖ψ̂‖0,3,Ω. We also have vi := v̂|Ωi

∈ (W 1,3(Ωi))d ⊂W 3(div, Ωi) with divvi = ψi ∈
L3(Ωi) so that

‖vi‖W 3(div,Ωi) ≤ (1 + dC)‖ψ̂‖0,3,Ω ≤ (1 + dC)
1
c�

(‖ψ1‖0,3,Ω1 + ‖ψ2‖0,3,Ω2) ≤ C̃‖ψ‖M′
β
.
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As vi ∈ (W 1,3(Ωi))d, we have vi · ni ∈ W
2
3 ,3(∂Ωi), where ni is the exterieur unit normal vector on Ωi, and it

follows that vi · ni ∈ L3(γ) ⊂ L2(γ) and

‖vi · ni‖0,2,γ ≤ ‖vi · ni‖ 2
3 ,3,∂Ωi

≤ ‖vi‖W 3(div,Ωi) ≤ C̃‖ψ‖M′
β
.

Thus the pair (v1,v2) is suitable for the first two components of v.
To obtain the third component vγ , note that as v̂ ∈ W 3(div, Ω) we have v1 · n1 + v2 · n2 = 0 on γ, and thus

the problem in the fracture domain γ is decoupled from that in the subdomains Ω1 and Ω2. One has only to
define vγ := ∇φγ where φγ is the solution of Δφγ = ψγ in γ, φγ = 0 on ∂γ. It is straightforward to verify now
that vψ = (v1,v2,vγ) is a suitable antecedent for ψ and that the mapping ψ �→ vψ is continuous from M′

β into
Wβ . �

Lemma A.2. The inf-sup condition holds for the bilinear form b : W ×M −→ R; i.e. there exists θ ∈ R such
that for each r ∈ M

sup
v∈W

b(v, r)
‖v‖W

≥ θ‖r‖M. (A.3)

Proof. The proof of this lemma is just as that of Lemma 3.2 only the auxiliary problem in the subdomains is in
the H(div) × L2 setting. As the auxiliary problems in the subdomains and in the fracture domain decouple no
difficulty arises from the fact that one of these involves H(div)×L2 while the other involves W 3(div)×L 3

2 . �

Acknowledgements. We are grateful to the anonymous referee, who pointed out a considerable simplification of the
original proof of Theorem 1.
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5 (2006) 129–143.

[14] N. Frih, J. Roberts and A. Saada, Modeling fractures as interfaces: a model for forchheimer fractures. Comput. Geosci. 12
(2008) 91–104.

[15] P. Knabner and G. Summ, Solvability of the mixed formulation for Darcy−Forchheimer flow in porous media. Submitted.
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