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Abstract

In this paper, we develop a new disease-resistant mathematical model with a frac-

tion of the susceptible class under imperfect vaccine and treatment of both the

symptomatic and quarantine classes. With standard incidence when the associated

reproduction threshold is less than unity, the model exhibits the phenomenon of

backward bifurcation, where a stable disease-free equilibrium co-exists with a sta-

ble endemic equilibrium. It is then proved that this phenomenon vanishes either when

the vaccine is assumed to be 100% potent and perfect or the Standard Incidence

is replaced with a Mass Action Incidence in the model development. Furthermore,

the model has a unique endemic and disease-free equilibria. Using a suitable Lya-

punov function, the endemic equilibrium and disease free equilibrium are proved to

be globally-asymptotically stable depending on whether the control reproduction num-

ber is less or greater than unity. Some numerical simulations are presented to validate

the analytic results.
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1 Introduction

Infectious diseases have been a major health hazard claiming lives of countless number

of people around the globe. It is therefore imperative and expedient to research more

in these global epidemics. The new contribution of this work is to provide a better and

comprehensive understanding of some category of diseases such as influenza virus,

HIV/AIDS etc where disease resistance plays an important role.

Disease resistance is the phenomenon where some exposed individuals appear unin-

fected after being exposed to diseases. In this case, they become susceptible and take

no part in the disease transmission. In a more general term, it is the phenomenon

whereby a person in the exposed or infected class returns back to the susceptible class

without treatment. This phenomenon has been studied by just few researchers.

Quarantine as a preventive measure has also play important role in disease control

mechanism. It simply means the isolation of infected and exposed individuals in a

safe place to reduce disease transmission. This phenomenon has also been studied by

some researchers like [1,2] in recent years.

Since vaccination is one of the preventive measure against infectious disease, mass

vaccination has been identified as one of the major ways of disease prevention. Lately, it

was discovered that despite mass vaccination of susceptible individuals and millions of

dollars spent, infectious diseases are still prevalent and endemic in almost everywhere

in the world. Vaccines, biologically, are expected to elicit an immune response similar

to what would be triggered by a natural infection without causing the actual infectious

disease [3]. This type of vaccine that partially prevent disease spread by allowing some

pathogen or disease or virus transmission is referred to as leaky or imperfect vaccine.

According to the study in [3], researchers therein opined that imperfect vaccines

are of three types. The first is called leaky vaccine whereby vaccination reduces but

does not eliminate the chances of infection after exposure to an infectious disease. The

second is all-or-nothing vaccine which offers lifetime immunity for some people but

no protection for others. And the third one is waning vaccine which works only for a

short period of time. This is for us to grasp the effect of imperfect vaccine in literature

which ensures its inclusion in this model and mostly because it has been studied only

by few researchers [1,4,5] in mathematical modeling.

The stability analysis of a disease resistant SE I R model was studied by Jia and

Xiao [6]. They used nonlinear incidence rate and later applied the model to influenza

virus. But they only studied the basic SE I R which doesn’t give better insight on the

dynamics of the disease.

In the work of [7], they also studied the basic SE I R model and transcritical bifur-

cation which is very much similar to the one studied by Jia and Xiao [6]. They also

mentioned that very few work has been done on disease-resistant models.

Several researchers like [6,8–12] and references therein have published commend-

able research output about transmission dynamics of infectious diseases. They have

also studied control and prevention strategies of these notorious epidemic. In order to

further extend, complement and contribute to the work of [6,7], a new comprehensive

model has been designed. We also picked insights in [2,4] to improve the quality of

this work. The model we present here is suitable for infectious diseases like influenza

virus, severe acute respiratory syndrome (SARS) and others.
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We hope this research helps policymakers and public health workers in the epidemic

control.

The objectives of this current study are to

1. Incorporate the treatment class by administering a therapeutic vaccine which was

not included in [9].

2. Include a separate compartment (E) for individuals that fail the therapeutic treat-

ment. This wasn’t considered by Okosun et al. [8], Hussaini et al. [9] and Mastahun

and Abdurahman [10]. To the best of our knowledge, it has not been considered

before.

3. Include the influence of resistance to disease.

4. Examine the effect of disease-induced death rate, in the bifurcation analysis, of

the individuals that fail treatment which wasn’t considered by Okosun et al. [8],

Hussaini et al. [9] and Mastahun and Abdurahman [10].

5. Discuss the impact of imperfect vaccine in the susceptible class and in the bifur-

cation analysis.

6. Assess the impact of resistance in disease transmission.

The paper is organized as follows. Section 2 entails model formulation and

assumptions. Basic model analysis, and local asymptotic stability of the disease-free

equilibrium (DFE) of the model are discussed in Sect. 3. Bifurcation analysis of the

model with both standard and mass action incidence rate is completely established

with their respective condition of existence in Sect. 4. Section 5 discusses the global

asymptotic stability of both the endemic equilibrium (EE) and disease-free equilibrium

points. And finally, Sect. 6 contains the assessment of the resistance impact followed

by conclusion in Sect. 7.

2 Model formulation andmodel assumptions

The model analyses the transmission dynamics of an infectious disease with fraction of

susceptible vaccinated and treated individuals. It also qualitatively and quantitatively

examined the combined effect of both vaccination and treatment. It is consequently

designed by, first of all, incorporating standard-incidence rate by splitting the total

human population at time t , denoted by N (t), into seven mutually-exclusive com-

partments of susceptible individuals on vaccination S(t), vaccinated class P(t),

asymptomatic class I1(t), symptomatic class I2(t), quarantine class A(t), treatment

class T (t), and individuals that fail treatment E(t) such that

N (t) = S(t) + P(t) + I1(t) + I2(t) + A(t) + T (t) + E(t).

The treatment compartment T consists of infected individuals under treatment and are

assumed not to participate in disease transmission.

Individuals are recruited into the susceptible population at a rate B. A fraction

q, of the newly recruited individuals, are vaccinated. The susceptible individuals are

vaccinated at the rate α1, ǫ1 is the vaccine potency while ǫ2 denotes the vaccine waning
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rate. The susceptible individuals that are not vaccinated acquire the disease through

effective contact with an infectious individuals at the rate λ given by

λ =
β(I1 + c1 I2 + c2 A + c3 E)

N
, (1)

where β in (1) denotes the effective contact rate that is capable of leading to infection,

0 < c1 < 1 denotes the modification parameter that account for the assumed reduc-

tion in the transmission of disease by the symptomatic class I2 in comparison to the

asymptomatic individuals in I1, 0 < c2, c3 < 1 are the modification parameters for

the A and E class respectively. We also need to understand that the compartment I1

has the highest rate of transmission. This is because the asymptomatic individuals are

those that doesn’t experience any symptom and assumed not to know their status. For

this reason, they are not cautious of themselves and transmit the infection rapidly. This

is followed by the symptomatic I2 that are expected to be cautious of their actions.

For this reason, we assume that c3 < c2 < c1 < 1. We assumed that the vaccine is

imperfect, so that individuals on vaccination acquire less infection at a reduced rate

(1 − ǫ1)λ, where 0 < ǫ1 ≤ 1 denotes the potency or efficacy of the vaccine. Accord-

ing to the research in [6,7], a fraction of both asymptomatic and symptomatic infected

individuals who develop disease-resistant blood cells and immunity capable enough

of protecting them against infections go back to the susceptible class at the rate σ1m1

and σ2m2 respectively. Those without the resistance are quarantined respectively at

the rate (1 − m1)σ1 and (1 − m2)σ2 while natural death occur to anybody at the given

rate z. Therefore, the rate of change of the total population of the susceptible and

vaccinated classes is respectively given by

Ṡ(t) = (1 − q)B − λS − (α1 + z)S + σ1m1 I1 + σ2m2 I2 + ǫ2 P,

Ṗ(t) = q B − (1 − ǫ1)λP − (ǫ2 + z)P + α1S,

where · represents derivative with respect to time.

The asymptomatic infected population is generated by the break-through infection

of vaccinated individuals at the rate (1− ǫ1)λ and the infection of susceptible individ-

uals at the rate λ and it’s decreased by the natural death rate z, symptom appearance

rate α2 and progression rate leading to resistance σ1 so that we have

İ1(t) = [S + (1 − ǫ1)P]λ − (σ1 + z + α2)I1.

Similarly, we compose the symptomatic infected population by the symptom

appearance rate α2 and it’s being decreased by the natural death rate z, progression

rate leading to resistance σ2, treatment rate θ1 and the disease-induced death rate τ1

so that we have

İ2(t) = α2 I1 − (σ2 + z + τ1 + θ1)I2.

Those that don’t have the resistance are quarantined at the rate (1 − m1)σ1 and

(1 − m2)σ2 and this population is decreased by treatment rate θ2, disease-induced

death rate τ2 and natural death rate z so that we have
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Ȧ(t) = (1 − m1)σ1 I1 + (1 − m2)σ2 I2 − (θ2 + z + τ2)A.

In the treatment class, treatment are given to both the symptomatic and quarantined

classes at the rate θ1 and θ2 respectively and are decreased by natural death z, disease-

induced death rate τ3 and treatment-failure γ . Thus

Ṫ (t) = θ1 I2 + θ2 A − (z + τ3 + γ )T .

We didn’t bother to administer the treatment to the I1 class because they are asymp-

tomatic and assumed unaware of their status. And lastly, after the failure of treatment

at the rate γ , we express the treatment-failure class by

Ė(t) = γ T − (τ4 + z)E,

where τ4 is disease-induced death rate. The following are the model equations and the

flowchart (Fig. 1):

d S

dt
= (1 − q)B − λS − (α1 + z)S + σ1m1 I1 + σ2m2 I2 + ǫ2 P, (2)

d P

dt
= q B − (1 − ǫ1)λP − (ǫ2 + z)P + α1S, (3)

d I1

dt
= [S + (1 − ǫ1)P]λ − (σ1 + z + α2)I1, (4)

d I2

dt
= α2 I1 − (σ2 + z + τ1 + θ1)I2, (5)

d A

dt
= (1 − m1)σ1 I1 + (1 − m2)σ2 I2 − (θ2 + z + τ2)A, (6)

dT

dt
= θ1 I2 + θ2 A − (z + τ3 + γ )T , (7)

d E

dt
= γ T − (τ4 + z)E . (8)

Table 1 contains the value of the parameters that will be used in numerical simula-

tions.

3 Model analysis

3.1 Basic properties

Epidemiological meaningfulness of the model (2)–(8) is one of the paramount analysis

in this section since it describes human population. We establish as follows.
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Fig. 1 Flowchart of the model

Table 1 Hypothetical value of

parameters
Parameter Value (per year) Source

B 50,500 Assumed

q [0,1] Variable

β 1.129 Assumed

γ 0.5 Assumed

σ1 0.95 Assumed

σ2 0.99 Assumed

m1 0.35 [7]

m2 0.4 Assumed

ǫ1 [0,1] Variable

z 0.015 [7]

ǫ2 0.8 Assumed

τ1 0.21 Assumed

τ2 0.22 Assumed

τ3 0.24 Assumed

τ4 0.25 Assumed

c1 (0,1) Variable

c2 0.8 [2]

c3 0.16 [4]

α1 0.1 [2]
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3.1.1 Positivity of solution

Theorem 3.1 Let the initial conditions

S(0) > 0, P(0) > 0, I1(0) > 0, I2(0) > 0, A(0) > 0, T (0) > 0, E(0) > 0 (9)

exist in the interval t ∈ [0,∞) then the solutions S(t), P(t), I1(t), I2(t), A(t),

T (t), E(t) of the model (2)–(8) are positive for all t ≥ 0.

Proof Obviously, since the right-hand side of (2)–(8) is locally Liptschitzian, dif-

ferentiable and continuous on the space of continuous function C
′
, the solution of

S(t), P(t), I1(t), I2(t), A(t), T (t), E(t) with respect to (9) uniquely exist on [0, η),

where 0 < η ≤ ∞. Suppose that the solution components of the model equation are

not positive, then ∃ a first time t̄ > 0 defined as follows

t̄ = inf {t |S(t) = 0 or P(t) = 0 or I1(t) = 0 or I2(t) = 0 or A(t) = 0

or T (t) = 0 or E(t) = 0} .

Now if S(t̄) = 0, S(t) > 0, P(t) > 0, I1(t) > 0, I2(t) > 0, T (t) > 0, A(t) >

0, E(t) > 0 for t ∈ (0, t̄) then Ṡ(t̄) < 0. In Contradiction, from (2)

d S(t̄)

dt
= (1 − q)B > 0,

which clearly shows that S(t) > 0. Following the same format, we establish that all

the solutions S(t), P(t), I1(t), I2(t), T (t), A(t), E(t) are positive for all t ≥ 0. ⊓⊔

3.1.2 Feasible region

Lemma 3.2 The biological feasible region

ζ =

{

(S, P, I1, I2, A, T , E) ∈ R
7
+ : S + P + I1 + I2 + T + A + E ≤

B

z

}

is positively attracting and invariant for the model (2)–(8).

Proof Adding up all equations of (2)–(8), we have

d N

dt
= B − zN − (τ1 I2 + τ2 A + τ3T + τ4 E) ≤ B − zN . (10)

From the provision of (10) and the Gronwall Inequality, we have that N (t) ≤

N (0)e−zt + B
z

[

1 − e−zt
]

. Basically, N (t) ≤ B
z

with respect to the condition N (0) ≤
B
z
. Therefore, we have ζ to be positively invariant and attracting which suffices that

system (2)–(8) can be considered in ζ . Hence, the system is considered to be well-

posed mathematically and epidemiologically. ⊓⊔
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3.2 Reproduction number and local stability of DFE

The disease-free equilibrium (DFE) of the model (2)–(8) is given by

ξo = (S∗, P∗, I ∗
1 , I ∗

2 , A∗, T ∗, E∗) =

(

Q1ǫ2 + Qo f3

f1 f3 − α1ǫ2
,

Q1 f1 + α1 Qo

f1 f3 − α1ǫ2
, 0, 0, 0, 0, 0

)

.

(11)

The local stability of ξo will be established using the next generation operator

method [13,14]. The new infection term denoted by non-negative matrix F and the

transition term denoted by the non-negative matrix V of the model (2)–(8) are given

respectively by the M-matrices

F =

⎛

⎜

⎜

⎜

⎜

⎝

βz(S∗+ f2 P∗)
B

βc1z(S∗+ f2 P∗)
B

βc2z(S∗+ f2 P∗)
B

0
βc3z(S∗+ f2 P∗)

B
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

and

V =

⎛

⎜

⎜

⎜

⎜

⎝

f4 0 0 0 0

−α2 f5 0 0 0

−g3 −g4 f6 0 0

0 −θ1 −θ2 f7 0

0 0 0 −γ f8

⎞

⎟

⎟

⎟

⎟

⎠

.

Hence, taking ρ as the spectral radius, the control reproduction number denoted by

Ro = ρ(FV−1) is given by

Ro =
βz(ǫ2 Q1 + Qo f3)[ f6 f7 f8( f5 + c1α2) + c3γ H2 + c2 f7 f8 H1]

B
8
∏

i=4

fi ( f1 f3 − α1ǫ2)

+
βz f2(α1 Qo + Q1 f1)[ f6 f7 f8( f5 + c1α2) + c3γ H2 + c2 f7 f8 H1]

B
8
∏

i=4

fi ( f1 f3 − α1ǫ2)

,

(12)

where

Qo = (1 − q)B, f1 = α1 + z, f2 = 1 − ǫ1, f3 = ǫ2 + z, f4 = σ1 + z + α2,

f8 = τ4 + z, g1 = σ1m1, g2 = σ2m2, g3 = (1 − m1)σ1, g4 = (1 − m2)σ2, Q1 = q B,

H1 = α2g4 + g3 f5, H2 = α2 f6θ1 + α2g4θ2 + g3 f5θ2 = α2 f6θ1 + θ2 H1,

H4 = ǫ2 Q1 + Qo f3 + f2(α1 Qo + Q1 f1), H5 = f7 f8(α2τ1 f6 + τ2 H1) + H2(τ3 f8 + γ τ4),

H6 = f2( f4 f5 − f5g1 − g2α2), Q2 = 1 − q, f6 = θ2 + z + τ2, f7 = z + τ3 + γ,

Q3 = z + α1 + ǫ2, f5 = σ2 + z + τ1 + θ1, H3 = f6 f7 f8( f5 + c1α2) + c3γ H2 + c2 f7 f8 H1,

H7 = f2( f1 f4 f5 − f5g1α1 − g2α1α2) + f3 f5( f4 − g1) − f3g2α2. (13)
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Using (12), we establish the following result.

Lemma 3.3 The DFE of the model (2)–(8), given by (11), is locally asymptotically

stable (LAS) if Ro < 1, and unstable if Ro > 1.

The threshold quantity Ro signifies the average number of new disease infection

generated by a single infection introduced in to a community of totally susceptible

individuals where a fraction of them are vaccinated. The result in Lemma 3.3 shows

that the disease can be eliminated in the community when the control reproduction

number Ro < 1 if the initial size of the population is under the basin of attraction

of the DFE ξo. The proof of Lemma 3.3 is elementary and can be established using

Theorem 2 of [14].

4 Backward bifurcation analysis

In the following lines, we establish the endemic equilibria (EE) of the model (2)–(8).

These are the equilibria where at least one of the disease-infected compartments is

nonzero. Let

ξ∗ = (S∗∗, P∗∗, I ∗∗
1 , I ∗∗

2 , A∗∗, T ∗∗, E∗∗)

represents the endemic equilibrium points EEP of the model (2)–(8). We further define

the force of infection as

λ∗∗ =
β(I ∗∗

1 + c1 I ∗∗
2 + c2 A∗∗ + c3 E∗∗)

N∗∗
. (14)

Solving (2)–(8) at steady states, we obtain the following expressions

S∗∗ + P∗∗ f2 =
f4 f5[λ∗∗ f2(Qo + Q1) + H4]

H6λ∗∗2 + H7λ∗∗ + f4 f5( f1 f3 − α1ǫ2)
, I∗∗

1 =
λ∗∗(S∗∗ + f2 P∗∗)

f4
,

T ∗∗ =
H2λ∗∗(S∗∗ + f2 P∗∗)

f4 f5 f6 f7
, E∗∗ =

γ H2λ∗∗(S∗∗ + f2 P∗∗)

f4 f5 f6 f7 f8

I∗∗
2 =

α2λ∗∗(S∗∗ + f2 P∗∗)

f4 f5
, N∗∗ =

B f4 f5 f6 f7 f8 − H5λ∗∗(S∗∗ + f2 P∗∗)

z f4 f5 f6 f7 f8
,

A∗∗ =
H1λ∗∗(S∗∗ + f2 P∗∗)

f4 f5 f6
. (15)

Substituting all the equations in (15) into (14), it can be shown that the non-zero

equibria of the model satisfy the below quadratic equation in terms of λ∗∗:

aoλ
∗∗2 + a1λ

∗∗ + a2 = 0, (16)

ao = B f6 f7 f8 H6 − H5 f2(Qo + Q1),

a1 = B f6 f7 f8 H7 − zβH3 f2(Qo + Q1) − H4 H5,

a2 = B

8
∏

i=4

fi ( f1 f3 − α1ǫ2)[1 − Ro]. (17)
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The proof of positiveness of ao can be established as follows: g1 + g3 = σ1, g2 +

g4 = σ2. Substituting these into expressions in (13) and the results are substituted in

to ao, the full expansion is positive but cumbersome and thus omitted.

Clearly, ao is positive and a2 ≥ 0 if and only if Ro ≤ 1. To obtain the endemic

equilibria of model (2)–(8), we solve for λ∗∗ in (16) and substitute its positive values

in to expressions in (15). We then obtain endemic equilibria when Ro > 1. Hence,

the unique endemic equilibria can be analyzed in the following theorem.

Theorem 4.1 The model (2)–(8) has

i a unique endemic equilibrium if a2 < 0 ⇐⇒ Ro > 1;

ii a unique endemic equilibrium if a1 < 0 and a2 = 0 or a2
1 − 4aoa2 = 0;

iii two endemic equilibria if a2 > 0, a1 < 0 and a2
1 − 4aoa2 > 0;

iv no endemic equilibrium otherwise.

In the above theorem, case i shows that ∃ a unique endemic equilibrium ξ∗ whenever

Ro > 1. Particularly, case iii shows the possibility of backward bifurcation. This is

the phenomenon where an asymptotically stable DFE coexists with an asymptotically

stable endemic equilibrium whenever Ro < 1 [2,4]. To prove this fact, a critical value

of Ro denoted by Rc
o can be obtained by solving the discriminant a2

1 − 4aoa2 = 0 to

obtain

a2
1 − 4aoa2 = 0 
⇒ a2

1 = 4aoa2 
⇒ 4aoa2

(

1 −
a2

1

4aoa2

)

= 0


⇒ 1 −
a2

1

4aoa2
= 0 
⇒ R

c
o = 1 −

a2
1

4ao

[

B
8
∏

i=4

fi ( f1 f3 − α1ǫ2)(1 − Ro)

]
.

Thus, possibility of backward bifurcation would occur for values of Rc
o < Ro < 1.

This can be illustrated by the bifurcation diagram presented in Fig. 2.

Brief explanation of the figure

In the bifurcation curve, we plotted the force of infection λ∗∗ (this is because the

equation in (16) was expressed in terms of λ∗∗) against the reproduction number

using the values in Table 1. For values of Ro less than unity, the DFE is locally

asymptotically stable but unstable for values of Ro greater than unity which supports

the provision of Lemma 3.3. On the other-hand, for values of Ro less than unity, the

EE becomes unstable but stable for values of Ro greater than unity. Since equation

(16) was expressed in terms of λ∗∗ whose expression in (14) can only be positive

if Ro > 1 (since I ∗∗
1 , I ∗∗

2 , A∗∗, T ∗∗, E∗∗ only exist for values of Ro > 1) and

coefficients of equation (17) which shows the existence of EE can only be positive for

values of Ro < 1, this shows the coexistence of both DFE and EE whenever Rc
o <

Ro < 1 confirming that the model equation undergoes the phenomenon of backward

bifurcation as depicted in the bifurcation curve. We also have Ro = 0.9458 < 1 and

Rc
o = 0.8683 < 1 so that (Rc

o < Ro < 1). This vividly shows that there is coexistence

of two equilibria when Rc
o < Ro < 1, and it consequently confirms the existence of

backward bifurcation [2,4,5].
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Fig. 2 Bifurcation diagram

The epidemiological implication of this is that the classical condition of Ro < 1

is only necessary but not sufficient enough to ensure complete eradication of the

infectious disease.

4.1 Non-existence of Backward Bifurcation

Since bifurcation is an unfortunate phenomenon that hinder the elimination of infection

in the community and our aim is to facilitate the effective elimination or reduction of

the disease spread, it is therefore imperative to examine scenarios that will ensure the

removal of the bifurcation property of the model.

In this section, we shall examine two scenarios listed and proved below.

Case 1: Use of Perfect Vaccine.

A perfect vaccine is a vaccine with 100% efficacy and potency. We shall consider

the model equation (2)–(8) with a perfect vaccine (i.e. when ǫ1 = 1). This will make

the endemic equilibrium to be non-existing whenever Ro < 1. It is worth noting that

bifurcation only occur when there is multiple endemic equilibria whenever Ro < 1.

Firstly, when ǫ1 = 1 the control reproduction number in (12) reduces to

Rp = Ro|ǫ1=1 =
βz(ǫ2 Q1 + Qo f3)[ f6 f7 f8( f5 + c1α2) + c3γ H2 + c2 f7 f8 H1]

B
8
∏

i=4

fi ( f1 f3 − α1ǫ2)

.

(18)
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We state and prove the following theorem.

Theorem 4.2 The disease-resistant model (2)–(8) with perfect vaccine has no endemic

equilibrium whenever Rp ≤ 1 and has a unique endemic equlibrium otherwise.

Proof Let ǫ1 = 1 i.e. f2 = 0 in the model (2)–(8) thereby reducing (16) to

ā1λ
∗∗ + ā2 = 0 (19)

where

ā1 = B f6 f7 f8[ f3 f5( f4 − g1) − f3g2α2] − (ǫ2 Q1 + Qo f3)

× [ f7 f8(α2τ1 f6 + τ2 H1) + H2(τ3 f8 + γ τ4)]

ā2 = B

8
∏

i=4

fi ( f1 f3 − α1ǫ2)(1 − Rp).

Clearly, ā1 > 0 and ā2 ≥ 0 whenever Rp ≤ 1 so that λ∗∗ = − ā2
ā1

≤ 0.

Therefore, for this case, the linear equation in (19) has no positive solution and as

such, has no positive endemic equilibrium whenever Rp ≤ 1. Hence, Theorem 4.2 is

proved.

The proof of the positiveness of ā1 can be carried out using method similar to the

one presented earlier. ⊓⊔

In this case, possibility of backward bifurcation is consequently ruled out. This is

because bifurcation only occur when at least two positive endemic equilibria exist

whenever Rp ≤ 1 [2,4].

Furthermore, we assumed that the perfect vaccine has a negligible waning rate i.e.

(ǫ2 = 0). This means f3 = z and the new control reproduction number becomes

R̂p = Ro|ǫ1=1,ǫ2=0 =
βzQo[ f6 f7 f8( f5 + c1α2) + c3γ H2 + c2 f7 f8 H1]

B f1

∏8
i=4 fi

. (20)

Using the reproduction number in (20), the disease-resistant model (2)–(8) with

perfect vaccine and negligible waning rate has no endemic equilibrium whenever

R̂p ≤ 1 and has a unique endemic equlibrium otherwise. The proof can be established

using similar method as in the proof of Theorem 4.2.

Case II The Mass-Action Model.

According to the work of [2], it was reported that some mathematical models for

infectious disease undergo the phenomenon of backward bifurcation whenever the

associated reproduction number is less than unity which usually hinder the reduction

and elimination of the disease in the community. This phenomenon can be removed

by replacing the standard incidence function with mass action function. In particular,

[4] applied the technique to measles model while [5] applied the technique to dengue

fever model. Here, we shall use the same technique to analyze the removal of backward

bifurcation in a disease-resistant mathematical model. This shows that they have a
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negligible disease-induced mortality rate. We will now consider model (2)–(8) with

negligible disease-induced mortality rate i.e. τ1 = τ2 = τ3 = τ4 = 0 as follows.

Substituting τ1 = τ2 = τ3 = τ4 = 0 into (10), we have

d N

dt
= B − zN 
⇒ N →

B

z
as t → ∞.

Therefore, B
z

is an upper bound for N (t) provided that N (0) ≤ B
z
. Using N = B

z
in

(1), we have

λmas = β́(I1 + c1 I2 + c2 A + c3 E) (21)

as the force of infection for the mass-action model where β́ =
zβ
B

.

The mass-action model equation is given below

d S

dt
= Qo − (λmas + f1)S + g1 I1 + g2 I2 + ǫ2 P, (22)

d P

dt
= Q1 − P( f3 + f2λmas) + α1S, (23)

d I1

dt
= [S + f2 P]λmas − f4 I1, (24)

d I2

dt
= α2 I1 − f́5 I2, (25)

d A

dt
= g3 I1 + g4 I2 − f́6 A, (26)

dT

dt
= θ1 I2 + θ2 A − f́7T , (27)

d E

dt
= γ T − f́8 E, (28)

where

f́5 = σ2 + z + θ1, f́6 = θ2 + z, f́7 = z + γ, f́8 = z.

The DFE of (22)–(28) is the same with the one presented in (11).

Using the same approach as in (12), we calculate the reproduction number of the

mass-action model as follows:

F =

⎛

⎜

⎜

⎜

⎜

⎝

β́(S∗ + f2 P∗) β́c1(S∗ + f2 P∗) β́c2(S∗ + f2 P∗) 0 β́c3(S∗ + f2 P∗)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠
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and

V =

⎛

⎜

⎜

⎜

⎜

⎝

f4 0 0 0 0

−α2 f́5 0 0 0

−g3 −g4 f́6 0 0

0 −θ1 −θ2 f́7 0

0 0 0 −γ f́8

⎞

⎟

⎟

⎟

⎟

⎠

.

Hence, taking ρ as the spectral radius, the control reproduction number of the

mass-action model denoted by Rmas = ρ(FV−1) is given by

Rmas =
β́(ǫ2 Q1 + Qo f3)[ f́6 f́7 f́8( f́5 + c1α2) + c3γ H́2 + c2 f́7 f́8 H́1]

f4

∏8
i=5 f́i ( f1 f3 − α1ǫ2)

+
β́ f2(α1 Qo + Q1 f1)[ f́6 f́7 f́8( f́5 + c1α2) + c3γ H́2 + c2 f́7 f́8 H́1]

f4

∏8
i=5 f́i ( f1 f3 − α1ǫ2)

(29)

where

H́2 = α2 f́6θ1 + α2g4θ2 + g3 f́5θ2 = α2 f́6θ1 + θ2 H́1,

H́1 = α2g4 + g3 f́5, H́4 = ǫ2 Q1 + Qo f3 + f2(α1 Qo + Q1 f1),

H́7 = f2( f1 f4 f́5 − f́5g1α1 − g2α1α2) + f3 f́5( f4 − g1) − f3g2α2,

H́3 = f́6 f́7 f́8( f́5 + c1α2) + c3γ H2 + c2 f́7 f́8 H́1, H́6 = f2( f4 f́5 − f́5g1 − g2α2).

(30)

We establish the local asymptotic stability of the mass-action model using the

following lemma.

Lemma 4.3 The DFE of the mass-action model (22)–(28), given by (11), is locally-

asymptotically stable (LAS) if Rmas < 1, and unstable if Rmas > 1.

The proof of this lemma is elementary and thus omitted.

4.1.1 Nonexistence of endemic equilibriumwhenRmas ≤ 1

Here, we will establish that the mass-action model does not have any positive endemic

equilibrium when Rmas ≤ 1. We claim and prove the Theorem below.

Theorem 4.4 The mass-action model (22)–(28) has no positive endemic equilibrium

whenever Rmas ≤ 1 and has a unique positive endemic equilibrium otherwise.

Proof Let

ξ́∗ = (S∗∗, P∗∗, I ∗∗
1 , I ∗∗

2 , A∗∗, T ∗∗, E∗∗)

represents the endemic equilibrium points EEP of the model (22)–(22). Solving (22)–

(28) at steady states, we obtain the following expressions

S∗∗ + P∗∗ f2 =
f4 f́5[λ∗∗

mas f2(Qo + Q1) + H4]

H́6λ∗∗2
mas + H́7λ∗∗

mas + f4 f́5( f1 f3 − α1ǫ2)
, I∗∗

1 =
λ∗∗

mas(S∗∗ + f2 P∗∗)

f4
,
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I∗∗
2 =

α2λ∗∗
mas(S∗∗ + f2 P∗∗)

f4 f́5
, A∗∗ =

H́1λ∗∗
mas(S∗∗ + f2 P∗∗)

f4 f́5 f́6
,

T ∗∗ =
H́2λ∗∗

mas(S∗∗ + f2 P∗∗)

f4 f́5 f́6 f́7
, E∗∗ =

γ H́2λ∗∗
mas(S∗∗ + f2 P∗∗)

f4 f́5 f́6 f́7 f́8
. (31)

Substituting all the equations in (31) into (21), it can be shown that the non-zero

equibria of the model satisfy the following quadratic equation in terms of λ∗∗
mas :

a3λ
∗∗2
mas + a4λ

∗∗
mas + a5 = 0 (32)

a3 = f́6 f́7 f́8 H́6 > 0

a4 = f́6 f́7 f́8 H́7 − β́ H́3 f2(Qo + Q1)

a5 = f4

8
∏

i=5

f́i ( f1 f3 − α1ǫ2)[1 − Rmas]. (33)

Hence, a4 ≥ 0 whenever Rmas ≤ 1. Explicitly, all the coefficients a3, a4, a5 are

positive whenever Rmas ≤ 1 (the proof of their positiveness can be found under the

Appendix). Therefore, under the condition Rmas ≤ 1, the quadratic equation (32) has

no positive root. Hence, the model equation (22)–(28) has no positive endemic equilib-

rium whenever Rmas ≤ 1. This consequently removes the bifurcation phenomenon.

5 Global asymptotic stability of themass-actionmodel

In this section, we shall establish the global asymptotic stability of both the DFE points

and EE points of the mass-action model (22)–(28). Using the approach of [15], we

re-express (22)–(28) in the following form.

Ẋ = L(X , Y ) (34)

Ẏ = M(X , Y ), M(X , 0) = 0 (35)

where the vector X = (S, P) denote the uninfected compartment of the system and

Y = (I1, I2, A, T , E) ∈ R
5
+ represents the infected compartments.

Using the provision of equation (11) to establish the stability analysis, the following

two conditions must be satisfied:

N1 : For Ẋ(t) = L(Xo, 0), Xo is globally asymptotically stable. N2 : M(X , Y ) =

JY − M̂(X , Y ), M̂(X , Y ) ≥ 0 for X , Y ∈ �m where J = ∂ M
∂Y

(Xo, 0).

From our model equation, we obtain the Jacobian matrix of only the infected com-

partment at DFE as follows:
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JY =

⎡

⎢

⎢

⎢

⎢

⎣

U4β − f4 U4c1β U4c2β 0 U4βc3

α2 − f́5 0 0 0

g3 g4 − f́6 0 0

0 θ1 θ2 − f́7 0

0 0 0 γ − f́ 8

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

I1

I2

A

T

E

⎤

⎥

⎥

⎥

⎥

⎦

,

where U∗
4 = (S∗ + f2 P∗), U4 = (S + f2 P),

M̂(X , Y ) = JY − M(X , Y )

=

⎡

⎢

⎢

⎢

⎢

⎣

β(I1 + c1 I2 + c2 A + c3 E)U∗
4 − f4 I1

α2 I1 − f́5 I2

g3 I1 + g4 I2 − f́6 A

θ1 I2 + θ2 A − f́7T

γ T − f́8 E

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎣

β(I1 + c1 I2 + c2 A + c3 E)U4 − f4 I1

α2 I1 − f́5 I2

g3 I1 + g4 I2 − f́6 A

θ1 I2 + θ2 A − f́7T

γ T − f́8 E

⎤

⎥

⎥

⎥

⎥

⎦

,

M̂(X , Y ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

β(I1 + c1 I2 + c2 A + c3 E)(S∗ + f2 P∗)
(

1 −
S+ f2 P

S∗+ f2 P∗

)

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where M̂(X , Y ) ≥ 0 if
(

S+ f2 P
S∗+ f2 P∗

)

≤ 1. It can be seen that limt−→∞ X(t) = Xo and

J is an M-matrix, thus Xo is globally asymptotically stable, hence, N1 is satisfied.

Also M̂(X , Y ) > 0, for (X , Y ) ∈ �m . Hence, N2 is satisfied and ξo is globally

asymptotically stable whenever Rmas < 1.

This shows that all solution of the mass action model with equation (21) and the

initial conditions in ζ , approaches the DFE ξo as t tends to ∞ whenever Rmas < 1.

This result is expressed numerically in Fig. 3 (time series plot) after simulating the mass

action model using parameter values in Table 1 (with β́ = 0.0003) when Rmas < 1.

Fig. 3 Time series plot of the mass action model for Rmas < 1
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Brief explanation of Fig. 3

Figure 3 above depicts the behavior of the infected population of the mass action model

for values of Rmas < 1. The initial population used is S=300, P=200, I1=100, I2=70,

A=50, T =20, E=10 while other parameter values are in Table 1. When β́ = 0.0003,

Rmas = 0.00026 which is less than unity. It can be noticed that when the repro-

duction number for the mass action model is less than unity, the infected population

reduces significantly (but not equal to zero). This clearly shows that the DFE is stable

asymptotically.

5.1 Global Stability analysis of the EEP For special case

We consider the special case where the vaccine doesn’t wane (ǫ2 = 0), no vaccination

programme (α1 = 0), both quarantined and treatment failure classes do not transmit

the disease ie. (c2 = c3 = 0) and no resistance to the disease i.e. m1 = m2 = 0 so

that the model reduces to

d S

dt
= Qo − (λ́mas + z)S, (36)

d P

dt
= Q1 − P(z + f2λ́mas), (37)

d I1

dt
= (S + f2 P)λ́mas − f4 I1, (38)

d I2

dt
= α2 I1 − f́5 I2, (39)

d A

dt
= σ1 I1 + σ2 I2 − f́6 A, (40)

dT

dt
= θ1 I2 + θ2 A − f́7T , (41)

d E

dt
= γ T − zE, (42)

where λ́mas = β́(I1 + c1 I2), β́ =
βz
B

. It can be established that the reproduction

number for the reduced model is given by

Ŕmas =
β́[(Qo + f2 Q1)(α2c1 + f́5)]

z f4 f́5

. (43)

If Ŕmas > 1, the endemic equilibrium is given by

ξ́∗
2 = (S∗∗, P∗∗, I ∗∗

1 , I ∗∗
2 , A∗∗, T ∗∗, E∗∗).

Hence, we claim the following result without proof.

Lemma 5.1 The reduced model (36)–(42) with (43) has a unique positive endemic

equilibrium ξ́∗
2 whenever Ŕmas > 1.
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We define the invariant region ζ2 as follows:

ζ2 =
{

(S, P, I1, I2, A, T , E) ∈ R
7
+ : I1 = I2 = A = T = E = 0

}

(44)

Theorem 5.2 The unique positive endemic equilibrium ξ́∗
2 of the reduced model (36)–

(42) with (43) is globally-asymptotically stable in ξ́∗
2 if Ŕmas > 1.

Proof Since Lemma 5.1 has already been established for the reduced model (36)–

(42) with (43) whenever Ŕmas > 1, we construct the following non-linear Lyapunov

function for the subsystem consisting of the first four equations as follows:

J =
β́

z

[

S − S∗∗ − S∗∗ ln

(

S

S∗∗

)]

+
β́

z

[

P − P∗∗ − P∗∗ ln

(

P

P∗∗

)]

+
β́

α2

[

I1 − I ∗∗
1 − I ∗∗

1 ln

(

I1

I ∗∗
1

)]

+ β́z

[

I2 − I ∗∗
2 − I ∗∗

2 ln

(

I2

I ∗∗
2

)]

.

The Lyapunov derivative with respect to t is given by

J̇ =
β́

z

[

Ṡ −
S∗∗

S
Ṡ

]

+
β́

z

[

Ṗ −
P∗∗

P
Ṗ

]

+
β́

α2

[

İ1 −
I ∗∗
1

I1
İ1

]

+ β́z

[

İ2 −
I ∗∗
2

I2
İ2

]

.

Using (36)–(39), we have

J̇ =
β́

z

[

Qo − (z + λ́mas)S −
S∗∗

S

{

Qo − (z + λ́mas)S
}

]

+
β́

z

[

Q1 − (z + f2λ́mas)P −
P∗∗

P

{

Q1 − (z + f2λ́mas)P
}

]

+
β́

α2

[

(S + f2 P)λ́mas − f4 I1 −
I ∗∗
1

I1

{

(S + f2 P)λ́mas − f4 I1

}

]

+ β́z

[

α2 I1 − f́5 I2 −
I ∗∗
2

I2

{

α2 I1 − f́5 I2

}

]

. (45)

From (36)–(39), it can be shown that

Qo = zS∗∗ + β́(I ∗∗
1 + c1 I ∗∗

2 )S∗∗, Q1 = P∗∗z + P∗∗ f2β́(I ∗∗
1 + c1 I ∗∗

2 ) (46)

f4 =
S∗∗β́(I ∗∗

1 + c1 I ∗∗
2 ) + f2 P∗∗(I ∗∗

1 + c1 I ∗∗
2 )

I ∗∗
1

, f5 I ∗∗
2 =

β́α2(I ∗∗
1 + c1 I ∗∗

2 )(S∗∗ + f2 P∗∗)

f4

(47)

σ1 I ∗∗
1 + σ2 I ∗∗

2 = f6 A∗∗, θ1 I ∗∗
2 + θ2 A∗∗ = f́7T ∗∗, γ T ∗∗ = f́8 E∗∗. (48)
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Substituting (46) and (47) in (45), we have

J̇ =
β́

z

[

zS∗∗ + λ́∗∗
mas S∗∗ − λ́mas S − zS −

S∗∗

S
[zS∗∗ + λ́∗∗

mas S∗∗] + zS∗∗ + λ́∗∗
mas S∗∗

]

+
β́

z

[

P∗∗z + f2(P∗∗λ́∗∗
mas − P λ́mas ) − Pz −

P∗∗

P

{

P∗∗z + (P∗∗λ́∗∗
mas − P λ́mas ) f2 − Pz

}

]

+
β́

α2

[

Sβ́(I1 + c1 I2) + f2 Pβ́(I1 + c1 I2) −

(

(S∗∗ + f2 P∗∗)λ́∗∗
mas

I∗∗
1

)

I1 −
I∗∗
1 Sλ́mas

I1

]

−
β

α2

[

I∗∗
1 f2 Pβ́(I1 + c1 I2)

I1
+

(

(S∗∗ + f2 P∗∗)β́(I∗∗
1 + c1 I∗∗

2 )

I∗∗
1

)

I∗∗
1

]

+
´β f4z

α2

[

α2 I1 −

(

β́α2(S∗∗ + f2 P∗∗)λ́∗∗
mas

f4 I∗∗
2

)

I2 −
α2 I∗∗

2 I1

I2
−

(

β́α2(S∗∗ + f2 P∗∗)λ́∗∗
mas

f4 I∗∗
2

)

I∗∗
2

]

After some simplification and factorization, we have

J̇ = β́S∗∗

(

2 −
S∗∗

S
−

S

S∗∗

)

+
β́

z

[

S∗∗β́(I∗∗
1 + c1 I∗∗

2 ) − λ́mas S −
λ́∗∗

mas S∗∗2

S
+ λ́mas S∗∗

]

+ β́ P∗∗

(

2 −
P∗∗

P
−

P

P∗∗

)

+
β́

z

[

P∗∗ f2β́(I∗∗
1 + c1 I∗∗

2 ) + β́(I1 + c1 I2)(P∗∗ f2 − P f2)
]

+ I2 P∗∗c1 f2

(

3 −
S

S∗∗
−

P I2

P∗∗ I∗∗
2

−
I2

I∗∗
2

)

+ I2 Pc1

(

3 −
I2

I∗∗
2

−
I∗∗
2 P

I2 P∗∗
−

I∗∗
2 P∗∗

I2 P

)

+ P I∗∗
2 f2 I1

(

4 −
P

P∗∗
−

I2

I∗∗
2

−
I1 I∗∗

2

I∗∗
1 I2

−
SI∗∗

1 I2

S∗∗ I1 I∗∗
2

)

.

which gives

J̇ ≤ β́S∗∗

(

2 −
S∗∗

S
−

S

S∗∗

)

+ β́ P∗∗

(

2 −
P∗∗

P
−

P

P∗∗

)

+
β́2(I∗∗

1 + c1 I∗∗
2 )S∗∗

z

[

2 −
(I1 + c1 I2)S

(I∗∗
1 + c1 I∗∗

2 )S∗∗
−

S∗∗

S

]

+ I2 P∗∗c1 f2

(

3 −
S

S∗∗
−

P I2

P∗∗ I∗∗
2

−
I2

I∗∗
2

)

+ I2 Pc1

(

3 −
I2

I∗∗
2

−
I∗∗
2 P

I2 P∗∗
−

I∗∗
2 P∗∗

I2 P

)

+ P I∗∗
2 f2 I1

(

4 −
P

P∗∗
−

I2

I∗∗
2

−
I1 I∗∗

2

I∗∗
1 I2

−
SI∗∗

1 I2

S∗∗ I1 I∗∗
2

)

.

Consequently, since the arithmetic mean exceeds the geometric mean, then we have

(

2 −
S∗∗

S
−

S

S∗∗

)

≤ 0,

(

2 −
P∗∗

P
−

P

P∗∗

)

≤ 0,

(

3 −
I2

I ∗∗
2

−
I ∗∗
2 P

I2 P∗∗
−

I ∗∗
2 P∗∗

I2 P

)

≤ 0,

β́2(I ∗∗
1 + c1 I ∗∗

2 )S∗∗

z

[

2 −
(I1 + c1 I2)S

(I ∗∗
1 + c1 I ∗∗

2 )S∗∗
−

S∗∗

S

]

≤ 0,

(

3 −
S

S∗∗
−

P I2

P∗∗ I ∗∗
2

−
I2

I ∗∗
2

)

≤ 0

(

4 −
P

P∗∗
−

I2

I ∗∗
2

−
I1 I ∗∗

2

I ∗∗
1 I2

−
SI ∗∗

1 I2

S∗∗ I1 I ∗∗
2

)

≤ 0.
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Since S ≥ 0, P ≥ 0, I1 ≥ 0, I2 ≥ 0, A ≥ 0, T ≥ 0, E ≥ 0 and Lemma 5.1

is satisfied, it follows that J̇ ≤ 0 since all other model parameters are non-negative.

Furthermore, J̇ = 0 if and only if S = S∗∗, P = P∗∗, I1 = I ∗∗
1 , I2 = I ∗∗

2 . Thus,

J̇ is a Lyapunov function of the subsystem (36)–(39) on ζ2. It therefore follow by

LaSalle’s Invariance Principle [16] that

lim
t−→∞

S(t) = S∗∗, lim
t−→∞

P(t) = P∗∗, lim
t−→∞

I1(t) = I ∗∗
1 , lim

t−→∞
I1(t) = I ∗∗

1 ,

limt−→∞ I2(t) = I ∗∗
2 . It also follows that

lim
t−→∞

inf S(t) = lim
t−→∞

sup S(t) = S∗∗, lim
t−→∞

inf P(t) = lim
t−→∞

sup P(t) = P∗∗,

lim
t−→∞

inf I1(t) = lim
t−→∞

sup I1(t) = I ∗∗
1 , lim

t−→∞
inf I2(t) = lim

t−→∞
sup I2(t) = I ∗∗

2 .

Therefore, for sufficiently small δ > 0, ∃ t∗ > 0 such that

lim
t−→∞

sup S(t) ≤ S∗∗ + δ, lim
t−→∞

sup P(t) ≤ P∗∗ + δ,

lim
t−→∞

sup I1(t) ≤ I ∗∗
1 + δ, lim

t−→∞
sup I2(t) ≤ I ∗∗

2 + δ.

for all t > t∗.

Now from (42), we have

d E

dt
= γ T − zE 
⇒

d E

dt
≤ γ (T ∗∗ + δ) − zE

By comparison [17], we have

lim
t−→∞

E(t) ≤
γ (T ∗∗ + δ)

z

For sufficiently small δ, we have

lim
t−→∞

E(t) ≤
γ T ∗∗

z
(49)

Similarly, for sufficiently small δ, we have

lim
t−→∞

E(t) ≥
γ T ∗∗

z
. (50)

It is concluded from (49) and (50) that

lim
t→∞

E(t) = E∗∗

where

E∗∗ =
γ T ∗∗

z
.
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Fig. 4 Time series plot of the reduced model for Ŕmas > 1

The same approach can be used for T → T ∗∗ and A → A∗∗. Therefore all solutions

of the model (36)–(42) with condition (9) approaches the endemic equilibrium ξ́∗
2

as t → ∞ for Ŕmas > 1. Hence, the endemic equilibrium of the reduced model

(36)–(42) is globally asymptotically stable. ⊓⊔

The numerical simulation of the reduced model (36)–(42) with (43) such that

Ŕmas > 1 using parameter values on Table 1 is presented in Fig. 4 confirming Theorem

5.2.

Brief explanation of Fig. 4

Figure 4 above depicts the behavior of the infected population of the reduced model

for values of Rmas > 1. The initial population used is S = 30,000, P = 20,000,

I1 = 10,000, I2 = 5000, A = 1000, T = 500, E = 20 while other parameter values

are in Table 1. When β́ = 1.9000, Rmas = 1.5918 which is greater than unity. It can

be noticed that when the reproduction number for the mass action model is greater

than unity, the infected population grows significantly. This clearly shows that the EE

is stable asymptotically confirming the provision of Theorem 5.2.

6 Assesment of the resistance impact

In this section, we perform the numerical simulation of the system of the model to

validate the points highlighted in the analytical results and to understand the impact of

the resistance. The numerical simulation will help to understand the projected benefit

of virus resistance blood cells in disease transmission. All other parameters used are

properly referenced in Table 1.

Figure 5 represents the effect of resistance level (0–95%) for m1 and (0–98%) for

m2 on appearance of new infection. Using Python Programming Language, we present

the potential impact of disease resistance on the appearance of new infections in the

population. We vary the resistance 0% ≤ m1 ≤ 95% and 0% ≤ m2 ≤ 98% with

reference to the initial condition. The simulation results are presented in Fig. 6. It can

be easily seen that as the resistance increases in the blood cells, the transmission of the
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Fig. 5 Effect of resistance on the appearance of new infected population

Fig. 6 Effect of resistance on the appearance of new susceptible uninfected population

disease becomes reduced. This result emphasizes the potential benefit of resistance

when the cells developed it at higher level. We also note that the highest peak of the

new infection ie. 1.4 million is reached when the cells gain no resistance to infection

and the lowest level is reached i.e 200,000 when the resistance is as high as 95% and

98% respectively.

Figure 6 represents the effect of resistance on appearance of new susceptible unin-

fected population.

We can easily observe that an increase in resistance translates to increase in unin-

fected individuals. It’s not that the resistance is curing the infected population but only

increasing the uninfected susceptible population by reducing the rate at which the

disease is been contacted and transmitted. This result emphasizes the potential benefit

of resistance when the cells developed it at a higher level. We also note that the highest

peak of the new uninfected population ie. 1.6 million is reached when the cells gain

the highest resistance to infection and the lowest level is reached i.e 700,000 when the

resistance is at the lowest level.
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7 Conclusion

In this study, a new model representing the dynamics of disease resistance using an

autonomous nonlinear system of ordinary differential equations incorporating quaran-

tine, treatment and imperfect vaccine was developed and analyzed. The fundamental

properties of the model including positivity solution, feasible region, analysis of the

control reproduction number and its bifurcation analysis, equilibria points and its sta-

bility were thoroughly discussed. The model exhibits both disease-free and endemic

equilibrium points. The analysis shows that there is bifurcation which can be removed

either when the vaccine is perfect or when the standard incidence is replaced with

mass action incidence.

The global stability analysis of the DFE was carried out using the approach of [15]

while the global stability analysis of the endemic equilibrium points was carried out

using a suitable Lyapunov function.

The model analysis vividly shows that all effort should be made so that individuals

can develop resistance to the disease under suitable quarantine condition.

The model can be modified to include other dynamics that can influence the spread

of the disease. We can particularly relax some assumptions of the model or include

other measures so that the disease can be reduced or eradicated. Optimal control and

cost-effectiveness among others can also be carried out to gain more knowledge about

the dynamics of the model. The model can be modified and applied to HIV/AIDS

which is our future study.
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Appendix

Computation of the positiveness of a3, a4 and a5

H́6 = f2( f4 f́5 − f́5g1 − g2α2) = f2[(σ1 + z + α2)U1 − U1σ1m1 − α2σ2m2]

= f2[(1 − m1)(σ1U1 + α2σ2) + α2(z + θ1)]

+z f́5 f2 + f2[σ2α2(1 − m2)]

= f2[(g3 + z)(g2 + g4 + z + θ1) + α2U2] > 0

0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1.

where U1 = σ2 + z + θ1, U2 = g4 + z + θ1.

Hence, a3 is positive.

H́7 = f2( f1 f4 f́5 − f́5g1α1 − g2α1α2) + f3 f́5( f4 − g1) − f3g2α2

= f2[−α1α2g2 − α1g1U3 + f1(g1 + g3 + z + α2)U3]

+ (z + ǫ2)(g2 + g4 + z + θ1)(g3 + z + α2) − (z + ǫ2)g2α2

where U3 = g2 + g4 + z + θ1, after some simplifications, we arrive at
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H́7 = f1 f2[z
2 + H9z + H8] + ǫ2(z

2 + H9z + H8) + z3 + H9z2

+ H8z + z f2[g1(z + K ) + α2g2] > 0

where

H8 = α2(g4 + θ1) + g3(g2 + g4 + θ1), H9 = α2 + g2 + g3 + g4 + θ1, f1 = α1 + z,

K = g1 + g2 + θ1.

To show that a4 is positive, it is sufficient for us to show that
β́ H́3 f2 B

f́6 f́7 f́8 H́7
≤ 1 whenever

Rmas ≤ 1. Equation (29) can be re-expressed as

Rmas =
β́ H́3 Q3

f4 f́5 f́6 f́7 f́8
+

β́ H́3 Q4 f2

f4 f́5 f́6 f́7 f́8
, Rmas ≤ 1 
⇒

β́ H́3 Q3

f4 f́5 f́6 f́7 f́8
+

β́ H́3 Q4 f2

f4 f́5 f́6 f́7 f́8
≤ 1

β́ H́3 ≤
f4 f́5 f́6 f́7 f́8

Q3 + Q4 f2
, (51)

where Q3 =
ǫ2 Q1+Qo f3

f1 f3−α1ǫ2
> 0, Q4 =

α1 Qo+Q1 f1

f1 f3−α1ǫ2
> 0.

Hence,

β́ H́3 f2 B

f́6 f́7 f́8 H́7

≤
f2 B f4 f́5

(Q3 + Q4 f2)H́7

.

It is also sufficient to show that

f2 B f4 f́5 − (Q3 + Q4 f2)H́7 = B f2 K1U3[−α1ǫ2 − (α1 + z)(ǫ2 + z)]

− [ǫ2q B + (1 − q)B(ǫ2 + z) + f2 B(α1 + zq)]

[ f2[(α1 + z)K1U3 − U3g1α1 − g2α1α2]

+ (ǫ2 + z)(g2 + g4 + z + θ1)(g3 + z + α2)] < 0,

where K1 = g1 + g3 + z + α2, so that
β́ H́3 f2 B

f́6 f́7 f́8 H́7
≤ 1.
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