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Abstract We deal with a second order image decomposition model to perform
denoising and texture extraction that was previously presented. We look for
the decomposition of an image as the summation of three different order terms.
For highly textured images the model gives a two-scale texture decomposition:
the first order term can be viewed as a macro-texture (larger scale) which
oscillations are not too large and the zero-order term is the micro-texture (very
oscillating) that contains the noise. Here, we perform mathematical analysis of
the model and give qualitative properties of solutions using the dual problem
and inf-convolution formulation.

Keywords Second order total variation · image decomposition · variational
method · inf-convolution
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1 Introduction

The most famous variational denoising model is the Rudin-Osher-Fatemi [1]
one. This model involves a regularization term that preserves discontinuities,
what a classical Sobolev type -Tychonov regularization method does not. The
observed image to recover is split in two parts : one represents the oscillating
component (noise or texture) and the other one is a smooth part, namely a
function of bounded variation [2–4]. The regularization term involves only this
so-called cartoon component, while the remainder term represents the noise
to be minimized.

A lot of people have investigated such decomposition models based on
variational formulation, considering that an image can be decomposed into
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many components, each component describing a particular property of the
image ([5–10] and references therein for example).

In [11,12] we have presented second order models where the (first order)
classical total variation term has been replaced by a second order total vari-
ation term with the appropriate functional framework, namely the space of
functions with bounded hessian introduced in [13] (see also [11,12,14]). The
use of such a model allows to get rid of the staircasing effect that appears with
the ROF model in denoising processes. To achieve this goal K. Bredies and al.
have recently introduced a second order generalized total variation definition
[15–17] which is a nice compromise/mixture between the first and second order
derivatives. It is, in some sense, an extension of the inf-convolution (we recall
the definition later) of the first and second order derivatives. The model we
present here is not more efficient than the Total Generalized Variation aproach
for denoising. However, it provides a decomposition of the image at different
scales what the other model does not a priori. This paper is focused on this
decomposition that provides a multiscale description of textured images. Se-
cond order models have also been investigated in the context of segmentation
and inpainting problems with Mumford-Shah types functionals (see [18–20] for
example). The functional framework is the so called General Special Bounded
Variation function space composed of functions whose truncated forms belong
to the classical space of locally special bounded variation functions.

The aim of this paper is to give an existence result without the penalization
term that was added in [11] and to perform a qualitative analysis of the model.
Uniqueness and regularity issues will also be addressed.

More precisely, we assume that an image can be split in three compo-
nents: a smooth (continuous) part v, a cartoon (piecewise constant) part u
and an oscillating part w that should involve noise and/or fine textures. Such
decompositions have already been investigated by Aujol and al. [5,6]. These
authors use the Meyer space of oscillating functions [21] rather than the space
of functions of bounded hessian (we shall present these spaces in the sequel).
The model we deal with, is different: the oscillating part of the image is not
penalized included but a priori in the remainder term w = ud− u− v, while v
is the smooth (bounded hessian) part and u belongs to the space of functions
of bounded variation: we hope u to be piecewise constant so that its jump
set gives the image contours. This model has been proposed (in an abstract
form) in [22]. However, no focus was made on the first and second order total
variation. For highly textured images, the model provides a two-scale texture
decomposition: u can be viewed as a macro-texture (large scale) whose oscil-
lations are not too large and w is the micro-texture (much more oscillating)
that contains the noise.

The paper is organized as follows. We first present the functional framework
and perform a quick comparison between the second-order total variation we
use and the one defined by Bredies et al. in [15]. In section 3, we present the
variational model, give existence result and an equivalent formulation with inf-
convolution. This allows to compute the dual problem. Next section is devoted
to giving qualitative properties of the solutions.
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2 Functional Framework for Second Order Variational Analysis

2.1 Spaces BV(Ω) and BH(Ω)

In the whole paper, Ω is an open bounded subset of Rd (practically d = 2)
smooth enough (with the cone property and Lipschitz for example). More
precisely, if d = 2, Ω may satisfy next assumption{

Ω is a bounded connected open set, strongly Lipschitz such that
∂Ω is the union of finitely many C2 curves .

(1)

Following [2,3,23] and [12,13], we recall the definitions and main properties
of the spaces of functions of first and second order bounded variation. The
space BV(Ω) is the classical Banach space of functions of bounded variation
defined by

BV(Ω) := {u ∈ L1(Ω) : TV(u) < +∞},
where TV(u) is the total variation of u

TV(u) := sup

{∫
Ω

u(x) div ξ(x) dx : ξ ∈ C1
c (Ω,Rd), ‖ξ‖∞ ≤ 1

}
, (2)

endowed with the norm ‖u‖BV(Ω) := ‖u‖L1 + TV(u).
We say that a sequence (un)n∈N of BV(Ω) converges to some u ∈ BV(Ω) for
the intermediate (or strict) convergence, if un strongly converges to u for the
L1(Ω) topology and TV(un) converges to TV(u) (in R) (see [2,3,24]).
The space of functions with bounded hessian has been introduced by Demengel
[13] (where it was denoted BH(Ω)). It is the space of W1,1(Ω) functions such
that TV2(u) < +∞, where W1,1(Ω) = { u ∈ L1(Ω) : ∇u ∈ L1(Ω) }. Here, ∇u
stands for the first order derivative of u in the sense of distributions and

TV2(u) := sup

{∫
Ω

〈∇u,div(ξ)〉Rd : ξ ∈ C2
c (Ω,Rd×d), ‖ξ‖∞ ≤ 1

}
<∞, (3)

is the second order total variation of u.
In the sequel, div(ξ) = (div(ξ1),div(ξ2), . . . ,div(ξd)) and

∀i, ξi = (ξi,1, ξi,2, . . . , ξi,d) ∈ Rd, div(ξi) =

d∑
j=1

∂ξi,j
∂xj

.

The space BH(Ω) endowed with the following norm

‖f‖BH := ‖f‖W 1,1 + TV2(f) = ‖f‖L1 + ‖∇f‖L1 + TV2(f), (4)

where TV2 is given by (3), is a Banach space. Note that a function u belongs

to BH(Ω) if and only if u ∈ W1,1(Ω) and
∂u

∂xi
∈ BV(Ω) for i ∈ {1, . . . , d}. In

particular: TV2(u) ≤
d∑
i=1

TV

(
∂u

∂xi

)
≤ d TV2(u).

We give thereafter important properties of these spaces which proofs can
be found in [2,3,12,13,25] for example.
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Theorem 2.1 (Semi-continuity of total variation )

i. The mapping u 7→ TV(u) is lower semi-continuous (denoted in short lsc)
from BV(Ω) endowed with the L1(Ω) topology to R+.

ii. The operator TV2 is lower semi-continuous from BH(Ω) endowed with the
strong topology of W1,1(Ω) to R.

Theorem 2.2 (Embedding results) Assume d ≥ 2. Then

i. BH(Ω) ↪→ W1,q(Ω) with q ≤ d

d− 1
, with continuous embedding. Moreover

the embedding is compact if q <
d

d− 1
. In particular

BH(Ω) ↪→ Lq(Ω), ∀q ∈ [1,∞[, if d=2.

ii. If d = 2
– BV(Ω) ⊂ L2(Ω) with continuous embedding, and
– BV(Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2[.

iii. If d = 2 and if Ω satisfies assumption (1) then BH(Ω)(Ω) ⊂ C0(Ω̄) .

So BH(Ω) ⊂ H1(Ω) with continuous embedding and BH(Ω) ⊂ W1,1(Ω) with
compact embedding. Let us define the space BV0(Ω) as the space of functions
of bounded variation that vanish on the boundary ∂Ω of Ω. More precisely,
as Ω is bounded and ∂Ω is Lipschitz, functions of BV(Ω) have a trace of
class L1 on ∂Ω [2,3,24], and the trace mapping T : BV(Ω) → L1(∂Ω) is
linear, continuous from BV(Ω) equipped with the intermediate convergence
to L1(∂Ω) endowed with the strong topology ([3] Theorem 10.2.2 p 386). The
space BV0(Ω) is then defined as the kernel of T . It is a Banach space, endowed
with the induced norm:

BV0(Ω) := {u ∈ BV(Ω) : u|∂Ω = 0 } .

In addition, if u ∈ BH(Ω) then ∇u ∈ BV(Ω)n ( as a consequence of the
definitition of BH(Ω) ) and we may define the normal derivative trace operator

ν : BH(Ω) → L1(∂Ω) (with ν(u) := ∇u · n =
∂u

∂n
). This operator is linear,

continuous from BH(Ω) (equipped with the intermediate convergence, that is
the W1,1 strong convergence and the convergence of TV2) to L1(∂Ω) endowed
with the strong topology. So, we may define similarly

BH0(Ω) :=

{
u ∈ BH(Ω) :

∂u

∂n
= 0 on ∂Ω

}
.

We set also

BVm(Ω) :=

{
u ∈ BV(Ω) :

∫
Ω

u(x) dx = 0

}
,

and

BHm(Ω) :=

{
u ∈ BH(Ω) :

∫
Ω

∂u

∂xi
dx = 0 i = 1, · · · , d

}
.
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The Green’s formula gives∫
Ω

∂u

∂xi
dx = −

∫
∂Ω

ui ni ,

where ui is the ith partial function with respect to the ith coordinate and
n = (n1, · · · , nd) is the outer normal vector. In particular, if u = 0 on ∂Ω,
then u ∈ BHm(Ω). At last we shall use the following result of [14]:

Lemma 2.1 Let Ω ⊂ Rn be an open Lipschitz bounded set.There exist generic
constants only depending on Ω, C1, C2 > 0 such that

∀u ∈ BVm(Ω) ‖u‖L1(Ω) ≤ C1TV(u), (5)

∀u ∈ BH0(Ω) ∪ BHm(Ω) TV(u) ≤ C2TV2(u) (6)

2.2 Comparison with the Space BGV2

As already mentionned, a different approach of second-order total variation
spaces has been set in [15]. The main difference lies in the choice of test
functions for the weak variational formulation. The authors define the To-
tal Generalized Variation of u as the supremum of the duality product be-
tween u and symmetric tests functions that are bounded together with their
derivative. First, we note that we may define TV2(u) in a equivalent way as

following: for any ξ = (ξ1, ξ2, . . . , ξd) ∈ C2
c (Ω,Rd×d) then div(ξi) =

d∑
j=1

∂ξi,j
∂xj

where ξi = (ξi,1, ξi,2, . . . , ξi,d) ∈ Rd, for every i. Then, we define as in [15]:

div2ξ :=

d∑
i,j=1

∂2ξi,j
∂xi∂xj

. Denote B :=
{
ξ ∈ C2

c (Ω,Rd×d), ‖ξ‖∞ ≤ 1
}
, then

∀u ∈W1,1(Ω) TV2(u) = sup

{∫
Ω

udiv2ξ dx : ξ ∈ B
}
. (7)

Indeed, an integration by parts gives:

∫
Ω

udiv2ξ dx = −
∫
Ω

(∇u,div ξ)Rd dx .

Let be α = (α0, α1) > 0, we call

TGV2
α(u) = sup

{∫
Ω

udiv2ξ dx : ξ ∈ Bα
}
,

where Bα := {ξ ∈ K : ξij = ξji ∀i, j, ‖ξ‖∞ ≤ α0, ‖div ξ‖∞ ≤ α1 } . We may
define [15]

BGV2
α(Ω) =

{
u ∈ L1(Ω) : TGV2

α(u) < +∞
}
. (8)

Proposition 2.1 Let be α = (α0, α1) > 0. For every function u in W1,1(Ω)
we get: TGV2

α(u) ≤ α0TV2(u) . Therefore

∀α > 0 BH(Ω) ⊂ BGV2
α(Ω)

with continuous embedding.
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Proof. As Bα ⊂ α0B the first relation is obvious. Moreover if u ∈ BH(Ω), then
u ∈W1,1(Ω) and TGV2

α(u) < +∞. In addition

‖u‖BVG2
α

= ‖u‖L1 + TGV2
α(u) ≤ ‖u‖W 1,1 + α0TV2(u) ≤ max(1, α0)‖u‖BH ,

which gives the continuity of the embedding mapping. ut

Corollary 2.1 For any u ∈ BH(Ω), TV2(u) = 0 if and only if u is a polyno-
mial function of order 1.

Proof. For any u ∈ BH(Ω), TV2(u) = 0 =⇒ TGV2
α(u) = 0. Then we use

Proposition 3.3 of [15]. ut
The main difference between the two approaches concerns the functions

regularity. The BGV2
α(Ω) functions do not necessarily belong to L1(Ω). In

particular, the indicator function of smooth open sets belongs to BGV2
α(Ω) and

not to BH(Ω). On the other hand, we cannot have Sobolev-type embeddings
for BGV2

α(Ω).

3 A Second-Order Variational Model for Image Decomposition

3.1 Presentation of the Model

We have already presented a slightly similar model in [11] (see more precisely
Remark 4 of [11] where the boundary condition is discussed). Here we provide
an existence result that was expected but only proved in the finite dimensional
case and give a inf-convolution formulation. We now assume that the image
we want to recover ud belongs to L2(Ω) and that it can be decomposed as
ud = w + u + v where u, v and w are functions that characterize different
parts. These components belong to different functional spaces: v ∈ BH(Ω) is
the (smooth) second order part, u is a BV(Ω) component and w ∈ L2(Ω)
is the remainder term. We consider the following cost functional defined on
BV(Ω)× BH(Ω):

Fλ,µ(u, v) :=
1

2
‖ud − u− v‖2L2(Ω) + λTV(u) + µTV2(v), (9)

where λ, µ > 0. We are looking for a solution to the optimization problem

inf{ Fλ,µ(u, v) : (u, v) ∈ BV(Ω)× BH0(Ω) } (Pλ,µ)

Remark 3.1 We decide to look for the minima of Fλ,µ on BV(Ω)×BH0(Ω) and
not BV(Ω)×BH(Ω) to get an existence result. This will cause troubles to set
the dual problem because of the computation of Legendre-Fenchel conjugate

functions. Nevertheless, the constraint v ∈ BH0(Ω) (that is
∂v

∂n
= 0 on ∂Ω)

is a usual one in image processing and the difficulty will be overcome in the
discrete setting.
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We expect v to be the smooth colored part of the image, u to be a
BV(Ω)\BH(Ω) function which derivative is a measure supported by the con-
tours and w := ud−u− v ∈ L2(Ω) is the noise and/or small textures (we shall
detail this point later). Problem (Pλ,µ) can be (formally) viewed as a mini-
mization problem where the regularization term is an inf-convolution. Recall
that the inf-convolution has been introduced by J.J. Moreau in [26] (see also
[3] p 324). It is defined as

(f#g)(v) := inf{f(u) + g(v − u) : u ∈ V } ,

where f, g : V → R ∪ {+∞}. If we set V = L2(Ω),

Φ1
λ(u) =

{
λTV(u), if u ∈ BV(Ω)
+∞, else.

and Φ2
µ(v) =

{
µTV2(v), if v ∈ BH0(Ω)
+∞, else.

then

(Φ1
λ#Φ2

µ)($) = inf
{
λTV(u) + µTV2(v) : u ∈ BV(Ω), v ∈ BH0(Ω),u + v = $

}
,

and problem (Pλ,µ) may be written as

inf

{
1

2
‖ud −$‖2L2(Ω) + (Φ1

λ#Φ2
µ)($) : $ ∈ L2(Ω)

}
.

This formulation is to compare to the one by Bredies and al. [15–17]

inf

{
1

2
‖ud −$‖2L2(Ω) + TGV2

α($) : $ ∈ L2(Ω)

}
,

which seems to be more efficient for denoising. However, we are interested in
the decomposition components u and v. First, we give an existence result for
problem (Pλ,µ).

Theorem 3.1 (Existence) Problem (Pλ,µ) has at least an optimal solution
(u∗, v∗) in BV(Ω)× BH0(Ω).

Proof. We first prove that the auxiliary problem

inf{ Fλ,µ(u, v) : (u, v) ∈ BVm(Ω)× BH0(Ω) } (Paux)

has an optimal solution. Let (un, vn)n∈N ∈ BVm(Ω)×BH0(Ω) be a minimizing
sequence, i.e.

lim
n→+∞

Fλ,µ(un, vn) = inf{ Fλ,µ(v) : (u, v) ∈ BVm(Ω)× BH0(Ω) } < +∞.

Therefore

– TV2(vn) is bounded and with Lemma 2.1, ‖∇vn‖L1 is bounded as well.
– TV(un) is bounded. Using once again Lemma 2.1 yields that un is bounded

in L1(Ω). Therefore the sequence (un)n∈N is bounded in BV(Ω).
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– As un + vn is L2 -bounded, it is L1 -bounded as well so that vn is L1

bounded. As ‖∇vn‖L1 and TV2(vn) are bounded, this means that the se-
quence (vn)n∈N is bounded in BH(Ω).

With the compactness result of Theorem 2.2, this yields that (vn)n∈N strongly
converges (up to a subsequence) in W1,1(Ω) to v∗ ∈ BH(Ω). In addition, as
the normal derivative operator is continuous (as mentionned before), then
v∗ ∈ BH0(Ω). Similarly (un)n∈N strongly converges (up to a subsequence) in
L1(Ω) to u∗ ∈ BVm(Ω). Moreover un + vn weakly converges to u∗ + v∗ in
L2(Ω). With Theorem 2.1 we get

TV(u∗) ≤ lim inf
n→+∞

TV(un), TV2(v∗) ≤ lim inf
n→+∞

TV2(vn).

So, Fλ,µ(u∗, v∗) ≤ lim inf
n→+∞

Fλ,µ(un, vn) = min(Paux) and (u∗, v∗) is a solution

to (Paux).
For every (u, v) ∈ BV(Ω) × BH0(Ω), (u −mu, v + mu) ∈ BVm(Ω) × BH0(Ω)

where mu =
1

|Ω|

∫
Ω

u is the mean value of u. Moreover

Fλ,µ(u, v) = Fλ,µ(u−mu, v +mu) ≥ Fλ,µ(u∗, v∗).

Therefore (u∗, v∗) is an optimal solution to (Pλ,µ). ut

Remark 3.2 Uniqueness of the solution is challenging. We shall prove partial
results in section 4.2.

3.2 Optimality Conditions

In what follows, we set N (u) :=
1

2
‖u‖22 for any u ∈ L2(Ω) and fix λ > 0, µ > 0.

From now on, (ū, v̄) denotes any solution (Pλ,µ). It is characterized by

ū = argmin

{
1

2
‖ud − v̄ − u‖2 + Φ1

λ(u), u ∈ L2(Ω)

}
, (10)

v̄ = argmin

{
1

2
‖ud − ū− v‖2 + Φ2

µ(v), v ∈ L2(Ω)

}
(11)

where Φ1
λ and Φ2

µ have been defined in section 3.1. We may derive optimality
conditions in a standard way :

Theorem 3.2 (ū, v̄) is a solution to (Pλ,µ) if and only if

w̄ := ud − ū− v̄ ∈ ∂Φ1
λ(ū) ∩ ∂Φ2

µ(v̄). (12)

The proof is obvious. The notation 〈·, ·〉 stands for the duality product between
V ′ et V and ∂f(u) denotes the subdifferential of f at u where f : V → R:

∂f(u) := {u∗ ∈ V ′ : ∀v ∈ V f(v)− f(u) ≥ 〈u∗, v − u〉 }.
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3.3 Inf-Convolution Formulation

We have already noticed that the penalization term in (Pλ,µ) is an infimal con-
volution term. In addition, (Pλ,µ) can be viewed as successive inf-convolution
processes.

Lemma 3.1 The functionals N#Φ1
λ and N#Φ2

µ are convex and continuous
from L2(Ω) to L2(Ω).

Proof. In the sequel we set Φ = Φ1
λ or Φ2

µ indifferently. As Φ and N are convex
so is N#Φ (see [27] for example). Let be u ∈ L2(Ω):

(N#Φ)(u) = inf

{
1

2
‖u− v‖22 + Φ(v) : v ∈ L2(Ω)

}
≤ 1

2
‖u‖22 + Φ(0) =

1

2
‖u‖22 .

As (N#Φ)(0) = 0 this gives the N#Φ continuity at 0 and its boundedness
in a neighborhood of 0. As it is convex, it is continuous on its whole domain
L2(Ω)(see [28] for example). ut

Note that problem (10) is equivalent to the fact that ū realizes the infimum
in the definition of N#Φ1

λ(ud− v̄) and (11) means that v̄ realizes the infimum
in N#Φ2

µ(ud − ū). In fact, problem (Pλ,µ) can be written as successive inf-
convolution processes. More precisely we have:

Theorem 3.3 Let (ū, v̄) ∈ BV(Ω)× BH0(Ω) be a solution to (Pλ,µ). Then

m̄ = N (ud − ū− v̄) + Φ1
λ(ū) + Φ2

µ(v̄)

= (N#Φ1
λ))(ud − v̄) + Φ2

µ(v̄) = (N#Φ2
µ))(ud − ū) + Φ1

λ(ū)

= (Φ1
λ#(N#Φ2

µ))(ud) = (Φ2
µ#(N#Φ1

λ))(ud).

where m̄ := inf(Pλ,µ).

Proof. Let (ū, v̄) ∈ BV(Ω)× BH0(Ω) be a solution to (Pλ,µ).
Then, for every (u, v) ∈ BV(Ω)× BH0(Ω), we get

m̄ = N (ud− ū− v̄) +Φ1
λ(ū) +Φ2

µ(v̄) ≤ N (ud− u− v) +Φ1
λ(ū) +Φ2

µ(v) . (13)

This gives, for every v ∈ BH0(Ω)

m̄ ≤ inf
u∈L2(Ω)

N (ud − u− v) + Φ1
λ(ū) + Φ2

µ(v) = (N#Φ1
λ)(ud − v) + Φ2

µ(v)

so that

m̄ ≤ inf
v∈BH0(Ω)

(N#Φ1
λ)(ud − v) + Φ2

µ(v) ≤ (Φ2
µ#(N#Φ1

λ))(ud) .

Similarly
m̄ ≤ (Φ1

λ#(N#Φ2
µ))(ud) .

Conversely, we get for every (u, v) ∈ BV(Ω) × BH0(Ω) by definition of inf-
convolution:

(Φ2
µ#(N#Φ1

λ))(ud) ≤ (N#Φ1
λ)(ud−v)+Φ2

µ(v) ≤ N (ud−v−u)+Φ1
λ(u)+Φ2

µ(v) ,

so that (Φ2
µ#(N#Φ1

λ))(ud) ≤ m̄.
We finally obtain m̄ = (Φ1

λ#(N#Φ2
µ))(ud) = (Φ2

µ#(N#Φ1
λ))(ud). ut



10 M. Bergounioux

3.4 Computing the Legendre-Fenchel Conjugate Functions

We are going to write the dual problem of (Pλ,µ) and need to compute the

conjugate functions of Φ1
λ, Φ

2
µ and f̃ : u 7→ f(ud + u). We recall that, if

f : V → R ∪ {+∞}, the Legendre-Fenchel conjugate f∗ is defined on V ′ as

∀u∗ ∈ V ′ f∗(u∗) := sup
u∈V
〈u∗, u〉 − f(u) .

We obviously have (λf)∗(u∗) = λf∗(u
∗

λ ), for every λ > 0 and u∗ ∈ V ′ and the
following useful result as well [3]:

Proposition 3.1 Let V be a normed space and f : V → R ∪ {+∞} a closed
and convex, proper function. then

u∗ ∈ ∂f(u) ⇐⇒ u ∈ ∂f∗(u∗) ⇐⇒ f(u) + f∗(u∗) = 〈u∗, u〉,

where 〈·, ·〉 denotes the duality V ′ − V product.

Lemma 3.2 Let be f : L2(Ω)→ R∪{+∞} and f̃ such that f̃(u) = f(ud+u).
Then the Legendre-Fenchel conjugate function of f̃ writes

∀u∗ ∈ L2(Ω) (f̃)∗(u∗) = f∗(u∗)− (u∗, ud)2 ,

where (·, ·)2 denotes the L2(Ω) inner product.

Proof. Let be u∗ ∈ L2(Ω). We have

(f̃)∗(u∗) = sup
u∈L2(Ω)

(u, u∗)2 − f(ud + u) = sup
w∈L2(Ω)

(w − ud, u∗)2 − f(w)

= sup
w∈L2(Ω)

(w, u∗)2 − f(w)− (ud, u
∗)2 = f∗(u∗)− (u∗, ud)2.

ut
In the sequel 1C denotes the indicator function of a set C :

1C(u) :=

{
0, if u ∈ C
+∞, else.

Lemma 3.3 The conjugate function of Φ1
λ is (Φ1

λ)∗ = λ1λK1 , where K1 is the
L2-closure of

K1 :=
{
ξ = div ϕ : ϕ ∈ C1

c (Ω), ‖ϕ‖∞ ≤ 1
}
. (14)

The conjugate function of Φ2
µ is (Φ2

µ)∗ = µ1µK2
, where K2 ⊃ cl(K2) and

cl(K2) is the L2-closure of

K2 :=
{
ξ = div2ψ : ψ ∈ C2

c (Ω,Rd×d), ‖ψ‖∞ ≤ 1
}
. (15)
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Proof. It is known that the conjugate TV∗ of TV is the indicator function of
K1 (see [23,29] for example). As Φ1

λ = λTV (or +∞ outside BV (Ω)), then

(Φ1
λ)∗(u∗) = λTV∗

(
u∗

λ

)
. This gives the result.

The second result is not exactly the same, since Φ2
µ is equal to µTV2 on

BH0(Ω) and +∞ outside (and in particular on BH(Ω)\BH0(Ω)). Therefore
the conjugate of Φ2

µ is not the same as the conjugate of µTV2. We know

that the conjugate function of TV2 is 1cl(K2) (see [12]); as Φ2
1 is positively

homogeneous (µ = 1), it is the indicator function of a closed subset K2 of
L2(Ω). Moreover

1K2(v∗) = (Φ2
1)∗(v∗) = sup

v∈BH0

〈v∗, v〉 − TV2(v)

≤ sup
v∈BH

〈v∗, v〉 − TV2(v) = 1cl(K2)(v
∗).

This implies that cl(K2) ⊂ K2 but we cannot prove the converse inclusion that
would provide a result similar to the first order case. We end the proof with
the same argument as in the BV case. ut
Eventually it is easy to see that N ∗ = N .

3.5 Dual Problem to (Pλ,µ)

In the present subsection, we shall use convex duality tools that we recall
thereafter (see [3] for example).

Theorem 3.4 ([3] p. 366) Let V be a Banach space, f, g : V → R ∪ {+∞}
lower semi-continuous convex functions and A a linear continuous operator
from V to V . Assume there exists uo ∈ dom g, and that f is continuous at
Auo. Then

inf
u∈V

(f(Au) + g(u)) = max
u∗∈V ′

(−f∗(u∗)− g∗(−A∗u∗)) .

Moreover, if ū is a solution to the primal problem and ū∗ is a solution to the
dual one, then

ū∗ ∈ ∂f(Aū) and −A∗ū∗ ∈ ∂g(ū) ,

where ∂f(u) stands for the subdifferential of f at u.

Theorem 3.5 ([3] p. 328) Let V be a Banach space and f, g : V → R∪{+∞}
proper functions. Then (f#g)∗ = f∗ + g∗. In addition if f and g satisfy the
assumptions of Theorem 3.4, then (f + g)∗ = f∗#g∗.

Now we may compute the dual problem to (Pλ,µ) and get the following:

Theorem 3.6 The dual problem to (Pλ,µ) writes

inf

{
1

2
‖ud − w‖22 : w ∈ λK1 ∩ µK2

}
. (P∗λ,µ)

The unique solution w∗ is the L2-projection of ud on the closed and convex set
λK1 ∩ µK2.
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Proof. Solving problem (Pλ,µ) is equivalent to solving

inf
u∈L2(Ω)

(N#Φ2
µ)(ud − u) + Φ1

λ(u) = inf
u∈L2(Ω)

(Ñ#Φ2
µ)(Au) + Φ1

λ(u)

where ˜(N#Φ2
µ)(w) = (N#Φ2

µ)(ud + w) and Au = −u.
It is clear that A∗ = A. Moreover, Φ1

λ is lsc with respect to the L1- topology

and L2- topology since Ω is bounded. As N#Φ2
µ, Ñ#Φ2

µ, A and Φ1
λ fulfill

assumptions of Theorem 3.4, the dual problem of (Pλ,µ) writes

max

{
− ˜(N#Φ2

µ)
∗
(w)− (Φ1

λ)∗(w) : w ∈ L2(Ω)

}
. (P∗λ,µ)

Using Lemma 3.2 and Theorem 3.5, it is easy to see that

˜(N#Φ2
µ)
∗
(w) = −(ud, w)2 + (N#Φ2

µ)∗(w) = −(ud, w)2 +N ∗(w) + (Φ2
µ)∗(w)

= −(ud, w)2 +N (w) + (Φ2
µ)∗(w) .

Therefore, (P∗λ,µ) writes

max
w∈L2(Ω)

(ud, w)2 −N (w)− (Φ1
λ)∗(w)− (Φ2

µ)∗(w) ,

⇐⇒ − min
w∈L2(Ω)

−(ud, w)2 +N (w) + (Φ1
λ)∗(w) + (Φ2

µ)∗(w) .

Finally, (P∗λ,µ) is equivalent to

min

{
1

2
‖ud − w‖22 : w ∈ λK1 ∩ µK2

}
.

The dual problem has obviously a unique solution w∗ which is the L2-projection
of ud on the closed and convex set λK1 ∩ µK2. ut
In the sequel we denote ΠK the L2-projection on a closed and convex set K.
Next, we have a relation between the solutions to (Pλ,µ) and the (unique)
solution of the dual problem.

Theorem 3.7 1. Let w∗ be the (unique) solution to the dual problem (P∗λ,µ),
namely w∗ = ΠλK1∩µK2

(ud). Then, there exists (ū, v̄) ∈ BV(Ω) × BH0(Ω) an
optimal solution to (Pλ,µ) such that

w∗ = ud − ū− v̄ and w∗ ∈ ∂Φ2
µ(v̄) ∩ ∂Φ1

λ(ū).

2. Conversely, if (ū, v̄) ∈ BV(Ω)× BH0(Ω) is any solution to (Pλ,µ), then

w̄ = ud − ū− v̄ = ΠλK1∩µK2
(ud) . (16)
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Proof. Let (ū, ṽ) be a solution to (Pλ,µ). A direct consequence of Theorem 3.4

is w∗ ∈ ∂Φ1
λ(ū) and w∗ ∈ ∂ ˜(N#Φ2

µ)(−ū). A simple calculus shows that

∂ ˜(N#Φ2
µ)(−ū) = ∂(N#Φ2

µ)(ud − ū),

so that

w∗ ∈ ∂Φ1
λ(ū) ∩ ∂(N#Φ2

µ)(ud − ū).

As (N#Φ2
µ)(ud − ū) = N (ud − ū− ṽ) + Φ2

µ(ṽ)

= argmin

{
1

2
‖v + ū− ud‖2 + Φ2

µ(v) : v ∈ L2(Ω)

}
,

then ud − ṽ − ū ∈ ∂Φ2
µ(ṽ); so, the inf-convolution is exact and we get [27]

∂(N#Φ2
µ)(ud − ū) =

⋃
v∈L2(Ω)

∂N (ud − ū− v) ∩ ∂Φ2
µ(v).

As ∂N (ud − ū − v) = {ud − ū − v}, there exists v̄ ∈ L2(Ω) such that
w∗ = ud − ū− v̄ ∈ ∂Φ2

µ(v̄) . So,

w∗ ∈ ∂Φ2
µ(v̄) ∩ ∂Φ1

λ(ū) ,

with v̄ = ud − ū − w∗. This proves that (ū, v̄) is a solution to (Pλ,µ) as well:
we use Theorem 3.2 with w̄ = w∗ to conclude.
Let us prove the converse property: let (ū, v̄) ∈ BV(Ω)×BH0(Ω) be a solution
to (Pλ,µ) and w̄ = ud− ū− v̄. Theorem 3.2 gives w̄ ∈ ∂Φ1

λ(ū)∩∂Φ2
µ(v̄), that is

ū ∈ ∂(Φ1
λ)∗(w̄) and v̄ ∈ ∂(Φ2

µ)∗(w̄) .

With the previous computations, we get ū ∈ ∂λ1λK1
(w̄) and v̄ ∈ ∂λ1µK2

(w̄).
Therefore

∀w ∈ λK1 ∩ µK2 〈ū, w − w̄〉 ≤ 0 and 〈v̄, w − w̄〉 ≤ 0.

Adding the above inequalities gives

∀w ∈ λK1 ∩ µK2 〈ū+ v̄, w − w̄〉 = 〈ud − w̄, w − w̄〉 ≤ 0.

This is equivalent to (16). ut

Corollary 3.1 If (ū, v̄) is a solution to (Pλ,µ), then w̄ = ū + v̄ is unique.
In particular, there is a unique solution to (Pλ,µ) such that ū = 0 almost
everywhere.

Remark 3.3 We cannot permute the roles of Φ1
λ and Φ2

µ in the previous proof
because Φ2

µ is not lower semi-continuous with respect to the L2-topology. In-
deed L2(Ω) is not embedded in W1,1(Ω).
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4 Solution Properties (d ≤ 2)

4.1 Structure of the Solutions

Recall [5,21] that the Meyer space G(Ω) is defined as

G(Ω):={f ∈ L2(Ω):∃ϕ = (ϕ1, ϕ2)∈L∞(Ω,R2), f = div ϕ and ϕ·n = 0 on ∂Ω},

where n is the outer normal vector to ∂Ω. This space is endowed with a norm
denoted by ‖ · ‖G and defined as

‖f‖G := inf{‖
√
ϕ2

1 + ϕ2
2‖∞ : f = div ϕ ,ϕ · n = 0 on ∂Ω }.

We shall need the

Lemma 4.1 ( [21] or [5], Lemma 2.1) For every u ∈ BV(Ω) and g ∈ G(Ω)
then ∣∣∣∣∫

Ω

u(x) g(x) dx

∣∣∣∣ ≤ TV(u) ‖g‖G.

We may now precise the structure of a generic solution.

Theorem 4.1 Let (ū, v̄) ∈ BV(Ω)× BH0(Ω) be a solution to problem (Pλ,µ)
(for fixed λ and µ) and set w̄ = ud − ū− v̄. Then,

i. w̄ = ud − ū− v̄ ∈ G(Ω)
ii. If d = 2 and Ω satisfies assumption (1), v̄ is continuous on Ω̄.

iii. If d = 2, Ω satisfies assumption (1) and ud ∈ BV(Ω) ∩ L∞(Ω), then the
jump set of ū is included in the jump set of ud.

Proof. (i) This is a direct consequence of Theorem 3.7. Indeed w̄ ∈ λK1.
Therefore, there exists a sequence ϕn ∈ C1

c (Ω,R2) with ‖ϕn‖∞ ≤ 1 such that
wn = λdiv(ϕn) L2-converges to w̄. As ‖ϕn‖∞ ≤ 1, on may extract a weak-star
subsequence that converges to ϕ̄ in L∞(Ω). Therefore, ϕ̄ ∈ L∞(Ω) and ϕ̄.n = 0
on ∂Ω. So, we get :

∀u ∈ D(Ω) (wn, u)L2 = λ

∫
Ω

divϕnu = −λ
∫
Ω

ϕn∇u→ −λ
∫
Ω

ϕ̄∇u.

As (wn, u)L2 → (w̄, u)L2 this gives

(w̄, u) = −λ 〈ϕ̄,∇u〉 = λ 〈div ϕ̄, u〉 ,

in the distributional sense. Therefore, w̄ = div(λϕ̄). Moreover, ϕ̄ · n = 0 on
∂Ω since ϕn has compact support. This proves that w̄ ∈ G(Ω).
(ii) Assumption (1) implies that v̄ ∈ BH(Ω) is continuous (Theorem 2.2, (iii)).
(iii) With (ii), the jump discontinuity set of ud is the same as the one of ud− v̄.
Moreover ū is a solution to

min

{
1

2
‖ud − v̄ − u‖2 + λTV(u) : u ∈ BV(Ω)

}
.

Therefore, following [30],Theorem 3.3, we get the result. ut
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Remark 4.1 • The point (i) means that w̄ is an oscillating function: this is con-
sistent with the fact that we expect w̄ to be the noise and/or micro-textures.
• The continuity of v̄ still holds if d ≥ 2. Assumptions on Ω are slightly dif-
ferent (see [13,25]).
• Any variational model

min

{
1

2
‖ud − u− v‖2L2(Ω) + λTV(u) + Φ(v) : u ∈ BV(Ω), v ∈ V

}
,

would satisfy the result of iii) (with a functional Φ such that a solution (ū, v̄)
exists), if V contains C0(Ω̄) (which is the case if V = BH(Ω)). Indeed, the
result of [30] applies as soon as ū is the solution of a TV- type problem.
• Since v̄ ∈ W1,1(Ω) ∩ L∞(Ω)), if we assume ud ∈ SBV(Ω) ∩ L∞(Ω) then
ud + v̄ ∈ SBV(Ω). Here SBV(Ω) is the space of special bounded variation
functions [3,4]. Of course, the jump set of ū is included in the jump set of ud,
but we cannot prove that the non absolutely continuous part of the derivative
of ū is concentrated on its jump set. So, we cannot prove that ū belongs to
SBV(Ω) though the numerical simulations of [31] allow to think it is the case
(ū is piecewise constant).

Corollary 4.1 Let (ū, v̄) ∈ BV(Ω)×BH0(Ω) be a solution to problem (Pλ,µ)

(for fixed λ and µ) and set w̄ = ud − ū− v̄. Then

∫
Ω

w̄(x) dx = 0.

Proof. This is a direct consequence of Proposition 2.1 of [5] that gives

G(Ω) =

{
g ∈ L2(Ω) :

∫
Ω

g(x) dx = 0

}
and that w̄ ∈ G(Ω). ut

The previous theorem holds if ud ∈ BV(Ω). This is not the case if ud is
noisy, for example. In the case where ud /∈ BV(Ω), we have the following results
due to W. Ring [32]. We first consider the 1D case where Ω =]a, b[. Following
Proposition 4 of [32], if we assume that

∀U open subset of ]a, b[ with positive Lebesgue measure (H1)

ud does not coincide on U with some function u ∈ BV(]a, b[),

then ud−v̄ satisfies (H1) and we get Daū = 0 where Dau denotes the absolutely
continuous part of the measure Du. Let Γ be the support of the singular part
of Dū. Therefore, ū is piecewise constant on ]a, b[\Γ .
We have also a similar result for the 2D-case. Assume that

∀U open subset of Ω, ud|U is not equal to a BV(Ω) function, (H2)

then ud− v̄ satisfies (H2) as well (since v̄ ∈W1,1(Ω)). Following Proposition 6

of [32], there is no open subset ω of Ω on which both components
∂ū

∂xi
, i = 1, 2

have constant, non-zero sign.
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4.2 Uniqueness

The functional Fλ,µ is convex but not strictly convex, because of the degen-
erating direction u + v = 0. It is obvious that, if (u∗, v∗) is a solution, then
(u∗ + c, v∗ − c) (where c is constant), is a solution as well. Let us call

C(Ω) := {(u, v) ∈ BV(Ω)× BH0(Ω) : ∃c ∈ R u = c and v = −c a.e on Ω }.

The question of uniqueness reduces to uniqueness up to C(Ω) functions. In
other words, if (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ) can
we show that u2 = u1 + c and v2 = v1 − c where c is a constant function? It
is still an open problem for the 2D case. This point has been discussed more
precisely in [31]. Nevertheless, we may give partial results:

Proposition 4.1 Assume (u1, v1) and (u2, v2) are two optimal solutions of
(Pλ,µ). Then, there exists ϕ ∈ BV(Ω) ∩ BH0(Ω) such that u2 = u1 − ϕ and
v2 = v1 + ϕ.

Proof. Set u = u2 − u1(∈ BV(Ω)) and v = v2 − v1(∈ BH0(Ω)).
As ud−u1−v1 = ud−u2−v2 (this is the unique solution of the dual problem),
then u + v = 0. This yields that u = −v ∈ BV(Ω) ∩ BH0(Ω) and we get the
result. ut

Lemma 4.2 The only solutions (ū, v̄) to (Pλ,µ) that satisfy ū + v̄ = 0 are
functions of C(Ω).

Proof. If we assume that ū + v̄ = 0, then ū ∈ BH0(Ω) on one hand and
Φ2(v̄) = Φ2(−ū) = Φ2(ū) on the other hand. As Fλ,µ(ū, v̄) ≤ Fλ,µ(u, v), for
every (u, v) ∈ BV(Ω)× BH0(Ω) this yields

‖ud‖2L2(Ω)+2λTV(ū)+2µTV2(ū) ≤ ‖ud − u− v‖2L2(Ω)+2λTV(u)+2µTV2(v) .

Taking u = v = 0 gives

‖ud‖2L2(Ω) + 2λTV(ū) + 2µTV2(ū) ≤ ‖ud‖2L2(Ω).

So we get λTV(ū) + µTV2(ū) = 0. This implies that TV(ū) = 0, so that ū is
a constant function. ut

Theorem 4.2 Let (λ, µ) be nonnegative real numbers such that λ ≥ ‖ud‖G
and µ ≥ C2λ, where C2 is the constant of Lemma 2.1. Then the C(Ω) functions
are the only solutions to (Pλ,µ).

Proof. Let us assume that λ ≥ ‖ud‖G and µ ≥ C2λ, where C2 is the constant
of Lemma 2.1. Lemma 4.1 gives

∀(u, v) ∈ BV(Ω)× BH0(Ω) |(ud,u + v)2| ≤ λTV(u + v),

since ud ∈ L2(Ω) and BH0(Ω) ⊂ BV(Ω). Then

|(ud, u+ v)2| ≤ λTV(u) + λTV(v).
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Lemma 2.1 gives a constant C2 (only depending on Ω) such that

∀v ∈ BH0(Ω) TV(v) ≤ C2TV2(v),

so that for every pair (u, v) ∈ BV(Ω)× BH0(Ω)

|(ud, u+ v)2| ≤ λTV(u) + C2λTV2(v) ≤ λTV(u) + µTV2(v). (17)

Finally, we get for every (u, v) ∈ BV(Ω)× BH0(Ω)

1

2
‖ud‖2 =

1

2
‖ud − u− v‖2 −

1

2
‖u+ v‖2+ (ud, u+ v)2

≤1

2
‖ud − u− v‖2 +λTV(u) +µTV2(v).

This means that Fλ,µ(0, 0) ≤ Fλ,µ(u, v) : so (0, 0) is a solution to (Pλ,µ). Let
(ū, v̄) ∈ BV(Ω) × BH0(Ω) be another solution to Pλ,µ. With Proposition 4.1,
we get ū+ v̄ = 0 and Lemma 4.2 gives (ū, v̄) ∈ C(Ω). ut

Remark 4.2 The previous theorem tells that if
µ

λ
and λ are large enough then

the set of solutions is C(Ω). In addition, if we impose (for example) that
u ∈ G(Ω) (that is u has a null mean value), then the unique solution is (0, 0)
since C(Ω) ∩ (G(Ω)× BH0(Ω)) = {(0, 0)}.

Eventually, we have a uniqueness result for the 1D case:

Theorem 4.3 Assume n = 1, Ω =]a, b[ and that ud satisfies assumption
(H1). Then, for every λ > 0, µ > 0 problem (Pλ,µ) has a unique solution up
to a C(Ω) function.
More precisely, if (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ) then
ϕ := u2 − u1 = v2 − v1 is a constant function. In particular, problem (Pλ,µ)
has a unique solution (u∗, v∗) such that u∗ has a null mean value.

Proof. Let (u1, v1) and (u2, v2) be two optimal solutions of (Pλ,µ). With Propo-
sition 4.1, there exists ϕ ∈ BV(Ω)∩BH0(Ω) such that ϕ = u2 − u1 = v2 − v1.
If ud satisfies (H1), then ud − vi, i = 1, 2 obviousy satisfies this assumption as
well. As ui, i = 1, 2 is solution to the first order Rudin-Osher-Fatemi problem

ui = argmin

{
1

2
‖ud − vi − u‖2 + Φ1

λ(u) : u ∈ L2(Ω)

}
, i = 1, 2.

(see [1]), then u1, u2 and ϕ are piecewise constant on Ω.
In addition ϕ = v2−v1 ∈ BH(Ω) ⊂W1,1(Ω). This implies that ϕ is continuous
and proves it is constant. ut
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5 Perspectives

The presented model seems promising for texture extraction and/or texture
analysis. However, there are still many open problems. The uniqueness of
solutions (up to a constant function) is a crucial issue (with respect to the
numerical computation. We have observed in [31] that solutions are unique up
to a constant : this constant depends on the initialization process. However,
we only have partial theoretical results as shown in the previous section.

The second important (open) question concerns the regularity/ behavior of
the solution. More precisely, we infer that the BV-part u is piecewise constant
if the parameters λ and µ are large enough. So, we would like to prove that
u ∈ SBV(Ω)\W1,1(Ω). To achieve this goal, we have to describe carefully
the derivative Du of u, especially the singular part. We conjecture that the
contours are completely described by this singular part. More precisely, we

would like to prove that u =

N∑
i=1

uiχΩi , where

– Ωi, i = 1, · · · , N are open subsets of Ω such that

N⋃
i=1

cl(Ωi) = cl(Ω),

– χA is the characteristic function of the set A : χA(x) = 1 if x ∈ A , 0 else.
– ui ∈ W1,1(Ωi), i = 1, · · · , N , and if possible ui is a constant function for

every i.

In this case, we would have

N⋃
i=1

∂Ωi as the contour set. Once again, we have

given partial results that deserve to be completed, especially in the 2D case.

The last important issue is to perform a sensitivity analysis of the solution
structure with respect to parameters λ and µ. The question has been studied
in [31] from a numerical point of view, with many examples. The questions
that arise are

• the quantification of the ratio
µ

λ
(see Theorem 4.2),

• the proof of the properties that has been observed numerically. More pre-
cisely:
– in the case where the data is noiseless or not too much textured, the

decomposition given by λ - µ and the initialization u0 = v0 = 0, gives
a cartoon part which is piecewise constant. In this case, the remainder
L2 term is the texture and/or noise.

– in the case where the image is highly textured, the model provides
a two-scale decomposition. The TV-part represents the macro-texture
and the L2- part the micro-texture and/or noise. The scaling is tuned

via the ratio ρ =
λ

µ
. We have to make this point precise.

– the proof that the decomposition is always the same for any µ >> λ,
once λ has been chosen.
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– the estimates of suitable parameters with respect to the original image
properties (as the G-norm, L2-norm etc.)

• the behavior of ‖w‖L2 , TV(u), TV2(v), with respect to λ and µ.

6 Conclusions

This model is well adapted to texture extraction and analysis. We have proved
existence and partial uniqueness results using inf-convolution tools and convex
duality. The decomposition we obtain can be used as a preprocessing tool.
Indeed, each part can be separately studied to get different informations for
the original image.

• The L2-part is the oscillating part (it belongs to the Meyer space). It mod-
els gaussian noise if the image is noisy and/or involves micro-textures.
Removing this part from the original image gives a denoising method that
preserves contours, without any staircasing effect (no additional false con-
tours). Moreover, one can focus on this part to precisely analyze its struc-
ture (random or not) to separate noise from texture.

• The BV-part represents the cartoon part : even if it is not piecewise con-
stant, the jump set gives the contours of the image. We may use classical
segmentation methods to deal with this component.

• The BH- part is continuous (at least for d ≤ 2). It gives the image dynamic.
It is useful to get rid of lightning perturbations, for example.
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