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Abstract

Presented is a system of four ordinary differential equations and a mathematical analysis of microbiological experiments 

in a four-component chemostat—nutrient n, rods r, cocci c, and predators p. The analysis is consistent with the conclusion 

that previous experiments produced features of deterministic chaotic and classical dynamics depending on dilution rate. The 

surrogate model incorporates as much experimental detail as possible, but necessarily contains unmeasured parameters. The 

objective is to understand better the differences between model simulations and experimental results in complex microbial 

populations. The key methodology for simulation of chaotic dynamics, consistent with the measured dilution rate and micro-

bial volume averages, was to cause the preference of p for r vs. c to vary with the r and c concentrations, to make r more 

competitive for nutrient than c, and to recycle some dying p biomass, leading to a modified version of the Monod kinetics 

model. Our mathematical model demonstrated that the occurrence of chaotic dynamics requires a predator, p, preference for 

r versus c to increase significantly with increases in r and c populations. Also included is a discussion of several generaliza-

tions of the existing model and a possible involvement of the minimum energy dissipation principle. This principle appears 

fundamental to thermodynamic systems including living systems. Several new experiments are suggested.

Keywords Microbes · Chemostat · Nonlinear dynamics and chaos · Mathematical model

Introduction

The Fussmann (2007) review states, “It is a long-standing 

debate among ecologists whether chaotic dynamics are 

likely to occur in food web systems.” Increasing results 

since the late 1990s, both theoretical and experimental, 

have supported the conclusion that chaotic and other com-

plex dynamical interactions, are certainly possible and per-

haps common (Constantino et al. 1997; Becks et al. 2005; 

Graham et al. 2007; Beninca et al. 2008; Becks and Arndt 

2008, 2013; Vayenas and Pavlou 1999; Massoud et al. 2018). 

However, bringing together a well-defined experiment and a 

highly sensitive nonlinear, coupled mathematical model with 

variables and parameter values appropriate for the experi-

ment is still lacking. Conducting measurements is difficult, 

especially in field experiments where the environmental 

conditions are not uniform or constant. Only laboratory-

based experiments, which are still quite difficult to perform, 

have produced microbial population time series of sufficient 

length and precision to verify the occurrence of determinis-

tic chaotic dynamics (Becks et al. 2005; Graham et al. 2007; 

Beninca et al. 2008).

Graham et al. (2007) studied a realistic mix of microbes 

in aerobic bioreactors filled initially with a mixture of waste-

water from a treatment plant and simulated wastewater. The 

main variables recorded as time series were total bacteria, 

ammonia-oxidizing bacteria, nitrate-oxidizing bacteria and 

protozoa, along with the concentrations of nitrate, nitrite 

and total ammonia. Chaotic dynamics were identified by 

calculating positive Lyapunov exponents using the method 

of Rosenstein et al. (1993). The Beninca et al. (2008) experi-

ments, which continued for 6.3 years, demonstrated cha-

otic dynamics in a complex plankton community in a water 
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sample obtained from the Baltic Sea. The experiment was 

housed in a cylindrical mesocosm containing 90 L of water 

with a 10 cm sediment layer at the bottom. The behavior of 

the relevant time series was consistent with Lyapunov expo-

nents averaging about 0.058 per day. Massoud et al. (2018) 

provided additional quantitative analysis of the Beninca 

et al. (2008) study dealing with the limits of predictability 

in data sets displaying deterministic chaos. Both experiments 

would be difficult to represent mathematically because of the 

large number of coupled variables involved and their many 

unspecified couplings.

As noted by Fussmann (2007), a particularly well-defined 

experiment was that of Becks et al. (2005). That team stud-

ied a one predator, two preys, microbial food web in a 

chemostat, with additional analyses presented during fol-

lowing years (Becks and Arndt 2008,2013). Depending on 

the feeding (dilution) rate, the experiments produced both 

classical steady states as well as chaotic dynamics. Fuss-

mann (2007) stated that, “If this food web could be param-

eterized for a mathematical model that predicts its behavior 

correctly, ecologists would possess a magnificent system to 

test dynamical food web theory.” Thus, the main objectives 

of this paper are to develop a surrogate mathematical model 

of the Becks et al. (2005) experiments, use this model to 

analyze the experiments, explain why a surrogate model 

is the best that can be developed without further experi-

mental measurements and, thereby, motivate additional 

experiments. Also considered is the question: why might 

chaotic dynamics occur in microbial food webs? Given the 

odd mathematical properties of chaotic dynamics, shouldn’t 

there be some biological advantage for such dynamics to be 

selected rather than classical dynamics?

The Becks et al. experiments

A conceptual model of the Becks et al. (2005) experiments 

is shown in Fig. 1. The food web was composed of a nutri-

ent source, two bacteria that consumed nutrient (a rod, r, 

and a coccus, c), and a ciliate predator, p, that consumed 

both bacteria. The variable supporting the system was the 

food supply that was varied by changing the dilution rate 

(chemostat flow/chemostat volume), having units of inverse 

time). The four coupled dependent.

variables were concentrations of nutrient (mg/cc) and 

each of the three microbe populations (cells/cc). For a fixed 

set of dilution rates, the three microbe concentrations were 

measured at a selected set of approximately daily time 

intervals. Each set of data constituted a time series (con-

centrations at discrete times), and deterministic chaos was 

identified by using a computerized version of the analytical 

procedure developed by Rosenstein et al. (1993) for calculat-

ing the largest Lyapunov exponent with the application of 

the TISEAN package (Hegger et al. 1999). Classical steady 

states were observed at D = 0.9/day and 0.75/day, cha-

otic dynamics were observed at D = 0.5/day, and periodic 

dynamics were observed at a slightly lower D = 0.45/day. 

(See Becks et al. (2005) for additional details.)

In addition to their main study, Becks et al. (2005) made 

separate measurements that provided some basis for a math-

ematical analysis of the experiments. These measurements 

included: (1) the average volume of the individual microbes, 

(2) the fact that the rods would out-compete the cocci for 

nutrient when no predators were present, and (3) that in one 

measurement, the predators preferred to consume the rods 

over the cocci at a ratio of 4:1. These supplementary meas-

urements turned out to be vital for even surrogate model 

development.

Mathematical model development

To formulate mathematically the processes of the Becks 

et al. experiment, we first generalized the original three-

equation chemostat model (nutrient plus two microbes) 

developed by Kot et al. (1992) to a four-equation model of 

four dependent variables: nutrient n(t), rods r(t), cocci c(t), 

and predators p(t) – with t being time. The units of the nutri-

ent concentration are mg/cc, while those of the microbes 

are cell numbers/cc (cells/cc). In order to conserve mass 

in the resulting model, an average microbial mass had to 

be selected for each microbe type. This was done based on 

measured microbe volume averages published by Becks 

et al. (2005). We note that modeling based on the mean 

microbial volume is already an approximation, because 

behavior could vary during the maturing process. Using the 

measured microbial volume averages along with an assumed 

density of 1 g/cc, results in: r mass (mr) = 1.6 ×  10–9 mg; c 

mass (mc) = 8.2 ×  10–9 mg, and p mass (mp) = 3.2 ×  10–6 mg. 

With these minor differences, the Kot et al. (1992) equations 

Fig. 1  Diagram of the Becks et al. (2005) chemostat system. A nutri-

ent solution flowing left to right was consumed by two microbes (rods 

and cocci), with rods being stronger competitors for nutrient than 

cocci. A ciliate predator fed on both microbes, but preferred rods over 

cocci
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for a nutrient (mg/cc), a rod (cells/cc) and a predator (cells/

cc) would be written as:

These three equations are identical to those used by Kot 

et al. (1992), with their S = n, H = rmr, and P = pmp. The “mx” 

terms are mean mass of the respective microbe, so r and p 

are dimensionless numbers of rods and predators per cc, 

the microbe “concentration” units recorded by Becks et al. 

(2005). All the other constant terms are various maximum 

specific growth rates “μxx”, half saturation constants “Kxx” 

and yield coefficients “Yxx” used to define the Monod kinet-

ics. Model (Monod, 1949).

To extend Eqs. (1) to include one more nutrient-consum-

ing microbe, a coccus, an equation similar to the middle 

one of Eqs. (1) is added, along with the analogous coupling 

terms, resulting in the following system of four ordinary 

differential equations.

The parameters involved are maximum specific growth 

rates (μxx), half saturation constants (Kxx) and yield coef-

ficients (Yxx), a total of twelve. Equations  (2) are direct 

generalizations of the Kot et al. (1992) model, and their 

mathematical validity was checked by showing that a mass 

balance was maintained, and when the Kot et al. (1992) ini-

tial conditions and parameter values were used, with one 

microbe forced to die out, output equivalent to Fig. 3 of Kot 

et al. (1992) was reproduced. (The braces {} in Eqs. 2 and 

3 are used to identify terms used later in the mathematical 

development.) As written, however, Eqs. (2) do not include 

information from the supplemental experiments of Becks 

et al. (2005) or information on how a chemostat operates, 

such as potential nutrient recycling from dying biomass. 

Using Eqs. (2) alone, we were not able to produce chaotic 

dynamics unless we used a sinusoidal dilution rate as Kot 

et al. (1992) did.

(1)

dn

dt
= Dn

0
−

�rn

Yrn

[

n(rmr)

Krn + n

]

− Dn

d(rmr)

dt
= �rn

[

n(rmr)

Krn + n

]

−
�pr

Ypr

[

(rmr)(pmp)

Kpr + (rmr)

]

− D(rmr)

d(pmp)

dt
= �pr

[

(rmr)(pmp)

Kpr + (rmr)

]

− D(pmp)

(2)

dn

dt
= Dn

0
−

�rn

Yrn

[

n(rmr)

Krn + n

]

−
�cn

Ycn

[

n(cmc)

Kcn + n

]

− Dn

d(rmr)

dt
= �rn

[

n(rmr)

Krn + n

]

−

{

�pr

Ypr

[

(rmr)(pmp)

Kpr + (rmr)

]}

− D(rmr)

d(cmc)

dt
= �cn

[

n(cmc)

Kcn + n

]

−

{

�pc

Ypc

[

(cmc)(pmp)

Kpc + (cmc)

]}

− D(cmc)

d(pmp)

dt
= �pr

[

(rmr)(pmp)

Kpr + (rmr)

]

+ �pc

[

(cmc)(pmp)

Kpc + (cmc)

]

− D(pmp)

In expanding Eqs. (2) to simulate the Becks et al. supple-

mental experiments, the specific death rate of predators and 

their biomass recycling to nutrient are likely to be impor-

tant, because their average mass is about 1000 times greater 

than that of each feeding microbe. Moreover, populations 

of feeding microbes decrease mainly due to consumption 

by predators, while nothing consumes the dying predators. 

When predators die, their bodies simply break down with 

remains consumed or flushed out of the well-mixed che-

mostat. Because of these considerations, natural death and 

biomass recycling of the feeding microbes were assumed to 

be negligible relative to predators, and this was supported 

also by numerical experiments. The specific death rate for 

predators and the nutrient recycling terms will be identified 

in the final system of equations developed below.

As observed in the Becks et al. (2005) supplemental 

experiments, in the absence of predators r would out-com-

pete c for nutrient, and at an identical population of r and c 

(4 ×  106 cells/cc), p consumed r cells over c cells in the ratio 

of 4:1. We decided to incorporate the additional informa-

tion into Eqs. (2) as follows: (1) When r and c are low, p 

chooses them on an equal basis even though in general r is 

preferred over c (Starving organisms are not choosy?), (2) 

At high r and c, as observed in the experiments, p chooses 

r four times more than c, and (3) in competition for nutrient 

with no predators, the cocci die out first. In their more recent 

paper, Becks and Arndt (2013) discussed the possibility that 

a p preference change with r and c concentrations could 

be an important but unmeasured process in the Becks et al. 

(2005) study.

A simple way to impose condition (3), is to set the value 

of �
rn

 , the maximum specific growth rate of r on n, equal 

to k�
cn

 , with k > 1 . Then, for k being sufficiently large, r 

will always outcompete c at low cell numbers. Incorporat-

ing conditions 1 and 2 leads to a new modification of the 

Monod kinetics model; it results in a kinetic expression that 

incorporates a generalization of the supplemental results of 

the Becks et al. (2005) experiments (p preference ratio for r 

vs. c varying from 1:1 to 4:1 rather than staying constant at 

4:1. It also decreases the number of free parameters in the 

overall model, which we view as positive.

Based on the Becks et al. (2005, Fig. 1) data, the r and 

c concentrations are ranging from about 1 ×  105 cells/cc to 

2 ×  106 cells/cc. On a cell numbers basis -see braced terms 

in the  2nd and  3rd members of Eqs. (2)- the respective con-

sumption rates of p on r and p on c are expressed as follows:

Noting that the minimum values of r and c are approxi-

mately 1 ×  105 cells/cc, we set drp/dt = dcp/dt (preference 

ratio of 1:1), and obtain from (3):

(3)mr

drp

dt
=

�prrmrpmp

Ypr(Kpr + mrr)
and mc

dcp

dt
=

�pccmcpmp

Ypc(Kpc + mcc)
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Assuming that for maximum values of r and c (approxi-

mately r = c = 2 ×  106 cells/cc) drp/dt = 4dcp/dt (preference 

ratio of 4:1), we obtain from (3):

We will modify the numerator and denominator of drp/

dt, given in Eqs. (3), in order to achieve the equalities 

specified in Eqs. (4) and (5), with a linear variation in 

between. The maximum specific growth rate of p on r will 

become μpr(m1r + i1), and the denominator will become 

Kpr + m2r + mrr, with m1, i1 and m2 constants. Substituting 

this in drp/dt yields

Thus, we are changing �
pr

 and Kpr from constants to lin-

ear functions of r. To keep the overall units consistent, m1 

has the units of (cells/cc)−1, i1 is dimensionless, and m2 has 

the units of mg. Equation (6) is a new semi-empirical rela-

tionship expressing a modified form of the Monod kinetics 

equation, motivated by the Becks et al. experiment, and is 

given to consider a p preference change for r relative to c. 

Then to satisfy Eqs. (4) and (5), the following conditions 

must be met by Eq. (6) (note the terms that cancel):

(4)
�pr(1×105)pmp

Ypr(Kpr + 1×105mr)
=

�pc(1×105)pmp

Ypc(Kpc + 1×105mc)

(5)
�pr

(

2 × 10
6
)

pmp

Ypr

(

Kpr + 2 × 106mr

) =

4�pc

(

2 × 10
6
)

pmp

Ypc

(

Kpc + 2 × 106mc

)

(6)
drp

dt
=

�pr

(

m
1
r + i

1

)

r
(

pmp

)

Ypr(Kpr + m
2
r + mrr)

To obtain the equalities in Eqs. (7), we will first modify 

the numerators followed by the denominators to main-

tain overall equality. This will also require introducing 

the equalities μpr = μpc, Ypr = Ypc and Kpr = Kpc. (Little is 

known concerning the true values of these parameters and 

equating them reduces the number of unknown param-

eters in the overall model.) Accordingly, the introduced 

parameters m1 and i1 must satisfy the following conditions: 

 105m1 + i1 = 1, and 2 ×  106m1 + i1 = 4, also setting μpr = μpc. 

These conditions yield m1 = 1.579 ×  10–6 (cells/cc)−1 and 

i1 = 0.8421. The corresponding conditions on m2 are as 

follows:

If we set Ypr = Ypc and Kpr = Kpc, Eqs. (8) become,

It can be seen from both relationships that 

m
2
= m

c
− m

r
= 8.2 × 10

−9
− 1.6 × 10

−9
= 6.6 × 10

−9 mg. 

Thus, after dividing through by the microbial masses, Eqs. 

(2) being adapted to the Becks et al. (2005) supplemental 

experiments are written as follows:

(7)

�pr(105m1 + i1)

Ypr(Kpr + 105m2 + 105mr)
=

�pc

Ypc(Kpc + 105mc)
, and

�pr(2 × 106m1 + i1)

Ypr(Kpr + 2 × 106m2 + 2 × 106mr)
=

4�pc

Ypc(Kpc + 2 × 106mc)

(8)

Ypr

(

Kpr + 105m2 + 105mr

)

= Ypc

(

Kpc + 105mc

)

, and

Ypr

(

Kpr + 2 × 106m2 + 2 × 106mr

)

= Ypc

(

Kpc + 2 × 106mc

)

(9)
105

m2 + 105
m

r
= 105

m
c
, and

2 × 106
m2 + 2 × 106

m
r
= 2 × 106

m
c

(10)

dn

dt
= Dn

0
−

{k�cn}

Yrn

[

n(rmr)

Krn + n

]

−
�cn

Ycn

[

n(cmc)

Kcn + n

]

− Dn + pmp�p(EF)

dr

dt
= {k�cn}

[

n(r)

Krn + n

]

−
{�pc}((1.58 × 10−6)r + 0.842)

{Ypc}

[

r(pmp)

{Kpc} + (6.6 × 10−9)r + (rmr)

]

− Dr

dc

dt
= �cn

[

n(c)

Kcn + n

]

−
�pc

Ypc

[

c(pmp)

Kpc + (cmc)

]

− Dc

dp

dt
= {�pc}((1.579 × 10

−6)r + 0.842)

[

p(rmr)

{Kpc} + (6.6 × 10−9)r + (rmr)

]

+ �pc

[

p(cmc)

Kpc + (cmc)

]

− Dp − p�p
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In these equations, δp is the specific death rate for preda-

tors, which is recycled to nutrient at the efficiency “EF ≤ 1” 

in the 1st equation of set (10). For clarity, the modified rod 

kinetic parameters are placed within braces {}. Further clari-

fication of the mathematical manipulations resulting in Eqs. 

(10) may be found in the Supplemental Material.

In the final model, the predators have been made to prefer 

rods over cocci with an increasing rod population, so the 

rods are disadvantaged and would tend to die out. Based 

on numerical experiments, this is prevented by setting the k 

factor in the first of Eqs. (10) to 1.5. As presented in Molz 

et al. (2019), dimensionless forms of Eqs. (10) were devel-

oped in order to aid the numerical simulations of the Becks 

et al. experiments and the understanding of parameter inter-

actions. These dimensionless equations may also serve as a 

basis for further study of microbial experiments.

Summary of modeling results

Equations  (10) were solved using MATLAB software 

(ODE45) subject to the approximate initial conditions 

of n(t = 0) = 0.03  mg/cc, r(t = 0) = 4.2 ×  106 cells/cc, 

c(t = 0) = 1. ×  106 cells/cc and p(t = 0) = 3000 cells/cc. A 

set of parameters that produced chaotic dynamics at the 

measured dilution rate of 0.5/d is listed in Table 1. Based 

on parameter values given in Kot et al. (1992) and value 

ranges given in Kravchenko et al. (2004), Table 1 values 

appear reasonable. Other than the dilution rate and mean 

microbe masses, we arrived at the remaining parameter val-

ues by “trial-and-error” numerical simulation experiments. 

Faybishenko et al. (2018) presented additional mathemati-

cal details consistent with chaotic behavior. The biologi-

cal details of the Becks et al. (2005) experiments were not 

considered.

The results of simulations, based on the parameter val-

ues listed in Table 1, are shown in Figs. 2 and 3. Listed in 

Table 2 are the ranges of maximum Lyapunov exponents 

given in Becks et al. (2005), which are reasonably close to 

those calculated from our simulated time series.

As in the Becks et al. experiments, after obtaining cha-

otic dynamics at a dilution rate D = 0.5/day (0.0208/hr), we 

decreased D to 0.45/day (0.01875/hr) with other parameters 

as listed in Table 1. It is shown in Fig. 4 that the output starts 

in an irregular manner, and then becomes steady state with 

the cocci dying out. In the experiments, the results were 

periodic with all microbes surviving.

For a D value of 0.9/d (0.0375/hr), both simulations 

and experiments produced a classical steady state with one 

microbe dying out (See Fig. 5 for initial model results). With 

this more classical result, it should be relatively easy to “fit” 

the model to the Becks et al. results. To illustrate this, we 

adjusted three parameters listed in Table 1. The maximum 

specific growth rate for the cocci was changed from 0.1248/h 

to.

0.1/hr., and the mean masses of the rods and preda-

tors were changed respectively from 1.6 ×  10–9 mg and 

3.2 ×  10–6 mg to 2.2 ×  10–9 mg and 2.23 ×  10–6 mg – not 

exceedingly large changes. The resulting simulations shown 

in Fig. 6 are essentially identical to the Becks et al. (2005) 

experimental results for D = 0.9/d (0.0375/h). However, with 

the same parameter values the chaotic dynamics could not 

be reproduced at a D of 0.5/day (0.0208/hr).

We also solved Eqs. (10) with D = 0.75/d (0.03125/h.), 

which produced a classical steady state with the rods dying 

out, as shown in Fig. 7; Becks et al. achieved a steady state 

also, but with all microbes surviving.

Table 1  Parameter values used 

in Eqs. (10) that yield chaotic 

dynamics with the dilution rate 

utilized in Becks et al. (2005)

D  (h−1) n0 (mg/cc) μrn  (h
−1) Yrn Krn (mg/cc) μcn  (h

−1) Ycn Kcn (mg/cc)

0.0208 0.15 0.1873 0.4 0.009 0.1248 0.4 0.009

μpr  (h
−1) Ypr Kpr(mg/cc) μpc  (h

−1) Ypc Kpc(mg/cc) δp  (h
−1) mr (mg)

0.05117 0.6 0.009 0.05117 0.6 0.009 0.00416 1.6E-9

mc (mg) mp (mg) EF m1 (cc/

cells)

i1 m2 (mg) – –

8.2 ×  10–9 3.2 ×  10–6 0.5 1.6 ×  10–6 0.8421 6.6 ×  10–9 – –

Fig. 2  System-space (phase-space) plot of r(t), c(t) and p(t) for the 

parameters listed in Table 1 for D = 0.5/d (0.0208/h). A strange phase-

space attractor is evident
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Discussion and conclusions

The present study yields several interesting parallels between 

the experimental and modeling results. The nature and mag-

nitudes of the model and experimental outputs were similar. 

For the chaotic case with a dilution rate of 0.5/d (0.0208/h) 

in both the experiment and the mathematical model, the Lya-

punov exponents were in reasonable agreement (Table 2) 

with chaotic dynamics resulting. For a dilution rate of 0.9/d 

(0.0375/h) in both the modeling and experiments and a mod-

erate tuning of three unmeasured parameter values (+ 38% 

for mr, − 43% for mp and -2% for μcn), the model outputs 

were identical to the experimental results. So, we have a 

well-defined experiment and a surrogate model that pro-

duced both chaotic and classical time series output patterns 

depending on the dilution rate. This lends further support to 

the conclusion of Becks et al. (2005) that chaotic dynamics 

in combination with classical dynamics occurred in their 

experiments.

From our viewpoint, the key methodology for obtaining 

internal chaotic dynamics was to cause the preference of p 

for r vs. c to vary with the r concentration, and to make r 

more competitive for nutrient than c, as well as to recycle 

some dying p biomass. This was consistent with the experi-

mental details, and it was vital to the model development 

that Becks et al. (1995) performed the supplemental meas-

urements related to mean microbial volume, predator food 

preferences and relative competitiveness of the rods and 

cocci for nutrients. In this area, our surrogate model analy-

sis yields a prediction: the occurrence of chaotic dynamics 

requires a predator preference for r versus c to increase 

significantly with increases in r and c populations, and this 

could be checked experimentally by extending the Becks 

et al. (2005) supplemental experiment on predator prefer-

ence change. Becks et al. (2005) measured this preference 

at single r and c values and got a ratio of 4:1, but it could be 

done at a variety of values to see if our linear relationship is 

Fig. 3  Irregular, non-periodic, 

dynamics of n(t), r(t), c(t) 

and p(t) associated with the 

system-space plot in Fig. 2. By 

counting apparent concentra-

tion peaks, the mean frequency 

of the simulated data appears 

lower than that observed in 

Becks et al. (2005), but still 

within 50%

Table 2  Lyapunov exponents used to identify the presence of deter-

ministic chaos based on the time series of concentrations shown in 

Fig.  3 (Calculations were conducted using the R package “fractal” 

version: 2.0–1)

Note ( )*range and average of maximum Lyapunov exponents deter-

mined by Becks et al. (2005)

Parameters n r c p

Time delay (hr.) 79 90 93 80

Largest Lyapunov

exponent  (hr−1)

0.085 0.016

(0.009–0.012)*

(Avg. = 0.011)*

0.004

(0.006–0.015)*

(Avg. = 0.01)*

0.015

(0.006–0.008)*

(Avg. = 0.007)*
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Fig. 4  Resulting nutrient 

and microbe dynamics with 

D = 0.45/d (0.01875/h.), as was 

done in the Becks et al. (2005) 

experiments

Fig. 5  Resulting nutrient and 

microbe kinetics with D = 0.9/d 

(0.0375/h) using the parameter 

values in Table 1
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Fig. 6  Simulated nutrient and 

microbe dynamics that match 

the Becks et al. (2005, Fig. 1) 

results for D = 0.9/d (0.0375/h)

Fig. 7  Resulting nutrient 

and microbe dynamics with 

D = 0.75/d (0.03125/h). Both 

the model and experiments 

produced classical steady states, 

but all microbes survived in the 

experiments while the rods died 

out in the model
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valid, or if there is another one affecting the overall dynam-

ics. It would illustrate how potential couplings can be com-

plex beyond any of the classical kinetic expressions such as 

the Monod expression. The applicable experimental tech-

nique was developed by Christofferson et al. (1997.)

What the results are telling us is that future experiments 

should be designed to have a mix of modeling and experi-

mental testing so that the parameter values or functions 

for the actual experimental kinetics are better defined from 

the outset. Such precision is required mathematically in 

nonlinear, coupled models producing both classical and 

chaotic dynamics, as in the present analysis. This is a sig-

nificant experimental challenge, but our results provide 

clear motivation in that direction. The question is: can one 

measure and specify precisely the kinetics of interacting 

components of a microbial system so that a corresponding 

mathematical model reproduces the chaotic and classical 

dynamics observed in the experiment? In considering the 

Becks et al. (2005) experiment, one would presume that 

the microbes involved respond to their changing envi-

ronment in a nearly continuous manner directed by their 

individual genetic codes. In different environments, such 

responses would be expected to have extensive flexibility 

and variability derived from millions of years of evolu-

tion. How does one specify such kinetics before perform-

ing the various experiments? Becks et al. (2005) moved 

in that direction by performing short term supplemental 

experiments along with their main experiments, which is 

probably one reason why Fussmann (2007) recommended 

those experiments for theoretical study.

The mathematical model represented by Eqs.  (10) 

may be generalized further in several ways. Additional 

microbes may be added, and the interaction kinetics may 

be modified further to represent what is occurring in a 

given experiment. Such modification is not difficult in a 

formal mathematical sense; the challenge is to base such 

modifications on experimental evidence and motivation. 

Another interesting idea would be to perform experiments 

involving a spatial variable. This leads one to consider bio-

films (Davey and O’Toole 2000; Picioreanu et al. 2005). It 

is observed that nicely structured and controlled biofilms 

can be grown on electrodes, and electrical measurements 

can be made very precisely (Yoho et al. 2014).

Returning to the question posed in the introduction: If 

chaotic dynamics can occur in place of classical dynam-

ics in microbial food webs, what might be a biological 

advantage? A possible answer is suggested by a throreti-

cal analysis of the chaotic double pendulum (Mori et al. 

1991). These scientists found that when the pendulum 

entered its chaotic mode, the system energy dissipation 

rate due to friction fell into a local minimum, and this was 

unexpected. An analogous measurement could be made on 

chemical reactions displaying chaotic dynamics, such as 

the Belousov–Zhabotinskii reaction system (Hudson and 

Mankin 1981). If a system energy dissipation minimum 

(increased system efficiency) is associated with chaotic 

biological systems, then such systems would be favored by 

natural selection. As presented by Zotin (2012), the mini-

mum energy dissipation principle developed by Prigogine 

applies to thermodynamic systems at or near a steady state. 

It is conceivable that a deterministic chaotic attractor (e.g., 

Figure 2) may be viewed as a system generalization of 

a classical steady state as suggested by Molz and Fay-

bishenko (2013). So, the minimum energy dissipation 

principle applied potentially to a strange attractor should 

be tested experimentally. Any potential energy dissipation 

principles are not included in our present surrogate model. 

How this might be done could become a subject of future 

research.
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