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Preface

Micro-Electromechanical Systems (MEMS) combine electronics with micro-size mechanical
devices to design various types of microscopic machinery. Having been rapidly developed
since 1980s, MEMS devices become the essential components of modern sensors in various
areas, including commercial systems, biomedical industry, space exploration and telecom-
munications. The advent of MEMS has revolutionized numerous branches of science and
industry. Mathematical modeling of MEMS devices has already turned out to be a very
rich source of interesting mathematical phenomena.

This monograph is to present analysis and simulations of a partial differential equation
(PDE) modeling a simple idealized electrostatic MEMS, which was firstly derived by John
A. Pelesko four years ago. Even though numerics give lots of information and point to many
conjectures, the existing arsenal of nonlinear analysis and PDE techniques can only tackle
a precious few. However, its partial resolution has already led to a successful and exciting
interdisciplinary scientific effort.

The present version of this monograph consists of seven Chapters. Chapter 1 is an
introduction of MEMS, together with a brief derivation of a PDE modeling electrostatic
MEMS. Chapters 2 to 5 are focussed on pull-in voltage and the analysis of an elliptic
problem with singular nonlinearity, where it assumes some familiarity with basic elliptic
PDE theory, measure theory and functional analysis. While, Chapters 6 and 7 are devoted
to the corresponding parabolic problem with singular nonlinearity, where it is useful to have
some prior knowledge of basic parabolic PDE theory. Some comments and many unsolved
problems are also given in the final section of each Chapter.

The authors would like to thank Louis Nirenberg, Xavier Cabré, Tai-Peng Tsai, Stephen
Gustafson, Daniele Cassani and Abbas Moameni for helpful discussions on the subject. The
authors would also like to thank Zongming Guo and Juncheng Wei for sharing their research
results before publication.
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Chapter 1

Introduction

The roots of micro-system technology lie in the technological developments accompanying
World War II. In particular, the development of radar stimulated research in the synthesis
of pure semiconducting materials. These materials, especially pure silicon, have become the
lifeblood of integrated and modern technology of MEMS: Micro-Electromechanical Systems,
which combine electronics with micro-size mechanical devices to design various types of
microscopic machinery. An overview of the rapidly developing field of MEMS technology is
given in [86].

At present, the variety of MEMS devices and applications is continually increasing,
and the advent of MEMS has revolutionized numerous branches of science and industry.
Already firmly established as an essential component of modern sensors, such as those used
for automobile airbag deployment, MEMS are making inroads into areas as diverse as the
biomedical industry, space exploration, and telecommunications.

1.1 Electrostatic MEMS devices

Spurred by rapid advances in integrated circuit manufacturing, microsystems process tech-
nology is already well developed. As a result, researchers are increasingly focusing their
attention on device engineering questions. Foremost among these is the question of how
to provide accurate, controlled, stable locomotion for MEMS devices. Just as what has
been recognized for some time, it is neither feasible nor desirable to attempt to reproduce
modes of locomotion used in the macro world. In fact, the unfavorable scaling of force with
device size prohibits this approach in many cases. For example, magnetic forces, which are
often used for actuation in the macro world, scale poorly into the micro domain, decreasing
in strength by a factor of ten thousand when linear dimensions are reduced by a factor
of ten. This unfavorable scaling renders magnetic forces essentially useless. At the micro
level, researchers have proposed a variety of new modes of locomotion based upon thermal,
biological, and electrostatic forces. The use of electrostatic forces to provide locomotion for
MEMS devices is the subject of this text.

Everyday micro-systems use the Coulomb force to grab, pimp, bend, spin, and even

1



2 CHAPTER 1. INTRODUCTION

slide. Experimental work in this area dates back to 1967 and the work of Nathanson et. al.
[83]. In their seminal paper, Nathanson and his coworkers describe the manufacture, exper-
imentation with, and modeling of, a millimeter-sized resonant gate transistor. This early
MEMS devices utilized both electrical and mechanical components on the same substrate
resulting in improved efficiency, lowered cost, and reduced system size. Nathanson and his
coworkers even introduced a simple lumped mass-spring model of electrostatic actuation. In
an interesting parallel development, the prolific British scientist G.I. Taylor [92] investigated
electrostatic actuation at about the same time as Nathanson. While Taylor was concerned
with electrostatic deflection of soap films rather than the development of MEMS devices,
his work spawned a small body of the literature with relevance to MEMS. Since Nathanson
and Taylor’s seminal work, numerous investigators have been continually exploring new uses
of electrostatic actuation, such as Micropumps, Microswitches, Microvalves, Shuffle Motor
and etc. See [86] for more details of these devices that use electrostatic forces for their
operations.

1.2 PDEs modeling electrostatic MEMS

As mentioned in §1.1, many MEMS devices use electrostatic forces for their operation. A
key component of some MEMS systems is the simple idealized electrostatic device shown in
Figure 1.1. The upper part of this device consists of a thin and deformable elastic membrane
that is held fixed along its boundary and which lies above a parallel rigid grounded plate.
This elastic membrane is modeled as a dielectric with a small but finite thickness. The
upper surface of the membrane is coated with a negligibly thin metallic conducting film.
When a voltage V is applied to the conducting film, the thin dielectric membrane deflects
towards the bottom plate. A similar deflection phenomenon, but on a macroscopic length
scale, occurs in the field of electrohydrodynamics. In this context, Taylor [92] studied the
electrostatic deflection of two oppositely charged soap films, and he predicted a critical
voltage for which the two soap films would touch together.

A similar physical limitation on the applied voltage occurs for the MEMS device of
Figure 1.1, in that there is a maximum voltage V ∗ –known as pull-in voltage– which can be
safely applied to the system. More specifically, if the applied voltage V is increased beyond
the critical value V ∗, the steady-state of the elastic membrane is lost, and proceeds to snap
through at a finite time creating the so-called pull-in instability (cfr. [51, 52, 64, 85]). The
existence of such a pull-in voltage was first demonstrated for a lumped mass-spring model
of electrostatic actuation in the pioneering study of [83], where the restoring force of the
deflected membrane is modeled by a Hookean spring. In this lumped model the attractive
inverse square law electrostatic force between the membrane and the ground plate dominates
the restoring force of the spring for small gap sizes and large applied voltages. This leads
to snap-through behavior whereby the membrane hits the ground plate when the applied
voltage is large enough.

Following the analysis in [64, 86, 88], in the following we shall formulate some partial
differential equations modeling dynamic deflection ŵ = ŵ(x′, y′, t′) of the membrane shown



1.2. PDES MODELING ELECTROSTATIC MEMS 3

Dielectric Membrane with Conducting
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L

Figure 1.1: The simple electrostatic MEMS device.

in Figure 1.1.

1.2.1 Analysis of elastic problem

We first consider the elastic problem of the membrane in the dynamic case. We shall apply
Hamilton’s principle and minimize the action S of the system, which is referred to as the
principle of least action. Here the action consists of kinetic energy, damping energy and
potential energy in the system. The pointwise total of these energies is the Lagrangian for
the system. Denoting the Lagrangian by L we have

S =

∫ t2

t1

∫

Ω′
LdX ′dt′ = Kinetic Energy + Damping Energy + Potential Energy

= : Ek + Ed +Ep ,

(1.2.1)

where Ω′ is the domain of the membrane with respect to (x′, y′). In this subsection, dX ′

denotes dx′dy′, and the gradient ∇′ (and the Laplace operator ∆′) denotes the differentiation
only with respect to x′ and y′.

For the dynamic deflection ŵ = ŵ(x′, y′, t′) of the membrane, the kinetic energy Ek
satisfies

Ek =
ρA

2

∫ t2

t1

∫

Ω′
ŵ2
t′dX

′dt′ , (1.2.2)

where ρ is the mass density per unit volume of the membrane, and A is the thickness of the
membrane. The damping energy Ed is assumed to satisfy

Ed =
a

2

∫ t2

t1

∫

Ω′
ŵ2dX ′dt′ , (1.2.3)

where a is the damping constant.
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For this model, the potential energy Ep is composed of

Ep = Stretching Energy + Bending Energy .

It is reasonable to assume that the stretching energy in the elastic membrane is proportional
to the changes in the area of the membrane from its un-stretched configuration. Since we
assume the membrane is held fixed at its boundary, we may write the stretching energy as

Stretching Energy := −µ
(∫ t2

t1

∫

Ω′

√
1 + |∇′ŵ|2dX ′dt′ − |Ω′|(t2 − t1)

)
.

Here the constant of proportionality, µ, is simply the tension in the membrane. We linearize
this expression to obtain

Stretching Energy := −µ
2

∫ t2

t1

∫

Ω′
|∇′ŵ|2dX ′dt′ .

The bending energy is assumed to be proportional to the linearized curvature of the mem-
brane, that is

Bending Energy := −D
2

∫ t2

t1

∫

Ω′

(
∆′ŵ

)2
dX ′dt′ .

Here the constant D is the flexural rigidity of the membrane. For the total potential energy
Ep we now have

Ep = −
∫ t2

t1

∫

Ω′

(µ
2
|∇′ŵ|2 +

D

2
(∆′ŵ)2

)
dX ′dt′ . (1.2.4)

Now combining (1.2.1)-(1.2.3) and (1.2.4) yields that

L =
ρA

2
ŵ2
t′ +

a

2
ŵ2 − µ

2
|∇′ŵ|2 − D

2
(∆′ŵ)2 .

According to Hamilton’s principle, we minimize

∫ t2

t1

∫

Ω′

(ρA
2
ŵ2
t′ +

a

2
ŵ2 − µ

2
|∇′ŵ|2 − D

2
(∆′ŵ)2

)
dX ′dt′ ,

which implies that the elastic membrane’s deflection ŵ satisfies

ρA
∂2ŵ

∂t′2
+ a

∂ŵ

∂t′
− µ∆′ŵ +D∆′2ŵ = 0 . (1.2.5)

1.2.2 Analysis of electrostatic problem

In this subsection, we analyze the electrostatic problem of Figure 1.1 and we assume the
dielectric permittivity ε2 = ε2(x

′, y′) of the elastic membrane can exhibit a spatial variation
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characterizing the varying dielectric permittivity of the membrane. Therefore, in view of
(1.2.5) we assume the membrane’s deflection ŵ satisfying

ρA
∂2ŵ

∂t′2
+ a

∂ŵ

∂t′
− µ∆′ŵ +D∆′2ŵ = −ε2

2

(
|∇′φ|2 + (

∂φ

∂z′
)2
)
. (1.2.6)

where the term on the right hand side of (1.2.6) denotes the force on the elastic membrane
due to the electric field. We suppose that such force is proportional to the norm squared of
the gradient of the electrostatic potential and couples the solution of the elastic problem to
the solution of the electrostatic problem. A derivation of such source term may be found in
[74].

We now apply dimensionless analysis to equation (1.2.6). We scale the electrostatic
potential with the applied voltage V , time with a damping timescale of the system, the x′

and y′ variables with a characteristic length L of the device, and z′ ŵ with the size of the
gap d between the ground plate and the undeflected elastic membrane. So we define

w =
ŵ

d
, ψ =

φ

V
, x =

x′

L
, y =

y′

L
, z =

z′

d
, t =

µt′

aL2
, (1.2.7)

and substitute these into equation (1.2.6) to find

γ2∂
2w

∂t2
+
∂w

∂t
− ∆w + δ∆2w = −λ

(ε2
ε0

)[
ε2|∇ψ|2 +

(∂ψ
∂z

)2]
in Ω , (1.2.8)

where Ω is the dimensionless domain of the elastic membrane. Here the parameter γ satisfies

γ =

√
ρµA

aL
, (1.2.9)

and the parameter δ measures the relative importance of tension and rigidity and is defined
by

δ =
D

µL2
. (1.2.10)

The parameter ε is the aspect ratio of the system

ε =
d

L
,

and the parameter λ is a ratio of the reference electrostatic force to the reference elastic
force and is defined by

λ =
V 2L2ε0
2µd3

. (1.2.11)

In the point of equation (1.2.6), in order to further understand membrane’s deflection, we
need to know more about the electrostatic potential φ inside the elastic membrane. In the
actual design of a MEMS device there are several issues that must be considered. Typically,
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one of the primary device design goals is to achieve the maximum possible stable steady-
state deflection, referred to as the pull-in distance, with a relatively small applied voltage
V. Another consideration may be to increase the stable operating range of the device by
increasing the pull-in voltage V ∗ subject to the constraint that the range of the applied
voltage is limited by the available power supply. This increase in the stable operating range
may be important for the design of microresonators. For other devices such as micropumps
and microvalves, where snap-through (or called touchdown) behavior is explicitly exploited,
it is of interest to decrease the time for touchdown, thereby increasing the switching speed.
One way of achieving larger values of V ∗ while simultaneously increasing the pull-in distance,
is to use a voltage control scheme imposed by an external circuit in which the device is placed
(cfr. [88]). This approach leads to a nonlocal problem for the deflection of the membrane.
A different approach is to introduce a spatial variation in the dielectric permittivity of the
membrane, which was theoretically studied in [51, 52, 63, 64, 85].

In the following we discuss the electrostatic potential φ by introducing a spatial varying
dielectric permittivity, from which we shall further formulate our simple MEMS model. The
idea is to locate the region where the membrane deflection ŵ would normally be smallest
(ŵ = 0 corresponds to touch the fixed ground plate) under a spatially uniform permittivity,
and then make sure that a new dielectric permittivity ε2 is largest –and consequently the
profile f(x, y) = ε0

ε2(Lx,Ly) smallest (see (1.2.18))– in that region.

We assume that the ground plate, located at z′ = 0, is a perfect conductor. The elastic
membrane is assumed to have a uniform thickness A = 2dι. The deflection of the membrane
at time t′ is specified by the deflection of its center plane, located at z′ = ŵ(x′, y′, t′). Hence
the top surface is located at z′ = ŵ(x′, y′, t′) + dι, while the bottom of the membrane is
located at z′ = ŵ(x′, y′, t′) − dι. We also assume that the potential in the region between
the membrane and ground plate, φ1, satisfies

∆φ1 = 0 ,

φ1(x
′, y′, 0) = 0 in Ω′ ,

where we assume that the fixed ground plate is held at zero potential. The potential inside
the membrane, φ2, satisfies

∇ · (ε2∇φ2) = 0 ,

φ2(x
′, y′, ŵ + dι) = V in Ω′ .

Defining the dimensionless scaled potential

ψ =
φ1

V
, ψ =

φ2

V

together with (1.2.7), and applying the dimensionless analysis again, the electrostatic prob-
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lem reduces to

∂2ψ

∂z2
+ ε2

(∂2ψ

∂x2
+
∂2ψ

∂y2

)
= 0 , 0 ≤ z ≤ w − ι ; (1.2.12a)

ε2
∂2ψ

∂z2
+ ε2

( ∂
∂x

(
ε2
∂ψ

∂x

)
+

∂

∂y

(
ε2
∂ψ

∂y

))
= 0 , w − ι ≤ z ≤ w + ι ; (1.2.12b)

ψ = 0 , z = 0 (ground plate); ψ = 1 , z = w + ι (upper membrane surface) , (1.2.13)

together with the continuity of the potential and the displacement field across z = w − ι.
Here, ε ≡ d/L is the device aspect ratio.

In general, we note that one has little hope of finding an exact solution ψ from (1.2.12)
and (1.2.13). However, we can simplify the system by examining a restricted parameter
regime. In particular, we consider the small-aspect ratio limit ε ≡ d/L ≪ 1. Physically,
this means that the lateral dimensions of the device in Figure 1.1 are larger compared to the
size of the gap between the undeflected membrane and ground plate. In the small-aspect

ratio limit ε ≪ 1, equation (1.2.12) gives ∂2ψ
∂z2

= 0. Further, the asymptotical solution of ψ
which is continuous across z = w − ι is

ψ =

{
ψL

z
w−ι , 0 ≤ z ≤ w − ι ,

1 + (1−ψL)
2ι (z − (w + ι)) , w − ι ≤ z ≤ w + ι .

(1.2.14)

To ensure that the displacement field is continuous across z = w − ι to leading order in ε,
we impose that

ε0
∂ψ

∂z
|− = ε2

∂ψ

∂z
|+ ,

where the plus or minus signs indicate that ∂ψ
∂z is to be evaluated on the upper or lower side

of the bottom surface z = w − ι of the membrane, respectively. This condition determines
ψL in (1.2.14) as

ψL =
[
1 +

2ι

w − ι

(ε0
ε2

)]−1
. (1.2.15)

From (1.2.14) and (1.2.15), we observe that the electric field in the z-direction inside the
membrane is independent of z, and is given by

∂ψ

∂z
=

ε0
ε2(w − ι)

[
1 +

2ι

w − ι

ε0
ε2

]−1 ∼ ε0
ε2w

for ι≪ 1 . (1.2.16)

In engineering parlance, this approximation is equivalent to ignoring fringing fields. There-
fore, in the small-aspect ratio limit ε≪ 1, the governing equation (1.2.8) is simplified from
(1.2.16) into

γ2∂
2w

∂t2
+
∂w

∂t
− ∆w + δ∆2w = − λε0

ε2w2
in Ω .

We now suppose the membrane is undeflected at the initial time, that is w(x, y, 0) = 1.
Since the boundary of the membrane is held fixed, we have w(x, y, t) = 1 on the boundary
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of Ω at any time t > 0. We now also assume that the membrane’s thickness A = 2dι
satisfies A = 2dι ≪ 1 which gives γ ≪ 1 in view of (1.2.9), and assume that the elastic
membrane has no rigidity which gives δ = 0 in view of (1.2.10). Therefore, by using further
simplification, the dynamic deflection w = w(x, t) of the membrane on a bounded domain
Ω in R

2, is found to satisfy the following parabolic problem

∂w

∂t
− ∆w = −λf(x)

w2
for x ∈ Ω , (1.2.17a)

w(x, t) = 1 for x ∈ ∂Ω , (1.2.17b)

w(x, 0) = 1 for x ∈ Ω , (1.2.17c)

where the parameter λ > 0 is called the applied voltage in view of relation (1.2.11), while
the nonnegative continuous function f(x) characterizes the varying dielectric permittivity
of the elastic membrane, in the point of the relation

f(x) =
ε0

ε2(Lx)
. (1.2.18)

Therefore, understanding dynamic deflection of our MEMS model is equivalent to studying
solutions of (1.2.17).

1.3 Overview and some comments

This book is divided into two major Parts.

Part I: Semilinear Elliptic Problems with Singular Nonlinearities

The first part of this monograph is focussed on the stationary case of problem (1.2.17). For
convenience, by setting w = 1− u we study the following semilinear elliptic problem with a
singular nonlinearity 




−∆u =
λf(x)

(1 − u)2
in Ω,

0 < u < 1 in Ω,
u = 0 on ∂Ω,

(S)λ

where λ > 0 denotes the applied voltage and the nonnegative continuous function f(x)
characterizes the varying dielectric permittivity of the elastic membrane. Mathematically,
we consider the domain Ω ⊂ R

N with any dimension N ≥ 1. The elliptic problem (S)λ
was first studied by Pelesko in [85], where the author focussed on lower dimension N = 1
or 2, and he considered the profiles f(x) ≥ C > 0 or f(x) = |x|α. The study of (S)λ was
then extended by Guo, Pan and Ward in [64], where the authors considered (S)λ for a more
general profile f(x) which can vanish at somewhere. In the past two years, the elliptic
problem (S)λ was further extended and sharpened in [36, 38, 51, 67, 68] and the references
therein.
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Chapter 2 is a detailed study of pull-in voltage λ∗ and minimal positive solutions of
(S)λ. We first investigate the existence of pull-in voltage λ∗ defined as

λ∗ = sup{λ > 0 : (S)λ possesses at least one solution}.

Numerically and analytically, we also discuss pull-in voltage’s analytic bounds and depen-
dence on the size and the shape of the domain, as well as on the permittivity profile of
the elastic membrane. We then discuss linear stability of minimal solutions of (S)λ and,
by means of energy estimates, we establish some properties of the minimal branch, such as
compactness for 1 ≤ N ≤ 7, uniqueness and comparison results. Compactness of minimal
branch solutions of (S)λ is extended to higher dimension N ≥ 8 with a power-law permit-
tivity profile f(x) = |x|α on the unit ball.
We establish also some uniqueness results of positive solutions of (Sλ) for small λ. In par-
ticular, we introduce Guo and Wei’s works [67, 68], where such uniqueness is considered
in the power-law case and established, by means of a monotonicity formula, under fairly
general assumptions.

When compactness of the minimal branch holds, it is classical to show the existence
of a second branch Uλ of solutions for (Sλ), for λ on the deleted left neighborhood of λ∗.
For them, in Chapter 3 we provide a Mountain Pass variational characterization . The
main goal now is to apply a blow-up analysis to our singular nonlinearity case, to establish
compactness of solutions with Morse index-1 (lying along the second branch) by using
spectral information. As far as we know, there are no such compactness results in the case
of regular nonlinearities, marking a substantial difference with the singular situation. As a
byproduct, we are able to follow the second branch of the bifurcation diagram and prove
the existence of a second solution for λ in a natural range.

Chapter 4 is a continuation and a strong improvement of Chapters 2 & 3. §4.1 will be
devoted to the compactness of any solution for (S)λ in terms of spectral information. One
of the main results in Chapter 4 is the equivalence between compactness, energy bounds
and Morse index of solutions for (S)λ. Using this equivalence, in §4.2 we shall discuss the
uniqueness of solutions for (S)λ in the class of finite Morse index for λ small or close to λ∗.
We also prove the existence of singular solutions for (S)λ with 2 ≤ N ≤ 7.
In §4.3, following Guo and Wei’s papers [67, 68], a general uniqueness result for (S)λ when
λ is small is established in a symmetric setting for the power-law case. Radial solutions
in a ball for any N ≥ 2 or solutions in 2D-symmetric domains for f ≡ 1 are considered.
Moreover, infinite multiplicity holds as the branch of positive solutions is seen to undergo
infinitely many bifurcations as the maximums of the solutions on the branch go to 1 (possibly
only changes of direction). This gives an analytic proof for some bifurcation phenomena
observed in §2.5. Central to this analysis are ODE estimates and a one-dimensional Sobolev
inequality. One dimensional asymptotic analysis is also considered in §4.4.

The asymptotic analysis, introduced in Chapter 2 and deeply used in Chapters 3 & 4,
leads to the following limiting problem:

∆U =
|y|α
U2

in R
2, U(0) = 1, U(y) ≥ 1.
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In Chapter 5, we establish a general (linear) unstability property for entire solutions of
such an equation. It is the key ingredient to relate spectral properties and compactness
along any branch. In §5.2, we establish the radial symmetry in 2D of any enire solution U
which arises from the blow up of a non compact sequence of solutions of (S)λ in symmetric
domains (see [68]).

Part II: Semilinear Parabolic Problems with Singular Nonlinearities

The second part of this monograph is devoted to dynamic deflection of (1.2.17). When
f(x) ≡ 1, there have already existed some results for touchdown (quenching) behavior of
(1.2.17) since 1980s, see [61, 62, 79] and references therein. However, since the profile f(x)
is assumed to be varying and vanish somewhere for MEMS models, the dynamic behavior of
(1.2.17) turns out to be a more rich source of interesting mathematical phenomena. So far
the dynamic behavior of (1.2.17) with varying profile has been investigated in [46, 52, 63, 64].

In Chapter 6 we shall prove that the unique solution w of (1.2.17) must globally converge
as t→ +∞, monotonically and pointwise to its unique maximal steady-state when λ ≤ λ∗;
on the other hand, if λ > λ∗ the unique solution w of (1.2.17) must touchdown at finite time
Tλ in the sense that w(x, t) reaches 0 at finite time Tλ, and any isolated touchdown point of
w can not take place at a zero point of profile f(x). For the case λ > λ∗, we shall analyze
and compute finite touchdown time Tλ. In Chapter 6, we also use asymptotic analysis to
discuss finite-time touchdown profiles. Pull-in distance of (1.2.17) will be also discussed,
together with some interesting numerical phenomena.

The purpose of Chapter 7 is to discuss the refined touchdown behavior of (1.2.17) for
the case λ > λ∗. Some a priori estimates of touchdown behavior will be established there,
including lower bound estimates, gradient estimates and upper bound estimates. Then
we shall obtain the refined touchdown profiles by adapting self-similar method and center
manifold analysis. Applying various analytical and numerical techniques, some properties
of touchdown set –such as compactness, location and shape– are also discussed in Chapter
7 for different classes of varying permittivity profiles.
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Chapter 2

Pull-In Voltage and Steady-States

In this Chapter we study pull-in voltage and stationary deflection of the elastic membrane
satisfying (1.2.17), such that our discussion is centered on the following elliptic problem





−∆u =
λf(x)

(1 − u)2
in Ω,

0 < u < 1 in Ω,
u = 0 on ∂Ω,

(S)λ

where λ > 0 characterizes the applied voltage, while nonnegative f(x) describes the varying
permittivity profile of the elastic membrane shown in Figure 1.1. Throughout this Chapter
and unless mentioned otherwise, solutions for (S)λ are taken in the classical sense. The
permittivity profile f(x) will be allowed to vanish somewhere, and will be assumed to
satisfy

f ∈ Cβ(Ω̄) for some β ∈ (0, 1], 0 ≤ f ≤ 1 and f 6= 0. (2.0.1)

In §2.1 we mainly show the existence of a specific pull-in voltage in the sense

λ∗(Ω, f) = sup{λ > 0 | (S)λ possesses at least one solution} ,

and we also study its dependence on the size and shape of the domain, as well as on the
permittivity profile.

These properties will help us in §2.2 to establish some lower and upper bounds on the
pull-in voltage, and the main results are stated in Theorem 2.2.4.

In this Chapter, we also consider uniqueness issues for solutions of (S)λ with 0 < λ ≤ λ∗.
The bifurcation diagrams in Figure 2.2 of §2.3 show the complexity of the situation, even in
the radially symmetric case. One can observe from Figure 2.2 that the number of branches
–and of solutions– is closely connected to the space dimension, a fact that we analytically
discuss in §2.3, by focussing on the very first branch of solutions considered to be “minimal”
in the following way:

Definition 2.0.1. A solution uλ(x) of (S)λ is said to be minimal if for any other solution
u of (S)λ we have uλ(x) ≤ u(x) for all x ∈ Ω.

13
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On the other hand, one can introduce for any solution u of (S)λ, the linearized operator

at u defined by Lu,λ = −∆ − 2λf(x)
(1−u)3 and its eigenvalues {µk,λ(u); k = 1, 2, ...}. The first

eigenvalue is then simple and is given by:

µ1,λ(u) = inf
{〈
Lu,λφ, φ

〉
H1

0 (Ω)
; φ ∈ C∞

0 (Ω),

∫

Ω
φ2(x)dx = 1

}
.

Stable solutions (resp., semi-stable solutions) of (S)λ are those solutions u such that µ1,λ(u) >
0 (resp., µ1,λ(u) ≥ 0). We note that there already exist in the literature many interesting
results concerning the properties of the branch of semi-stable solutions for Dirichlet bound-
ary value problems of the form −∆u = λh(u) where h is a regular nonlinearity (for example
of the form eu or (1+u)p for p > 1). See for example the seminal papers [31, 75, 76] and also
[20] for a survey on the subject and an exhaustive list of related references. Let us mention
also the recent developments in [22, 84] for quite general nonlinearities h(u). The singular
situation was considered in a very general context in [82], and the analysis of this Chapter
is completed to allow for zeroes of the permittivity profile f(x). In [25] the behavior of the
stable branch is considered for singular nonlinearities in a larger class than (1 − u)−2 and
for p−Laplace operator, p > 1.

Our main results in this direction are collected in Theorem 2.4.3, where fine properties of
steady states –such as regularity, stability, uniqueness, energy estimates and comparison
results– are shown there to depend on the dimension of the ambient space and on the
permittivity profile. We discuss also the compactness of the minimal branch for power-like
permittivity profiles on the unit ball. To this aim, we introduce a blow-up procedure which
we will exploit deeper in Chapters 3 and 4.

In §2.4 we present some uniqueness results for (S)λ for small voltages λ. In particular,
Guo and Wei’s papers [67, 68] deals with the power-law case f(x) = |x|α and show that the
minimal solution uλ is the unique solution of (S)λ, for 0 < λ < λ∗, in some suitable class.
§2.4.1 is devoted to a monotonicity inequality, an essential ingredient to establish such an
uniqueness property. All these results agree with numerical evidences observed in §2.5.

2.1 The pull-in voltage λ∗

In this section, we first establish the existence and some monotonicity properties for the
pull-in voltage λ∗, which is defined as

λ∗(Ω, f) = sup{λ > 0 | (S)λ possesses at least one solution} .

In other words, λ∗ is called pull-in voltage if there exist uncollapsed states for 0 < λ < λ∗

while there are none for λ > λ∗. We then study how λ∗(Ω, f) varies with the domain Ω,
the dimension N and the permittivity profile f .
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2.1.1 Existence of the pull-in voltage

For any bounded domain Ω in R
N , we denote by µΩ the first eigenvalue of −∆ on H1

0 (Ω)
and by φΩ the corresponding positive eigenfunction normalized with max

x∈Ω
φΩ = 1. We also

associate with any domain Ω in R
N the following parameter:

νΩ = sup
{
µΓH(inf

Ω
φΓ); Γ domain of R

N , Γ ⊃ Ω̄
}
,

where H is the function H(t) = t(t+1+2
√
t)

(t+1+
√
t)3

.

Theorem 2.1.1. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in R
N ,

then there exists a finite pull-in voltage λ∗ := λ∗(Ω, f) > 0 such that

1. if λ < λ∗, there exists at least one solution for (S)λ;

2. if λ > λ∗, there is no solution for (S)λ.

Moreover, we have the lower bound

λ∗(Ω, f) ≥ νΩ

sup
x∈Ω

f(x)
. (2.1.1)

Proof: By the Implicit Function Theorem, equation (S)λ has a solution bifurcating from
the trivial solution u = 0 at λ = 0. By the maximum principle, such a solution is positive.
Hence, λ∗ is a well defined positive number (possibly +∞). To show the finiteness of λ∗,
let 0 < u < 1 be a solution of (S)λ. Integrating the equation against the first (positive)
eigenfunction φΩ, we get

µΩ

∫

Ω
uφΩ = λ

∫

Ω

fφΩ

(1 − u)2
dx. (2.1.2)

Since 0 < u < 1, by (2.1.2) we deduce the following upper bound:

λ∗ ≤ µΩ

( ∫

Ω
φΩdx

)( ∫

Ω
fφΩdx

)−1
, (2.1.3)

and in particular, λ∗ < +∞. Once we know that λ∗ is a finite positive number, pick
λ ∈ (0, λ∗) and use the definition of λ∗ to find a λ̄ ∈ (λ, λ∗) such that (S)λ̄ has a solution
uλ̄,

−∆uλ̄ =
λ̄f(x)

(1 − uλ̄)
2

in Ω ; 0 < uλ̄ < 1 in Ω ; uλ̄ = 0 on ∂Ω ,

and in particular −∆uλ̄ ≥ λf(x)
(1−uλ̄)2

for x ∈ Ω. It implies that uλ̄ is a supersolution of

(S)λ. Since u ≡ 0 is a subsolution of (S)λ, then by the sub/super solutions method we
can conclude that there is a solution uλ of (S)λ for every λ ∈ (0, λ∗). The definition of λ∗

implies that there is no solution of (S)λ for any λ > λ∗.



16 CHAPTER 2. PULL-IN VOLTAGE AND STEADY-STATES

To conclude, we need to show that (S)λ has at least one solution when λ < νΩ(sup
Ω
f(x))−1.

To construct a supersolution of (S)λ, we consider a bounded domain Γ ⊃ Ω̄ with smooth
boundary, and let (µΓ , φΓ) be its first eigenpair normalized in such a way that

max
x∈Γ

φΓ(x) = 1 and inf
x∈Ω

φΓ(x) := s1 > 0.

We construct a supersolution in the form φ = AφΓ where A is a scalar to be chosen later.
First, we must have AφΓ ≥ 0 on ∂Ω and 0 < AφΓ < 1 in Ω, which requires that 0 < A < 1.
We also require

−∆φ− λf(x)

(1 −Aφ)2
≥ 0 in Ω ,

which can be satisfied as long as:

µΓA φΓ ≥
λ sup

Ω
f(x)

(1 −A φΓ)2
in Ω ,

or
λ sup

Ω
f(x) < β(A,Γ) := µΓ min

{
g(sA); s ∈ [s1(Γ), 1]

}
,

where g(s) = s(1− s)2. In other words, λ∗ sup
Ω
f(x) ≥ sup{β(A,Γ); 0 < A < 1,Γ ⊃ Ω̄}, and

therefore it remains to show that

νΩ = sup
{
β(A,Γ); 0 < A < 1,Γ ⊃ Ω̄

}
.

For that, since g(s) = (s− 1)(3s− 1) we note first that

min
s∈[s1,1]

g(As) = min
{
g(As1), g(A)

}
.

Observe that g(As1) ≤ g(A) rewrites as A2(s31−1)−2A(s21−1)+(s1−1) ≤ 0 or equivalently
A2(s21 +s1 +1)−2A(s1 +1)+1 ≥ 0. The last inequality is true if either A ≤ A− or A ≥ A+,
where

A+ =
s1 + 1 +

√
s1

s21 + 1 + s1
=

1

s1 + 1 −√
s1
, A− =

s1 + 1 −√
s1

s21 + 1 + s1
=

1

s1 + 1 +
√
s1
.

Since A− < 1 < A+, we get that

G(A) = min
s∈[s1,1]

g(As) =

{
g(As1) if 0 ≤ A ≤ A− ,

g(A) if A− ≤ A ≤ 1 .

Since A−s1 ≤ 1
3 , we now have that dG

dA = g′(As1)s1 ≥ 0 for all 0 ≤ A ≤ A−. And since

A− ≥ 1
3 , we have dG

dA = g′(A) ≤ 0 for all A− ≤ A ≤ 1. It follows that

sup
0<A<1

min
s∈[s1,1]

g(As) = sup
0<A<1

G(A) = G(A−) = g(A−) =
1

s1 + 1 +
√
s1

(
1 − 1

s1 + 1 +
√
s1

)2

=
s1(s1 + 1 + 2

√
s1)

(s1 + 1 +
√
s1)3

= H
(
inf
Ω
φΓ

)
,
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which proves our lower estimate. �

2.1.2 Monotonicity results for the pull-in voltage

In this subsection, we give a more precise characterization of λ∗, namely as the endpoint
for the branch of minimal solutions. This will allow us to establish various monotonicity
properties for λ∗ that will help in the estimates given in next subsections. First we give a
recursive scheme for the construction of minimal solutions.

Theorem 2.1.2. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in R
N ,

then for any 0 < λ < λ∗(Ω, f) there exists a (unique) minimal positive solution uλ for (S)λ.
It is obtained as the limit of the increasing sequence {un(λ;x)} constructed recursively as
follows: u0 ≡ 0 in Ω and, for each n ≥ 1,

−∆un =
λf(x)

(1 − un−1)2
, x ∈ Ω ;

0 ≤ un < 1 , x ∈ Ω ; un = 0 , x ∈ ∂Ω .

(2.1.4)

Proof: Let u be any positive solution for (S)λ, and consider the sequence {un(λ;x)} defined
in (2.1.4). Clearly u(x) > u0 ≡ 0 in Ω, and whenever u(x) ≥ un−1 in Ω, then

−∆(u− un) = λf(x)
[ 1

(1 − u)2
− 1

(1 − un−1)2
]
≥ 0 , x ∈ Ω ,

u− un = 0 , x ∈ ∂Ω .

The maximum principle and an immediate induction yield to 1 > u(x) ≥ un in Ω for
all n ≥ 0. In a similar way, the maximum principle implies that the sequence {un(λ;x)}
is monotone increasing. Therefore, {un(λ;x)} converges uniformly to a positive solution
uλ(x), satisfying u(x) ≥ uλ(x) in Ω. Since this inequality holds for any solution u of (S)λ,
then uλ is a minimal positive solution of (S)λ and is clearly unique in this minimal class. �

Remark 2.1.1. Let g(x, ξ,Ω) be the Green’s function of the Laplace operator, with g(x, ξ,Ω) =
0 on ∂Ω. Then the iteration in (2.1.4) can be replaced by u0 ≡ 0 in Ω, and for each n ≥ 1,

un(λ;x) = λ

∫

Ω

f(ξ)g(x, ξ,Ω)

(1 − un−1(λ; ξ))2
dξ , x ∈ Ω. (2.1.5)

The same reasoning as above yields to lim
n→∞

un(λ;x) = uλ(x) for all x ∈ Ω.

The above construction of solutions yields to the following monotonicity result for the pull-in
voltage.

Proposition 2.1.3. If Ω1 ⊂ Ω2 and if f is a function satisfying (2.0.1) on Ω2, then
λ∗(Ω1, f) ≥ λ∗(Ω2, f) and the corresponding minimal solutions satisfy uΩ1

(λ, x) ≤ uΩ2
(λ, x)

on Ω1 for every 0 < λ < λ∗(Ω2, f).
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Proof: Again the sub/super solutions method immediately yields to λ∗(Ω1, f) ≥ λ∗(Ω2, f).
Now consider, for i = 1, 2, the sequences {un(λ, x,Ωi)} on Ωi defined by (2.1.5) where
g(x, ξ,Ωi) are the corresponding Green’s functions on Ωi. Since Ω1 ⊂ Ω2, we have that
g(x, ξ,Ω1) ≤ g(x, ξ,Ω2) on Ω1. Hence, it follows that

u1(λ, x,Ω2) = λ

∫

Ω2

f(ξ)g(x, ξ,Ω2)dξ ≥ λ

∫

Ω1

f(ξ)g(x, ξ,Ω1)dξ = u1(λ, x,Ω1)

on Ω1. By induction we conclude that un(λ, x,Ω2) ≥ un(λ, x,Ω1) on Ω1 for all n. On
the other hand, since un(λ, x,Ω2) ≤ uΩ2(λ, x) on Ω2 for any n, we get that un(λ, x,Ω1) ≤
uΩ2

(λ, x) on Ω1, and we are done. �

We also note the following easy comparison result, whose details are omitted.

Corollary 2.1.4. Suppose f1, f2 are two functions satisfying (2.0.1) such that f1(x) ≤ f2(x)
on Ω, then λ∗(Ω, f1) ≥ λ∗(Ω, f2), and for 0 < λ < λ∗(Ω, f2) we have u1(λ, x) ≤ u2(λ, x) on
Ω, where u1(λ, x) (resp., u2(λ, x)) is the unique minimal positive solution of

−∆u = λf1(x)
(1−u)2 (resp., −∆u = λf2(x)

(1−u)2
) on Ω and u = 0 on ∂Ω.

Moreover, if f2(x) 6= f1(x) then u1(λ, x) < u2(λ, x) for all x ∈ Ω.

We shall also need the following result taken and adapted from [9] (Theorem 4.10).

Proposition 2.1.5. For any bounded domain Ω in R
N and any function f satisfying

(2.0.1), we have
λ∗(Ω, f) ≥ λ∗(BR, f

∗)

where f∗ is the Schwarz symmetrization of f and BR = BR(0) is the Euclidean ball in R
N ,

with radius R > 0 so that |BR| = |Ω|.

Proof: If u is a real-valued function on Ω, we define its symmetrized function u∗ : Ω∗ =
BR → R by

u∗(x) = u∗(|x|) = sup{µ : x ∈ BR(µ)},
where BR(µ) is the symmetrization of the superlevel set Ω(µ) = {x ∈ Ω : µ ≤ u(x)}
(i.e., BR(µ) = Ω(µ)∗). The key propriety of symmetrization is the following inequality (see
Lemma 2.4 of [9]) ∫

Ω
hgdx ≤

∫

BR

h∗g∗dx , (2.1.6)

for any h, g continuous functions on Ω. As in Theorem 4.10 of [9], we consider for any
λ ∈ (0, λ∗(BR, f∗)) the minimal sequence {un} for (Sλ) as defined in (2.1.4), and let {vn}
be the (radial) minimal sequence for the corresponding Schwarz symmetrized problem:

−∆v =
λf∗(|x|)
(1 − v)2

x ∈ BR , (2.1.7a)

v = 0 x ∈ ∂BR. (2.1.7b)
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Since λ ∈ (0, λ∗(BR, f∗)), we can consider the corresponding minimal solution vλ(x) =
vλ(|x|) for (2.1.7). As in Theorem 2.1.2 we have 0 ≤ vn ≤ v

λ
< 1 on BR for all n ≥ 1. We

shall show that {un} also satisfies 0 ≤ u∗n ≤ v
λ
< 1 on BR for all n ≥ 1.

Applying (2.1.6) and the argument for (4.9) in [9], we have that

du∗n
dr

+
λ

rN−1

∫ r

0

f∗

(1 − u∗n−1)
2
ds ≥ 0 in (0, R) , (2.1.8)

and
dvn
dr

+
λ

rN−1

∫ r

0

f∗

(1 − vn−1)2
ds = 0 in (0, R). (2.1.9)

We claim that for any n ≥ 1, we have

u∗n(r) ≤ vn(r) r ∈ (0, R) . (2.1.10)

In fact, since u∗0 = v0 = 0 in (0, R), we have du∗1/dr ≥ dv1/dr which, by integration, yields
to

u∗1(r) = u∗1(r) − u∗1(R) ≤ v1(r) − v1(R) = v1(R) ,

for any r ∈ [0, R]. (2.1.10) is now proved by induction. If it holds for n − 1, from (2.1.8)
and (2.1.9) then one gets that du∗n/dr ≥ dvn/dr and, by integration, u∗n(r) ≤ vn(r) for any
r ∈ [0, R]. Hence, (2.1.10) is established for all n ≥ 1.
Since max

Ω
un = max

BR

u∗n, the minimal sequence {un(x)} on Ω is bounded by max
BR

v
λ
(x) < 1.

As in the proof of Theorem 2.1.2, the sequence un converges monotonically to a (classical)
solution uλ of (S)λ which is minimal on Ω. This means λ∗(Ω, f) ≥ λ∗(BR, f∗). �

2.2 Estimates for the pull-in voltage

In this section, analytically and numerically we shall discuss estimates of pull-in voltage λ∗.
For that we shall write |Ω| for the volume of a domain Ω in R

N and P (Ω) :=
∫
∂Ω dS for its

“perimeter”, with ωN referring to the volume of the unit ball B1(0) in R
N . We denote by

µΩ the first eigenvalue of −∆ on H1
0 (Ω) and by φΩ the corresponding positive eigenfunction

normalized with max
Ω

φΩ = 1.

2.2.1 Lower bounds for λ∗

While the lower bound in (2.1.1) is useful to prove existence, it is not easy to compute. We
will provide below more computationally accessible lower estimates on λ∗.

First of all, we have to enlarge the class of solutions to (S)λ we are interested in.

Definition 2.2.1. A function u ∈ L1(Ω) is a weak solution (resp., supersolution) of (S)λ if
∫

Ω
u(−∆φ)dx =

∫

Ω

λfφ

(1 − u)2
dx (resp., ≥) ∀ 0 ≤ φ ∈ C2(Ω̄), φ = 0 on ∂Ω
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(with the convention f
(1−u)2 = 0 when f = 0).

Let us remark that a H1
0 (Ω)−weak solution (resp., supersolution) u of (S)λ simply satisfies

∫

Ω
∇u∇φdx =

∫

Ω

λfφ

(1 − u)2
dx (resp., ≥) ∀ 0 ≤ φ ∈ C2(Ω̄), φ = 0 on ∂Ω. (2.2.1)

By density of C∞
0 ∩{φ ≥ 0} in H1

0 (Ω)∩{φ ≥ 0} and Levi Theorem, such an equality (resp.,
inequality) holds for any 0 ≤ φ ∈ H1

0 (Ω). Observe that we are not assuming any a priori
integrability on f

(1−u)2 . For weak solutions u ∈ H1
0 (Ω), then (2.2.1) rewrites in the more

familiar way: ∫

Ω
∇u∇φdx =

∫

Ω

λfφ

(1 − u)2
dx ∀ φ ∈ H1

0 (Ω). (2.2.2)

The following Proposition does hold:

Proposition 2.2.1. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in
R
N , then we have the following lower bound:

λ∗(Ω, f) ≥ max
{8N

27
,

2(3N − 4)

9

} 1

supΩ f

(ωN

|Ω|
) 2

N
.

Moreover, if f(x) ≡ |x|α with α ≥ 0 and Ω is a ball of radius R, then we have

λ∗(BR, |x|α) ≥ max
{4(2 + α)(N + α)

27
,
(2 + α)(3N + α− 4)

9

}
R−(2+α). (2.2.3)

Finally, if N ≥ 8 and 0 ≤ α ≤ αN := 3N−14−4
√

6
4+2

√
6

, we have

λ∗(B1, |x|α) =
(2 + α)(3N + α− 4)

9
.

Proof: Setting R =
(

|Ω|
ω

N

) 1
N

, it suffices –in view of Proposition 2.1.5– and since sup
BR

f∗ =

sup
Ω
f , to show that

λ∗(BR, f
∗) ≥ max

{ 8N

27R2 supΩ f
∗ ,

2(3N − 4)

9R2 supΩ f
∗

}
(2.2.4)

for the case where Ω = BR. In fact, the function w(x) = 1
3(1 − |x|2

R2 ) satisfies on BR

−∆w =
2N

3R2
=

2N(1 − 1
3)2

3R2

1

(1 − 1
3)2

≥ 8N

27R2 supΩ f

f(x)

[1 − 1
3(1 − |x|2

R2 )]2

=
8N

27R2 supΩ f

f(x)

(1 − w)2
.
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So, for λ ≤ 8N
27R2 supΩ f

w is a supersolution of (S)λ in BR. Since on the other hand w0 ≡ 0

is a subsolution of (S)λ and w0 ≤ w in BR, then there exists a solution of (S)λ in BR which

proves a part of (2.2.4). A similar computation applied to the function v(x) = 1 − ( |x|R )
2
3

shows that v is also a supersolution in BR \ {0} as long as 0 < λ ≤ 2(3N−4)
9R2 supΩ f

. Observe that

3N − 4 > 0 iff N ≥ 2.
Since for N ≥ 2 v ∈ H1

0 (BR) and 1
(1−v)2 ∈ L1(BR), v is a H1

0 (BR)−weak supersolution of

(S)λ (see (2.2.1)). By Proposition 2.4.2 there exists a classical solution of (S)λ in BR for

any 0 < λ < 2(3N−4)
9R2 supΩ f

.

In order to prove (2.2.3), it suffices to note that w(x) = 1
3

(
1 − |x|2+α

R2+α

)
is a supersolution

for (S)λ on BR provided λ ≤ 4(2+α)(N+α)
27R2+α , and that v(x) = 1− ( |x|R )

2+α
3 is a H1

0 (BR)−weak

supersolution for (S)λ on BR, provided λ ≤ (2+α)(3N+α−4)
9R2+α and α > 4 − 3N .

In order to complete the proof of Proposition 2.2.1, we need to establish that the function

u∗(x) = 1 − |x| 2+α
3 is the extremal solution on B1 as long as N ≥ 8 and 0 ≤ α ≤ αN . This

will then yield that, for such dimensions and these values of α, the voltage λ = (2+α)(3N+α−4)
9

is exactly the pull-in voltage λ∗.
As before, u∗ is a H1

0 (B1)-weak solution of (S)λ for any α > 4 − 3N , according to (2.2.2).
Since ‖u∗‖∞ = 1, and by the characterization of Theorem 2.4.1 below, we need only to
prove that ∫

B1

|∇φ|2 ≥
∫

B1

2λ|x|α
(1 − u∗)3

φ2 ∀φ ∈ H1
0 (B1). (2.2.5)

However, Hardy’s inequality gives for N ≥ 2:

∫

B1

|∇φ|2 ≥ (N − 2)2

4

∫

B1

φ2

|x|2

for any φ ∈ H1
0 (B1), which means that (2.2.5) holds whenever 2λ ≤ (N−2)2

4 or, equivalently,

if N ≥ 8 and 0 ≤ αN = 3N−14−4
√

6
4+2

√
6

. �

Remark 2.2.1. First, when N > 12+α
5 note that λ2 = (2+α)(3N+α−4)

9 is the better lower
bound in (2.2.3) and is actually sharp on the ball as soon as N ≥ 8 and α ≤ αN .
For lower dimensions, the above lower bounds can be improved by considering supersolutions
of the form v(x) = a(1− ( |x|R )k) and optimizing λ(a, k,R) over a and k. For example, in the

case where α = 0, N = 2 and R = 1, one can see that a better lower bound λ∗ ≥ 64 4√5
135 can

be obtained via the supersolution v(x) = 5
12(1 − |x| 85 ).

2.2.2 Upper bounds for λ∗

We note that (2.1.3) is already an upper bound for λ∗. However, other upper bounds can
be established according to [64] and [85]:
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Proposition 2.2.2. (1) Assume f is a function satisfying (2.0.1) on a bounded domain Ω
in R

N such that inf
Ω
f > 0, then

λ∗(Ω, f) ≤ λ̄1 ≡ 4µΩ

27

(
inf
Ω
f
)−1

. (2.2.6)

(2) More generally, it holds

λ∗(Ω, f) ≤ λ̄2 ≡ µΩ

3

( ∫

Ω
φΩdx

)( ∫

Ω
fφΩ dx

)−1
. (2.2.7)

Proof: (1). Since u(1 − u)2 ≤ 4
27 for any u ∈ [0, 1], by (2.1.2) we deduce (2.2.6).

As we will see below, the bound (2.2.6) on λ∗ is rather good when applied to the constant
permittivity profile f(x) ≡ 1 but is useless when inf

Ω
f = 0. To allow power-law permittivity

profiles f(x) = |x|α, α > 0, it is desirable to obtain a bound on λ∗ that depends more on
the global properties of f . Such a bound was established in [64] and here is a sketch of its
proof.
(2). Multiply now (S)λ by φΩ(1 − u)2, and integrate the resulting equation over Ω to get

∫

Ω
λfφΩ dx = −

∫

Ω
φΩ(1 − u)2∆u dx .

Using the identity ∇· (Hg) = g∇·H +H ·∇g for any smooth scalar field g and vector field
H, together with the Divergence Theorem, we calculate

∫

Ω
λfφΩ dx = −

∫

∂Ω
(1 − u)2φΩ∇u · ν dS +

∫

Ω
∇u · ∇

[
φΩ(1 − u)2

]
dx , (2.2.8)

where ν is the unit outward normal to ∂Ω. Since φΩ = 0 on ∂Ω, the first term on the
right-hand side of (2.2.8) vanishes. By calculating the second term on the right-hand side
of (2.2.8) we get:

∫
Ω λfφΩ dx = −

∫
Ω 2(1 − u)φΩ|∇u|2 dx+

∫
Ω(1 − u)2∇u · ∇φΩ dx

≤ −
∫
Ω

1
3∇φΩ · ∇

[
(1 − u)3

]
dx .

(2.2.9)

The right-hand side of (2.2.9) is evaluated explicitly by
∫

Ω
λfφΩ dx ≤ −1

3

∫

∂Ω
(1 − u)3∇φΩ · ν dS − µΩ

3

∫

Ω
(1 − u)3φΩ dx . (2.2.10)

For 0 ≤ u < 1, the last term on the right-hand side of (2.2.10) is negative. Moreover, u = 0
on ∂Ω so that

∫
∂Ω(1 − u)3∇φΩ · ν dS = −µΩ

∫
Ω φΩ. Therefore, if (Sλ) has a solution, then

(2.2.10) yields to

λ

∫

Ω
fφΩ dx ≤ µΩ

3

∫

Ω
φΩ .

This proves that there is no solution for λ > λ̄2, which gives (2.2.7). �
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Remark 2.2.2. The above estimate is not sharp, at least in dimensions 1 ≤ N ≤ 7, as one
can show that there exists 1 > α(Ω, N, f) > 0 such that

λ ≤ µΩ

3
(1 − α(Ω, N))

( ∫

Ω
fφΩdx

)−1
.

Indeed, this follows from inequality (2.2.10) above and Theorem 2.3.4 below where it will
be shown that in these dimensions, there exists 0 < C(Ω, N, f) < 1 independent of λ such
that ‖uλ‖∞ ≤ C(Ω, N, f) for any minimal solution uλ. It is now easy to see that α(Ω, N, f)
can be taken to be

α(Ω, N, f) :=
(
1 − C(Ω, N, f)

)3(
∫

Ω
φΩdx

)( ∫

Ω
fφΩdx

)
.

We now consider problem (S)λ in the case where Ω ⊂ R
N is a strictly star-shaped domain

with respect to 0, meaning that Ω satisfies:

x · ν ≥ a > 0 for all x ∈ ∂Ω , (2.2.11)

where ν is the unit outward normal to ∂Ω. For such domains, Pohozev-type arguments
provide more computable upper bounds:

Proposition 2.2.3. Suppose f ≡ 1 and Ω ⊂ R
N satisfies (2.2.11). Then the pull-in voltage

λ∗(Ω) satisfies:

λ∗(Ω) ≤ λ̄3 =
(N + 2)2P (Ω)

8aN |Ω| , (2.2.12)

where |Ω| is the volume and P (Ω) is the perimeter of Ω.
In particular, if Ω is the Euclidean unit ball in R

N , then we have the bound

λ∗(B1(0)) ≤ (N + 2)2

8
.

Proof: For later purposes, let us recall the Pohozaev identity in a suitable general form.
Let u is a solution of ∆u+ λ|x|αg(u) = 0 in Ω. Then, it holds

λ(N + α)

∫

Ω
|x|αG(u)dx− N − 2

2
λ

∫

Ω
|x|αug(u)dx

=

∫

∂Ω

(
(∇u · x)∂u

∂ν
− 1

2
|∇u|2x · ν +

N − 2

2
u
∂u

∂ν
+ λ|x|αG(u)x · ν

)
dS ,

(2.2.13)

where G(u) =
∫
g(s)ds.
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Since u = 0 on ∂Ω, by (2.2.13) with g(u) = 1
(1−u)2 and G(u) = u

1−u we get that

λ

2

∫

Ω

u(N + 2 − 2Nu)

(1 − u)2
dx =

1

2

∫

∂Ω
(x · ν)

(∂u
∂ν

)2
dS

≥ a

2P (Ω)

(∫

∂Ω

∂u

∂ν
dS
)2

=
a

2P (Ω)

(
−
∫

Ω
∆udx

)2

=
aλ2

2P (Ω)

(∫

Ω

dx

(1 − u)2

)2
,

(2.2.14)

where we have used the Divergence Theorem and Hölder’s inequality:

0 < −
∫

∂Ω

∂u

∂ν
dS ≤

(∫

∂Ω

(∂u
∂ν

)2
dS
)1/2(∫

∂Ω
dS
)1/2

.

Since
∫

Ω

u(N + 2 − 2Nu)

(1 − u)2
dx =

∫

Ω

[
− 2N

(
u− N + 2

4N

)2
+

(N + 2)2

8N

] 1

(1 − u)2
dx

≤ (N + 2)2

8N

∫

Ω

dx

(1 − u)2
,

we deduce from (2.2.14) that

(N + 2)2

8N
≥ aλ

P (Ω)

∫

Ω

dx

(1 − u)2
≥ aλ|Ω|
P (Ω)

,

which implies the upper bound (2.2.12) for λ∗. Finally, for the special case where Ω =

B1(0) ⊂ R
N , we have a = 1 and P (B1(0))

|B1(0)| = N and hence the bound λ∗(B1(0)) ≤ λ̄3 = (N+2)2

8
holds. �

Applying above results of §2.1 and §2.2, we now collect the main results concerning the
pull-in voltage λ∗:

Theorem 2.2.4. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in R
N ,

then there exists a finite pull-in voltage λ∗ := λ∗(Ω, f) > 0 such that:

1. If 0 ≤ λ < λ∗, there exists at least one solution for (S)λ.

2. If λ > λ∗, there is no solution for (S)λ.

3. The following bounds on λ∗ hold for any bounded domain Ω:

λ := max

{
8N

27
,

2(3N − 4)

9

}
1

supΩ f

(ωN

|Ω|
) 2

N ≤ λ∗(Ω, f) , (2.2.15a)

min
{
λ̄1 :=

4µΩ

27 inf
x∈Ω

f(x)
, λ̄2 :=

µΩ

∫
Ω φΩ

3
∫
Ω fφΩ dx

}
≥ λ∗(Ω, f) . (2.2.15b)
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4. If Ω is a strictly star-shaped domain with respect to 0, that is x · ν(x) ≥ a > 0 for all
x ∈ ∂Ω (ν(x) is the unit outward normal at x ∈ ∂Ω), and if f ≡ 1, then

λ∗(Ω) ≤ λ̄3 =
(N + 2)2P (Ω)

8aN |Ω| .

In particular, if Ω = B1(0) ⊂ R
N then we have the bound λ∗(B1(0)) ≤ (N+2)2

8 .

5. If f(x) ≡ |x|α with α ≥ 0 and Ω is a ball of radius R, then we have

λ∗(BR, |x|α) ≥ λc(α) := max{4(2 + α)(N + α)

27
,
(2 + α)(3N + α− 4)

9
}R−(2+α). (2.2.16)

Moreover, if N ≥ 8 and 0 ≤ α ≤ αN = 3N−14−4
√

6
4+2

√
6

, we have

λ∗(B1, |x|α) =
(2 + α)(3N + α− 4)

9
. (2.2.17)

Note that the upper bound λ̄2 is valid for all permittivity profiles. However, the order
between the two upper bounds in (2.2.15b) can vary in general. For example, in the case
of exponential permittivity profiles of the form f(x) = eα(|x|2−1) on the unit disc, one can
see that λ̄1 is a better upper bound than λ̄2 for small α while the reverse holds true for
larger values of α. The lower bounds in (2.2.15a) and (2.2.16) can be improved in small
dimensions, but they are optimal –at least for the ball– in dimension no less than 8.

2.2.3 Numerical estimates for λ∗

In this subsection, we apply numerical methods to discuss the bounds of λ∗. In the com-
putations below we shall consider two choices for the domain Ω,

Ω = [−1

2
,
1

2
] ⊂ R (slab) ; Ω = {x2 + y2 ≤ 1} ⊂ R

2 (unit disk) .

For the permittivity profile, we consider

slab : f(x) = |2x|α (power-law) ; f(x) = eα(x2−1/4) (exponential) , (2.2.18a)

unit disk : f(x) = |x|α (power-law) ; f(x) = eα(|x|2−1) (exponential) , (2.2.18b)

with α ≥ 0. To compute the bounds λ̄1 and λ̄2, we must calculate the first eigenpair µΩ and
φΩ of −∆ on Ω, normalized by max

Ω
φΩ = 1, for each of these domains. A simple calculation

yields to

µΩ = π2 , φΩ = sin
[
π
(
x+

1

2

)]
(slab) ; (2.2.19a)

µΩ = z2
0 ≈ 5.783 , φΩ =

z0
J1(z0)

J0(z0|x|) (unit disk) . (2.2.19b)
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(a). λ∗ versus α (slab) (b). λ∗ versus α (unit disk)
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Figure 2.1: Plots of λ∗ versus α for a power-law profile (heavy solid curve) and the expo-
nential profile (solid curve). The left figure corresponds to the slab domain, while the right
figure corresponds to the unit disk.

Exponential Profiles:

Ω α λ λ∗ λ̄1 λ̄2

slab 0 1.185 1.401 1.462 3.290
slab 1.0 1.185 1.733 1.878 4.023
slab 3.0 1.185 2.637 3.095 5.965
slab 6.0 1.185 4.848 6.553 10.50

unit disk 0 0.593 0.789 0.857 1.928
unit disk 0.5 0.593 1.153 1.413 2.706
unit disk 1.0 0.593 1.661 2.329 3.746
unit disk 3.0 0.593 6.091 17.21 11.86

Table 2.1: Numerical values for pull-in voltage λ∗ with the bounds given in Theorem 2.2.4.
Here the exponential permittivity profile is chosen as (2.2.18).
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Power-Law Profiles:

Ω α λc(α) λ∗ λ̄1 λ̄2

slab 0 1.185 1.401 1.462 3.290
slab 1.0 3.556 4.388 ∞ 9.044
slab 3.0 11.851 15.189 ∞ 28.247
slab 6.0 33.185 43.087 ∞ 76.608

unit disk 0 0.593 0.789 0.857 1.928
unit disk 1.0 1.333 1.775 ∞ 3.019
unit disk 5.0 7.259 9.676 ∞ 15.82
unit disk 20 71.70 95.66 ∞ 161.54

Table 2.2: Numerical values for pull-in voltage λ∗ with the bounds given in Theorem 2.2.4.
Here the power-law permittivity profile is chosen as (2.2.18).

Here J0 and J1 are Bessel functions of the first kind, and z0 ≈ 2.4048 is the first zero of J0(z).
The bounds λ̄1 and λ̄2 can be evaluated by substituting (2.2.19) into (2.2.15b). Notice that
λ̄2 is, in general, determined only up to a numerical quadrature.

In Figure 2.1(a) we plot the saddle-node value λ∗ versus α for the slab domain. A similar
plot is shown in Figure 2.1(b) for the unit disk. The numerical computations are done using
BVP solver COLSYS [6] to solve the boundary value problem (S)λ and Newton’s method
to determine the saddle-node point. Theorem 2.2.4 guarantees a finite pull-in voltage for
any α > 0, while λ∗ is seen to increase rapidly with α. Therefore, by increasing α, or
equivalently by increasing the spatial extent where f(x) ≪ 1, one can increase the stable
operating range of the MEMS capacitor. In Table 2.1 we give numerical results for λ∗,
together with the bounds given by Theorem 2.2.4, in the case of exponential permittivity
profiles, while Table 2.2 deals with power-law profiles. From Table 2.1, we observe that
the bound λ̄1 for λ∗ is better than λ̄2 for small values of α. However, for α ≫ 1, we can
use Laplace’s method on the integral defining λ̄2 to obtain for the exponential permittivity
profile that

λ̄1 =
4b1
27
ec1α , λ̄2 ∼ c2α

2 . (2.2.20)

Here b1 = π2, c1 = 1/4, c2 = 1/3 for the slab domain, and b1 = z2
0 , c1 = 1, c2 = 4/3 for

the unit disk. Therefore, for α ≫ 1, the bound λ̄2 is better than λ̄1. A similar calculation
can be done for the power-law profile, see Table 2.2. For this case, it is clear that the lower
bound λc(α) in (2.2.16) is better than λ in (2.2.15a), and the upper bound λ̄1 is undefined.
However, by using Laplace’s method, we readily obtain for α ≫ 1 that λ̄2 ∼ α2/3 for the
unit disk and λ̄2 ∼ 4α2/3 for the slab domain.

Therefore, what is remarkable is that λ̄1 and λ̄2 are not comparable even when f is
bounded away from 0 and that neither one of them provides the optimal value for λ∗. This
leads us to conjecture that there should be a better estimate for λ∗, one involving the dis-
tribution of f in Ω, as opposed to the infimum or its average against the first eigenfunction.
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2.3 The branch of minimal solutions

In the rest of this Chapter, we consider issues of uniqueness and multiplicity of solutions
for (S)λ with 0 < λ ≤ λ∗. The following bifurcation diagrams in Figure 2.2 show the
complexity of the situation, even in the radially symmetric case. One can see that the
number of branches –and of solutions– is closely connected to the space dimension. In this
section, we focus on the very first branch of solutions considered to be “minimal”.

0
0

1

f(x) ≡ 1 with different ranges of N

  u(0) 

N = 1 2 ≤ N ≤ 7

N ≥ 8 

λ*
 λ

*
 λ*

 λ*
 = (6N−8)/9

λ 

Figure 2.2: Plots of u(0) versus λ for profile f(x) ≡ 1 defined in the unit ball B1(0) ⊂ R
N

with different ranges of N . In the case N ≥ 8, we have λ∗ = 2(3N − 4)/9.

The branch of minimal solutions corresponds to the lowest branch in the bifurcation dia-
gram, the one connecting the origin point λ = 0 to the first fold at λ = λ∗. To analyze
further the properties of this branch, we consider for each solution u of (S)λ, the operator

Lu,λ = −∆ − 2λf

(1 − u)3

associated with the linearized problem around u. We denote by µ1(λ, u) the smallest eigen-
value of Lu,λ, that is, the least µ corresponding to the following Dirichlet eigenvalue problem:

−∆φ− 2λf(x)

(1 − u)3
φ = µφ x ∈ Ω , φ = 0 x ∈ ∂Ω .

In other words,

µ1(λ, u) = inf
φ∈H1

0 (Ω)\{0}

∫
Ω

{
|∇φ|2 − 2λf(1 − u)−3φ2

}
dx∫

Ω φ
2dx

.

A solution u for (S)λ is said to be stable (resp., semi- stable) if µ1(λ, u) > 0 (resp., µ1(λ, u) ≥
0).
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2.3.1 Spectral properties of minimal solutions

We start with the following crucial Lemma, which shows among other things that semi-
stable solutions are necessarily minimal solutions.

Lemma 2.3.1. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in R
N .

Let u, v be a H1
0 (Ω)-weak solution, supersolution of (S)λ, respectively. If µ1(λ, u) > 0, then

u ≤ v a.e. in Ω. If µ1(λ, u) = 0, then u = v a.e. in Ω.

Proof: For any θ ∈ [0, 1] and 0 ≤ φ ∈ H1
0 (Ω), we have that

Iθ,φ : =

∫

Ω
∇
(
θu+ (1 − θ)v

)
∇φ−

∫

Ω

λf(x)
(
1 − θu− (1 − θ)v

)2φ

= λ

∫

Ω
f(x)

( θ

(1 − u)2
+

1 − θ

(1 − v)2
− 1
(
1 − θu− (1 − θ)v

)2
)
φ ≥ 0

due to the convexity of s→ 1/(1− s)2. Since I1,φ = 0, the derivative of Iθ,φ at θ = 1 is non
positive:

∫

Ω
∇
(
u− v

)
∇φ−

∫

Ω

2λf(x)
(
1 − u

)3 (u− v)φ ≤ 0 (2.3.2)

for any 0 ≤ φ ∈ H1
0 (Ω). Testing on (u− v)+, we get that

∫

Ω

[
|∇(u− v)+|2 − 2λf(x)

(1 − u)3
(
(u− v)+

)2] ≤ 0 .

When µ1,λ(u) ≥ 0, then we have u ≤ v a.e. in Ω. It is clearly true if µ1,λ(u) > 0 but it
holds in general. Indeed, we have that:

∫

Ω
∇
(
u− v

)
∇φ̄−

∫

Ω

2λf(x)
(
1 − u

)3 (u− v)φ̄ = 0, (2.3.3)

where φ̄ = (u− v)+. Since Iθ,φ̄ ≥ 0 for any θ ∈ [0, 1] and I1,φ̄ = ∂θI1,φ̄ = 0, we get that:

∂2
θθI1,φ̄ = −

∫

Ω

6λf(x)

(1 − u)4
(u− v)2φ̄ ≥ 0 .

Let Ω0 = {x ∈ Ω : f(x) = 0}. Since φ̄ = (u− v)+, clearly (u− v)+ a.e. in Ω \ Ω0 and, by
(2.3.3) we get: ∫

Ω
|∇(u− v)+|2 = 0.

Hence, u ≤ v a.e. in Ω as claimed.

When µ1,λ(u) = 0, we can push the analysis beyond. Let φ1,λ be the first eigenfunction. We
want to establish now the following scheme: if u < v− t̄φ1,λ on a set A of positive measure,
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then there exists ǫ0 > 0 small such that u < v − tφ1,λ a.e. in Ω, for any t̄ ≤ t < t̄+ ǫ0.
Indeed, since φ1,λ is in the kernel of the linearized operator Lu,λ, (2.3.2) is still valid when
we replace u− v with u− v − tφ1,λ. As before, we can get that

∫

Ω
|∇
(
u− v − tφ1,λ

)+|2 −
∫

Ω

2λf(x)
(
1 − u

)3
(
(u− v − tφ1,λ)

+
)2

= 0. (2.3.4)

By the variational characterization of φ1,λ, we get that (u − v − tφ1,λ)
+ = βφ1,λ a.e. in

Ω, for some β. By assumption, we can find a set A′ ⊂⊂ A of positive measure so that
u < v − t̄φ1,λ − δ, δ > 0, and hence, ǫ0 > 0 small so that u < v − tφ1,λ in A′, for any
t̄ ≤ t ≤ t̄ + ǫ0. Hence, βφ1,λ = 0 a.e. in A′. Since φ1,λ > 0 in Ω, we have β = 0 and
u < v + tφ1,λ a.e. in Ω, for any t̄ ≤ t < t̄+ ǫ0.
We use now the scheme in the following way. Assume by contradiction that u = v a.e. in
Ω does not hold. Since u ≤ v, we find a set A of positive measure so that u < v in A.
Applying the sheme with t̄ = 0, u < v− tφ1,λ a.e. in Ω, for any 0 ≤ t < ǫ0 and ǫ0 > 0 small.
Set now t0 = sup{t > 0 : u < v− tφ1,λ a.e. in Ω}. Clearly, t0 is a finite well defined number
and u ≤ v− t0φ1,λ a.e. in Ω. The scheme above and the maximal property of t0 imply that
necessarily u = v − t0φ1,λ a.e. in Ω. Hence, (2.3.3) holds for any 0 ≤ φ̄ ∈ H1

0 (Ω). Taking
φ̄ = v − u and arguing as before, finally we get that

∫

Ω
|∇(u− v)|2 = 0.

This in contradiction with the assumption: u < v on a set of positive measure. The proof
is done. �

Theorem 2.3.2. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in
R
N , and consider the branch λ → uλ of minimal solutions on (0, λ∗). Then the following

properties hold:

1. for each x ∈ Ω, the function λ → uλ(x) is differentiable and strictly increasing on
(0, λ∗);

2. for each λ ∈ (0, λ∗), the minimal solution uλ is stable and the function λ → µ1,λ :=
µ1(λ, uλ) is decreasing on (0, λ∗).

Proof: Let λ1 < λ2 < λ∗ and f1 = λ1
λ2
f . Note that uλ1 is the minimal solution of

(S)λ2 corresponding to f1. Since f1 ≤ f and f1 6= f , by Corollary 2.1.4 we get that
λ∗ = λ∗(Ω, f) ≤ λ∗(Ω, f1) and uλ1 < uλ2 in Ω for λ2 < λ∗.
That λ→ µ1,λ is decreasing follows easily from the variational characterization of µ1,λ, the
monotonicity of λ → uλ, as well as the monotonicity of (1 − u)−3 with respect to u. Since
µ1,λ → µ1(−∆) > 0 as λ→ 0+, it is well defined

λ∗∗ = sup
{
λ > 0 : uλ is a stable solution for (S)λ

}
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and clearly satisfies λ∗∗ ≤ λ∗. If λ∗∗ < λ∗, uλ∗∗ is a minimal solution of (S)λ∗∗ :. Since
uλ ≤ uλ∗∗ for any λ ≤ λ∗∗ and maxΩ uλ∗∗ < 1, by elliptic regularity theory it follows that
the limit limλրλ∗∗ uλ ≤ uλ∗∗ exists in C2(Ω̄) and is a solution of (S)λ∗∗ . By minimality of
uλ∗∗ , we get that limλրλ∗∗ uλ = uλ∗∗ and µ1,λ∗∗ ≥ 0. By the Implicit Function Theorem, it
follows µ1,λ∗∗ = 0 and by Lemma 2.3.1, uλ∗∗ = uλ for any λ∗∗ < λ < λ∗. A contradiction
which proves that λ∗∗ = λ∗.
Since uλ is stable, the linearized operator Luλ,λ at uλ is invertible for any 0 < λ < λ∗.
By the Implicit Function Theorem, λ → u

λ
(x) is differentiable in λ and by monotonicity,

duλ
dλ (x) ≥ 0 for all x ∈ Ω.
Finally, by differentiating (S)λ with respect to λ, we get

−∆
duλ
dλ

− 2λf(x)

(1 − u
λ
)3
duλ
dλ

=
f(x)

(1 − u
λ
)2

≥ 0 , x ∈ Ω

duλ
dλ

≥ 0 , x ∈ ∂Ω .

Applying the strong maximum principle, we conclude that duλ
dλ > 0 on Ω for all 0 < λ < λ∗,

and the Theorem is proved. �

Remark 2.3.1. Lemma 3 of [31] yields to µ1(1, 0) as an upper bound for λ∗∗ – at least in the
case where inf

Ω
f > 0. Since λ∗∗ = λ∗, this gives another upper bound for λ∗ in our setting.

It is worth noting that the upper bound in Theorem 2.2.4 gives a better estimate, since in
the case f ≡ 1 we have µ1(1, 0) = µΩ/2, while the estimate in Theorem 2.2.4 gives 4µΩ

27 for
an upper bound.

2.3.2 Energy estimates and regularity

For later purposes, we establish now a basic regularity result for a general boundary value
problem: 




−∆u =
f(x)

(1 − u)2
in Ω,

u = ū on ∂Ω,
(2.3.5)

where 0 ≤ ū ∈ C1(Ω̄) is so that ‖ū‖∞ < 1. According to Definition 2.2.1 and (2.2.2),
solutions of (2.3.5) are considered in the following H1(Ω)−weak sense:

∫

Ω
∇u∇φdx =

∫

Ω

fφ

(1 − u)2
dx ∀ φ ∈ H1

0 (Ω) , u− ū ∈ H1
0 (Ω) (2.3.6)

(with the convention f
(1−u)2

= 0 when f = 0). The regularity result we have is the following:

Theorem 2.3.3. Let f be a function satisfying (2.0.1) on a bounded domain Ω in R
N and

A > 0. Let u be a weak solution of (2.3.5) so that

either N = 1 and ‖ f

(1 − u)3
‖

L1(Ω)
≤ A,

or N ≥ 2 and ‖ f

(1 − u)3
‖

LN/2(Ω)
≤ A.

(2.3.7)
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Then,

1. if Ω \ Ω0 is connected, then u ≤ 1 a.e. in Ω;

2. if u ≤ 1 a.e. in Ω, then u ∈ C1(Ω̄) and there exists a constant C < 1 so that

0 < u ≤ C in Ω,

where C depends on A, N , ū, Ω and f .

Here, Ω0 = {x ∈ Ω : f(x) = 0}.
Proof: First of all, for N ≥ 2 our assumption (2.3.7) gives that the right hand side of

(2.3.5) is in L
3N
4 (Ω). Standard regularity theory then implies that u ∈ C0, 2

3 (Ω̄)∩H1(Ω). If
u(x0) = 1 at some x0 ∈ Ω\Ω0, the Hölder continuity of u implies |1−u(x)| = |u(x0)−u(x)| ≤
C|x− x0|

2
3 . Choosing small δ > 0 so that inf

Bδ(x0)
f > 0, for N ≥ 2 then we have:

( inf
Bδ(x0)

f)−
N
2

∫

Bδ(x0)

∣∣ f

(1 − u)3
∣∣N

2 ≥
∫

Bδ(x0)

1

|1 − u| 3N
2

≥ 1

C

∫

Bδ(x0)

1

|x− x0|N
= +∞,

in contradiction with our integrability assumption (2.3.7). When N = 1, the right hand

side of (2.3.5) is in L
3
2 (Ω), u ∈ C1(Ω̄) and the above argument works as well. In conclusion,

{x ∈ Ω : u(x) = 1} ⊂ Ω0. Let us observe that, if inf
Ω
f > 0, then Ω0 = ∅ and Theorem 2.3.3

already holds true in such a case.

Assume now Ω \Ω0 to be a connected set. Since u 6= 1 on Ω \Ω0 and u = ū < 1 on ∂Ω, by
continuity of u we deduce that u < 1 in Ω \ Ω0, and in turn, u ≤ 1 on ∂Ω0. By convention

f
(1−u)2 = 0 on Ω0 and (1 − u)− = 0 on ∂Ω0. Take (1 − u)−χΩ0 ∈ H1

0 (Ω) as a test function

in (2.3.6) to get
∫
Ω0

|∇(1 − u)−|2 = 0. Hence, (1 − u)− = 0 a.e. in Ω0 and u ≤ 1 in Ω.
To complete the proof, let us assume u ≤ 1 in Ω. Introduce Tku = min{u, 1 − k} as the
truncated function of u at level 1 − k, 0 < k < 1.

Let us first discuss the case N = 1, 2. For k small, take (1−Tku)
−1 − (1− ū)−1 ∈ H1

0 (Ω) as
a test function in (2.3.6). Since u ∈ H1(Ω) and 0 ≤ ū ∈ C1(Ω̄) with ‖ū‖∞ < 1, it yields to

∫

Ω

|∇Tku|2
(1 − Tku)2

=

∫

Ω

∇u∇ū
(1 − ū)2

+

∫

Ω

f(x)

(1 − u)2

(
(1 − Tku)

−1 − (1 − ū)−1
)

≤ C +

∫

Ω

f(x)

(1 − u)3
≤ C

(2.3.8)

in view of (2.3.7), because of (1 − Tku)
−1 ≤ (1 − u)−1 for u ≤ 1.

When N = 1, let S be the Sobolev constant of the embedding H1
0 (I) →֒ L∞(I). Since

log
(

1−ū
1−Tku

)
∈ H1

0 (I) for k small, by (2.3.8) we get:

S ‖ log

(
1 − ū

1 − Tku

)
‖2
∞≤

∫

I

∣∣∣∇ log

(
1 − ū

1 − Tku

) ∣∣∣
2
≤ C

(
1 +

∫

I

|∇Tku|2
(1 − Tku)2

)
≤ C,
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where C does not depend on k. Taking the limit as k → 0, we get that log
(

1−ū
1−u

)
∈ L∞(Ω)

and then u ≤ C < 1.
When N = 2, let us recall a classical consequence of the Moser-Trudinger inequality: there
exists S > 0 so that

∫

Ω
epv ≤ S exp

( p2

16π
‖v‖2

H1
0 (Ω)

)
∀ v ∈ H1

0 (Ω) , p > 1. (2.3.9)

Since log
(

1−ū
1−Tku

)
∈ H1

0 (Ω) for k small, by (2.3.8) and (2.3.9) we deduce that for any p > 1:

∫

Ω
(1 − Tku)

−p ≤ C

∫

Ω

( 1 − ū

1 − Tku

)p
≤ S exp

( p2

16π

∫

Ω
|∇ log(

1 − ū

1 − Tku
)|2
)
≤ C,

where C does not depend on k. Taking the limit as k → 0, we get the validity of

‖(1 − u)−1‖Lp(Ω) ≤ Cp ∀ p > 1, (2.3.10)

where Cp depends on A, N , ū, Ω and f .

Estimate (2.3.10) holds also when N ≥ 3 but the proof is more involved. For k small, take
(1 − Tku)

−p−1 − (1 − ū)−p−1 ∈ H1
0 (Ω) as a test function in (2.3.6), and obtain that

(p+ 1)

∫

Ω

|∇Tku|2
(1 − Tku)p+2

= (p+ 1)

∫

Ω

∇u∇ū
(1 − ū)p+2

+

∫

Ω

f(x)

(1 − u)2

(
(1 − Tku)

−p−1 − (1 − ū)−p−1
)

≤ C +

∫

Ω

f(x)

(1 − u)3
(1 − Tku)

−p.

(2.3.11)

Using the relation

(a+ b)2 = a2 + b2 + 2ab ≤ (1 + δ)a2 +
1 + δ

δ
b2

for a, b ∈ R and δ > 0, we deduce the following estimate:

(1 − Tku)
−p ≤ (1 + δ)

(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

)2
+

1 + δ

δ
(1 − ū)−p , δ > 0. (2.3.12)

Inserting (2.3.12) with δ = 1 into (2.3.11), we get:

(p+ 1)

∫

Ω

|∇Tku|2
(1 − Tku)p+2

≤ C + 2

∫

Ω

f(x)

(1 − u)3

(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

)2
. (2.3.13)
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By (2.3.13) we get that:

∫

Ω

∣∣∇
(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

) ∣∣2

≤ 2

∫

Ω

∣∣∇
(
(1 − Tku)

− p
2

) ∣∣2 + C

=
p2

2

∫

Ω

|∇Tku|2
(1 − Tku)p+2

+ C

≤ p2

p+ 1

∫

Ω

f(x)

(1 − u)3

(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

)2
+ C

≤ p2

p+ 1

∫

{1−u≤ε}

f(x)

(1 − u)3

(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

)2
+ C,

where C does not depend on k. Since {u(x) = 1} ⊂ Ω0 and by convention f
(1−u)3 = 0 on

Ω0, by Hölder inequality and the Sobolev embedding on (1−Tku)
− p

2 − (1− ū)−
p
2 ∈ H1

0 (Ω),
we finally get that

∫

Ω

∣∣∇
(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

) ∣∣2

≤ p2

p+ 1

(∫

{1−u≤ε}
(
f(x)

(1 − u)3
)

N
2

) 2
N
(∫

Ω

∣∣(1 − Tku)
− p

2 − (1 − ū)−
p
2

∣∣ 2N
N−2

)N−2
N

+ C

≤ S−1
N p2

p+ 1

(∫

{1−u≤ε}
(
f(x)

(1 − u)3
)

N
2

) 2
N

∫

Ω

∣∣∇
(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

) ∣∣2 + C

≤ 1

2

∫

Ω

∣∣∇
(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

) ∣∣2 + C ,

provided that ε > 0 is sufficiently small, where SN is the Sobolev constant. Hence, by
Sobolev embedding:

(∫

Ω
|(1 − Tku)

− p
2 − (1 − ū)−

p
2 | 2N

N−2

)N−2
N ≤ S−1

N

∫

Ω

∣∣∇
(
(1 − Tku)

− p
2 − (1 − ū)−

p
2

) ∣∣2 ≤ C,

and in turn ∫

Ω
(1 − Tku)

− pN
N−2 ≤ C,

where C > 0 does not depend on k. Taking the limit as k → 0, as before we get the validity
of (2.3.10).

Now property (2.3.10) for N ≥ 2 implies u ≤ C < 1, for a constant C depending on A, N , ū,

Ω and f . Indeed, if u(x0) = 1 for some x0 ∈ Ω, then |1−u(x)| = |u(x0)−u(x)| ≤ C|x−x0|
2
3 ,

as already remarked. This is in contradiction with (2.3.10) for p large. Since ‖u‖∞ < 1
implies that the right hand side of (2.3.5) is in Lp(Ω) for any p > 1, by elliptic regularity



2.3. THE BRANCH OF MINIMAL SOLUTIONS 35

theory u ∈ C1(Ω̄) and then, we can conclude from the maximum principle (in a weak form)
that 0 < u ≤ ‖u‖∞ < 1. �

We have now:

Theorem 2.3.4. For any dimension 1 ≤ N ≤ 7 there exists a constant C = C(N,Ω, f) < 1
independent of λ such that, for any 0 < λ < λ∗ the minimal solution uλ of (S)λ satisfies
‖ u

λ
‖∞≤ K.

Consequently, u∗ = lim
λ↑λ∗

uλ exists in the topology of C2(Ω̄) and is the unique classical solution

of (S)λ∗ among all the H1
0 (Ω)−weak solutions. Moreover, it satisfies µ1,λ∗(u

∗) = 0.

This result will follow from the following uniform energy estimate on semi-stable solutions
for (2.3.5):

Proposition 2.3.5. There exists a constant Cp > 0 such that, for any H1(Ω)-weak solution
u ≤ 1 of (2.3.5) which is semi- stable:

∫

Ω

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2

)
dx ≥ 0 , ∀ φ ∈ H1

0 (Ω), (2.3.14)

there holds

‖ f

(1 − u)3
‖Lp(Ω) ≤ Cp

as long as 1 ≤ p < 1 + 4
3 + 2

√
2
3 .

Proof: First of all, let us remark that (2.3.5) on u− ū ∈ H1
0 (Ω) gives:

∫

Ω

f(x)

(1 − u)2
≤ C

∫

Ω

f(x)

(1 − u)2
(1 − ū)

= C
(∫

Ω
∇u∇(u− ū) +

∫

Ω

f(x)

1 − u

)

≤ C
(
‖u− ū‖2

H1
0

+ ‖u‖2
H1

0
+ ǫ

∫

Ω

f(x)

(1 − u)2
+

1

4ǫ

∫

Ω
f(x)

)

for any ǫ > 0, because of the inequality ab ≤ ǫa2 + 1
4ǫb

2. Hence, for ǫ = 1
2C we get:

∫

Ω

f(x)

(1 − u)2
≤ 1

2

∫

Ω

f(x)

(1 − u)2
+ C ′

for some C ′ > 0, and then,
∫
Ω

f(x)
(1−u)2 < +∞. Now, (2.3.14) on u− ū ∈ H1

0 (Ω) gives that

∫

Ω

f(x)

(1 − u)3
≤ 2C

∫

Ω

f(x)

(1 − u)3
(1 − ū)2

≤ C
(∫

Ω
|∇(u− ū)|2 +

∫

Ω

2f(x)

1 − u
+

∫

Ω

4f(x)

(1 − u)2
(u− ū)

)

= C
(∫

Ω
|∇(u− ū)|2 +

∫

Ω

2f(x)

1 − u
+ 4

∫

Ω
∇u∇(u− ū)

)
≤ C.
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Fix 1 ≤ p < 1+ 4
3 +2

√
2
3 in order to have 2− 9(p−1)2

4(3p−2) > 0. Introduce, as in the previous proof,

Tku = min{u, 1−k}, 0 < k < 1. For k small, taking (1−Tku)−3p+2− (1− ū)−3p+2 ∈ H1
0 (Ω)

as a test function for (2.3.5) yields that

(3p− 2)

∫

Ω

( |∇Tku|2
(1 − Tku)3p−1

− ∇u∇ū
(1 − ū)3p−1

)

=

∫

Ω

f(x)

(1 − u)2

(
(1 − Tku)

−3p+2 − (1 − ū)−3p+2
)
.

(2.3.15)

Moreover, by (2.3.14) and the simple inequality (a+ b)2 ≤ (1 + δ)a2 + 1+δ
δ b2 we get:

2

∫

Ω

f(x)

(1 − u)3

(
(1 − Tku)

− 3(p−1)
2 − (1 − ū)−

3(p−1)
2

)2

≤
∫

Ω

∣∣∇
(
(1 − Tku)

− 3(p−1)
2 − (1 − ū)−

3(p−1)
2

) ∣∣2

≤ 9(p− 1)2

4
(1 + δ)

∫

Ω

|∇Tku|2
(1 − Tku)3p−1

+ C

≤ 9(p− 1)2

4
(1 + δ)

∫

Ω

( |∇Tku|2
(1 − Tku)3p−1

− ∇u∇ū
(1 − ū)3p−1

)
+ C,

(2.3.16)

for some C > 0 depending on p and δ > 0. Inserting (2.3.15) into (2.3.16) and using
(1 − Tku)

−1 ≤ (1 − u)−1 for u ≤ 1, we get that

2

∫

Ω

f(x)

(1 − u)3

(
(1 − Tku)

− 3(p−1)
2 − (1 − ū)−

3(p−1)
2

)2

≤ 9(p− 1)2(1 + δ)

4(3p− 2)

∫

Ω

f(x)

(1 − u)2

(
(1 − Tku)

−3p+2 − (1 − ū)−3p+2
)

+ C

≤ 9(p− 1)2(1 + δ)

4(3p− 2)

∫

Ω

f(x)

(1 − u)3
(1 − Tku)

−3(p−1) + C

≤ 9(p− 1)2(1 + δ)2

4(3p− 2)

∫

Ω

f(x)

(1 − u)3

(
(1 − Tku)

− 3(p−1)
2 − (1 − ū)−

3(p−1)
2

)2
+ C

in view of (2.3.12), where C > 0 does not depend on k. Since 1 ≤ p < 1 + 4
3 + 2

√
2
3 and

2 − 9(p−1)2(1+δ)
4(3p−2) > 0 for δ small, then we have

∫

Ω

f(x)

(1 − u)3
(1 − Tku)

−3(p−1) ≤ 2

∫

Ω

f(x)

(1 − u)3

(
(1 − Tku)

− 3(p−1)
2 − (1 − ū)−

3(p−1)
2

)2
+ C ≤ C

for some C > 0 in dependent of k. Taking the limit as k → 0, we get that

∫

Ω

f(x)

(1 − u)3p
≤ C.
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Then, f
(1−u)3 ∈ Lp(Ω) for any 1 ≤ p < 1 + 4

3 + 2
√

2
3 and proof is done. �

Proof (of Theorem 2.3.4): The existence of u∗ as a classical solution follows from

Proposition 2.3.5 and Theorem 2.3.3, as long as N
2 < 1 + 4

3 + 2
√

2
3 which happens when

N ≤ 7.
Since µ1,λ > 0 on the minimal branch for any λ < λ∗, at the limit we have µ1,λ∗ ≥ 0. If
now µ1,λ∗ > 0 the Implicit Function Theorem could be applied to the operator Luλ∗ ,λ∗ ,
and would allow the continuation of the minimal branch λ 7→ u

λ
beyond λ∗, which is a

contradiction. Hence µ1,λ∗ = 0. The uniqueness in the class of H1
0 (Ω)-weak solutions then

follows from Lemma 2.3.1. �

2.3.3 Blow-up procedure: the power-law profiles

Our goal now is to study the effect of power-like permittivity profiles f(x) ≃ |x|α on the
problem (S)λ defined in the unit ball B = B1(0).

Since |x|α is increasing in B, the moving plane method of Gidas, Ni and Nirenberg [53]
does not guarantee radial symmetry of solutions to (S)λ. However, the minimal branch is
composed by radial solutions as the following result shows:

Proposition 2.3.6. Let Ω and f be a radial domain and profile, respectively. Then, the
minimal solutions of (S)λ are necessarily radially symmetric and consequently

λ∗(Ω, f) = λ∗r(Ω, f) = sup
{
λ; (S)λ has a radial solution

}
.

Moreover, on a ball any radial solution of (S)λ attains its maximum at 0.

Proof: It is clear that λ∗r(Ω, f) ≤ λ∗(Ω, f), and the reverse will be proved if we establish
that every minimal solution of (S)λ with 0 < λ < λ∗(Ω, f) is radially symmetric. The
recursive scheme defined in Theorem 2.1.2 gives that at each step un and therefore also the
resulting limiting function –the minimal solution– is radially symmetric.
For a solution u(r) on the ball of radius R, we have ur(0) = 0 and

−urr −
N − 1

r
ur =

λf

(1 − u)2
in (0, R) .

Hence, −d(rN−1ur)
dr = λfrN−1

(1−u)2 ≥ 0, and therefore ur < 0 in (0, R) since ur(0) = 0. This shows

that u(r) attains its maximum at 0. �

The following result extends the compactness of the minimal branch in Theorem 2.3.4 to
higher dimensions N ≥ 8:

Theorem 2.3.7. Assume N ≥ 8 and α > αN = 3N−14−4
√

6
4+2

√
6

. Let f be of the form:

f(x) = |x|αg(x) , g(x) ≥ C > 0 in B, (2.3.17)
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where g ∈ C1(B̄). Let (λn)n be such that λn → λ ∈ [0, λ∗] and un be a solution of (S)λn so
that

µ1,n := µ1,λn(un) ≥ 0 . (2.3.18)

Then,
sup
n∈N

‖ un ‖∞< 1.

In particular, the extremal solution u∗ = lim
λ↑λ∗

uλ is a classical solution of (S)λ∗ such that

µ1,λ∗(u
∗) = 0.

Proof: By Lemma 2.3.1 and (2.3.18) un coincides with the minimal solution uλn , and by
Proposition 2.3.6, un is radial and achieves its absolute maximum only at zero.
Given a permittivity profile f(x) as in (2.3.17), in order to get Theorem 2.3.7, we want to
show:

sup
n∈N

‖ un ‖∞< 1, (2.3.19)

provided N ≥ 8 and α > αN = 3N−14−4
√

6
4+2

√
6

. In particular, since the minimal branch uλ

is non decreasing in λ, by (2.3.19) along such a branch we would get that the extremal
solution u∗ = lim

λ↑λ∗
uλ is a solution of (S)λ∗ so that µ1,λ∗(u

∗) ≥ 0. Property µ1,λ∗(u
∗) = 0

must hold because otherwise, by Implicit Function Theorem, we could find solutions of (S)λ
for λ > λ∗, which contradicts the definition of λ∗.

In order to prove (2.3.19), let us argue by contradiction. Up to a subsequence, assume that
un(0) = max

B
un → 1 as n → +∞. Since λ = 0 implies un → 0 in C2(B̄), we can assume

that λn → λ > 0. Let εn := 1−un(0) → 0 as n→ +∞ and introduce the following rescaled
function:

Un(y) =
1 − un

(
ε

3
2+α
n λ

− 1
2+α

n y
)

εn
, y ∈ Bn := B

ε
− 3

2+α
n λ

1
2+α
n

(0). (2.3.20)

The function Un satisfies:




∆Un =
|y|αg

(
ε

3
2+α
n λ

− 1
2+α

n y
)

U2
n

in Bn,

Un(y) ≥ Un(0) = 1,

(2.3.21)

and Bn → R
N as n→ +∞. This would reduce to a contradiction between (2.3.18) and the

following Proposition 2.3.8. �

Proposition 2.3.8. There exists a subsequence {Un}n defined in (2.3.20) such that Un → U
in C1

loc(R
N ), where U is a solution of the problem





∆U = g(0)
|y|α
U2

in RN ,

U(y) ≥ U(0) = 1 in R
N .

(2.3.22)
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If either 1 ≤ N ≤ 7 or N ≥ 8, α > αN , then there exists φn ∈ C∞
0 (B) such that:

∫

B

(
|∇φn|2 −

2λn|x|αg(x)
(1 − un)3

φ2
n

)
< 0.

The second part in Proposition 2.3.8 is based on Theorem 5.1.1, which characterizes the
unstability of entire solutions of (2.3.22).
Proof: Let R > 0. For n large, decompose Un = U1

n + U2
n, where U2

n satisfies:

{
∆U2

n = ∆Un in BR(0) ,
U2
n = 0 on ∂BR(0) .

By (2.3.21) we get that on BR(0):

0 ≤ ∆Un ≤ Rα ‖ g ‖∞,

and standard elliptic regularity theory gives that U2
n is uniformly bounded in C1,β(BR(0))

for any β ∈ (0, 1). Up to a subsequence, we get that U2
n → U2 in C1(BR(0)). Since

U1
n = Un ≥ 1 on ∂BR(0), by harmonicity U1

n ≥ 1 in BR(0) and then the Harnack inequality
gives

sup
BR/2(0)

U1
n ≤ CR inf

BR/2(0)
U1
n ≤ CRU

1
n(0) = CR

(
1 − U2

n(0)
)
≤ CR

(
1 + sup

n∈N
|U2
n(0)|

)
<∞ .

Hence, U1
n is uniformly bounded in C1,β(BR/4(0)) for any β ∈ (0, 1). Up to a further

subsequence, we get that U1
n → U1 in C1(BR/4(0)) and then, Un → U1 +U2 in C1(BR/4(0))

for any R > 0. By a diagonal process and up to a subsequence, we find that Un → U in
C1

loc(R
N ), where U is a solution of the equation (2.3.22).

If either 1 ≤ N ≤ 7 or N ≥ 8 and α > αN , since g(0) > 0 Theorem 5.1.1 shows that
µ1(U) < 0 and then, we find φ ∈ C∞

0 (RN ) so that:

∫ (
|∇φ|2 − 2g(0)

|y|α
U3

φ2
)
< 0.

Defining now

φn(x) =
(
ε

3
2+α
n λ

− 1
2+α

n

)−N−2
2 φ

(
ε
− 3

2+α
n λ

1
2+α
n x

)
,

then we have
∫

B

(
|∇φn|2 −

2λn|x|αg(x)
(1 − un)3

φ2
n

)
=

∫ (
|∇φ|2 − 2|y|α

U3
n

g(ε
3

2+α
n λ

− 1
2+α

n y)φ2
)

→
∫ (

|∇φ|2 − 2g(0)
|y|α
U3

φ2
)
< 0

as n → +∞, since φ has compact support and Un → U in C1
loc(R

N ). The proof of
Proposition 2.3.8 is now complete. �
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2.4 Uniqueness of solutions

The purpose of this Section is to characterize the extremal solution when is singular and to
discuss uniqueness of solutions to (S)λ when λ is small.

2.4.1 The extremal solution

We first note that, in view of the monotonicity in λ and the uniform boundedness of the
first branch of solutions, the extremal function defined by u∗(x) = lim

λ↑λ∗
uλ(x) always exists,

and can always be considered as a solution for (S)λ∗ in a weak sense. Now, if there exists
C < 1 such that ‖ u

λ
‖∞≤ C for any λ < λ∗ –just like in the case 1 ≤ N ≤ 7– then we

have seen in Theorem 2.3.4 that u∗ is classical and is unique among H1
0 (Ω)−weak solutions.

In the sequel, we tackle the important case when u∗ is a weak solution (i.e., in H1
0 (Ω)) of

(S)λ∗ but singular: ‖u∗‖∞ = 1.

We shall borrow ideas from [13, 16], where the authors deal with the case of regular
nonlinearities. However, unlike those papers where solutions are considered in a very weak
sense, we consider here a more focussed and much simpler situation. We establish the
following useful characterization of the extremal solution:

Theorem 2.4.1. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in R
N .

For λ > 0, consider u to be a H1
0 (Ω)−weak solution of (S)λ such that ‖ u ‖∞= 1. Then the

following assertions are equivalent:

1. µ1,λ ≥ 0, that is u satisfies

∫

Ω
|∇φ|2 ≥

∫

Ω

2λf(x)

(1 − u)3
φ2 ∀φ ∈ H1

0 (Ω) ,

2. λ = λ∗ and u = u∗.

By Lemma 2.3.1 uλ is the unique semi-stable solution of (S)λ. Since ‖ uλ ‖∞< 1 for any
λ ∈ (0, λ∗), we need – in order to prove Theorem 2.4.1– only to show that (S)λ does not
have any H1

0 (Ω)-weak solution for λ > λ∗. By the definition of λ∗, this is already true for
classical solutions and we shall now extend such a property to the class of weak solutions:

Proposition 2.4.2. If w is a H1
0 (Ω)-weak supersolution of (S)λ, then for any ε ∈ (0, 1)

there exists a classical solution wε of (S)λ(1−ε).

Proof: For any ψ ∈ C2([0, 1]) concave, increasing function so that ψ(0) = 0, we have that
ψ(w) ∈ H1

0 (Ω) and we prove now that:

∫

Ω
∇ψ(w)∇φ ≥

∫

Ω

λf

(1 − w)2
ψ̇(w)φ (2.4.1)



2.4. UNIQUENESS OF SOLUTIONS 41

for any 0 ≤ φ ∈ H1
0 (Ω). Indeed, by concavity of ψ we get:

∫

Ω
∇ψ(w)∇φ =

∫

Ω
ψ̇(w)∇w∇φ =

∫

Ω
∇w∇

(
ψ̇(w)φ

)
−
∫

Ω
ψ̈(w)φ|∇w|2

≥
∫

Ω

λf(x)

(1 − w)2
ψ̇(w)φ

for any 0 ≤ φ ∈ C∞
0 (Ω). By density and Fatou Theorem, we get the validity of (2.4.1).

Now let ε ∈ (0, 1), and define

ψε(w) := 1 −
(
ε+ (1 − ε)(1 − w)3

) 1
3
, 0 ≤ w ≤ 1 .

Since ψε ∈ C2([0, 1]) is a concave, increasing function so that ψε(0) = 0 and

ψ̇ε(w) = (1 − ε)
g
(
ψε(w)

)

g(w)
, g(s) := (1 − s)−2,

by (2.4.1) we obtain that for any 0 ≤ φ ∈ H1
0 (Ω):

∫

Ω
∇ψε(w)∇φ ≥

∫

Ω

λf(x)

(1 − w)2
ψ̇ε(w)φ = λ(1 − ε)

∫

Ω
f(x)g

(
ψε(w)

)
φ

=

∫

Ω

λ(1 − ε)f(x)

(1 − ψε(w))2
φ .

Hence, ψε(w) is a H1
0 (Ω)-weak supersolution of (S)λ(1−ε) so that 0 ≤ ψε(w) ≤ 1 − ε

1
3 < 1.

Since 0 is a subsolution for any λ > 0, we get the existence of a H1
0 (Ω)-weak solution wε of

(S)λ(1−ε) so that 0 ≤ wε ≤ 1 − ε
1
3 . By standard elliptic regularity theory, wε is a classical

solution of (S)λ(1−ε). �

From above results of §2.3 and §2.4, the refined properties of steady states –such as regu-
larity, stability, uniqueness, energy estimates and comparison results– are collected in the
following Theorem and are shown to depend on the dimension of the ambient space and on
the permittivity profile.

Theorem 2.4.3. Assume f is a function satisfying (2.0.1) on a bounded domain Ω in R
N ,

and consider λ∗ := λ∗(Ω, f) as defined in Theorem 2.2.4. Then,

1. For any 0 ≤ λ < λ∗, the minimal solution uλ is the unique stable solution of (S)λ:
µ1,λ(uλ) > 0. Moreover for each x ∈ Ω, the function λ → uλ(x) is strictly increasing
and differentiable on (0, λ∗).

2. If 1 ≤ N ≤ 7 then –by means of energy estimates– one has sup
λ∈(0,λ∗)

‖ uλ ‖∞< 1. If

N ≥ 8 and α > αN := 3N−14−4
√

6
4+2

√
6

, such a property –by means of a blow-up procedure–

is still true for (S)λ on the unit ball and power-like profiles as in (2.3.17).
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Consequently, u∗ = lim
λ↑λ∗

uλ exists in C2(Ω̄) and is a solution for (S)λ∗ such that

µ1,λ∗(u
∗) = 0. In particular, u∗ –often referred to as the extremal solution of problem

(S)λ– is unique among all the H1
0 (Ω)−weak solutions.

3. On the other hand, if N ≥ 8 and 0 ≤ α ≤ αN , when f(x) = |x|α and Ω is the unit

ball, the extremal solution is u∗(x) = 1 − |x| 2+α
3 and is therefore singular.

We note that in general, the extremal function u∗ exists in any dimension, does solve (S)λ∗

in a weak sense and is the unique solution in an appropriate class. The above Theorem
states that u∗ is a classical solution for suitable dimensions N and parameters α. This will
allow us to start another branch of non-minimal (unstable) solutions, which we will discuss
in next two Chapters.

2.4.2 Uniqueness of low energy solutions for small voltage

In the following we focus on the uniqueness when λ is small enough. We first define non-
minimal solutions of (S)λ as follows.

Definition 2.4.1. A solution 0 ≤ u < 1 is said to be a non-minimal positive solution of (S)λ
if there exists another positive solution v of (S)λ and a point x ∈ Ω such that u(x) > v(x).

Lemma 2.4.4. Suppose u is a non-minimal solution of (S)λ with λ ∈ (0, λ∗). Then

µ1(λ, u) < 0, and the function w = u− uλ is in the negative space of Lu,λ = −∆− 2λf(x)
(1−u)3 .

Proof: For a fixed λ ∈ (0, λ∗), let u
λ

be the minimal solution of (S)λ. By Lemma 2.3.1,
we have w = u− u

λ
≥ 0 in Ω and µ1(λ, u) < 0. Since

−∆w − λ(2 − u− u
λ
)f

(1 − u)2(1 − u
λ
)2
w = 0 in Ω ,

the strong maximum principle yields to u
λ
< u in Ω.

Let Ω0 = {x ∈ Ω : f(x) = 0}. Direct calculations give that

−∆(u− u
λ
) − 2λf

(1 − u)3
(u− u

λ
) = λf

[ 1

(1 − u)2
− 1

(1 − u
λ
)2

− 2

(1 − u)3
(u− u

λ
)
]

=

{
0 , x ∈ Ω0 ;
< 0 , x ∈ Ω \ Ω0 .

From this we get

〈Lu,λw,w〉 = λ

∫

Ω\Ω0

f
[ 1

(1 − u)2
− 1

(1 − u
λ
)2

− 2

(1 − u)3
(u− u

λ
)
]
(u− u

λ
) < 0 .

�

Now we are able to prove the following uniqueness result:
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Theorem 2.4.5. For every M > 0 there exists λ∗1(M) ∈ (0, λ∗) such that for λ ∈ (0, λ∗1(M))
equation (S)λ has a unique solution v satisfying

1. ‖ f
(1−v)3 ‖1 ≤M when N = 1,

2. ‖ f
(1−v)3 ‖1+ǫ ≤M when N = 2, for some ǫ > 0,

3. ‖ f
(1−v)3 ‖N/2 ≤M when N ≥ 3.

Proof: For any fixed λ ∈ (0, λ∗), let u
λ

be the minimal solution of (S)λ, and suppose (S)λ
has a non-minimal solution u corresponding to cases 1), 2) or 3). The previous Lemma then
gives ∫

Ω
|∇(u− u

λ
)|2dx <

∫

Ω

2λ(u− u
λ
)2f(x)

(1 − u)3
dx .

This implies in case N ≥ 3 that

SN

(∫

Ω
(u− u

λ
)

2N
N−2dx

)N−2
N

< 2λ

∫

Ω

f(x)

(1 − u)3
(u− u

λ
)2dx

≤ 2λ
(∫

Ω

∣∣ f

(1 − u)3
∣∣N

2

) 2
N
(∫

Ω
(u− u

λ
)

2N
N−2dx

)N−2
N

≤ 2λM
(∫

Ω
(u− u

λ
)

2N
N−2dx

)N−2
N

,

which is a contradiction if λ < SN
2M unless u ≡ u

λ
. If N = 1, then we write

S‖u− u
λ
‖2
∞ < 2λ

∫

I

f(x)

(1 − u)3
(u− u

λ
)2dx ≤ 2λ‖u− u

λ
‖2
∞

∫

I

f

(1 − u)3
dx ,

and the proof follows. A similar proof holds for dimension N = 2. �

Remark 2.4.1. The above Theorem gives uniqueness for small λ among all solutions that
either stay away from 1 or those that approach it slowly.

2.4.3 A monotonicity inequality

In this subsection we establish a monotonicity inequality for positive solutions of the fol-
lowing problem

∆u = λ|x|αu−2 in Ω, (2.4.2)

where Ω is a bounded smooth domain in R
N (N ≥ 2) with 0 ∈ Ω.

Since 0 < u ∈ C2(Ω), multiplying (2.4.2) by φ · ∇u and integrating by parts let us observe
that

∫

Ω

[ ∂u
∂xi

∂u

∂xj

∂φj

∂xi
− 1

2
|∇u|2∂φ

i

∂xi
+ λu−1∂|x|α

∂xi
φi + λu−1|x|α∂φ

i

∂xi

]
dx = 0 (2.4.3)

holds for all regular vector fields φ ∈ C1
0 (Ω,RN ) (summation over i and j is understood).

We have the following result:
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Theorem 2.4.6. Let u be a positive solution of (2.4.2). Given r0 > 0 so that B(0, 2r0) ⊂ Ω,
then

Eu(r) := −3λ

2
r−µ

∫

B(0,r)
|x|αu−1dx+

1

4

d

dr

[
r−µ

∫

∂B(0,r)
u2dS

]

−1

4
r−µ−1

∫

∂B(0,r)
u2dS

(2.4.4)

is a nondecreasing function of r, for any r ∈ (0, r0), where µ = N − 2
3 + 2α

3 .

Remark 2.4.2. The monotonicity inequality (2.4.4) holds in a more general class, the non-
negative solutions u of (2.4.2) of finite energy: u ∈ H1(Ω) and

∫
Ω u

−1 < +∞, which are
stationary: (2.4.3) holds. Also the nonlinearity u−2 can be replaced by u−p for any p ≥ 1.
The following proof can be easily adapted.

Proof: : Fix r0 > 0 so that B(0, 2r0) ⊂ Ω. Let r, m > 0 be such that r +m < r0, and set
φ(x) = ξ(|x|)x, where

ξ(|x|) ≡





1 for |x| ≤ r,

1 + r−|x|
m for r ≤ |x| ≤ r +m,

0 for |x| ≥ r +m.

We derive from (2.4.3), letting m→ 0+, that the following identity holds

λN

∫

B(0,r)
|x|αu−1dx− N − 2

2

∫

B(0,r)
|∇u|2dx+

r

2

∫

∂B(0,r)
|∇u|2dS

+λ

∫

B(0,r)
(x · ∇|x|α)u−1dx− λr

∫

∂B(0,r)
|x|αu−1dS = r

∫

∂B(0,r)
(ur)

2dS.

(2.4.5)

Since x · ∇|x|α = α|x|α, (2.4.5) gives

λ(N + α)

∫

B(0,r)
|x|αu−1dx− N − 2

2

∫

B(0,r)
|∇u|2dx+

r

2

∫

∂B(0,r)
|∇u|2dS

−λr
∫

∂B(0,r)
|x|αu−1dS = r

∫

∂B(0,r)
(ur)

2dS.

(2.4.6)

On the other hand, multiplying (2.4.2) by u and integrating over B(0, r) we find ∀ 0 < r <
r0, ∫

B(0,r)
|∇u|2dx =

∫

∂B(0,r)
uurdS − λ

∫

B(0,r)
|x|αu−1dx. (2.4.7)

Taking the derivative of (2.4.7) with respect to r, we obtain
∫

∂B(0,r)
|∇u|2dS =

d

dr

∫

∂B(0,r)
uurdS − λ

∫

∂B(0,r)
|x|αu−1dS. (2.4.8)

Substituting
∫
B(0,r) |∇u|2dx of (2.4.7) and

∫
∂B(0,r) |∇u|2dS of (2.4.8) into (2.4.6), we obtain

λ

(
3N

2
+ α− 1

)∫

B(0,r)
|x|αu−1dx− 3

2
λr

∫

∂B(0,r)
|x|αu−1dS
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+
r

2

d

dr

∫

∂B(0,r)
uurdS − N − 2

2

∫

∂B(0,r)
uurdS = r

∫

∂B(0,r)
(ur)

2dS.

This equality can be rewritten as

−3λ

2

d

dr

[
r−µ

∫

B(0,r)
|x|αu−1dx

]
+

1

2
r−µ

d

dr

[ ∫

∂B(0,r)
uurdS

]

= r−µ
∫

∂B(0,r)

[
(ur)

2 +
N − 2

2
r−1uur

]
dS,

(2.4.9)

where µ = N − 2
3 + 2α

3 . Using the identity

d

dr

[ ∫

∂B(0,r)
u2dS

]
= 2

∫

∂B(0,r)
uurdS + (N − 1)

∫

∂B(0,r)
r−1u2dS,

we have

1

2

d2

dr2

[
r−µ

∫

∂B(0,r)
u2dS

]
− d

dr

[
r−µ

∫

∂B(0,r)
uurdS

]

= (N − µ− 1)r−µ
∫

∂B(0,r)

[(N − 2 − µ)

2
r−2u2 + r−1uur

]
dS.

(2.4.10)

Note that

r−µ
d

dr

[ ∫

∂B(0,r)
uurdS

]
=

d

dr

[
r−µ

∫

∂B(0,r)
uurdS

]
+ µr−µ−1

∫

∂B(0,r)
uurdS. (2.4.11)

Substituting (2.4.10) and (2.4.11) into (2.4.9), we obtain that

−3λ

2

d

dr

[
r−µ

∫

B(0,r)
|x|αu−1dx

]
+

1

4

d2

dr2

[
r−µ

∫

∂B(0,r)
u2dS

]

= r−µ
∫

∂B(0,r)

[
(ur)

2 +
2N − 2µ− 3

2
r−1uur +

1

4
(N − µ− 1)(N − µ− 2)r−2u2

]
dS,

which yields to

−3λ

2

d

dr

[
r−µ

∫

B(0,r)
|x|αu−1dx

]
+

1

4

d2

dr2

[
r−µ

∫

∂B(0,r)
u2dS

]

−1

4

d

dr

[
r−µ−1

∫

∂B(0,r)
u2dS

]
= r−µ

∫

∂B(0,r)

(
ur +

N − µ− 2

2
r−1u

)2
dS ≥ 0.

This shows that

Eu(r) = −3λ

2
r−µ

∫

B(0,r)
|x|αu−1dx+

1

4

d

dr

[
r−µ

∫

∂B(0,r)
u2dS

]

−1
4r

−µ−1

∫

∂B(0,r)
u2dS

is a nondecreasing function of r for r ∈ (0, r0), completing the proof of Theorem 2.4.6. �
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2.4.4 Uniqueness of solutions for small voltage

Theorem 2.4.5 shows that the minimal solution uλ is unique among all the solutions that
either stay away from 1 or approach 1 slowly. In order to remove such an integral condition,
we establish here an intermediate result which will allows us to show in Chapter 4 uniqueness
for small voltages on symmetric domains and with power-law permittivity profiles.

Theorem 2.4.7. Let f(x) = |x|α and Ω be a domain so that 0 ∈ Ω. Let (λn)n be a
sequence such that λn → λ ∈ [0, λ∗] and let un be an associated non-minimal solution of
(S)λn. Assume that un(0) = max

Ω
un and

max
Ω\Br(0)

un ≤ kr < 1 ∀ 0 < r ≤ r0, (2.4.12)

∇un(x) · x ≤ 0 ∀ x : |x| = r0, (2.4.13)

for some r0 <
1
2dist (0, ∂Ω).

Set εn = 1 − un(0). If there exists a contant C > 0 so that

λnr
4+2α

3

∫

SN−1

1

(1 − un(rθ))2
dθ ≤ C ∀ ǫ 3

2+αλ
− 1

2+α
n ≤ r ≤ r0, (2.4.14)

then λ > 0.

We argue by contradiction and assume λ = 0. Since un is a non-minimal solution, Theorem
2.4.5 shows that ‖un‖∞ → 1 as n→ +∞ (along a subsequence). Then, εn → 0 as n→ +∞
and, even more precisely:

ε3nλ
−1
n → 0 as n→ +∞. (2.4.15)

Indeed, otherwise we would have along some subsequence:

0 ≤ λn|x|α
(1 − un)2

≤ C
λn
ε2n

≤ C ′εn → 0 as n→ +∞.

But if the right hand side of (S)λn converges uniformly to 0, then elliptic regularity theory
implies that un → u in C1(Ω̄), where u is a harmonic function such that u = 0 on ∂Ω, and
hence u ≡ 0 on Ω. On the other hand, εn → 0 implies that max

Ω
u = 1, a contradiction.

Define

Un(y) =
1 − un(ǫ

3
2+α
n λ

− 1
2+α

n y)

ǫn
, y ∈ Ωn := {y : ǫ

3
2+α
n λ

− 1
2+α

n y ∈ Ω}. (2.4.16)

The function Un satisfies:

∆Un = |y|αU−2
n in Ωn, Un(0) = 1, Un(y) ≥ 1. (2.4.17)
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Let us observe that by (2.4.15) Ωn → R
N as n → +∞. We shall show that such Un does

not exist for n large.

Proof (of Theorem 2.4.7): Set Rn = ǫ
− 3

2+α
n λ

1
2+α
n r0, then we have:

Un(Rnθ) = R
2+α

3
n λ

− 1
3

n r
− 2+α

3
0 (1 − un)(r0θ) , ∀ θ ∈ SN−1.

Therefore, if we define

vn(s, θ) = |y|− 2+α
3 Un(y), |y| = es,

we get that for s ∈ [0, Tn], where Tn = lnRn, vn satisfies the equation:

vss +

(
N − 2

3
+

2α

3

)
vs + ∆SN−1v +

2 + α

3

(
N − 4

3
+
α

3

)
v = v−2. (2.4.18)

Proposition 2.3.8 shows that (up to a subsequence) Un → U in C1
loc(R

N ), where U is a
solution of (2.3.22) with g(0) = 1. Since U ≥ 1, by (2.4.12) we obtain that for n sufficiently
large

1
C ≤ vn(s, θ) = e−

2+α
3
sUn(e

sθ) ≤ C, ∀ 0 ≤ s ≤ 1, θ ∈ SN−1 (2.4.19)

1
C ≤ λ

1
3
ns

2+α
3 vn(Tn + ln s

r0
, θ) = (1 − un)(sθ) ≤ 1 ∀ r ≤ s ≤ r0, θ ∈ SN−1, (2.4.20)

where r > 0 is any given number less than r0. Since

(vn)s(s, θ) +
2 + α

3
vn(s, θ) = e

1−α
3
s(Un)r(e

sθ) ∀ (s, θ) ∈ (−∞, Tn] × SN−1 (2.4.21)

and vn(s, θ) ≥ Un(e
sθ) ≥ Un(0) = 1 in (−∞, 0] × SN−1, let us rewrite estimates (2.4.13),

(2.4.14) in terms of vn as follows:

(vn)s(Tn, θ) + 2+α
3 vn(Tn, θ) ≥ 0 ∀ θ ∈ SN−1, (2.4.22)

∫
SN−1

1
v2n(s,θ)

dθ ≤ Cλ
− 1

3
n ∀ s ≤ Tn. (2.4.23)

We now use the monotonicity property in Theorem 2.4.6:

EUn(r) := −3

2
r−µ

∫

B(0,r)

|y|α
Un

dy +
1

4

d

dr

[
r−µ

∫

∂B(0,r)
U2
ndS

]
− 1

4
r−µ−1

∫

∂B(0,r)
U2
ndS

is a nondecreasing function of r, where µ = N − 2
3 + 2α

3 . A simple calculation implies that,
under the change Un → vn(s, θ), the function EUn(r) is just a positive multiple of

Evn(s) = w′
n(s) − 6hn(s),

where

wn(s) =

∫

SN−1

v2
n(s, θ)dθ, hn(s) =

∫ s

−∞
dτeµ(τ−s)

∫

SN−1

dθ

vn(τ, θ)
.
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Hence Evn(s) is a nondecreasing function of s for any s ∈ [0, Tn].

By (2.4.23) we deduce that
∫
SN−1

dθ
vn(s,θ) ≤ Cλ

− 1
6

n for any s ≤ Tn and in turn,

0 ≤ hn(s) ≤ Cλ
− 1

6
n for any s ≤ Tn. (2.4.24)

Introduce now vn(s) =
∫
SN−1 vn(s, θ)dθ. Observe that by (2.4.18) vn satisfies the equation:

v′′n +

(
N − 2

3
+

2α

3

)
v′n +

2 + α

3

(
N − 4

3
+
α

3

)
v =

∫

SN−1

dθ

v2
n(s, θ)

. (2.4.25)

As far as the estimate of w′
n, we claim that

w′
n(Tn) = −4 + 2α

3
wn(Tn) (1 + o(1)) as n→ +∞. (2.4.26)

Indeed, by (2.4.21) we get that

e(N− 4
3
+α

3
)s

(
(vn)s(s, θ) +

2 + α

3
vn(s, θ)

)
= e(N−1)s(Un)r(e

sθ) → 0 as s→ −∞. (2.4.27)

Hence, by (2.4.25) and (2.4.27) it follows that

v′n(Tn) +
2 + α

3
vn(Tn) =

∫ Tn

−∞
e(N− 4

3
+α

3
)(s−Tn)

∫

SN−1

dθ

v2
n(s, θ)

.

Then, by (2.4.20) and (2.4.23) we deduce that

v′n(Tn) +
2 + α

3
vn(Tn) ≤ Cλ

− 1
3

n

∫ Tn+ln r
r0

−∞
e(N− 4

3
+α

3
)(s−Tn)

+Cλ
2
3
n

∫ Tn

Tn+ln r
r0

e(N− 4
3
+α

3
)(s−Tn) ≤ Cλ

− 1
3

n (
r

r0
)N− 4

3
+α

3 + Cλ
2
3
n

for any 0 < r ≤ r0. Therefore, it implies:

v′n(Tn) +
2 + α

3
vn(Tn) ≤ λ

− 1
3

n or(1) + Cλ
2
3
n , (2.4.28)

where or(1) → 0 as r → 0 uniformly in n. By (2.4.20) observe that vn(Tn, θ) = O(λ
− 1

3
n )

uniformly in θ and wn(Tn) ≥ Cλ
− 2

3
n for some C > 0. Hence, (λ

1
3
nwn(Tn))

−1 = O(λ
1
3
n ) = o(1)

and by (2.4.28) now we deduce:

w′
n(Tn) = 2

∫

SN−1

vn(Tn, θ)(vn)s(Tn, θ)dθ

= 2

∫

SN−1

vn(Tn, θ)[(vn)s(Tn, θ) +
2 + α

3
vn(Tn, θ)]dθ −

4 + 2α

3
wn(Tn)

= λ
− 2

3
n or(1) +O(λ

1
3
n ) − 4 + 2α

3
wn(Tn)

= −4 + 2α

3
wn(Tn) (1 + or(1) +O(λn)) ,
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in view of (2.4.22). Our claim on w′
n(Tn) is established.

Thus, it now follows from (2.4.26) that

Evn(Tn) ≤ w′
n(Tn) ≤ −Cλ−

2
3

n .

The monotonicity of Evn(s) in s implies that

w′
n(s) − 6hn(s) ≤ −Cλ−

2
3

n for any s ∈ [0, Tn],

and hence,

hn(s) ≥ C

(
λ
− 2

3
n + w′

n(s)

)
for any s ∈ [0, Tn]. (2.4.29)

Integrating (2.4.29) from 0 to Tn and using (2.4.19) and (2.4.24), we conclude that

Tnλ
− 1

6
n ≥ CTnλ

− 2
3

n + Cλ
− 2

3
n − C > CTnλ

− 2
3

n

and then, λ
1
2
n ≥ C > 0. A contradiction. This completes the proof of Theorem 2.4.7. �

2.5 Bifurcation diagrams for power-law case

The bifurcation diagrams shown in Figure 2.2 actually reflect the radially symmetric situ-
ation, and our emphasis in this section is on whether there is a better chance to analyze
mathematically the higher branches of solutions in this case. The classical work of Joseph-
Lundgren [75] and many that followed can be adapted to this situation when the permittivity
profile is constant. However, the case of a power-law permittivity profile f(x) = |x|α defined
in a unit ball already presents a much richer situation. We now present various analytical
and numerical evidences for various conjectures relating to this case, some of which will be
further discussed in next three Chapters.

Consider the domain Ω to be a unit ball B1(0) ⊂ R
N (N ≥ 1), and let f(x) = |x|α (α ≥ 0).

We analyze in this case the branches of radially symmetric solutions of (S)λ for λ ∈ (0, λ∗].
In this case, (S)λ reduces to





−urr −
N − 1

r
ur =

λrα

(1 − u)2
, 0 < r ≤ 1,

u′(0) = 0 , u(1) = 0 .

(2.5.1)

Here r = |x| and 0 < u = u(r) < 1 for 0 < r < 1.
Consider first the following initial value problem:





U ′′ +
N − 1

r
U ′ =

rα

U2
, r > 0 ,

U ′(0) = 0 , U(0) = 1 .

(2.5.2)
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Observe that U > 1 in (0,+∞). For any γ > 0, we can define a solution uγ(r) of (2.5.1) as

uγ(r) = 1 − λ
1
3γ−

2+α
3 U(γr).

The parameter λ and the maximum value of uγ : uγ(0), depend on γ in the following way:




uγ(0) = 1 − 1

U(γ)
,

λ =
γ2+α

U3(γ)
,

(2.5.3)

where the second relation guarantees the boundary condition uγ(1) = 0.
As was done in §2.2.3, one can numerically integrate the initial value problem (2.5.2)

and use the results to compute the complete bifurcation diagram for (2.5.1). We show such
a computation of u(0) versus λ defined in (2.5.3) for the slab domain (N = 1) in Figure 2.3.
In this case, one observes from the numerical results that when N = 1, and 0 ≤ α ≤ 1, there
exist exactly two solutions for (S)λ whenever λ ∈ (0, λ∗). On the other hand, the situation
becomes more complex for α > 1 as u(0) → 1. This leads to the question of determining
the asymptotic behavior of U(r) as r → ∞. Towards this end, we proceed as follows.

0
0

1

N = 1 and f(x) = |x|
α
 with different ranges of α

λ  

|u(0)| 

 λ* λ*
 λ*

 λ 
*
 λ 

*
 

α >α*
 

1<α<=α*
 

α<=1 

Figure 2.3: Plots of u(0) versus λ for profile f(x) = |x|α (α ≥ 0) defined in the slab domain
(N = 1). The numerical experiments point to a constant α1 > 1 (analytically given in
(2.5.5)) such that the bifurcation diagrams are greatly different for the different ranges of α:
0 ≤ α ≤ 1, 1 < α ≤ α1 and α > α1.

Setting v(s) = r−
2+α

3 U(r) > 0, r = es, by (2.4.18) we have that

v′′ +

(
N − 2

3
+

2α

3

)
v′ +

2 + α

3

(
N − 4

3
+
α

3

)
v = v−2 . (2.5.4)

We can already identify from this equation the following regimes.
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Case 1. Assume that
N = 1 and 0 ≤ α ≤ 1.

In this case, there is no positive equilibrium point for (2.5.4), which means that the bifur-
cation diagram vanishes at λ = 0. Then, one infers that in this case, there exist exactly two
solutions for λ ∈ (0, λ∗) and just one for λ = λ∗.

Case 2. N and α satisfy either one of the following conditions:

N = 1 and α > 1,

N ≥ 2.

There exists then a positive equilibrium point Ve of (2.5.4):

ve = 3

√
9

(2 + α)(3N + α− 4)
> 0 .

Linearizing around this equilibrium point by writing

v = ve + δeση , 0 < δ << 1,

we obtain that

σ2 +
3N + 2α− 2

3
σ +

(2 + α)(3N + α− 4)

3
= 0 .

Such an equation admits the following solutions:

σ± = −3N + 2α− 2

6
±

√
∆

6
,

with
∆ = −8α2 − (24N − 16)α+ (9N2 − 84N + 100) .

We note that σ± < 0 whenever ∆ ≥ 0. Now define

α1 = −1

2
+

3

4

√
6 , αN =

3N − 14 − 4
√

6

4 + 2
√

6
(N ≥ 8) . (2.5.5)

Next, we discuss the ranges of N and α such that ∆ ≥ 0 or ∆ < 0.

Case 2.A. N and α satisfy one of the following:

N = 1 with 1 < α ≤ α1 , (2.5.6a)

N ≥ 8 with 0 ≤ α ≤ αN . (2.5.6b)

In this case, we have △ ≥ 0 and

v(s) ∼
( 9

(2 + α)(3N + α− 4)

) 1
3

+ δ1e
− 3N+2α−2−

√
∆

6
s + · · · , as s→ +∞ .
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Further, we conclude that

U(r) ∼ r
2+α

3

( 9

(2 + α)(3N + α− 4)

) 1
3

+ δ1r
−N−2

2
+

√
∆
6 + · · · , as r → +∞ .

In both cases, the branch monotonically approaches the value 1 as γ → +∞ (uγ(0) ↑ 1 as
γ → +∞). Moreover, since λ = γ2+α/U3(γ), we have

λ ↑ λ∗ =
(2 + α)(3N + α− 4)

9
as γ → ∞ , (2.5.7)

which is an important critical threshold for the voltage.
In the case (2.5.6a) illustrated by Figure 2.3, we have λ∗ < λ∗, and the number of

solutions increase but remains finite as λ approaches λ∗. On the other hand, in the case of
(2.5.6b) illustrated by Figure 2.4, we have λ∗ = λ∗, and there seems to be only one branch
of solutions.

Case 2.B. N and α satisfy one of the following conditions:

N = 1 with α > α1 , (2.5.8a)

2 ≤ N ≤ 7 with α ≥ 0 , (2.5.8b)

N ≥ 8 with α > αN . (2.5.8c)

In this case, we have ∆ < 0 and

v(s) ∼
( 9

(2 + α)(3N + α− 4)

) 1
3

+ δ1e
− 3N+2α−2

6
scos

(√−∆

6
s+ C2

)
+ · · · as s→ +∞ .

We also have for r → +∞,

U(r) ∼ r
2+α

3

( 9

(2 + α)(3N + α− 4)

) 1
3

+ δ1r
−N−2

2 cos
(√−∆

6
ln r + C2

)
+ · · · , (2.5.9)

and from the fact that λ = γ2+α/U3(γ) we get again that

λ ∼ λ∗ =
(2 + α)(3N + α− 4)

9
as γ → ∞ .

Note the oscillatory behavior of U(r) in (2.5.9) for large r, which means that λ is expected

to oscillate around the value λ∗ = (2+α)(3N+α−4)
9 as γ → ∞, as well as uγ(0). The diagrams

above point to the existence of a sequence {λi} satisfying

λ0 = 0 , λ2k ր λ∗ as k → ∞ ,

λ1 = λ∗ , λ2k−1 ց λ∗ as k → ∞ ,
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0
0

1

(a). 2 <= N <= 7 and f(x) = |x|
α 

 for any α >= 0

λ 

|u(0)| 

λ 
*
 λ 

*
 

0
0

1

(b). N >= 8 and f(x) = |x|
α
 with different ranges of α 

|u(0)| 

λ  λ 
*
 λ 

*
 λ 

*
 

0 <= α <= α 
**

 

α > α 
**

 

Figure 2.4: Top figure: Plots of u(0) versus λ for 2 ≤ N ≤ 7, where u(0) oscillates around
the value λ∗ defined in (2.5.7) and u∗ is regular. Bottom figure: Plots of u(0) versus λ for
N ≥ 8: when 0 ≤ α ≤ αN , there exists a unique solution for (S)λ with λ ∈ (0, λ∗) and u∗

is singular; when α > αN , u(0) oscillates around the value λ∗ defined in (2.5.7) and u∗ is
regular.
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such that exactly 2k+1 solutions for (S)λ exist when λ ∈ (λ2k, λ2k+2), while there are exactly
2k solutions when λ ∈ (λ2k+1, λ2k−1). Furthermore, (S)λ has infinitely many solutions at
λ = λ∗.
The three cases (2.5.8a), (2.5.8b) and (2.5.8c) considered here for N and α are illustrated
by the diagrams in Figure 2.3, Figure 2.4(a) and Figure 2.4(b), respectively.

We now conclude from above that the bifurcation diagrams show four possible regimes –at
least if the domain is a ball:

A. There is exactly one branch of solution for 0 < λ < λ∗. This regime occurs when N ≥ 8

and 0 ≤ α ≤ αN = 3N−14−4
√

6
4+2

√
6

. The results of this section actually show that in this

range, the first branch of solutions “disappears” at λ∗ which happens to be equal to
λ∗(α,N) = (2+α)(3N+α−4)

9 .

B. There exists an infinite number of branches of solutions. This regime occurs when

• N = 1 and α ≥ α1 = −1
2 + 3

4

√
6;

• 2 ≤ N ≤ 7 and α ≥ 0;

• N ≥ 8 and α > αN .

In this case, λ∗(α,N) < λ∗ and the multiplicity becomes arbitrarily large as λ ap-
proaches –from either side– λ∗(α,N) at which there is a touchdown solution u (i.e.,
‖ u ‖∞= 1).

C. There exists a finite number of branches of solutions. In this case, we have again that
λ∗(α,N) < λ∗, but now the branch approaches the value 1 monotonically, and the
number of solutions increases but remains finite as λ approaches λ∗(α,N). This regime
occurs when N = 1 and 1 < α ≤ α1.

D. There exist exactly two branches of solutions for 0 < λ < λ∗ and one solution for
λ = λ∗. The bifurcation diagram disappears when it returns to λ = 0. This regime
occurs when N = 1 and 0 ≤ α ≤ 1.

Some of these questions will be considered in next three Chapters. A detailed and involved
analysis of compactness along unstable branches will be discussed there, as well as some
information about the second bifurcation point.

2.6 Some comments

Main results of this Chapter can be found in [51, 64]. Since the first aim of studying MEMS
modeling is to understand the pull-in voltage λ∗, in this Chapter we have applied the method
of super- and sub- solutions to showing the existence of λ∗. In order to study analytic bounds
of λ∗, we have also used some other methods, such as Pohozaev-type arguments, Bandle’s
Schwarz symmetrization (cfr. [9]) and etc. However, our analytic bounds of λ∗ in Theorem
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2.2.4 are not optimal generally, except the special case (2.2.17). This leads us to conjecture
that there should be a better estimate for λ∗, involving the distribution of f in Ω.

The second aim of this Chapter has been to discuss semi-stable solutions of (S)λ. From
the strictly mathematical point of view, it turned out that –at least for f ≡ 1– there
already exist in the literature many interesting results concerning properties of semi-stable
solutions for Dirichlet boundary value problems of the form −∆u = λh(u) where h is a
regular nonlinearity (e.g., h(u) = eu or (1 + u)p for p > 1). See for example the seminal
papers [31, 75, 76] and also [20] for a survey on the subject and an exhaustive list of related
references. If the profile f ≡ 1, even the case of singular nonlinearities –involved in MEMS
devices– had already been considered in [18] and in a more general context in [82]. Some
usual analysis of the minimal branch (composed of semi-stable solutions) can be extended
to cover the singular situation (S)λ. However, some new arguments are still needed to
be developed to cover our situation where f(x) is assumed to vanish at somewhere. For
example, generally energy estimates are necessary in §2.3.2 for the compactness of semi-
stable solutions.

Uniqueness and multiplicity of solutions for (S)λ are discussed in §2.4-2.6 by applying
various analytical and numerical techniques. A complete characterization of singular ex-
tremal solution u∗ for (S)λ∗ is well-understood in §2.4.1, while the regularity of u∗ depends
on a critical dimension N∗ = N∗(f). It seems from bifurcation diagrams of §2.5 that for
middle dimension 2 ≤ N ≤ 7, the uniqueness of solutions for (S)λ holds for small λ, while
infinite multiplicity of solutions holds at some 0 < λ∗ < λ∗. We have also proved a result
which will allows us to establish uniqueness and infinite multiplicity for middle dimension
2 ≤ N ≤ 7 and for power-law profile f(|x|) = |x|α (α ≥ 0) on the unit ball. In case f = 1
and N = 2, we shall be able to extend such uniqueness and infinite multiplicity result to
symmetric domains in the coordinate variables.
For the case f(x) = |x|α in a ball, the bifurcation diagrams of §2.5 are quite interesting:
the “critical” dimension N∗ = N∗(α) of (S)λ is exactly equal to 7 provided α = 0, while
the “critical” dimension N∗ may be larger than 7 for α > 0 large enough. This evidence
gives hints that the zero property of profile f(x) may push ahead the “critical” dimension
of (S)λ. We also note the following elliptic problem





−∆u =
λ|x|α

(1 − u)2
, x ∈ B1,

u(x) = 0 , x ∈ ∂B1

(2.6.1)

with 0 ≤ u < 1 on B1, where α ≥ 0 and B1 is a unit ball in R
N . The radially symmetric

solutions of (2.6.1) are studied in §2.5, by using bifurcation diagrams and asymptotic anal-
ysis. Notice that for α = 0, any positive solution of (2.6.1) must be radially symmetric, due
to the well-known result of Gidas, Ni and Nirenberg [53]. Here is a natural question: when
α > 0, do there exist non-symmetric positive solutions of (2.6.1)? It is our conjecture that
the answer is positive for sufficiently large α.
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Chapter 3

Compactness along Lower

Branches

In this Chapter we continue the analysis of the problem:




−∆u =
λf(x)

(1 − u)2
in Ω,

0 < u < 1 in Ω,
u = 0 on ∂Ω,

(S)λ

where λ > 0, Ω ⊂ R
N is a bounded smooth domain and f satisfies (2.0.1). Following the

notations and terminology of Chapter 2, the solutions of (S)λ are considered to be in the
classical sense, and the minimal solution uλ of (S)λ is the classical solution of (S)λ satisfying
uλ(x) ≤ u(x) in Ω for any solution u of (S)λ.
For any solution u of (S)λ, we introduce the linearized operator at u defined by:

Lu,λ = −∆ − 2λf(x)

(1 − u)3
,

and its corresponding eigenvalues {µk,λ(u); k = 1, 2, ...}. Note that the first eigenvalue is
simple and is given by:

µ1,λ(u) = inf

{
〈Lu,λφ, φ〉H1

0 (Ω) ; φ ∈ C∞
0 (Ω),

∫

Ω
φ2dx = 1

}

with the infimum being attained at a first, positive eigenfunction φ1, while the second
eigenvalue is given by the formula:

µ2,λ(u) = inf

{
〈Lu,λφ, φ〉H1

0 (Ω) ; φ ∈ C∞
0 (Ω),

∫

Ω
φ2dx = 1 and

∫

Ω
φφ1dx = 0

}
.

This construction can be iterated to obtain the k-th eigenvalue µk,λ(u) with the convention
that eigenvalues are repeated according to their multiplicities.
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When the minimal branch is compact, in §3.1 we provide the existence of a second, unstable
solution Uλ of (S)λ, for λ in a small deleted left neighborhood of λ∗. We give also a
Mountain Pass variational characterization of Uλ, see Theorem 3.1.3. §3.2 is concerned
with the compactness of the second branch of (S)λ by applying a blow-up analysis, and the
main result is given in Theorem 3.2.1. The multiplicity result is studied in Theorem 3.3.1
of §3.3.

3.1 A second solution of Mountain Pass type

The first result we state is quite standard:

Lemma 3.1.1. Let uλ be the minimal branch of (S)λ and u∗ = lim
λ↑λ∗

uλ be the extremal

solution. Suppose ‖u
λ
‖∞ ≤ C for any λ < λ∗, for some C < 1. Then there exists δ > 0

such that the solutions of (S)λ near (λ∗, u∗) form a curve ρ(s) = (λ̄(s), v(s)), |s| < δ, so
that

λ̄(0) = λ∗, λ̄′(0) = 0, λ̄′′(0) < 0 , and v(0) = u∗, v′ |λ=0> 0 in Ω .

In particular, if 1 ≤ N ≤ 7 (or N ≥ 8, α > αN for power- like profiles on the unit ball),
then for λ close from the left to λ∗ there exists a unique second branch Uλ of solutions for
(S)λ, bifurcating from u∗, such that

µ1,λ(Uλ) < 0 while µ2,λ(Uλ) > 0.

Proof: The proof is similar to a related result of Crandall and Rabinowitz (cfr. [30, 31]),
so we will be brief. First, the L∞(Ω)−bound on u

λ
and standard regularity theory show

that uλ is uniformly bounded in C1(Ω̄). Since f ∈ C0,β(Ω̄) for some β ∈ (0, 1], in turn
we get that ‖uλ‖C2,β(Ω̄) ≤ C < +∞. It follows that u∗ = lim

λ↑λ∗
uλ exists in C2(Ω̄) and is a

classical solution of (S)λ∗ . Since λ∗f(x)
(1−u∗)2

is nonnegative, Theorem 3.2 of [30] characterizes

the solution set of (S)λ near (λ∗, u∗): it is a curve parametrized as (λ̄(s), v(s)), |s| < δ, so
that λ̄(0) = λ∗, λ̄′(0) = 0, v(0) = u∗ and v′ |λ=0> 0 in Ω. The same computation as in
Theorem 4.8 in [30] gives that λ̄′′(0) < 0. In particular, if 1 ≤ N ≤ 7 (or N ≥ 8, α > αN for
power-like profiles on the unit ball) then our Theorem 2.4.3 gives the compactness of uλ,
and the theory of Crandall and Rabinowitz in [31] implies, for λ close to λ∗, the existence
of a unique second branch Uλ of solutions for (S)λ, bifurcating from u∗. By Lemma 2.4.4,
we get

µ1,λ(Uλ) < 0 while µ2,λ(Uλ) > 0, (3.1.1)

as it follows from µ2,λ(Uλ) → µ2,λ∗(u
∗) > 0 as λ→ λ∗. �

We shall give now a variational characterization for both the stable and unstable solutions
uλ, Uλ in the following sense: when 1 ≤ N ≤ 7, there exists δ > 0 such that for any
λ ∈ (λ∗ − δ, λ∗), the minimal solution uλ is a local minimum for some regularized energy
functional Jε,λ on H1

0 (Ω), while the second solution Uλ is a Mountain Pass of Jε,λ.
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Since the nonlinearity g(u) = 1
(1−u)2 is singular at u = 1, we need to consider a regularized

C1 nonlinearity gε(u), 0 < ε < 1, of the following form:

gε(u) =





1

(1 − u)2
u ≤ 1 − ε ,

1

ε2
− 2(1 − ε)

pε3
+

2

pε3(1 − ε)p−1
up u ≥ 1 − ε ,

(3.1.2)

where p > 1 if N = 1, 2 and 1 < p < N+2
N−2 if 3 ≤ N ≤ 7. For λ ∈ (0, λ∗), we study the

regularized semilinear elliptic problem:

{
−∆u = λf(x)gε(u) in Ω,

u = 0 on ∂Ω.
(3.1.3)

From a variational viewpoint, the action functional associated to (3.1.3) is

Jε,λ(u) =
1

2

∫

Ω
|∇u|2dx− λ

∫

Ω
f(x)Gε(u)dx , u ∈ H1

0 (Ω) ,

where Gε(u) =

∫ u

−∞
gε(s)ds.

In view of Theorem 2.3.4, we now fix 0 < ε < 1−‖u∗‖∞
2 . For λ ↑ λ∗, the minimal solution

uλ of (S)λ is still a solution of (3.1.3) so that µ1

(
− ∆ − λf(x)g′ε(uλ)

)
> 0. The following

holds:

Lemma 3.1.2. Let 1 ≤ N ≤ 7. For λ ↑ λ∗, the minimal solution uλ of (S)λ is a local
minimum of Jε,λ on H1

0 (Ω).

Proof: First, we show that uλ is a local minimum of Jε,λ in C1(Ω̄). Indeed, since

µ1,λ := µ1

(
− ∆ − λf(x)g′ε(uλ)

)
> 0

and uλ < 1 − ε, we have the following inequality:

∫

Ω
|∇φ|2dx− 2λ

∫

Ω

f(x)

(1 − uλ)3
φ2dx ≥ µ1,λ

∫

Ω
φ2 (3.1.4)

for any φ ∈ H1
0 (Ω). Now, take any φ ∈ H1

0 (Ω) ∩ C1(Ω̄) such that ‖φ‖C1 ≤ δλ. Since
uλ ≤ 1 − 3

2ε, if δλ ≤ ε
2 , then uλ + φ ≤ 1 − ε and we have that:

Jε,λ(uλ + φ) − Jε,λ(uλ)

=
1

2

∫

Ω
|∇φ|2dx+

∫

Ω
∇uλ · ∇φdx− λ

∫

Ω
f(x)

( 1

1 − uλ − φ
− 1

1 − uλ

)

≥ µ1,λ

2

∫

Ω
φ2 − λ

∫

Ω
f(x)

( 1

1 − uλ − φ
− 1

1 − uλ
− φ

(1 − uλ)2
− φ2

(1 − uλ)3
)
,

(3.1.5)
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where we have applied (3.1.4). Since now

∣∣∣
1

1 − uλ − φ
− 1

1 − uλ
− φ

(1 − uλ)2
− φ2

(1 − uλ)3

∣∣∣ ≤ C|φ|3

for some C > 0, (3.1.5) gives that

Jε,λ(uλ + φ) − Jε,λ(uλ) ≥
(µ1,λ

2
− Cλ ‖ f ‖∞ δλ

) ∫

Ω
φ2 > 0

provided δλ is small enough. This proves that uλ is a local minimum of Jε,λ in the C1(Ω̄)
topology. Since gε(u) has a subcritical growth

0 ≤ gε(u) ≤ Cε(1 + |u|p), (3.1.6)

we can directly apply Theorem 1 in [14] to get that uλ is a local minimum of Jε,λ in H1
0 (Ω).

�

The proof for the existence of a second solution for (3.1.3) relies on the standard Mountain
Pass Theorem [3]. For self-containedness, we include the statement of this Theorem:

Mountain Pass Theorem: Suppose Jε,λ is a C1−functional defined on a Banach space
E satisfying (PS)-condition and

1. there exists a neighborhood U of uλ in E and a constant σ > 0 such that Jε,λ(v1) ≥
Jε,λ(uλ) + σ for all v1 ∈ ∂U ;

2. ∃v2 6∈ U such that Jε,λ(v2) ≤ Jε,λ(uλ).

Defining

Γ =
{
γ ∈ C([0, 1], E) : γ(0) = uλ , γ(1) = v2

}
,

then

cε,λ = inf
γ∈Γ

max
0≤t≤1

{
Jε,λ(γ(t)) : t ∈ (0, 1)

}

is a critical value of Jε,λ.

The following result holds:

Theorem 3.1.3. Let 1 ≤ N ≤ 7. There exists δ > 0 such that for any λ ∈ (λ∗ − δ, λ∗), the
second solution Uλ given by Lemma 3.1.1 is a Mountain Pass solution for Jε,λ on H1

0 (Ω).

We briefly sketch the proof of Theorem 3.1.3 as follows. Since uλ is a local minimum for
Jε,λ for λ ↑ λ∗, by Mountain Pass Theorem we can show the existence of a second solution
Uε,λ for (3.1.3). Using the subcritical growth (3.1.6) of gε(u) and the inequality:

θGε(u) ≤ ugε(u) for u ≥Mε, (3.1.7)
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for some Cε, Mε > 0 large and θ = p+3
2 > 2, we will obtain that Jε,λ satisfies the Palais-

Smale condition and, by elliptic regularity theory, we get the uniform convergence of Uε,λ
as λ ↑ λ∗. On the other hand, a similar proof as in Lemma 2.3.1 shows that the convexity
of gε(u) ensures that problem (3.1.3) has a unique solution u∗ –the extremal solution of
(S)λ– at λ = λ∗. It allows us to deduce that Uε,λ → u∗ in C(Ω̄) as λ ↑ λ∗, and implies
Uε,λ ≤ 1− ε for λ close to λ∗. Therefore, Uε,λ is a second solution for (S)λ bifurcating from
u∗. Since Uε,λ is a MP solution and (S)λ has exactly two solutions uλ, Uλ for λ ↑ λ∗ (cfr.
Lemma 3.1.1), it finally yields to Uε,λ = Uλ.

In order to complete the details for the proof of Theorem 3.1.3, we first need to show that
Jε,λ has a Mountain-Pass geometry in H1

0 (Ω). Since f 6= 0, fix some small ball B2r ⊂ Ω of
radius 2r, r > 0, so that

∫
Br
f(x)dx > 0. Take a cut-off function χ so that χ = 1 on Br and

χ = 0 outside B2r. Let wε = (1 − ε)χ ∈ H1
0 (Ω). We have that:

Jε,λ(wε) ≤
(1 − ε)2

2

∫

Ω
|∇χ|2dx− λ

ε2

∫

Br

f(x) → −∞

as ε→ 0, and uniformly for λ far away from zero. Since

Jε,λ(uλ) =
1

2

∫

Ω
|∇uλ|2dx− λ

∫

Ω

f(x)

1 − uλ
dx→ 1

2

∫

Ω
|∇u∗|2dx− λ∗

∫

Ω

f(x)

1 − u∗
dx

as λ→ λ∗, we can find that for ε > 0 small, the inequality

Jε,λ(wε) < Jε,λ(uλ) (3.1.8)

holds for any λ close to λ∗.

Fix now ε > 0 small enough so that (3.1.8) holds for λ close to λ∗, and define

cε,λ = inf
γ∈Γ

max
u∈γ

Jε,λ(u),

where Γ = {γ : [0, 1] → H1
0 (Ω); γ continuous and γ(0) = uλ, γ(1) = wε}. We can then use

the Mountain Pass Theorem to get a solution Uε,λ of (3.1.3) for λ close to λ∗, provided the
Palais-Smale condition holds at level c. We next prove this (PS)-condition in the following
form:

Lemma 3.1.4. Assume that {wn} ⊂ H1
0 (Ω) satisfies

Jε,λn(wn) ≤ C , J ′
ε,λn

(wn) → 0 in H−1 (3.1.9)

for λn → λ > 0. Then the sequence (wn)n is uniformly bounded in H1
0 (Ω) and therefore

admits a convergent subsequence in H1
0 (Ω).
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Proof: By (3.1.9) we have that:
∫

Ω
|∇wn|2dx− λn

∫

Ω
f(x)gε(wn)wndx = o(‖ wn ‖H1

0
)

as n→ +∞ and then,

C ≥ 1

2

∫

Ω
|∇wn|2dx− λn

∫

Ω
f(x)Gε(wn)dx

=
(1
2
− 1

θ

) ∫

Ω
|∇wn|2dx+ λn

∫

Ω
f(x)

(1
θ
wngε(wn) −Gε(wn)

)
dx+ o(‖ wn ‖H1

0
)

≥
(1
2
− 1

θ

) ∫

Ω
|∇wn|2dx+ o(‖ wn ‖H1

0
) − Cε

+λn

∫

{wn≥Mε}
f(x)

(1
θ
wngε(wn) −Gε(wn)

)
dx

≥
(1
2
− 1

θ

) ∫

Ω
|∇wn|2dx+ o(‖ wn ‖H1

0
) − Cε

in view of (3.1.7). Hence, sup
n∈N

‖ wn ‖H1
0
< +∞.

Since p is subcritical, the compactness of the embedding H1
0 (Ω) →֒ Lp+1(Ω) provides that,

up to a subsequence, wn → w weakly in H1
0 (Ω) and strongly in Lp+1(Ω), for some w ∈

H1
0 (Ω). By (3.1.9) we get that

∫
Ω |∇w|2 = λ

∫
Ω f(x)gε(w)w, and then, by (3.1.6), we

deduce that
∫

Ω
|∇(wn − w)|2 =

∫

Ω
|∇wn|2 −

∫

Ω
|∇w|2 + o(1)

= λn

∫

Ω
f(x)gε(wn)wn − λ

∫

Ω
f(x)gε(w)w + o(1) → 0

as n→ +∞. �

Proof (of Theorem 3.1.3): Fix ε > 0 small. Consider for any λ ∈ (λ∗ − δ, λ∗) the
Mountain Pass solution Uε,λ of (3.1.3) at energy level cε,λ, where δ > 0 is small enough.
Since cε,λ ≤ cε,λ∗−δ for any λ ∈ (λ∗−δ, λ∗), by Lemma 3.1.4 we get that Uε,λn → U∗ inH1

0 (Ω)
along a subsequence λn → λ∗, for some U∗ ∈ H1

0 (Ω). Then, by (3.1.6) and elliptic regularity
theory, we get that Uε,λn is uniformly bounded in C2,β(Ω̄) for some β ∈ (0, 1]. Hence, up
to a further subsequence, Uε,λn → U∗ in C2(Ω̄), where U∗ is a solution for problem (3.1.3)
at λ = λ∗. Also u∗ is a solution for (3.1.3) at λ = λ∗ so that µ1

(
− ∆ − λ∗f(x)g′ε(u

∗)
)

= 0.
As already remarked, by convexity of gε(u) it follows that u∗ is the unique solution of this
equation and therefore U∗ = u∗. Since along any convergent sequence of Uε,λ as λ ↑ λ∗ the
limit is always u∗, we get that lim

λ↑λ∗
Uε,λ = u∗ in C2(Ω̄). Therefore, since u∗ ≤ 1 − 2ε, there

exists δ > 0 so that for any λ ∈ (λ∗ − δ, λ∗) Uε,λ ≤ u∗ + ε ≤ 1 − ε and hence, Uε,λ is a
solution of (S)λ. Since the Mountain Pass energy level cε,λ satisfies cε,λ > Jε,λ(uλ), we have
that Uε,λ 6= uλ and then Uε,λ = Uλ for any λ ∈ (λ∗ − δ, λ∗). Note that by Lemma 3.1.1, we
know that uλ, Uλ are the only solutions of (S)λ as λ ↑ λ∗. �
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Let us stress that the argument of Theorem 3.1.3 works also for problem (S)λ on the unit
ball with f(x) in the form (2.3.17) provided N ≥ 8, α > αN . This leads to the following
Proposition for the higher dimensional case:

Proposition 3.1.5. Theorem 3.1.3 is still true when Ω is a ball, and f(x) is as in (2.3.17)
provided N ≥ 8 and α > αN .

3.2 Compactness along the second branch

In this section, we are interested in continuing the second branch till the second bifurcation
point, by means of the Implicit Function Theorem. Our main result of this section is the
following compactness for 2 ≤ N ≤ 7:

Theorem 3.2.1. Assume 2 ≤ N ≤ 7, and suppose f in the form

f(x) =
( k∏

i=1

|x− pi|αi
)
g(x) , g(x) ≥ C > 0 in Ω, (3.2.1)

where g ∈ C1(Ω̄), for some points pi ∈ Ω and exponents αi ≥ 0. Let (λn)n be a sequence
such that λn → λ ∈ [0, λ∗] and let un be an associated solution such that

µ2,n := µ2,λn(un) ≥ 0. (3.2.2)

Then, sup
n∈N

‖ un ‖∞< 1. Moreover, if in addition µ1,n := µ1,λn(un) < 0, then necessarily

λ > 0.

Remark 3.2.1. We remark that Theorem 3.2.1 yields to an another proof – based on a
blow-up argument– of the compactness result for minimal solutions established in Chapter
2 by means of some energy estimates, though under the more stringent assumption (3.2.1)
on f(x). We expect that the same result should be true for radial solutions on the unit ball
for N ≥ 8, α > αN , and f as in (2.3.17).

In order to prove Theorem 3.2.1, we now assume that f is in the form (3.2.1), and let (un)n
be a solution sequence for (S)λn where λn → λ ∈ [0, λ∗].

3.2.1 Blow-up analysis

Assume that the sequence (un)n is not compact, which means that up to passing to a
subsequence, we may assume that max

Ω
un → 1 as n → ∞. Let xn be a maximum point of

un in Ω (i.e., un(xn) = max
Ω

un). We would like to identify the limiting profile of un around
xn.

More generally, let yn ∈ Ω be a sequence of points so that un(yn) → 1− as n → +∞, and
set µn = 1 − un(yn). As we will see later, for our purposes it is not restrictive to assume
that µ3

nλ
−1
n → 0 and yn → p ∈ Ω̄ as n → +∞. Depending on the location of p and the
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rate of |yn − p|, the length scale to see around yn some non trivial limiting profile is the
following:

rn =





µ
3
2
nλ

− 1
2

n if p /∈ Z ,

µ
3
2
nλ

− 1
2

n |yn − pi|−
αi
2 if p = pi , µ

−3
n λn|yn − pi|αi+2 → +∞ as n→ +∞ ,

µ
3

2+αi
n λ

− 1
2+αi

n if lim sup
n→+∞

µ−3
n λn|yn − pi|αi+2 < +∞,

(3.2.3)

where Z = {p1, . . . , pk} is the zero set of the potential f(x), and α1, . . . , αk are the related
multiplicities given by (3.2.1). Let us remark that µ3

nλ
−1
n → 0 implies rn → 0 as n→ +∞.

Only to give an idea, let us establish the following rough correspondence: the first situation
in the definition of rn corresponds to a blow up at some point outside Z, the second one to
a “slow” blow up at some pi ∈ Z, while the third one is a “fast” blow at some pi ∈ Z. We
now introduce the following rescaled function around yn:

Un(y) =
1 − un(rny + yn)

µn
, y ∈ Ωn =

Ω − yn
rn

. (3.2.4)

Since Un(0) = 1 by construction, in order to get a limiting profile equation we should
add a condition avoiding vanishing on compact sets of Ωn. Let us remark that, for the
maximum point xn of un and εn = 1−un(xn), the associated rescaled function Un satisfies:
Un ≥ Un(0) = 1 in Ωn.

Proposition 3.2.2. Assume that

µ3
nλ

−1
n → 0 as n→ +∞ (3.2.5)

and

Un ≥ C > 0 in Ωn ∩BRn(0), (3.2.6)

for some Rn → +∞ as n→ +∞. Then, up to a subsequence, Un → U in C1
loc(R

N ), where
U is a solution of the problem





∆U = s
|y + y0|γ
U2

in RN ,

U(y) ≥ C > 0 in R
N

(3.2.7)

for some s > 0, γ ∈ {0, α1, . . . , αk} and y0 ∈ R
N (depending on the type of blow up).

Moreover, there exists a function φn ∈ C∞
0 (Ω) such that:

∫

Ω

(
|∇φn|2 −

2λnf(x)

(1 − un)3
φ2
n

)
< 0 (3.2.8)

and Supp φn ⊂ BMrn(yn) for some M > 0.
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Proof: As already remarked, observe that (3.2.5) implies rn → 0 as n → +∞. Based on
Lemma 3.2.3 below, in case p ∈ ∂Ω (3.2.5) provides us with a stronger estimate:

rn(dist (yn, ∂Ω))−1 → 0 as n→ +∞. (3.2.9)

Indeed, by contradiction and up to a subsequence, assume that rnd
−1
n → δ > 0 as n→ +∞,

where dn := dist (yn, ∂Ω), and then, dn → 0 as n → +∞. We introduce the following
rescaling Wn:

Wn(y) =
1 − un(dny + yn)

µn
, y ∈ An =

Ω − yn
dn

∩Brnd−1
n Rn

(0) .

Since Rn → +∞ and rnd
−1
n → δ > 0, we get that rnd

−1
n Rn → +∞ and, in view of dn → 0,

An → T1 as n → +∞, where T1 is a hyperspace containing 0 so that dist (0, ∂T1) = 1.

The function Wn solves problem (3.2.13) with hn(y) = λnd2n
µ3

n
f(dny + yn). The lower bound

(3.2.6) rewrites as

Wn ≥ C > 0 in An.

We have that:

‖ hn ‖∞≤ λnd
2
n

µ3
n

‖ f ‖∞≤ 2

δ
‖ f ‖∞

and Wn = 1
µn

→ +∞ on ∂An ∩ B2(0) as n → ∞. By Lemma 3.2.3 we get that (3.2.15)
must hold, a contradiction to Hopf Lemma applied to un on ∂An ∩ B2(0). This gives the
validity of (3.2.9).

Now, in case p ∈ ∂Ω (3.2.9) gives that

dist (0, ∂Ωn) =
dist (yn, ∂Ω)

rn
→ +∞

as n → +∞, which implies that Ωn → R
N as n → +∞. For p ∈ Ω, since rn → 0 as

n→ +∞, it is clearly true that Ωn → R
N as n→ +∞. Introduce the following notation

fi(x) =
( k∏

j=1, j 6=i
|x− pj |αj

)
g(x) , (3.2.10)

then Un satisfies ∆Un = fn(y)
U2

n
in Ωn, where fn(y) is given by:

fn =





f(rny + yn) if p /∈ Z ,

| rn
|yn−pi|y + yn−pi

|yn−pi| |
αifi(rny + yn) if p = pi , µ

−3
n λn|yn − pi|αi+2 → ∞ as n→ ∞ ,

|y + yn−pi
rn

|αifi(rny + yn) if lim sup
n→+∞

µ−3
n λn|yn − pi|αi+2 < +∞.
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Only in the latter situation lim sup
n→+∞

µ−3
n λn|yn − pi|αi+2 < +∞, up to a subsequence, we

assume that
yn − pi
rn

→ y0 as n→ +∞. (3.2.11)

Arguing as in Proposition 2.3.8, up to a subsequence, we get that Un → U in C1
loc(R

N ).
According to the three situations described in the definition (3.2.3) of rn, the function
U ≥ C > 0 is a solution of (3.2.7) with: s = f(p), γ = 0 in the first case; s = fi(p),
γ = 0 in the second case; s = fi(p), γ = αi and y0 as in (3.2.11) in the third case. Set
f∞(y) := lim

n→+∞
fn(y) = s|y + y0|γ .

Since 2 ≤ N ≤ 7 and s > 0, Theorem 5.1.1 gives that µ1(U) < 0 and then, we find
φ ∈ C∞

0 (RN ) so that ∫ (
|∇φ|2 − 2f∞(y)

U3
φ2
)
< 0.

Defining now φn(x) = r
−N−2

2
n φ(x−yn

rn
), we then have

∫

Ω

(
|∇φn|2 −

2λnf(x)

(1 − un)3
φ2
n

)
=

∫ (
|∇φ|2 − 2fn(y)

U3
n

φ2
)
→
∫ (

|∇φ|2 − 2f∞(y)

U3
φ2
)
< 0

as n→ +∞, since φ has compact support and Un → U in C1
loc(R). �

Remark 3.2.2. In the case of fast blow up at pi: lim sup
n→+∞

µ−3
n λn|yn − pi|αi+2 < +∞, Propo-

sition 3.2.2 is still true if, instead of condition (3.2.6), we assume:

Un ≥ C|y +
yn − pi
rn

|
αi
3 in Ωn ∩BRn(0), (3.2.12)

for some Rn → +∞ as n→ +∞ and C > 0. Recall that in this situation rn = µ
3

2+αi
n λ

− 1
2+αi

n .
By (3.2.12), we get easily that on Ωn ∩BRn(0):

0 ≤ ∆Un ≤ C
∣∣y +

yn − pi
rn

∣∣αi
3 .

Up to a subsequence, we get that Un → U in C1
loc(R

N ), where U ∈ C1(RN )∩C2(RN \{−y0})
is a solution of 




∆U = |y + y0|αi
fi(pi)

U2
in R

N \ {−y0} ,

U(y) ≥ C|y + y0|
αi
3 in R

N .

By Hopf Lemma, we have that U(−y0) > 0. Indeed, let B some ball so that −y0 ∈ ∂B and
assume by contradiction that U(−y0) = 0. Since

−∆U + c(y)U = 0 in B , U ∈ C2(B) ∩ C(B̄) , U(y) > U(−y0) in B,
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and c(y) = fi(pi)
|y+y0|αi

U3 ≥ 0 is a bounded function, by Hopf Lemma we get that ∂νU(−y0) <
0, where ν is the unit outward normal of B. Hence, along the outward normal direction of
B at −y0 U becomes negative in contradiction with the positivity of U . Hence, U(−y0) > 0
and U(y) ≥ C := inf

RN
U(y) > 0 in R

N . The argument now goes as in the proof of Proposition

3.2.2.

Let us remark that, in general, we are not able to prove that a blow up point p is always far
away from ∂Ω, even though we suspect it to be true. However, the weaker estimate (3.2.5),
which holds in general, yields to (3.2.9), based on the following Lemma:

Lemma 3.2.3. Let hn be a function on a smooth bounded domain An in R
N . Let Wn be a

solution of the problem 



∆Wn =
hn(x)

W 2
n

in An,

Wn(y) ≥ C > 0 in An,
Wn(0) = 1,

(3.2.13)

for some C > 0. Assume that sup
n∈N

‖ hn ‖∞< +∞ and An → Tµ as n → +∞ for some

µ ∈ (0,+∞), where Tµ is a hyperspace so that 0 ∈ Tµ and dist (0, ∂Tµ) = µ. Then for
sufficiently large n, either

min
∂An∩B2µ(0)

Wn ≤ C (3.2.14)

or

min
∂An∩B2µ(0)

∂νWn ≤ 0, (3.2.15)

where ν is the unit outward normal of An.

Proof: Assume that ∂νWn > 0 on ∂An ∩B2µ(0). Let

G(x) =





− 1

2π
log

|x|
2µ

if N = 2

cN
( 1

|x|N−2
− 1

(2µ)N−2

)
if N ≥ 3

be the Green function of the operator −∆ in B2µ(0) with homogeneous Dirichlet boundary
condition, where cN = 1

(N−2)|∂B1(0)| and | · | stands for the Lebesgue measure.

Here and in the sequel, when there is no ambiguity on the domain, ν and dS will denote the
unit outward normal and the boundary integration element of the corresponding domain.
By the representation formula we have that:

Wn(0) = −
∫

An∩B2µ(0)
∆Wn(x)G(x)dx−

∫

∂An∩B2µ(0)
Wn(x)∂νG(x)dS

+

∫

∂An∩B2µ(0)
∂νWn(x)G(x)dS −

∫

∂B2µ(0)∩An

Wn(x)∂νG(x)dS.
(3.2.16)
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Note that on ∂Tµ we have

−∂νG(x) =

{
1
2π

x
|x|2 · ν > 0 if N = 2 ;

(N − 2)cN
x

|x|N · ν > 0 if N ≥ 3 .
(3.2.17)

Since ∂An → ∂Tµ as n→ ∞, it yields that for sufficiently large n,

∂νG(x) ≤ 0 on ∂An ∩B2µ(0). (3.2.18)

Hence, by (3.2.16), (3.2.18) and the assumptions on Wn, we then get for sufficiently large
n,

1 ≥ −
∫

An∩B2µ(0)

hn(x)

W 2
n(x)

G(x)dx−
(

min
∂An∩B2µ(0)

Wn

) ∫

∂An∩B2µ(0)
∂νG(x)dS ,

since G(x) ≥ 0 in B2µ(0) and ∂νG(x) ≤ 0 on ∂B2µ(0). On the other hand, we have

∣∣
∫

An∩B2µ(0)

hn(x)

W 2
n(x)

G(x)
∣∣ ≤ C ,

and (3.2.17) also implies that for sufficiently large n,

−
∫

∂An∩B2µ(0)
∂νG(x)dσ(x) → −

∫

∂Tµ∩B2µ(0)
∂νG(x)dS > 0.

Then for sufficiently large n, 1 ≥ −C + C−1
(

min
∂An∩B2µ(0)

Wn

)
for some C > 0 large enough.

Therefore, we conclude that for sufficiently large n, min
∂An∩B2µ(0)

Wn is bounded and the proof

is complete. �

3.2.2 Spectral confinement

Let us now assume the validity of (3.2.2), namely µ2,n := µ2,λn(un) ≥ 0 for any n ∈ N.
This information will play a crucial role in controlling the number k of “blow up points”
(for (1 − un)

−1) in terms of the spectral information on un. Indeed, roughly speaking, we
can estimate k with the number of negative eigenvalues of Lun,λn (with multiplicities). In
particular, assumption (3.2.2) implies that “blow up” can occur only along the sequence xn
of maximum points of un in Ω.

Proposition 3.2.4. Assume 2 ≤ N ≤ 7, and suppose f as in (3.2.1). Let λn → λ ∈ [0, λ∗]
and un be an associated solution. Assume that un(xn) = max

Ω
un → 1 as n → +∞. Then,

there exist constants C > 0 and N0 ∈ N such that

(
1 − un(x)

)
≥ Cλ

1
3
nd(x)

α
3 |x− xn|

2
3 , ∀ x ∈ Ω , n ≥ N0 , (3.2.19)

where d(x)
α
3 = min{|x − pi|

αi
3 : i = 1, . . . , k} is a “distance function” from the zero set

{p1, . . . , pk} of f(x).
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Proof: Let εn = 1 − un(xn). Then, εn → 0 as n→ +∞ and, even more precisely:

ε3nλ
−1
n → 0 as n→ +∞. (3.2.20)

Indeed, otherwise we would have along some subsequence:

0 ≤ λnf(x)

(1 − un)2
≤ λn
ε2n

‖ f ‖∞≤ Cεn → 0 as n→ +∞.

But if the right hand side of (S)λn tends uniformly to zero, then elliptic regularity theory
implies that, up to a subsequence, un → u in C1(Ω̄), where u is a harmonic function such
that u = 0 on ∂Ω. Hence, u ≡ 0 in Ω. On the other hand, εn → 0 implies that max

Ω
u = 1,

a contradiction.
By (3.2.20), (3.2.5) holds and we can apply Proposition 3.2.2 to obtain a function φn ∈
C∞

0 (Ω) such that (3.2.8) holds, together with a specific control on Supp φn.

By contradiction, assume now that (3.2.19) is false: up to a subsequence, then there exists
a sequence yn ∈ Ω such that

λ
− 1

3
n d(yn)

−α
3 |yn − xn|−

2
3

(
1 − un(yn)

)

= λ
− 1

3
n min

x∈Ω

(
d(x)−

α
3 |x− xn|−

2
3
(
1 − un(x)

))
→ 0 as n→ +∞ .

(3.2.21)

Then, µn := 1 − un(yn) → 0 as n→ ∞ and (3.2.21) can be rewritten as:

µ
3
2
nλ

− 1
2

n

|xn − yn| d(yn)
α
2

→ 0 as n→ +∞. (3.2.22)

We now want to explain the meaning of the crucial choice (3.2.21). Let βn be a sequence
of positive numbers so that

Rn := β
− 1

2
n min{d(yn)

1
2 , |xn − yn|

1
2 } → +∞ as n→ +∞. (3.2.23)

Let us introduce the following rescaled function:

Ûn(y) =
1 − un(βny + yn)

µn
, y ∈ Ω̂n =

Ω − yn
βn

.

Formula (3.2.21) implies:

µn = d(yn)
α
3 |yn − xn|

2
3 min
x∈Ω

(
d(x)−

α
3 |x− xn|−

2
3
(
1 − un(x)

))

≤ µnd(yn)
α
3 |yn − xn|

2
3d(βny + yn)

−α
3 |βny + yn − xn|−

2
3 Ûn(y).

Since
d(βny + yn)

d(yn)
= min{

∣∣yn − pi
d(yn)

+
βn
d(yn)

y
∣∣ : i = 1, . . . , k} ≥ 1 − βn

d(yn)
|y|
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in view of |yn − pi| ≥ d(yn), by (3.2.23) we get that:

Ûn(y) ≥
(
1 − βnRn

d(yn)

)α
3
(
1 − βnRn

|xn − yn|
) 2

3 ≥
(1
2

) 2+α
3

for any y ∈ Ω̂n ∩BRn(0). Hence, whenever (3.2.23) holds, we get the validity of (3.2.6) for
the rescaled function Ûn at yn with respect to βn.

We need to discuss all the possible types of blow up at yn.
1st Case Assume that yn → q /∈ {p1, . . . , pk}. By (3.2.22) we get that µ3

nλ
−1
n → 0 as

n → +∞. Since d(yn) ≥ C > 0, let βn = µ
3
2
nλ

− 1
2

n and, by (3.2.22) we get that (3.2.23)
holds. Associated to yn, µn, define Ûn, Ω̂n as in (3.2.4). We have from above that (3.2.6)
holds by the validity of (3.2.23) for our choice of βn. Hence, Proposition 3.2.2 applied to Ûn
gives the existence of ψn ∈ C∞

0 (Ω) such that (3.2.8) holds and Supp ψn ⊂ B
Mµ

3
2
n λ

− 1
2

n

(yn)

for some M > 0.
In the worst case xn → q, given Un be as in (3.2.4) associated to xn, εn, we get by scaling

that, for x = ε
3
2
nλ

− 1
2

n y + xn,

λ
− 1

3
n

(
d(x)−

α
3 |x− xn|−

2
3

(
1 − un(x)

))

≥ Cλ
− 1

3
n

(
|x− xn|−

2
3

(
1 − un(x)

))
= C|y|− 2

3Un(y) ≥ CR > 0

uniformly in n and y ∈ BR(0) for any R > 0. Then,

ε
3
2
nλ

− 1
2

n

|xn − yn|
→ 0 as n→ +∞.

Hence, in this situation φn and ψn have disjoint compact supports and obviously, it remains
true when xn → p 6= q. Hence, µ2,n < 0 in contradiction with (3.2.2).

2nd Case Assume that yn → pi in a “slow” way:

µ−3
n λn|yn − pi|α+2 → +∞ as n→ +∞.

Let now βn = µ
3
2
nλ

− 1
2

n |yn − pi|−
α
2 . Since d(yn) = |yn − pi| in this situation, we get that:

d(yn)

βn
= µ

− 3
2

n λ
1
2
n |yn − pi|

α+2
2 → +∞,

and (3.2.22) exactly gives

|xn − yn|
βn

=
|xn − yn|

µ
3
2
nλ

− 1
2

n |yn − pi|−
α
2

→ +∞ (3.2.24)

as n → +∞. Hence, (3.2.23) holds. Associated to µn, yn, define now Ûn, Ω̂n according to
(3.2.4). Since (3.2.6) follows by (3.2.23), Proposition 3.2.2 for Ûn gives some ψn ∈ C∞

0 (Ω)
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such that (3.2.8) holds and Supp ψn ⊂ B
Mµ

3
2
n λ

− 1
2

n |yn−pi|−
α
2
(yn) for some M > 0. If xn → p 6=

pi, then clearly φn, ψn have disjoint compact supports leading to µ2,n < 0 in contradiction
with (3.2.2). If also xn → pi, we can easily show by scaling that:

1) if ε−3
n λn|xn − pi|α+2 → +∞ as n → +∞, given Un be as in (3.2.4) associated to xn,

εn, we get that for x = ε
3
2
nλ

− 1
2

n |xn − pi|−
α
2 y + xn,

λ
− 1

3
n

(
d(x)−

α
3 |x− xn|−

2
3

(
1 − un(x)

))

= |y|− 2
3Un(y)

∣∣ε
3
2
nλ

− 1
2

n |xn − pi|−
α+2

2 y +
xn − pi
|xn − pi|

∣∣−α
3 ≥ CR > 0

uniformly in n and y ∈ BR(0) for any R > 0. Then,

ε
3
2
nλ

− 1
2

n |xn − pi|−
α
2

|xn − yn|
→ 0 as n→ +∞,

and hence, by (3.2.24) φn and ψn have disjoint compact supports leading to µ2,n < 0, which
contradicts (3.2.2).

2) if ε−3
n λn|xn − pi|α+2 ≤ C as n→ +∞, given Un be as in (3.2.4) associated to xn, εn,

we get that for x = ε
3

2+α
n λ

− 1
2+α

n y + xn,

λ
− 1

3
n

(
d(x)−

α
3 |x− xn|−

2
3

(
1 − un(x)

))
= |y|− 2

3Un(y)
∣∣y + ε

− 3
2+α

n λ
1

2+α
n (xn − pi)

∣∣−α
3

≥ DR|y|−
2
3Un(y) ≥ CR > 0

uniformly in n and y ∈ BR(0) for any R > 0. Then,

ε
3

2+α
n λ

− 1
2+α

n

|xn − yn|
→ 0 as n→ +∞,

and hence, by (3.2.24) φn and ψn have disjoint compact supports leading to a contradiction.

3rd Case Assume that yn → pi in a “fast” way:

µ−3
n λn|yn − pi|α+2 ≤ C.

Since d(yn) = |yn − pi|, by (3.2.22) we get that

|yn − pi|
|xn − yn|

=
µ

3
2
nλ

− 1
2

n

|xn − yn| |yn − pi|
α
2

(
µ−3
n λn|yn − pi|α+2

) 1
2 → 0 as n→ +∞, (3.2.25)

and then for n large

|xn − pi|
|yn − pi|

≥ |xn − yn|
|yn − pi|

− 1 ≥ 1 ,
|xn − pi|
|xn − yn|

≥ 1 − |yn − pi|
|xn − yn|

≥ 1

2
. (3.2.26)
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Since εn ≤ µn, (3.2.22) and (3.2.26) give that

ε−3
n λn|xn − pi|α+2

≥
( µ

3
2
nλ

− 1
2

n

|xn − yn| |yn − pi|
α
2

)−2( |xn − pi|
|xn − yn|

2
α+2 |yn − pi|

α
α+2

)α+2

≥ C
( µ

3
2
nλ

− 1
2

n

|xn − yn| d(yn)
α
2

)−2 → +∞ as n→ +∞.

(3.2.27)

The meaning of (3.2.27) is the following: once yn provides a fast blowing up sequence at pi,
then no other fast blow up at pi can occur as (3.2.27) states for xn.

Let βn = µ
3

2+α
n λ

− 1
2+α

n . By (3.2.22) and (3.2.25) we get that

βn
|xn − yn|

= µ
3

2+α
n λ

− 1
2+α

n |xn − yn|−1

=
( µ

3
2
nλ

− 1
2

n

|xn − yn| d(yn)
α
2

) 2
2+α
( |yn − pi|
|xn − yn|

) α
2+α → 0 as n→ +∞.

(3.2.28)

However, since un blows up fast at pi along yn, we have β−1
n d(yn) ≤ C and then, (3.2.23)

does not hold. Letting as before

Ûn(y) =
1 − un(βny + yn)

µn
, y ∈ Ω̂n =

Ω − yn
βn

,

we need to refine the analysis before in order to get some estimate for Ûn even when only
(3.2.28) does hold. Formula (3.2.21) gives that:

Ûn(y) ≥ |yn − pi|−
α
3 |yn − xn|−

2
3 |βny + yn − pi|

α
3 |βny + yn − xn|

2
3

=
(
µ
− 3

2+α
n λ

1
2+α
n |yn − pi|

)−α
3
∣∣ βn
|xn − yn|

y +
yn − xn
|xn − yn|

∣∣ 23

·
∣∣y + µ

− 3
2+α

n λ
1

2+α
n (yn − pi)

∣∣α
3

≥ C
(
µ
− 3

2+α
n λ

1
2+α
n |yn − pi|

)−α
3
∣∣y + µ

− 3
2+α

n λ
1

2+α
n (yn − pi)

∣∣α
3

(3.2.29)

for |y| ≤ Rn = ( |xn−yn|
βn

)
1
2 , and Rn → +∞ as n → +∞ by (3.2.28). Since (3.2.29) implies

that (3.2.12) holds for µn, yn, Ûn, Proposition 3.2.2 provides some ψn ∈ C∞
0 (Ω) such that

(3.2.8) holds and Supp ψn ⊂ B
Mµ

3
2+α
n λ

− 1
2+α

n

(yn) for some M > 0.

Since yn cannot lie in any ball centered at xn and radius of order of scale parameters (ε
3
2
nλ

− 1
2

n

or ε
3
2
nλ

− 1
2

n |xn− pi|−
α
2 ), we get from (3.2.28) that φn and ψn have disjoint compact supports

leading to µ2,n < 0, a contradiction to (3.2.2). This completes the proof of Proposition
3.2.4. �
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3.2.3 Compactness issues

We are now in position to give the proof of Theorem 3.2.1. Assume 2 ≤ N ≤ 7, and let
f be as in (3.2.1). Let (λn)n be a sequence such that λn → λ ∈ [0, λ∗] and let un be an
associated solution such that (3.2.2) holds, namely

µ2,n := µ2,λn(un) ≥ 0.

The essential ingredient will be the estimate of Proposition 3.2.4 combined with the unique-
ness result of Lemma 2.3.1.
Proof (of Theorem 3.2.1): Let xn be the maximum point of un in Ω and, up to a
subsequence, assume by contradiction that un(xn) = max

Ω
un(x) → 1 as n → ∞. Then

Proposition 3.2.4 gives that for some C > 0 and N0 ∈ N large,

un(x) ≤ 1 − Cλ
1
3
nd(x)

α
3 |x− xn|

2
3

for any x ∈ Ω and n ≥ N0, where d(x)
α
3 = min{|x − pi|

αi
3 : i = 1, . . . , k} stands for a

“distance function” from the zero set of f(x). Thus, we have that:

0 ≤ λnf(x)

(1 − un)2
≤ C

f(x)

d(x)
2α
3

λ
1
3
n

|x− xn|
4
3

(3.2.30)

for any x ∈ Ω and n ≥ N0. Since by (3.2.1)

∣∣ f(x)

d(x)
2α
3

∣∣ ≤ |x− pi|
αi
3 ‖fi‖∞ ≤ C

for x close to pi, fi as in (3.2.10), we get that f(x)

d(x)
2α
3

is a bounded function on Ω and then,

(3.2.30) gives that λnf(x)/(1 − un)
2 is uniformly bounded in Ls(Ω), for any 1 < s < 3N

4 .
Standard elliptic regularity theory now implies that un is uniformly bounded inW 2,s(Ω). By
Sobolev’s imbedding Theorem, un is uniformly bounded in C0,β(Ω̄) for any 0 < β < 2/3.
Up to a subsequence, we get that un → u0 weakly in H1

0 (Ω) and strongly in C0,β(Ω̄),
0 < β < 2/3, where u0 is a Hölderian function solving weakly in H1

0 (Ω) the equation:




−∆u0 =
λf(x)

(1 − u0)2
in Ω ,

0 ≤ u0 ≤ 1 in Ω ,
u0 = 0 on ∂Ω.

Moreover, by uniform convergence

max
Ω

u0 = lim
n→+∞

max
Ω

un = 1

and, in particular u0 > 0 in Ω. Clearly, λ > 0 since any weak harmonic function in H1
0 (Ω)

is identically zero. To reach a contradiction, we shall first show that µ1,λ(u0) ≥ 0 and then
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deduce from the uniqueness, stated in Lemma 2.3.1, of the semi-stable solution uλ that
u0 = uλ. But max

Ω
uλ < 1 for any λ ∈ [0, λ∗], contradicting max

Ω
u0 = 1. Hence, the claimed

compactness must hold.
If in addition to (3.2.2) we assume that µ1,n < 0, then λ > 0. Indeed, if λn → 0, then by
compactness and standard regularity theory, we get that un → u0 in C2(Ω̄), where u0 is a
harmonic function so that u0 = 0 on ∂Ω. Then, u0 = 0 and un → 0 in C2(Ω̄). But the
only branch of solutions for (S)λ bifurcating from 0 for λ small is the branch of minimal
solutions uλ and then, un = uλn for n large contradicting µ1,n < 0.

In order to complete the proof, we need only to show that

µ1,λ(u0) = inf

{∫

Ω

(
|∇φ|2 − 2λf(x)

(1 − u0)3
φ2
)
dx; φ ∈ C∞

0 (Ω) and

∫

Ω
φ2dx = 1

}
≥ 0. (3.2.31)

Indeed, first Proposition 3.2.2 implies the existence of a function φn ∈ C∞
0 (Ω) so that

∫

Ω

(
|∇φn|2 −

2λnf(x)

(1 − un)3
φ2
n

)
< 0. (3.2.32)

Moreover, Supp φn ⊂ Brn(xn) and rn → 0 as n→ +∞. Recall that p = lim
n→+∞

xn.

By contradiction, if (3.2.31) were false, then there should exist φ0 ∈ C∞
0 (Ω) such that

∫

Ω

(
|∇φ0|2 −

2λf(x)

(1 − u0)3
φ2

0

)
< 0. (3.2.33)

We will replace φ0 with a truncated function φδ with δ > 0 small enough, so that (3.2.33)
is still true while φδ = 0 in Bδ2(p)∩Ω. In this way, φn and φδ would have disjoint compact
supports in contradiction to µ2,n ≥ 0.
Let δ > 0 and set φδ = χδφ0, where χδ is a cut-off function defined as:

χδ(x) =





0 |x− p| ≤ δ2 ,

2 − log |x− p|
log δ

δ2 ≤ |x− p| ≤ δ ,

1 |x− p| ≥ δ .

By Lebesgue’s Theorem, we have:
∫

Ω

2λf(x)

(1 − u0)3
φ2
δ →

∫

Ω

2λf(x)

(1 − u0)3
φ2

0 as δ → 0 . (3.2.34)

For the gradient term, we have the expansion:
∫

Ω
|∇φδ|2 =

∫

Ω
φ2

0|∇χδ|2 +

∫

Ω
χ2
δ |∇φ0|2 + 2

∫

Ω
χδφ0∇χδ∇φ0 .

The following estimates hold:

0 ≤
∫

Ω
φ2

0|∇χδ|2 ≤ ‖φ0‖2
∞

∫

δ2≤|x−p|≤δ

1

|x− p|2 log2 δ
≤ C

log 1
δ
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and ∣∣2
∫

Ω
χδφ0∇χδ∇φ0

∣∣ ≤ 2‖φ0‖∞‖∇φ0‖∞
log 1

δ

∫

B1(0)

1

|x| ,

which provide ∫

Ω
|∇φδ|2 →

∫

Ω
|∇φ0|2 as δ → 0. (3.2.35)

Combining (3.2.33)-(3.2.35), we get that
∫

Ω

(
|∇φδ|2 −

2λf(x)

(1 − u0)3
φ2
δ

)
< 0

for δ > 0 sufficiently small. This completes the proof of (3.2.31) and therefore, Theorem
3.2.1 is completely established. �

We finally mention that Theorem 5.1.1 is the main tool to control the blow up behavior
of a possible non compact sequence of solutions. The usual asymptotic analysis for equations

with Sobolev critical nonlinearity, based on some energy bounds (usually L
2N

N−2 (Ω)-bounds),
does not work in our context. In view of Chapter 2, a possible loss of compactness can be

related to a blow up in L
3N
2 (Ω)-norm along the sequence. Essentially, the blow up associated

to a sequence un (in the sense of the blowing up of (1 − un)
−1) corresponds exactly to the

blow up of the L
3N
2 (Ω)-norm. We replace these energy bounds by some spectral information

and, based on Theorem 5.1.1, we then provide an estimate of the number of blow up points
(counted with their “multiplicities”) in terms of the Morse index along the sequence.

3.3 The second bifurcation point

In this section, we discuss the second bifurcation point for (S)λ. First of all, we will say
that a curve (λ(t), V (t)) ∈ C([0, 1]; R ×C2(Ω̄)) with a finite number of self- intersections is
a “second branch” of (S)λ if V (t) solves (S)λ(t) with µ2,λ(t)(V (t)) ≥ 0 and V (t) = Uλ(t) for
any t in a small deleted left neighborhood of 1, where λ(1) = λ∗.
Let us remark that λ(t) < λ∗ for any 0 ≤ t < 1. Indeed, if λ(t̄) = λ∗, we would have by
Lemma 2.3.1 V (t̄) = u∗ and by Lemma 3.1.1 V (t) = Uλ(t) for t close to t̄, having in such a
way an infinite number of self-intersections.
We define now the second bifurcation point to be defined as:

λ∗2 = inf{λ(0) : (λ(t), V (t)) is a “second branch” of (S)λ} .

Theorem 3.3.1. Assume f satisfies (3.2.1). Then, for 2 ≤ N ≤ 7 we have λ∗2 ∈ (0, λ∗)
and for any λ ∈ (λ∗2, λ

∗) there exist at least two solutions uλ and Vλ of (S)λ so that

µ1,λ(Vλ) < 0 while µ2,λ(Vλ) ≥ 0.

In particular, for λ = λ∗2 there exists a second solution, namely V ∗ := lim
λ↓λ∗2

Vλ so that

µ1,λ∗2
(V ∗) < 0 and µ2,λ∗2

(V ∗) = 0.
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0
0

1

f(x) ≡ 1 and 2 ≤ N ≤ 7

λ 

u(0) 

λ*
 λ*

2
 

Figure 3.1: Plots of u(0) versus λ for the case where f(x) ≡ 1 is defined in the unit ball
B1(0) ⊂ R

N with dimension 2 ≤ N ≤ 7, where λ∗ (resp. λ∗2) is the first (resp. second)
turning point.

One can compare Theorem 3.3.1 with the multiplicity result of [2] for nonlinearities of the
form λuq +up (0 < q < 1 < p), where the authors show that for p subcritical, there exists a
second –Mountain Pass– solution for any λ ∈ [0, λ∗). On the other hand, when p is critical,
the second branch blows up as λ → 0 (see also [4] for a related problem). We note that
in our situation, the second branch cannot approach the value λ = 0 as illustrated by the
bifurcation diagram Figure 3.1.
Proof: We claim that: for any λ ∈ (λ∗2, λ

∗), there exists a solution Vλ such that

µ1,λ := µ1,λ(Vλ) < 0 ∀ λ ∈ (λ∗2, λ
∗). (3.3.1)

In particular, Vλ 6= uλ provides a second solution different from the minimal one.

By definition of λ∗2, for any λ ∈ (λ∗2, λ
∗), let us consider a “second branch” (λ(t), V (t))

so that λ(0) < λ. Given t̄ so that λ = λ(t̄), the solution Vλ is found as Vλ := V (t̄).
Clearly, (3.3.1) is true. Indeed, since λ(1) = λ∗ and V (t) = Uλ(t) for t ↑ 1, by Lemma
3.1.1 µ1,λ(t)(V (t)) = µ1,λ(t)(Uλ(t)) < 0 for t close from the left to 1. Now µ1,λ(t)(V (t)) = 0
is not allowed because it would imply by Lemma 2.3.1 that V (t) = uλ(t). By the stability
of minimal solutions of (S)λ for λ < λ∗ (see Theorem 2.4.3), it follows that V (t) = u∗

and λ(t) = λ∗, which is not possible as already observed. Hence, µ1,λ(t)(V (t)) < 0 for any
t ∈ [0, 1) and the claim is established.

Taking a sequence λn ↓ λ∗2, apply Theorem 3.2.1 to get λ∗2 = lim
n→+∞

λn > 0, sup
n∈N

‖ Vλn ‖∞< 1.

By elliptic regularity theory, up to a subsequence Vλn → V ∗ in C2(Ω̄), where V ∗ is a solution
for (S)λ∗2 . As before, µ1,λ∗2

(V ∗) < 0 and by continuity µ2,λ∗2
(V ∗) ≥ 0.

Suppose µ2,λ∗2
(V ∗) > 0, let us fix some ε > 0 so small that 0 ≤ V ∗ ≤ 1 − 2ε and consider

the truncated nonlinearity gε(u) as in (3.1.2). Clearly, V ∗ is a solution of (3.1.3) at λ = λ∗2
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so that −∆−λ∗2f(x)g′ε(V
∗) has no zero eigenvalues, since µ1,λ∗2

(V ∗) < 0 and µ2,λ∗2
(V ∗) > 0.

Namely, V ∗ solves N(λ∗2, V
∗) = 0, where N is a map from R × C2,α(Ω̄) into C2,α(Ω̄),

α = min{α1, . . . , αk}, defined as:

N : (λ, V ) −→ V + ∆−1
(
λf(x)gε(V )

)
.

Moreover,

∂VN(λ∗2, V
∗) = Id + ∆−1

( 2λ∗2f(x)

(1 − V ∗)3
)

is an invertible map since −∆−λ∗2f(x)g′ε(V
∗) has no zero eigenvalues. The Implicit Function

Theorem gives the existence of a curve Wλ, λ ∈ (λ∗2 − δ, λ∗2 + δ), of solutions for (3.1.3)
so that lim

λ→λ∗2
Wλ = V ∗ in C2,α(Ω̄). Up to take δ smaller, this convergence implies that

µ2,λ(Wλ) > 0 and Wλ ≤ 1− ε for any λ ∈ (λ∗2 − δ, λ∗2 + δ). Hence, for λ close to λ∗2 Wλ is a
solution of (S)λ so that µ2,λ(Wλ) > 0 which allows us to extend some “second branch” for
values λ < λ∗2, contradicting the definition of λ∗2. Therefore, µ2,λ∗2

(V ∗) = 0, which completes
the proof of Theorem 3.3.1. �

Let (λ(t), V (t)) be a “second branch” of (S)λ. By (3.1.1), for δ > small, we have that
LV (t),λ(t) is invertible for t ∈ (1− δ, 1), and, as long as it remains invertible, we can use the
Implicit Function Theorem to find (λ(t), V (t)) as the unique smooth extension of the curve
Uλ (in principle Uλ exists only for λ close to λ∗). Let now λ∗∗ be defined in the following
way:

λ∗∗ = inf{λ(0) : (λ(t), V (t)) is a “second branch” of (S)λ s.t. µ2,λ(t)(V (t)) > 0∀ t ∈ [0, 1]} .

As already observed, µ1,λ(t)(V (t)) < 0 for any t ∈ [0, 1) along any “second branch”
(λ(t), V (t)). Then, λ∗2 ≤ λ∗∗ and there exists a smooth curve (λ(t), V (t)) so that λ(t) ↓ λ∗∗
as t ↓ 0 which is the unique maximal extension of the curve Uλ. This is what the second
branch is supposed to be. If now λ∗2 < λ∗∗, then there is no longer uniqueness for the
extension and the “second branch” is defined only as one of potentially many continuous
extensions of Uλ.
It remains open whether λ∗2 is the second turning point for the solution diagram of (S)λ or
if the “second branch” simply disappears at λ = λ∗2. Note that if the “second branch” does
not disappear, then it can continue for λ less than λ∗2 but only along solutions whose first
two eigenvalues are negative.

3.4 Some comments

Main results of this Chapter are published in [38]. The standard bifurcation theory of Cran-
dall and Rabinowitz [30, 31] gives that once the compactness of minimal branch solutions of
(S)λ is true, then there exists a second solution Uλ of (S)λ on the deleted left neighborhood
of λ∗. In §3.1 we provide the Mountain Pass variational characterization of such a solution
Uλ. Different from the regular nonlinearity case (e.g. λ(1+u)p in [50]), since the solution u
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of (S)λ is restricted between 0 and 1, we need to smoothly truncate the singular nonlinear
term λf

(1−u)2 into a subcritical case (3.1.2), and then we can apply the standard Mountain

Pass Theorem, together with the uniqueness of extremal solutions.
Blow-up techniques of Elliptic PDEs were well-developed and applied in the past few

years, and an important and original contribution in this direction can be found in the
monograph [35] by O. Druet, E. Hebey and F. Robert. In §3.2 we have applied the blow-
up analysis to our singular nonlinear case, where the compactness of solutions with Morse
index-1 (lying along the second branch) has been established by using spectral information.
Let us quote the recent paper [25] concerning the compactness of unstable branches is
considered for singular nonlinearities in a larger class than (1 − u)−2.
As far as we know, there are no such compactness results in the case of regular nonlinearities,
marking a substantial difference with the singular situation. As a byproduct, we have
followed the second branch of bifurcation diagrams and proved the existence of a second
solution for λ in a natural range, by means of the Implicit Function Theorem. An unsolved
problem has also been given in §3.3.



Chapter 4

Description of Higher Branches

In this Chapter we further study the Dirichlet boundary value problem:





−∆u =
λf(x)

(1 − u)2
in Ω,

0 < u < 1 in Ω,
u = 0 on ∂Ω,

(S)λ

where λ ≥ 0, Ω ⊂ R
N is a bounded smooth domain and f is as in (3.2.1). Recall from

Chapter 2 that the compactness of semi-stable solutions of (S)λ is well-known so far by en-
ergy estimates. However, for a sequence of unstable solutions it is in general very difficult to
show energy estimates, as for example it happens along the second branch Uλ. In Chapter
3, we exploit that the Morse index is 1 along the second branch, by developing a different
approach to face non compactness phenomena based on such a spectral information. Since
in general it is relatively much easier to construct solutions satisfying good spectral infor-
mation (for example, by variational methods), the boundedness of Morse index seems to be
a very natural assumption in the study of compactness issues for (S)λ. One of the main
purposes of the Chapter is to characterize the compactness of solutions sequence for (S)λ
in terms of spectral informations. As a byproduct, we also give a uniqueness result for λ
close to 0 and close to λ∗ in the class of all solutions with uniformly bounded Morse index.
The second main purpose is to establish an infinite multiplicity result in symmetric situa-
tions, namely the existence of a curve composed by solutions of (S)λ having many infinitely
turning points. The essential tool is a general uniqueness result for (S)λ when λ is a small
voltage, without bounds on the energy or on the Morse index.

This Chapter is a continuation and a strong improvement of former two Chapters. In
§4.1 we improve the approach of §3.2 for the second branch and discuss the compactness in
the class of solutions for (S)λ with uniformly bounded Morse index, as stated in Theorem
4.1.1. The main tool here is a non existence result for solutions of (S)λ with finite Morse
index and finite singular set (where the solutions reach the value 1). In §4.2 we apply
Theorem 4.1.1 to deriving some consequences, see Theorems 4.2.1∼4.2.3.

79
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4.1 Compactness issues

In this section we extend the approach developed in Chapter 3 to deal with the compactness
of higher branches along which blow up could occur at many finitely points (not only the
maximum point as for the second branch). Here is the main result of this section.

Theorem 4.1.1. Assume 2 ≤ N ≤ 7, and let f be such that (3.2.1) holds. Let {λn}n∈N be
a sequence such that λn → λ ∈ [0, λ∗] and let un be an associated solution such that:

sup
n∈N

m(un, λn) < +∞. (4.1.1)

Then,
sup
n∈N

‖ un ‖∞< 1. (4.1.2)

Moreover, if in addition µ1,n := µ1,λn(un) < 0, then necessarily λ > 0.

(Here and in the sequel, µk,λ(u) denotes the k-th eigenvalue of Lu,λ = −∆ − 2λf(x)
(1−u)3

with

the convention that eigenvalues are repeated according to their multiplicities, and the Morse
index m(u, λ) is the number of negative eigenvalues of Lu,λ ).

Remark 4.1.1. Estimate (4.1.2) will be sometimes referred to as a “compactness property”
of the solutions set of (S)λ. Indeed, by elliptic regularity theory, for any k ∈ N the set
{u : u is a solution of (S)λ , m(u, λ) ≤ k} is a compact set in Cm(Ω̄)-norm, where m ≥ 1
depends on the regularity of f(x).

In next subsections we will develop some useful tools in deriving the compactness result.

4.1.1 Regularity properties

As an application of §2.3.2, we provide the following non-existence result which in particular,
excludes solutions of (2.3.5) with finite Morse index and finite singular set.

Theorem 4.1.2. Suppose 2 ≤ N ≤ 7, and let u ∈ C(Ω̄) be a H1(Ω)-weak solution of (2.3.5)
so that ‖u‖∞ ≤ 1 and the singular set S = {x ∈ Ω : u(x) = 1} is a non empty set. Assume
that u has finite Morse index: i.e, there exists a finite dimensional subspace T ⊂ H1

0 (Ω) so
that
∫

Ω

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2
)
≥ 0 , for any φ ∈ T⊥ =

{
φ ∈ H1

0 (Ω) :

∫

Ω
∇φ∇ψ = 0 ∀ ψ ∈ T

}
.

(4.1.3)
Then, the singular set S has no isolated points.

Proof: Assume by contradiction that x0 ∈ S is an isolated point of S. Let δ0 be such that
B2δ0(x0) ∩ S = {x0}. We want to show that:

∫

Bδ

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2
)
≥ 0 , for any φ ∈ H1

0 (Bδ), (4.1.4)
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for some small 0 < δ ≤ δ0, where Bδ := Bδ(x0).

By contradiction, assume that (4.1.4) were false for any 0 < δ ≤ δ0. Then, there exist
φ0 ∈ C∞

0 (Bδ0) such that

∫

Bδ0

(
|∇φ0|2 −

2f(x)

(1 − u)3
φ2

0

)
< 0. (4.1.5)

We claim that one can assume φ0 = 0 in Bδ for some small 0 < δ < δ0. Indeed, otherwise,
we can replace φ0 with a truncated function φδ, δ > 0 small, so that (4.1.5) is still true
while φδ = 0 in Bδ. For proving this claim, we set φδ = χδφ0, where χδ is a cut-off function
defined as:

χδ(x) =





0 |x− x0| ≤ δ ,

2
(
1 − log |x− x0|

log δ

)
δ ≤ |x− x0| ≤

√
δ ,

1 |x− x0| ≥
√
δ .

By Lebesgue’s Theorem, we have:

∫

Bδ0

2f(x)

(1 − u)3
φ2
δ →

∫

Bδ0

2f(x)

(1 − u)3
φ2

0 as δ → 0. (4.1.6)

For the gradient term, we have the expansion:

∫

Bδ0

|∇φδ|2 =

∫

Bδ0

φ2
0|∇χδ|2 +

∫

Bδ0

χ2
δ |∇φ0|2 + 2

∫

Bδ0

χδφ0∇χδ∇φ0 .

The following estimates hold:

0 ≤
∫

Bδ0

φ2
0|∇χδ|2 ≤ 4‖φ0‖2

∞

∫

δ≤|x−x0|≤
√
δ

1

|x− x0|2 log2 δ
≤ C

log 1
δ

and ∣∣2
∫

Bδ0

χδφ0∇χδ∇φ0

∣∣ ≤ 4‖φ0‖∞‖∇φ0‖∞
log 1

δ

∫

B1(0)

1

|x| ,

which provide ∫

Bδ0

|∇φδ|2 →
∫

Bδ0

|∇φ0|2 as δ → 0. (4.1.7)

Combining (4.1.6) and (4.1.7), we get that φδ = 0 in Bδ and

∫

Bδ0

(
|∇φδ|2 −

2f(x)

(1 − u)3
φ2
δ

)
< 0

for δ > 0 sufficiently small, and the claim is proved.
In this way, we find 0 < δ1 < δ0 small and φ0 ∈ C0(Bδ0\Bδ1)∩H1

0 (Ω) such that (4.1.5) holds.
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Since by contradiction we are assuming that (4.1.4) is false for any δ > 0, we can now iterate
the argument to find a strictly decreasing sequence δn and φn ∈ C0(Bδn \ Bδn+1) ∩H1

0 (Ω)
such that: ∫

Bδn

(
|∇φn|2 −

2f(x)

(1 − u)3
φ2
n

)
< 0.

Since {φn}n∈N are mutually hortogonal having disjoint supports, we get an infinite dimen-
sional set M = Span {φn : n ∈ N} ⊂ H1

0 (Ω) so that
∫

Ω

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2

)
< 0 ∀ φ ∈M.

Since M is an infinite dimensional subspace of H1
0 (Ω), we have that M ∩ T⊥ 6= ∅, in

contradiction with (4.1.3). Hence, (4.1.4) holds for some δ = δ(x0) ≤ δ0.

Using elliptic regularity theory, we get that u ∈ C1
loc(B2δ0 \ {x0}). Since u ∈ C1(∂Bδ)

and max
∂Bδ

u < 1 in view of 0 < δ ≤ δ0, we extend it on Bδ as a function ū ∈ C1(B̄δ)

satisfying 0 ≤ ū ≤ ‖ū‖∞,Bδ
< 1. Since (4.1.4) holds on Bδ, we can apply Theorem 2.3.3 and

Proposition 2.3.5 to obtaining that ‖u‖∞,Bδ
< 1, which contradicts u(x0) = 1. Therefore,

S has no isolated points. �

4.1.2 A pointwise estimate

Let 2 ≤ N ≤ 7. Assume f in the form (3.2.1), and let (un)n be a solutions sequence of (S)λ
associated to λn → λ ∈ [0, λ∗]. Since we want to show that sup

n∈N
‖un‖∞ < 1, by contradiction

and up to a subsequence, in the sequel we will assume un(xn) = max
Ω

un → 1− as n→ +∞,

where xn is a maximum point of un.
The crucial assumption is the validity of (4.1.1), namely m(un, λn) ≤ k for any n ∈ N and
some k ∈ N. This information, combined with Proposition 3.2.2, will allows us to control
the blow up behavior of un. Indeed, the following pointwise estimate on un is available:

Theorem 4.1.3. Assume 2 ≤ N ≤ 7 and f as in (3.2.1). Let un be a solution of (S)λ
associated to λn ∈ [0, λ∗], and assume that λn → λ and un(xn) = max

Ω
un → 1 as n →

+∞. Then, up to a subsequence, there exist constants C > 0, N0 ∈ N and m-sequences
x1
n, . . . , x

m
n , m ≤ k, such that

1 − un(x) ≥ Cλ
1
3
n (d(x)α)

1
3 dn(x)

2
3 , ∀ x ∈ Ω , ∀ n ≥ N0 , (4.1.8)

where d(x)α := min{|x− pi|αi : i = 1, . . . , k} is a “distance function” from Z and dn(x) =
min{|x− xin| : i = 1, . . . ,m} is the distance function from {x1

n, . . . , x
m
n }.

More precisely, letting rin be associated to xin and εin := 1− un(x
i
n) by means of (3.2.3), for

any i, j = 1, . . . ,m, i 6= j, there holds:

(εin)
3λ−1

n → 0 , U in(y) =
1 − un(r

i
ny + xin)

εin
→ U i(y) in C1

loc(R
N ) ,

rin + rjn

|xin − xjn|
→ 0 (4.1.9)
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as n → +∞, where εin := 1 − un(x
i
n) and U i satisfies an equation of type (3.2.7). In

addition, there exist m-sequences of test functions φ1
n, . . . , φ

m
n ∈ C∞

0 (Ω) so that

∫

Ω

(
|∇φin|2 −

2λnf(x)

(1 − un)3
(φin)

2
)
< 0 , Supp φin ⊂ BMri

n
(xin) , ∀ i = 1, . . . ,m, (4.1.10)

for some M > 0 large.

Proof: Let ε1n = 1 − un(x
1
n), where x1

n is a maximum point of un. Let r1n be associated to
x1
n according to (3.2.3). Recalling the validity of (3.2.20) for the maximum point x1

n of un,
Proposition 3.2.2 gives that, up to a subsequence:

1 − un(r
1
ny + x1

n)

ε1n
→ U1(y) in C1

loc(R
N ) as n→ +∞,

where U1 satisfies an equation of type (3.2.7), together with the existence of φ1
n ∈ C∞

0 (Ω)
such that (3.2.8) holds with Supp φ1

n ⊂ BMr1n
(x1
n) for some M > 0.

If (4.1.8) is true for some subsequence of un with x1
n, we take m = 1 and the proof is done.

Otherwise, we proceed by an inductive method. Indeed, assume that, up to a subsequence,
we have already found l-sequences x1

n, . . . , x
l
n, associated r1n, . . . , r

l
n (defined by (3.2.3)) and

test functions φ1
n, . . . , φ

l
n ∈ C∞

0 (Ω) so that (4.1.9) and (4.1.10) hold at l-th step. If (4.1.8)
holds for some subsequence of un with x1

n, . . . , x
l
n, we take m = l and the proof is done.

Otherwise, up to a subsequence, we will show the existence of xl+1
n , rl+1

n and φl+1
n so that

(4.1.9) and (4.1.10) are still true at (l + 1)-th step. Since (4.1.9) and (4.1.10) at l-th step
imply that φ1

n, . . . , φ
l
n have mutually disjoint compact supports, we get that m(un, λn) ≥ l.

Then, by (4.1.1) the inductive process must stop after a finite number of steps, say m steps,
with m ≤ k, and (4.1.8) holds with x1

n, . . . , x
m
n .

In order to complete the proof, we need to show how the induction process works. Assume
that (4.1.9) and (4.1.10) hold at l-th step and (4.1.8) is not true for any subsequence of un
with x1

n, . . . , x
l
n. Let xl+1

n ∈ Ω be such that

λ
− 1

3
n

(
d(xl+1

n )α
)− 1

3 dn(x
l+1
n )−

2
3

(
1 − un(x

l+1
n )

)

= λ
− 1

3
n min

x∈Ω

(
(d(x)α)−

1
3dn(x)

− 2
3
(
1 − un(x)

))
→ 0

(4.1.11)

as n → +∞, where dn(x) is the distance function from {x1
n, . . . , x

l
n}. Let εl+1

n := 1 −
un(x

l+1
n ).

Formula (4.1.11) gives a lot of information about the blow up around xl+1
n . First of all, it

can be rewritten in the more convenient form:

(εl+1
n )

3
2λ

− 1
2

n

|xl+1
n − xin| |xl+1

n − pj |
αj
2

→ 0 as n→ +∞ , ∀ i = 1, . . . , l, j = 1, . . . , k. (4.1.12)
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The inductive assumption gives ri
n+rj

n

|xi
n−xj

n|
→ 0 as n→ +∞ for any i, j = 1, . . . , l, i 6= j. Then,

by definition of rjn we get for |y| ≤ R and n ≥ nR :

λ
− 1

3
n

(
d(rjny + xjn)

α
)− 1

3 dn(r
j
ny + xjn)

− 2
3

(
1 − un(r

j
ny + xjn)

)

=





(d(rjny + xjn)α)−
1
3 |y|− 2

3U jn(y) if xjn → p /∈ Z

| rj
n

|xj
n−pi|

y + xj
n−pi

|xj
n−pi|

|−
αi
3 |y|− 2

3U jn(y) if xjn → pi ∈ Z, (εjn)−3λn|xjn − pi|αi+2 → +∞
|y + (rjn)−1(xjn − pi)|−

αi
3 |y|− 2

3U jn(y) if (εjn)−3λn|xjn − pi|αi+2 ≤ C

for any j = 1, . . . , l. By inductive assumption, we have that U jn(y) = 1−un(rj
ny+x

j
n)

εj
n

→ U j(y)

in C1
loc(R

N ) as n→ +∞ for any j = 1, . . . , l. Associating (eventually) to xjn the limit point
y0 as in (3.2.11), we get that:

λ
− 1

3
n

(
d(rjny + xjn)

α
)− 1

3 dn(r
j
ny + xjn)

− 2
3

(
1 − un(r

j
ny + xjn)

)

→





(d(p)α)−
1
3 |y|− 2

3U j(y) if xjn → p /∈ Z ,

|y|− 2
3U j(y) if xjn → pi ∈ Z, (εjn)−3λn|xjn − pi|αi+2 → ∞ ,

|y + y0|−
αi
3 |y|− 2

3U j(y) if (εjn)−3λn|xjn − pi|αi+2 ≤ C

uniformly for |y| ≤ R as n → +∞. Since U j is bounded away from zero, then (4.1.11)
gives also that xl+1

n cannot asymptotically lie in the balls centered at xin of radius ≈ rin,
i = 1, . . . , l, namely:

rin
|xl+1
n − xin|

→ 0 as n→ +∞ , ∀ i = 1, . . . , l. (4.1.13)

Finally, the choice of xl+1
n as a minimum point in (4.1.11) gives that:

1 − un(βny + xl+1
n )

εl+1
n

≥
(d(βny + xl+1

n )α

d(xl+1
n )α

) 1
3
(dn(βny + xl+1

n )

dn(x
l+1
n )

) 2
3
, (4.1.14)

for any sequence βn. Indeed, by the following chain of estimates:

εl+1
n ≤ (d(xl+1

n )α)
1
3dn(x

l+1
n )

2
3 min
x∈Ω

(
(d(x)α)−

1
3dn(x)

− 2
3
(
1 − un(x)

))

≤ (d(xl+1
n )α)

1
3dn(x

l+1
n )

2
3 (d(βny + xl+1

n )α)−
1
3dn(βny + xl+1

n )−
2
3

(
1 − un(βny + xl+1

n )
)
,

the validity of (4.1.14) follows. Here and in the sequel of the proof, the crucial point to
establish the validity of (3.2.6) (or (3.2.12)) for suitable rescaled functions around xl+1

n is
exactly given by the validity of (4.1.14). By (4.1.12), we get that in particular (εl+1

n )3λ−1
n →

0 as n→ +∞. We need now to discuss all the possible types of blow up at xl+1
n .
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1st Case Assume that xl+1
n → q /∈ Z. Associated to xl+1

n , let rl+1
n = (εl+1

n )
3
2λ

− 1
2

n be
defined according to (3.2.3). Then, |xl+1

n − pj | ≥ C > 0 for any j = 1, . . . , k which reduces
(4.1.12) to:

rl+1
n

|xl+1
n − xin|

→ 0 as n→ +∞ , ∀ i = 1, . . . , l, (4.1.15)

and then, Rn =
(
dn(xl+1

n )

rl+1
n

) 1
2 → +∞ as n → +∞. Since {rl+1

n y + xl+1
n : |y| ≤ Rn} is

uniformly far away from Z, (4.1.14) shows that:

U l+1
n (y) :=

1 − un(r
l+1
n y + xl+1

n )

εl+1
n

≥ C0

(
1 − rl+1

n Rn

dn(x
l+1
n )

) 2
3 ≥ C0

2

for n large and y ∈ Ω−xl+1
n

rl+1
n

∩BRn(0). We have used here the following estimate:

dn(βny + xl+1
n )

dn(x
l+1
n )

= min
{
|x
l+1
n − xin
dn(x

l+1
n )

+
βn

dn(x
l+1
n )

y| : i = 1, . . . , l
}

≥ 1 − βn

dn(x
l+1
n )

|y|.
(4.1.16)

Up to a subsequence, Proposition 3.2.2 provides U l+1
n → U l+1 in C1

loc(R
N ) as n → +∞,

U l+1 being a solution of an equation of type (3.2.7), and some φl+1
n ∈ C∞

0 (Ω) such that
(3.2.8) holds with Supp φl+1

n ⊂ BMrl+1
n

(xl+1
n ) for some M > 0. By (4.1.15), combined with

(4.1.13), we get that (4.1.9) and (4.1.10) are still true at (l + 1)-th step, as needed.

2nd Case Assume that xl+1
n → pj with the following rate:

(εl+1
n )−3λn|xl+1

n − pj |αj+2 → +∞ as n→ +∞.

Let rl+1
n = (εl+1

n )
3
2λ

− 1
2

n |xl+1
n − pj |−

αj
2 according to (3.2.3). By (4.1.12) we get that (4.1.15)

still holds and then, Rn =
(
min{ |xl+1

n −pj |
rl+1
n

, dn(xl+1
n )

rl+1
n

}
) 1

2 → +∞ as n → +∞. Since {rl+1
n y +

xl+1
n : |y| ≤ Rn} is uniformly close to pj ∈ Z, estimates (4.1.14) and (4.1.16) imply:

U l+1
n (y) :=

1 − un(r
l+1
n y + xl+1

n )

εl+1
n

≥
( |rl+1

n y + xl+1
n − pj |

|xl+1
n − pj |

)αj
3
(dn(rl+1

n y + xl+1
n )

dn(x
l+1
n )

) 2
3

≥
(
1 − rl+1

n Rn

|xl+1
n − pj |

)αj
3
(
1 − rl+1

n Rn

dn(x
l+1
n )

) 2
3 ≥ 1

2

for n large and |y| ≤ Rn. Up to a subsequence, Proposition 3.2.2 provides U l+1
n → U l+1 in

C1
loc(R

N ) as n→ +∞, where U l+1 solves an equation of type (3.2.7), and the existence of

φl+1
n ∈ C∞

0 (Ω) such that (3.2.8) holds, Supp φl+1
n ⊂ BMrl+1

n
(xl+1
n ) for some M > 0. Finally,

(4.1.13) with (4.1.15) gives that (4.1.9) and (4.1.10) are still true at (l + 1)-th step, also in
this second case.
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3rd Case Assume that xl+1
n → pj and

(εl+1
n )−3λn|xl+1

n − pj |αj+2 ≤ C.

By (4.1.12) xl+1
n 6= pj and for any i = 1, . . . , l there holds:

|xl+1
n − pj |

|xl+1
n − xin|

=
(εl+1
n )

3
2λ

− 1
2

n

|xl+1
n − xin| |xl+1

n − pj |
αj
2

·
(
(εl+1
n )−3λn|xl+1

n − pj |αj+2
) 1

2 → 0 as n→ ∞.

(4.1.17)

Let rl+1
n = (εl+1

n )
3

2+αj λ
− 1

2+αj
n according to (3.2.3). By (4.1.12) and (4.1.17) we get that for

any i = 1, . . . , l:

rl+1
n

|xl+1
n − xin|

=
( (εl+1

n )
3
2λ

− 1
2

n

|xl+1
n − xin| |xl+1

n − pj |
αj
2

) 2
2+αj

·
( |xl+1

n − pj |
|xl+1
n − xin|

) αj
2+αj → 0 as n→ ∞,

(4.1.18)

providing the validity of (4.1.15). Let Rn = (dn(xl+1
n )

rl+1
n

)
1
2 → +∞ as n → +∞. Since

{rl+1
n y + xl+1

n : |y| ≤ Rn} is uniformly close to pj ∈ Z, by (4.1.14) and (4.1.16) we get:

U l+1
n (y) :=

1 − un(r
l+1
n y + xl+1

n )

εl+1
n

≥
( |rl+1

n y + xl+1
n − pj |

|xl+1
n − pj |

)αj
3
(
1 − rl+1

n Rn

dn(x
l+1
n )

) 2
3

≥ 1
2

(
|xl+1

n −pj |
rl+1
n

)−αj
3
∣∣∣y +

xl+1
n −pj

rl+1
n

∣∣∣
αj
3

≥ C
∣∣∣y +

xl+1
n −pj

rl+1
n

∣∣∣
αj
3

for n large and |y| ≤ Rn, where C > 0 is a constant. We have used that
|xl+1

n −pj |
rl+1
n

≤ C,

which is true for assumption in this case. We use now Proposition 3.2.2 in combination with
Remark 3.2.2 to get that, up to a subsequence, U l+1

n → U l+1 in C1
loc(R

N ) as n→ +∞ and

U l+1 is a solution of an equation of type (3.2.7). Moreover, we find φl+1
n ∈ C∞

0 (Ω) such that
(3.2.8) holds and Supp φl+1

n ⊂ BMrl+1
n

(xl+1
n ), M > 0. Since (4.1.13) together with (4.1.18)

gives the validity of (4.1.9) and (4.1.10) at (l+ 1)-th step, the induction scheme also works
in this last case and the proof of Theorem 4.1.3 is complete. �

4.1.3 Compactness of unstable branches

We are now in position to give the proof of Theorem 4.1.1. The essential ingredient will
be the pointwise estimate of Theorem 4.1.3. The contradiction will come out from the non
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existence result of Theorem 4.1.2.
Proof (of Theorem 4.1.1): By contradiction, up to a subsequence, let us assume that
max

Ω
un → 1 as n → +∞. Up to a further subsequence, Theorem 4.1.3 gives the existence

of m-sequences x1
n, . . . , x

m
n so that xin → xi ∈ Ω̄ as n → +∞ and the following pointwise

estimate holds:

1 − un(x) ≥ Cλ
1
3
n (d(x)α)

1
3 dn(x)

2
3 (4.1.19)

for any x ∈ Ω and n ≥ N0, for some C > 0 and N0 ∈ N large, where d(x)α = min{|x−pi|αi :
i = 1, . . . , k} and dn(x) = min{|x − xin| : i = 1, . . . ,m}. Therefore, we get the following
bounds in Ω:

0 ≤ λnf(x)

(1 − un)2
≤ C

f(x)

(d(x)α)
2
3

λ
1
3
n

dn(x)
4
3

, (4.1.20)

for some C > 0. Since by (3.2.1)

∣∣∣
f(x)

(d(x)α)
2
3

∣∣∣ ≤ |x− pi|
αi
3 ‖fi‖∞ ≤ C

for |x − pi| ≤ δ and fi as in (3.2.10), we get that f(x)

(d(x)α)
2
3

is a bounded function on Ω.

Hence, by (4.1.20) λnf(x)
(1−un)2

is uniformly bounded in Ls(Ω), for any 1 < s < 3N
4 . By elliptic

regularity theory and Sobolev embeddings, up to a subsequence, we get that un converges
weakly in H1

0 (Ω) and strongly in C(Ω̄) to a limit function u0 ∈ C(Ω̄)∩H1
0 (Ω) as n→ +∞.

In particular, it holds that max
Ω

u0 = 1, by means of the uniform convergence of un to u0,

and then, S = {x ∈ Ω : u0(x) = 1} is a non empty set.

If λ = lim
n→+∞

λn = 0, then (4.1.20) gives λnf(x)
(1−un)2

→ 0 in Ls(Ω) as n → +∞, for any

1 < s < 3N
4 . So, u0 ∈ H1

0 (Ω) is a weak harmonic function and then, it should vanish
identically, in contradiction to max

Ω
u0 = 1.

Hence, we have λ = lim
n→+∞

λn > 0, and by (4.1.19) we get that u0 < 1 in Ω\{x1, . . . , xm, p1, . . . , pk}.
In particular, the set S is finite because S ⊂ {x1, . . . , xm, p1, . . . , pk}.
Since λnf(x)

(1−un)2
is uniformly bounded in Ls(Ω) for any 1 < s < 3N

4 and λnf(x)
(1−un)2

→ λf(x)
(1−u0)2

uniformly on compact sets in Ω̄ \ {x1, . . . , xm, p1, . . . , pk}, we get that

λnf(x)

(1 − un)2
→ λf(x)

(1 − u0)2
weakly in Ls(Ω) , 1 < s <

3N

4
. (4.1.21)

Taking now the limit of the equation satisfied by un, by (4.1.21) we get that u0 ∈ C(Ω̄) is
a H1(Ω)-weak solution of:





−∆u0 =
λf(x)

(1 − u0)2
in Ω ,

u0 = 0 on ∂Ω.
(4.1.22)
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Since ∫

Ω

(
|∇φ|2 − 2λnf(x)

(1 − un)3
φ2
)
→
∫

Ω

(
|∇φ|2 − 2λf(x)

(1 − u0)3
φ2
)

for any φ ∈ C∞
0 (Ω) in view of (4.1.21), by (4.1.1) we get that u0 has a finite Morse index

according to definition (4.1.3). Since the set S = {x ∈ Ω : u0(x) = 1} is a non empty finite
set, by Theorem 4.1.2 such a solution u0 cannot exist and we reach a contradiction. Hence,
(4.1.2) holds.

If we also assume that µ1,n < 0, then λ > 0. Indeed, if λn → 0, then by compactness and
elliptic regularity theory, we would get un → u0 in C1(Ω̄), where u0 is a harmonic function
so that u0 = 0 on ∂Ω. Then, u0 ≡ 0 and un → 0 in C1(Ω̄). Hence, µ1,n = µ1,λn(un) →
µ1,0(0) > 0 as n→ +∞, a contradiction. �

4.2 Some consequences

In this section, we derive some consequences of Theorem 4.1.1. In view of Theorem 4.1.1,
we first show a posteriori the equivalence among energy bounds and Morse index bounds.
Indeed, we provide the following characterization of blow up sequences un (in the sense of
blow up of (1 − un)

−1), to be compared with [7, 8] in the context of polinomial subcritical
nonlinearities:

Theorem 4.2.1. Assume 2 ≤ N ≤ 7 and suppose f as in (3.2.1). Let {λn}n∈N be a
sequence such that λn → λ ∈ [0, λ∗] and let un be an associated solution of (S)λn. Then,
the following are equivalent:

1. max
Ω

un → 1 as n→ +∞ ;

2.

∫

Ω

(
f(x)

(1 − un)3

)N
2

→ +∞ as n→ +∞ ;

3. m(un, λn) → +∞ as n→ +∞ .

Proof: (1) ⇒ (2) Assume that max
Ω

un → 1 as n → +∞. If
∫
Ω

(
f(x)

(1−un)3

)N
2 ≤ C < ∞

along a subsequence, the right hand side of (S)λ would be uniformly bounded in L
3N
4 .

By elliptic regularity theory and Sobolev embeddings, un → u0 weakly in H1
0 (Ω) and

strongly in C(Ω̄), where u0 is a H1(Ω)-weak solution of (S)λ with λ = lim
n→+∞

λn so that

∫
Ω

(
f(x)

(1−u0)3

)N
2
<∞ and 0 ≤ u0 ≤ 1. By Theorem 2.3.3 we get ‖u0‖∞ < 1 and, by uniform

convergence, ‖un‖∞ → ‖u0‖∞ < 1 as n → +∞, a contradiction. Hence, necesssarily
∫
Ω

(
f(x)

(1−un)3

)N
2 → +∞ as n→ +∞, which gives (2).



4.2. SOME CONSEQUENCES 89

(2) ⇒ (1) The viceversa is trivial as it follows by the following inequality:

∫

Ω

(
f(x)

(1 − un)3

)N
2

≤ ‖f‖
N
2∞

(1 − ‖un‖∞)
3N
2

|Ω|,

where | · | stands for the Lebesgue measure.
(1) ⇒ (3) Assume max

Ω
un → 1 as n → +∞, then Theorem 4.1.1 directly implies

m(un, λn) → +∞ as n→ +∞.

(3) ⇒ (1) Since as before f(x)
(1−un)3

≤ ‖f‖∞
(1−‖un‖∞)3

, by the variational characterization of

the eigenvalues we get that

µk,λn(un) ≥ µk(Ln) , Ln := −∆ − 2λn‖f‖∞
(1 − ‖un‖∞)3

,

where µk(Ln) stands for the k-th eigenvalue of the operator Ln. Indeed, for operator L in
the form L = −∆ − c(x), c(x) ∈ Ls(Ω) for some s > N

2 , let us recall that:

µ1(L) = inf
φ∈H1

0 (Ω) , φ6=0

< Lφ, φ >∫
Ω φ

2
,

µk(L) = sup
{

inf
φ∈M⊥ , φ6=0

< Lφ, φ >∫
Ω φ

2
: M ⊂ H1

0 (Ω) linear, dim(M) = k − 1
}

∀ k ≥ 2,

where < ·, · > is the standard inner product in H1
0 (Ω) and M⊥ is the hortogonal space of

M in H1
0 (Ω) with respect to this inner product.

Therefore, point (3) implies that the Morse index of Ln, the number of negative eigenvalues

of Ln, blows up as n → +∞. Hence, the constant function 2λn‖f‖∞
(1−‖un‖∞)3

→ +∞ as n → +∞
and then, the validity of point (1) is established. �

As a direct consequence of Theorem 4.1.1, Theorems 4.2.2 and 4.2.3 below show that some
features of bifurcation diagrams on the ball hold for general domains. Theorem 4.2.2 is
concerned with the following uniqueness result.

Theorem 4.2.2. Assume 2 ≤ N ≤ 7. Let f be as in (3.2.1). For any fixed k ∈ N there
exists δ > 0 small so that

1. for λ ∈ (0, δ) the minimal solution uλ is the unique solution u of (S)λ with m(u, λ) ≤
k;

2. for λ ∈ (λ∗ − δ, λ∗) uλ and Uλ are the unique solutions u of (S)λ with m(u, λ) ≤ k.

As far as point (1) in Theorem 4.2.2 is concerned, in [42] the authors show that problem
(S)λ on a two-dimensional annulus with f(x) = 1 has exactly two radial solutions for any
λ ∈ (0, λ∗). The second solution -the non minimal one- has Morse index unbounded in a
neighborhood of λ = 0.



90 CHAPTER 4. DESCRIPTION OF HIGHER BRANCHES

Proof (of Theorem 4.2.2): (1) Let λn → 0 as n → +∞ and associated solutions un of
(S)λ so that m(un, λn) ≤ k, k ∈ N. Theorem 4.1.1 implies that µ1,n ≥ 0 for n large. By the
characterization of the minimal solution uλ as the only semi-stable solution, we get that
un = uλn for n large. Hence, necessarily there exists δ = δk > 0 so that uλ is the unique
solution u of (S)λ with m(u, λ) ≤ k for any λ ∈ (0, δ).

(2) Let λn → λ∗ as n→ +∞ and associated solutions un with m(un, λn) ≤ k, for some
k ∈ N. By Theorem 4.1.1 we get that sup

n∈N
‖un‖∞ < 1. By elliptic regularity theory, un is

uniformly bounded in C1,β(Ω̄), for some β ∈ (0, 1). Up to a subsequence, un → u0 in C1(Ω̄)
as n → +∞, where u0 is a C1(Ω̄)-solution of (S)λ with λ = λ∗ so that max

Ω
u0 < 1. Recall

from Chapter 2 that equation (S)λ∗ admits a unique H1
0 (Ω)−weak solution, the extremal

one u∗. Then, un → u∗ in C1(Ω̄) as n → +∞. By [31], in a C1-small neighborhood of u∗

problem (S)λ has only the two solutions uλ, Uλ for λ close to λ∗. Hence, either un = uλn

or un = Uλn and the uniqueness result follows. �

Finally, based on a degree argument, we conclude this section by showing the following
existence of a sequence of solutions whose Morse index blows up.

Theorem 4.2.3. Assume 2 ≤ N ≤ 7 and suppose f as in (3.2.1). Then there exist a
sequence {λn}n∈N and associated solution un of (S)λ so that

m(un, λn) → +∞ as n→ +∞.

Proof: Let us define the solution set V as

V = {(λ, u) ∈ [0,+∞) ×E : u is a solution of (S)λ},

where E = {u ∈ C1(Ω̄) : u = 0 on ∂Ω} is endowed with the standard norm. By contradic-
tion and in view of the equivalence of Theorem 4.2.1, let us assume that

sup
(λ,u)∈V

max
Ω

u ≤ 1 − 2δ, (4.2.1)

for some δ ∈ (0, 1
2). Hence, V is a compact set in [0,+∞) × E. By Theorem 4.2.2 we can

fix λ1, λ2 ∈ (0, λ∗), λ1 < λ2, so that (S)λ possesses:

– for λ1, only the (non degenerate) minimal solution uλ1 which satisfies m(uλ1 , λ1) = 0;

– for λ2, only the two (non degenerate) solutions uλ2 , Uλ2 satisfying m(uλ2 , λ2) = 0,
m(Uλ2 , λ2) = 1.

Define the projection of V onto E:

U = {u ∈ E : ∃ λ so that (λ, u) ∈ V},

and we consider a δ-neighborhood of U in E:

Uδ = {u ∈ E : distE(u,U) ≤ δ}.
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Note that (4.2.1) gives
sup
u∈Uδ

max
Ω

u ≤ 1 − δ.

Regularize the nonlinearity (1 − u)−2 in the following way:

gδ(u) =

{
(1 − u)−2 if u ≤ 1 − δ ,

δ−2 if u ≥ 1 − δ,

such that, for any fixed λ, proving the existence of solutions for (S)λ in Uδ is equivalent to
finding zeroes of the map Tλ = Id −Kλ : E → E, where Kλ(u) = −∆−1 (λf(x)gδ(u)) is a
compact operator and ∆−1 is the laplacian resolvent with homogeneous Dirichlet boundary
condition. We can define the Leray-Schauder degree dλ of Tλ on Uδ with respect to zero,
since by definition of U (the set of all solutions) ∂Uδ does not contain any solution of (S)λ
for any value of λ. Since dλ is well defined for any λ ∈ [0, λ∗], by omotopy dλ1 = dλ2 .
To get a contradiction, let us now compute dλ1 and dλ2 . Since the only zero of Tλ1 in Uδ is
uλ1 with Morse index zero, we have dλ1 = 1. Since Tλ2 has in Uδ exactly two zeroes uλ2 and
Uλ2 with Morse index zero and one, respectively, we have dλ2 = 1− 1 = 0. This contradicts
dλ1 = dλ2 , and the proof is complete. �

Let us finally point out that the equivalence among points (1) and (2) in Theorem 4.2.1 is
already proved in Chapter 2, even if it is not stated. Moreover, a weaker form of Theorem
4.2.2(1) is already shown in Chapter 2 as the uniqueness, for small voltages λ, in the class
of solutions of bounded energy (see Theorem 2.4.5).

4.3 Power-law problems on symmetric domains

In this section we consider uniqueness for small voltages and infinite multiplicity of positive
solutions for the following problem

−∆u =
λ|x|α

(1 − u)2
in Ω, 0 < u < 1 in Ω, u = 0 on ∂Ω, (P )λ

where the parameter λ > 0, and Ω ⊂ R
N is a bounded domain.

The study of problem (P )λ will be focussed on the two following symmetric situations:

u(x) = u(|x|) , Ω = B , α ≥ 0 , N ≥ 2 (4.3.1a)

Ω well-behaved , α = 0 , N = 2, (4.3.1b)

where B is the unit ball. Here, Ω denotes a well-behaved domain in R
2 if 0 ∈ Ω, Ω is

invariant under the 2 reflections in the coordinate planes and, for any 0 < t < s < max
Ω

xi,

(I − Pi)Di,s ⊆ (I − Pi)Di,t, where Pi is the orthogonal projection onto Span {ei}, Di,s =
{x ∈ Ω : xi = s} and {e1, e2} is the usual basis in R

2. Examples of such domains include
balls, ellipses, rectangles, etc.
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Let us define the solution set:

V = {(λ, u) ∈ [0,+∞) ×E : u is a solution of (P )λ},

where E = {u = u(|x|) ∈ C1(B̄) : u = 0 on ∂B} in case (4.3.1a) and E = {u ∈ C1(Ω̄) :
u = 0 on ∂Ω} in case (4.3.1b). Motivated by the bifurcation diagrams of Chapter 2, the
following result was established by Guo and Wei in [67, 68]:

Theorem 4.3.1. Assume either (4.3.1a) or (4.3.1b). Then we have
1. λ∗ = inf{λ > 0 : (u, λ) ∈ V for some non-minimal u} > 0.
2. When (4.3.1b) holds, then there exists a curve (λ(t), u(t)) in V, t ≥ 0, bifurcating from

(0, 0) and ‖u(t)‖∞ → 1 as t → +∞, having infinitely many bifurcation points in V. When

(4.3.1a) holds, the same happens for either 2 ≤ N ≤ 7 or N ≥ 8, α > αN = 3N−14−4
√

6
4+2

√
6

,

and the bifurcation points are turning points, where the branch (λ(t), u(t)) locally “bends
back”.

Remark 4.3.1. For N ≥ 2, Theorem 4.3.1 gives in the radial setting a rigorous proof for the
Conjecture B stated in section §2.5.

4.3.1 Some preliminaries

We introduce some tools which will be crucial to deal with the situation (4.3.1b). The
following one-dimensional Sobolev inequality (cfr. Propositions 1.3&1.4 of [1]) plays a key
role in the estimates of this section:

Proposition 4.3.2. It holds

(∫ π

0
u−2dx

)(∫ π

0
(u2 − u2

x)dx
)
≤ π2, (4.3.2)

for all u ∈ H+ =
{
u ∈ H1(R) : u(x) > 0, u(π + x) = u(x) ∀ x ∈ R

}
.

Following [1], this subsection is mainly devoted to the proof of Proposition 4.3.2. First, we
introduce the following notations:

X =
{
u ∈ H+ :

∫ π

0

e2ix

u2(x)
dx = 0

}
, X0 =

{
u ∈ X :

∮
dx

u2
= 1
}
,

where
∮
g(x)dx is the average of the function g(x) over [0, π]. For each (λ, θ) ∈ (0,∞)×[0, π),

consider the change of variables on [0, π] given by

x = ψλ,θ(y) =

{
θ + π

2 + arctan
(
λ2 tan(y − π

2 )
)

if 0 ≤ y ≤ π
2 − arctan

(
1
λ2 tan(θ − π

2 )
)

θ − π
2 + arctan

(
λ2 tan(y − π

2 )
)

if π
2 − arctan

(
1
λ2 tan(θ − π

2 )
)
< y ≤ π,

where tan(θ − π
2 ) |θ=0= −∞. Observe that ψλ,θ has a jump discontinuity of π at π

2 −
arctan

(
1
λ2 tan(θ − π

2 )
)

when 0 < θ < π. By the periodicity of functions in H+, ψλ,θ induces
an action on H+ as follows: for any u ∈ H+, let

uλ,θ(y) = Uλ−1(y)u(ψλ,θ(y)) = U−1
λ (ψλ,θ(y) − θ)u(ψλ,θ(y)),
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where Uλ(x) = (λ2 sin2 x+ λ−2 cos2 x)
1
2 . Using

dψλ,θ
dy

= U2
λ(ψλ,θ(y) − θ),

one can verify that

u3
λ,θ(y) ((uλ,θ)yy(y) + uλ,θ(y)) = u3(x) (uxx(x) + u(x))

∣∣
x=ψλ,θ(y)

for all (λ, θ) ∈ (0,∞) × [0, π). Starting from u ≡ 1, we see that all the positive solutions of

uxx + u =
1

u3
(4.3.3)

are given by Uλ(x− θ), where λ > 0 and θ ∈ [0, π). Also, we have

Lemma 4.3.3. The functionals
∮
dx
u2 and

∮
(u2 − u2

x)dx are invariants under the action
u→ uλ,θ, for all (λ, θ) ∈ (0,∞) × [0, π).

Lemma 4.3.4. For any u ∈ H+, there exists λ ∈ (0, 1] such that uλ,θ ∈ X, for some
θ ∈ [0, π).

Proof: Given u ∈ H+, let us define

F (u, λ, θ) =

∫ π

0

e2iy

u2
λ,θ(y)

dy =

∫ π

0

dx

u2(x)

(
λ−2 cos2(x− θ) − λ2 sin2(x− θ)

)
+ i sin(2x− 2θ)

λ−2 cos2(x− θ) + λ2 sin2(x− θ)
.

Since for u ∈ X we can simply take λ = 1, we need only to consider the case u ∈ H+ \X.
We argue in a variational way and we define

Φ(λ, θ) =

∫ π

0

dx

u2(x)
ln
(
λ−2 cos2(x− θ) + λ2 sin2(x− θ)

)
, λ ∈ (0, 1], θ ∈ R.

Since Φ(λ, θ) → +∞ as λ → 0+ uniformly on θ ∈ R, by π−periodicity Φ(λ, θ) admits a
point of minimum (λu, θu) ∈ (0, 1] × [0, π): Φ(λu, θu) = min

(0,1]×R
Φ.

Assumption u /∈ X provides the existence of some θ0 ∈ (0, π) such that

∫ π

0

dx

u2(x)
cos(2x− 2θ0) = cos(2θ0)

(∫ π

0

cos(2x)

u2(x)
dx

)
+ sin(2θ0)

(∫ π

0

sin(2x)

u2(x)
dx

)
< 0.

Since Φ(1, θ) ≡ 0 and

∂Φ

∂λ
(λ, θ0) → −2

∫ π

0

dx

u2(x)
cos(2x− 2θ0) > 0

as λ → 1−, we have that λu < 1. The extremality property ∇Φ(λu, θu) = 0 for λu < 1
rewrites as F (u, λu, θu) = 0. The proof is complete. �
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Proof (of Proposition 4.3.2): Let {uj} be a maximizing sequence of (4.3.2) satisfying∮
u−2
j dx = 1. By Lemmata 4.3.3 and 4.3.4, we may also assume that uj ∈ X0 and, up to a

translation, uj(0) = uj(π) = 1.
Set F (u) =

∫ π
0 (u2 − u2

x)dx. Since {uj} is a maximizing sequence of (4.3.2), we have that
F (uj) ≥ F (1) − π

2 = π
2 > 0 for j large. Therefore,

∫ π

0
(uj)

2
xdx ≤

∫ π

0
u2
jdx for j large, (4.3.4)

and the sequence ūj = ‖uj‖−1
∞ uj is uniformly bounded in H1

loc(R).
We claim that {uj} is uniformly bounded. If not, up to a subsequence, ūj converges uni-
formly to some non-negative function ū ∈ H1(R) satisfying

ū ∈ H1
0 (0, π) ,

∫ π

0
ū2
xdx ≤

∫ π

0
ū2dx .

Then, by Poincaré inequality
∫ π
0 ū

2
xdx =

∫ π
0 ū2dx and ū(x) = sinx in (0, π) is the first

eigenfunction of −∆ in H1
0 (0, π). Property uj ∈ X0 can be rewritten as

∮
sin2 x

u2
j

dx =
1

2
.

Since by Lebesgue’s Theorem
∫ π−δ
δ ū−2

j sin2 xdx→ π − 2δ and
∮
ū−2
j dx = ‖uj‖2

∞ → +∞ as
j → +∞, we have that

∫ π
0 ū−2

j sin2 xdx
∫ π
0 ū

−2
j dx

=

∫ δ
0 ū

−2
j sin2 xdx+

∫ π−δ
δ ū−2

j sin2 xdx+
∫ π
π−δ ū

−2
j sin2 xdx

∫ π
0 ū−2

j dx

≤ 2 sin2 δ +

∫ π−δ
δ ū−2

j sin2 xdx
∫ π
0 ū

−2
j dx

→ 2 sin2 δ as j → +∞,

for any small δ. Hence, ∫ π
0 ū−2

j sin2 xdx
∫ π
0 ū

−2
j dx

→ 0 as j → +∞,

in contradiction with ∮
ū−2
j sin2 xdx
∮
ū−2
j dx

=

∮
sin2 x

u2
j

dx =
1

2
.

Hence, {uj} is uniformly bounded. By (4.3.4) we get that

| log uj(x) − log uj(y)| = |
∫ x

y

(uj)x
uj

dx| ≤
(∫ π

0

dx

u2
j

) 1
2
(∫ π

0
(uj)

2
xdx
) 1

2 ≤
(∫ π

0
u2
jdx
) 1

2 ≤ C,

for any x, y ∈ [0, π]. Since uj(0) = 1, uj has also a uniform positive lower bound.
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As before, we can show that uj → u ∈ H+ uniformly and weakly in H1
loc(R). Since u > 0,

by Lebesgue’s Theorem u ∈ X0 and F (u) ≥ lim sup
j→+∞

F (uj) ≥
π

2
. Hence, F (u) achieves at u

the supremum on H+ ∩ {
∮
dx
u2 = 1}, where u solves the equation

uxx + u =
β

u3
, β = F (u) > 0.

Since v = β−
1
4u solves (4.3.3), v has to coincide with Uλ(x − θ), for some 0 < λ ≤ 1 and

0 ≤ θ < π. Since

∫ π

0

cos(2x)

U2
λ(x)

dx =

∫ π

0

cos2 x− sin2 x

λ2 sin2 x+ λ−2 cos2 x
dx = π

λ2 − 1

λ2 + 1
,

let us observe that Uλ ∈ X only for λ = 1. Since u, v ∈ X, then λ = 1 and v = 1. Since∮
u−2 = 1, we get that F (u) = β = π2 and the proof of Proposition 4.3.2 is complete. �

To conclude, we introduce the following useful Lemma (see Lemma 2.2 in [71]):

Lemma 4.3.5. Assume that φ ≥ 0 is a smooth function on B̄r ⊂ R
2 such that ∆φ+φ2 ≥ 0.

Then, there exist universal constants c, η0 > 0 such that
∫
Br
φdx ≤ η0 implies φ(x) ≤

c
r2

∫
Br
φdx for x ∈ B r

2
.

Proof: By the scaling φ(x) → r2φ(rx), we may assume r = 1. We claim that

K := max
|x|≤1

(1 − |x|)2φ(x) ≤ 1.

Otherwise, if K > 1 we choose ξ ∈ B1 such that (1 − |ξ|)2φ(ξ) = K. Setting σ = 1 − |ξ|,
then for x ∈ Bσ

2
(ξ) we have φ(x) ≤ 4K

σ2 . Hence ψ(x) = σ2

4Kφ(ξ + σ
2
√
K
x) is well-defined in

B1, and satisfies

−∆ψ ≤ ψ2, ψ ≤ 1 on B1; ψ(0) =
1

4
,

∫

B1

ψdx =

∫

B σ
2
√

K
(ξ)
φ(x)dx ≤ η0 .

Therefore, we have −∆ψ ≤ ψ. Using elliptic estimates (cfr. page 67 in [69]), we know that
ψ(0) ≤ c

∫
B1
ψdx ≤ cη0, where c is a suitable constant. Choosing η0 small enough such that

cη0 <
1
4 , a contradiction arises.

Since K ≤ 1, then we have φ(x) ≤ 16 and −∆φ ≤ 16φ on B3/4. So again by elliptic
estimates we get that φ(x) ≤ c

∫
B 3

4

φdx ≤ c
∫
B1
φdx ≤ cη0 on B1/2. This completes the

proof of Lemma 4.3.5. �
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4.3.2 Uniqueness for small voltages λ

This subsection is devoted to the proof of Theorem 4.3.1(1). In the symmetric situations
(4.3.1a) and (4.3.1b), we are able to improve Theorems 2.4.5 & 4.2.3 where uniqueness for λ
small was established in the class of solutions with uniformly finite energy, bounded Morse
index respectively. We argue by contradiction and suppose there are sequences {λn}, {un}
with λn → 0 as n → ∞ and un a non-minimal solution of (P )λn . By the above quoted
Theorems, ‖un‖∞ → 1 as n→ ∞ and the argument now relies on Theorem 2.4.7. Our next
task is to show the validity of (2.4.12), (2.4.13) and (2.4.14) along the sequence un.

In the sequel of this subsection, let λn > 0 be a sequence and let un be a solution of (P )λn

so that
λn → λ ≥ 0 , εn := 1 − ‖un‖∞ → 0+ as n→ ∞. (4.3.5)

The validity of (2.4.12) is based on Pohozaev’s identity as the following Lemma shows:

Lemma 4.3.6. Assume either (4.3.1a) or (4.3.1b). Let λn > 0 be a sequence and let un be
a solution of (P )λn so that (4.3.5) holds. Let r0 <

1
2dist (0, ∂Ω). For any 0 < r ≤ r0 there

exists kr < 1 such that
max

Ω\Br(0)
un ≤ kr < 1.

Proof: Consider first the situation (4.3.1a). We apply Pohozaev’s identity (2.2.13) on
B1(0) to get

u̇2
n(1)

2
= λn(N + α)

∫ 1

0

sN−1+αun(s)

1 − un(s)
ds− N − 2

2
λn

∫ 1

0

sN−1+αun(s)

(1 − un(s))2
ds.

Then, for some C > 0 we have that

u̇2
n(1) ≤ Cλn

∫ 1

0

sN−1+α

1 − un(s)
ds.

The equation (P )λn satisfied by un rewrites as: −(sN−1u̇n(s))
′
= λns

N−1+α(1 − un(s))
−2.

We then easily get that u̇n ≤ 0 in (0, 1] and

u̇n(1) = −λn
∫ 1

0

sN−1+α

(1 − un(s))2
ds.

Thus, we obtain that

(∫ 1

0

sN−1+α

(1 − un(s))2
ds
)2

= λ−2
n u̇2

n(1) ≤ Cλ−1
n

∫ 1

0

sN−1+α

1 − un(s)
ds

≤ Cλ−1
n

(∫ 1

0

sN−1+α

(1 − un(s))2
ds
) 1

2
(∫ 1

0
sN−1+αds

) 1
2
,

which implies ∫ 1

0

sN−1+α

(1 − un(s))2
ds ≤ Cλ

− 2
3

n . (4.3.6)



4.3. POWER-LAW PROBLEMS ON SYMMETRIC DOMAINS 97

Since
u̇n ≤ 0 in (0, 1], (4.3.7)

we see that
1

(1 − un(s))2
≤ C

∫ s

r
4

tN−1+α

(1 − un(t))2
dt (4.3.8)

for any s ∈ [ r2 , 1]. Thus, it follows from (4.3.6) and (4.3.8) that

λn
|x|α

(1 − un(x))2
≤ λnC

∫ 1

0
tN−1+α(1 − un(t))

−2dt ≤ Cλ
1
3
n (4.3.9)

for any |x| ∈ [ r2 , 1].

Let us consider now the second situation (4.3.1b). In such a case, Pohozaev’s identity
(2.2.13) implies that

∫

∂Ω

(∂un
∂ν

)2
x · νdS = 4λn

∫

Ω

dx

1 − un
− 4λn|Ω|,

where ν is the unit outward normal vector of ∂Ω. Since Ω is well-behaved, we have that

x · ν ≥ C > 0 ∀ x ∈ ∂Ω.

Therefore, it follows that
∫

∂Ω

(∂un
∂ν

)2
dS ≤ Cλn

∫

Ω

dx

1 − un
. (4.3.10)

On the other hand, it follows from (P )λn that
∫

∂Ω

∂un
∂ν

dS = −λn
∫

Ω

dx

(1 − un)2
.

Hence, we have

(∫

Ω

dx

(1 − un)2

)2
≤ Cλ−2

n

∫

∂Ω

(∂un
∂ν

)2
dS ≤ Cλ−1

n

∫

Ω

dx

1 − un

≤ Cλ−1
n

(∫

Ω

dx

(1 − un)2

) 1
2
,

(4.3.11)

which implies ∫

Ω

dx

(1 − un)2
≤ Cλ

− 2
3

n .

By the standard moving plane argument in [70], it follows that for any x ∈ Ω\B r
2
(0), there

exists a piece of cone with vertex at x: Γx with (i) meas(Γx) ≥ γ > 0 uniformly on x, (ii)
Γx ⊂ Ω, (iii) (1 − un(y))

−2 ≥ (1 − un(x))
−2 for any y ∈ Γx. Thus, this and (4.3.11) imply

that
1

(1 − un(x))2
≤ 1

meas(Γx)

∫

Γx

dy

(1 − un)2
≤ γ−1Cλ

− 2
3

n ,
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and hence,
λn

(1 − un(x))2
≤ Cλ

1
3
n (4.3.12)

for any x ∈ Ω \B r
2
(0).

Let kn be the solution of the problem

−∆kn = Cλ
1
3
n in Ω \B r

2
(0), kn = 0 on ∂Ω, kn = 1 on ∂B r

2
(0).

Then, by (4.3.9) and (4.3.12) the comparison principle implies that

un ≤ kn in Ω \B r
2
(0).

Since kn = k0 + Cλ
1
3
nk1, where

∆k0 = 0 in Ω \B r
2
(0), k0 = 0 on ∂Ω, k0 = 1 on ∂B r

2
(0),

and

∆k1 = 1 in Ω \B r
2
(0), k1 = 0 on ∂Ω ∪ ∂B r

2
(0),

we have

un ≤ k0 + Cλ
1
3
nk1.

Note that the maximum principle implies max
Ω\Br(0)

k0 < 1 and |k1(x)| ≤ C for x ∈ Ω \Br(0).

Therefore, for n sufficiently large un(x) ≤ kr < 1 for any x ∈ Ω \Br(0). �

When (4.3.1b) holds, the shape of Ω and the moving planes method of [53] imply that un
is even in xi, i = 1, 2, and

∇un · x ≤ 0 in Ω. (4.3.13)

In the situation (4.3.1a), (4.3.7) gives exactly (4.3.13) also in this case. In particular, (2.4.13)
holds in general.

To conclude the proof of Theorem 4.3.1(1), finally we need to establish (2.4.14). We have
the following general result:

Lemma 4.3.7. Assume either (4.3.1a) or (4.3.1b). Let λn > 0 be a sequence and let un be
a solution of (P )λn so that (4.3.5) holds. Then, for any 0 < r0 <

1
2dist (0, ∂Ω)

r−
2+α

3

∫

SN−1

(1 − un)(rθ)dθ ≤ C ∀ ǫ
3

2+α
n λ

− 1
2+α

n ≤ r ≤ r0, (4.3.14)

and

λnr
4+2α

3

∫

SN−1

1

(1 − un(rθ))2
dθ ≤ C ∀ ǫ 3

2+αλ
− 1

2+α
n ≤ r ≤ r0, (4.3.15)

for some C > 0.
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Proof: Let us recall some facts and notations in §4.2.2. By (2.4.15) ε3nλ
−1
n → 0 as n→ +∞.

According to (2.4.16), the function Un(y) = 1−un(ǫ
3

2+α
n λ

− 1
2+α

n y)
ǫn

solves:

∆Un = |y|αU−2
n in Ωn, Un(0) = 1, Un(y) ≥ 1,

where Ωn := {y : ǫ
3

2+α
n λ

− 1
2+α

n y ∈ Ω} → R
N as n → +∞. Given 0 < r0 <

1
2dist (0, ∂Ω), set

Rn = eTn = ǫ
− 3

2+α
n λ

1
2+α
n r0 and let vn(s, θ) = |y|− 2+α

3 Un(y), |y| = es, be the Emden-Fowler
transformation of Un. According to (2.4.18), the function vn solves in (−∞, Tn) × SN−1:

vss +

(
N − 2

3
+

2α

3

)
vs + ∆SN−1v +

2 + α

3

(
N − 4

3
+
α

3

)
v = v−2.

Since up to a subsequence Un → U ≥ 1 in C1
loc(R

N ), according to (2.4.19) we have that

1

C
≤ vn(s, θ) ≤ C , |(vn)s(s, θ)| + |∇θvn(s, θ)| ≤ C ∀ 0 ≤ s ≤ 1, θ ∈ SN−1 (4.3.16)

for n large. Lemma 4.3.6, combined with elliptic estimates, yields to

|∇un(x)| ≤ C for x ∈ Ω \Br(0)

for some C = Cr > 0, and then it readily implies:

1

C
≤ λ

1
3
nvn(s, θ) ≤ C , |(vn)s(s, θ)| + |∇θvn(s, θ)| = O(λ

− 1
3

n ) ∀ Tn − 1 ≤ s ≤ Tn(4.3.17)

uniformly in θ ∈ SN−1, in accordance with (2.4.20). By (2.4.21) estimate (4.3.13) gives

(vn)s(s, θ) +
2 + α

3
vn(s, θ) ≥ 0 ∀ (s, θ) ∈ (−∞, Tn] × SN−1. (4.3.18)

In terms of vn, the desired estimates (4.3.14), (4.3.15) rewrite as
∫

SN−1

vn(s, θ)dθ ≤ Cλ
− 1

3
n ,

∫

SN−1

1

v2
n(s, θ)

dθ ≤ Cλ
− 1

3
n ∀ 0 ≤ s ≤ Tn. (4.3.19)

Denote

wn(s) =

∫

SN−1

v2
n(s, θ)dθ , vn(s) =

∫

SN−1

vn(s, θ)dθ .

For convenience, in the following we omit the subscript n of wn, vn and vn. Note that

vss +

(
N − 2

3
+

2α

3

)
vs +

2 + α

3

(
N − 4

3
+
α

3

)
v =

∫

SN−1

dθ

v2
(4.3.20)

wss +

(
N − 2

3
+

2α

3

)
ws +

4 + 2α

3

(
N − 4

3
+
α

3

)
w = 2

∫

SN−1

dθ

v
(4.3.21)

+2

∫

SN−1

(|∇θv|2 + v2
s)dθ.
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Multiplying (2.4.18) by vs and integrating on [0, Tn] × SN−1, we get that

∫ Tn

0

∫

SN−1

v2
s(s, θ)dsdθ ≤ Cλ

− 2
3

n

for some C > 0, by means of (4.3.16) and (4.3.17). Therefore, it holds

∫ t

0

∫

SN−1

v2
s(s, θ)dθds ≤ Cλ

− 2
3

n for t ∈ [0, Tn] (4.3.22)

for some C > 0. The proof proceeds now with the following three steps.

Step 1: We claim that

∫

SN−1

dθ

v2(s, θ)
≤ (2 + α)vs + (2 + α)(N − 4

3
+
α

3
)v for s ∈ (−∞, Tn]. (4.3.23)

In fact, (4.3.18) and (4.3.20) imply that

vsss +

(
N − 2

3
+

2α

3

)
vss +

2 + α

3

(
N − 4

3
+
α

3

)
vs = −2

∫

SN−1

vs
v3
dθ

≤ 4 + 2α

3

∫

SN−1

dθ

v2
=

4 + 2α

3

[
vss +

(
N − 2

3
+

2α

3

)
vs +

2 + α

3

(
N − 4

3
+
α

3

)
v

]
.

Setting q(s) = vs − 4+2α
3 v, above estimate yields to

qss +

(
N − 2

3
+

2α

3

)
qs +

2 + α

3

(
N − 4

3
+
α

3

)
q ≤ 0

for any s ≤ Tn or equivalently,

[
e

2+α
3
s

(
qs + (N − 4

3
+
α

3
)q

)]

s

≤ 0 for s ∈ (−∞, Tn]. (4.3.24)

Note that

e
2+α

3
sv(s) → |SN−1| , e

2+α
3
s
(
vs(s) +

2 + α

3
v(s)

)
→ 0 as s→ −∞,

and the equation (4.3.20) satisfied by v now implies

e
2+α

3
svss(s) → −(

2 + α

3
)2|SN−1| as s→ −∞.

Then, we have

e
2+α

3
sq(s) → −(2 + α)|SN−1| , e

2+α
3
sqs(s) →

(2 + α)2

9
|SN−1| as s→ −∞. (4.3.25)



4.3. POWER-LAW PROBLEMS ON SYMMETRIC DOMAINS 101

Therefore, (4.3.25) implies that

e
2+α

3
s
(
qs(s) + (N − 4

3
+
α

3
)q(s)

)
→ −(N − 14

9
+

2α

9
)(2 + α)|SN−1| as s→ −∞ .

It now deduces from (4.3.24) that, for any s ∈ (−∞, Tn],

e
2+α

3
s
(
qs(s) + (N − 4

3
+
α

3
)q(s)

)
≤ −(N − 14

9
+

2α

9
)(2 + α)|SN−1| ≤ 0, (4.3.26)

which by (4.3.20) reduces to

0 ≥ qs(s) +
(
N − 4

3
+
α

3

)
q(s)

= vss +
(
N − 8

3
− α

3

)
vs −

4 + 2α

3

(
N − 4

3
+
α

3

)
v

= −(2 + α)vs − (2 + α)(N − 4

3
+
α

3
)v +

∫

SN−1

dθ

v2
.

Therefore, we conclude that (4.3.23) holds:

∫

SN−1

dθ

v2
≤ (2 + α)vs + (2 + α)(N − 4

3
+
α

3
)v for s ∈ (−∞, Tn].

Step 2: We claim that

∫

SN−1

dθ

v2(s, θ)
≤ C

(
λ
− 1

3
n +

∫

SN−1

v2
sdθ
)
. (4.3.27)

To prove (4.3.27), we consider the function

J(s) =

∫

SN−1

[
|∇θv|2(s, θ) − v2

s(s, θ) −
2 + α

3

(
N − 4

3
+
α

3

)
v2(s, θ) − 2

v(s, θ)

]
dθ.

Multiplying (2.4.18) by vs and integrating on SN−1, we obtain that

Js(s) = 2

(
N − 2

3
+

2α

3

)∫

SN−1

v2
s(s, θ)dθ > 0,

which gives

J(0) ≤ J(s) ≤ J(Tn) for s ∈ [0, Tn].

It follows from (4.3.16), (4.3.17) that

|J(s)| ≤ Cλ
− 2

3
n for s ∈ [0, Tn],
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and hence
∣∣∣
∫

SN−1

|∇θv|2(s, θ)dθ −
2 + α

3

(
N − 4

3
+
α

3

)∫

SN−1

v2(s, θ)dθ
∣∣∣

≤ C
(
λ
− 2

3
n +

∫

SN−1

v2
s(s, θ)dθ +

∫

SN−1

dθ

v(s, θ)

)
.

(4.3.28)

On the other hand, it follows from the Young’s inequality and (4.3.23) that
∫

SN−1

dθ

v(s, θ)
≤ C

(∫

SN−1

dθ

v2(s, θ)
+ 1
)
≤ C

(
vs + v + 1

)
≤ C

(
1 + v +

∫

SN−1

v2
s(s, θ)dθ

)
.

Then we deduce from (4.3.28) and the Young’s inequality that for any ǫ > 0,

∣∣
∫

SN−1

|∇θv|2(s, θ)dθ −
2 + α

3

(
N − 4

3
+
α

3

)∫

SN−1

v2(s, θ)dθ
∣∣

≤ C
(
λ
− 2

3
n +

∫

SN−1

v2
s(s, θ)dθ + v(s)

)

≤ C
(
λ
− 2

3
n +

∫

SN−1

v2
s(s, θ)dθ

)
+ ǫ

∫

SN−1

v2(s, θ)dθ + Cǫ.

When (4.3.1a) holds, the function v is radial and for ǫ < 2+α
3

(
N − 4

3 + α
3

)
we get that

v2(s) ≤ C
(
λ
− 2

3
n + v2

s(s)
)
. (4.3.29)

In the situation (4.3.1b), the function v is symmetric with respect to reflections in the
coordinate planes. In particular, v(s, ·) is a π-periodic function. Choosing ǫ such that
4
9 + ǫ < 1 and using the Sobolev’s inequality (4.3.2), we obtain that

∫

S1

v2(s, θ)dθ ≤ C
(
λ
− 2

3
n +

∫

S1

v2
s(s, θ)dθ +

1∫
S1

dθ
v2(s,θ)

)
. (4.3.30)

We collect (4.3.29) and (4.3.30) in the following estimate:
∫

SN−1

v2(s, θ)dθ ≤ C
(
λ
− 2

3
n +

∫

SN−1

v2
s(s, θ)dθ +

1∫
SN−1

dθ
v2(s,θ)

)
, (4.3.31)

which holds in both situations (4.3.1a), (4.3.1b). By Jensen’s inequality (s2 is a convex
function) and (4.3.23) we get that

∫

SN−1

v2(s, θ)dθ ≥ Cv2 ≥ C
(∫

SN−1

dθ

v2(s, θ)

)2
− C

∫

SN−1

v2
s(s, θ)dθ.

Multiplying (4.3.31) by
∫
SN−1

dθ
v2(s,θ)

, the previous estimate yields to

(∫

SN−1

dθ

v2(s, θ)

)3
≤ C

(
λ
− 2

3
n +

∫

SN−1

v2
s(s, θ)dθ

)(∫

SN−1

dθ

v2(s, θ)

)
+ C.
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Therefore, the validity of (4.3.27) follows:

∫

SN−1

dθ

v2(s, θ)
≤ C

[
λ
− 1

3
n +

(∫

SN−1

v2
s(s, θ)dθ

) 1
2 ]
.

Step 3: Estimate (4.3.19) holds.

By (4.3.20) and Step 2, we have

vss +

(
N − 2

3
+

2α

3

)
vs +

2 + α

3

(
N − 4

3
+
α

3

)
v ≤ C

(
λ
− 1

3
n + (

∫

SN−1

v2
s(s, θ)dθ)

1
2

)
,

which rewrites as:
[
e

2+α
3
s

(
vs + (N − 4

3
+
α

3
)v

)]

s

≤ Ce
2+α

3
s
(
λ
− 1

3
n + (

∫

SN−1

v2
s(s, θ)dθ)

1
2

)
.

Hence, by (4.3.16) and (4.3.22) we obtain that:

vs(t) + (N − 4

3
+
α

3
)v(t)≤ C

(
λ
− 1

3
n +

∫ t

0
e

2+α
3

(s−t)ds(
∫

SN−1

v2
s(s, θ)dθ)

1
2

)

≤ C
(
λ
− 1

3
n + (

∫ t

0
e

2+α
3

(s−t)
∫

SN−1

v2
s(s, θ)dsdθ)

1
2

)

≤ Cλ
− 1

3
n for t ∈ [0, Tn],

(4.3.32)

in view of Jensen’s inequality applied to the concave function
√
s. Let sn be so that

v(sn) = max
s∈[0,Tn]

v(s). If sn = 0, Tn, by (4.3.16), (4.3.17) we get that

v(s) ≤ Cλ
− 1

3
n ,

∫

SN−1

dθ

v2(s, θ)
≤ Cλ

− 1
3

n for s ∈ (−∞, Tn]

by means of (4.3.23). If sn ∈ (0, Tn), vs(sn) = 0 and (4.3.32) implies that v(sn) ≤ Cλ
− 1

3
n .

Finally, (4.3.23) yields to

max
s∈[0,Tn]

∫

SN−1

dθ

v2(s, θ)
≤ max

s∈[0,Tn]

∫

SN−1

v(s, θ)dθ ≤ Cλ
− 1

3
n

also in this case. So, (4.3.19) holds and the proof is complete. �

4.3.3 Infinite multiplicity of solutions

In this subsection, we establish Theorem 4.3.1(2) by borrowing some ideas of Dancer’s paper
[32]. Assume that either (4.3.1a) or (4.3.1b) holds.
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Proof (of Theorem 4.3.1(2)): Set E = {u = u(|x|) ∈ C1(B̄) : u = 0 on ∂B} in case
(4.3.1a) and E = {u ∈ C1(Ω̄) : u = 0 on ∂Ω} in case (4.3.1b). Let G be the resolvant of
−∆ on E. By Theorem 2.4.3, the minimal solution uλ is stable: µ1,λ(uλ) > 0, which implies
the invertibility on E of the linearized operator Id − λA(uλ) for any 0 ≤ λ < λ∗, where

A(u)(φ) = G
(

|x|α
(1−u)3φ

)
. By the Implicit Function Theorem, the minimal branch (λ, uλ) is

a simple curve in V, where

V = {(λ, u) ∈ [0,+∞) ×E : u is a solution of (P )λ}.

Buffoni, Dancer and Toland in [19] developed a fine bifurcation theory in the spirit of
[30, 31]. We follow section 2.1 in [19] to find an analytic curve (λ̂(t), û(t)), t ≥ 0, in V such
that (λ̂(0), û(0)) = (0, 0), ‖û(t)‖∞ → 1 as t → ∞ and Id − λ̂(t)A(û(t)) is invertible on E
except at isolated points. By the Implicit Function Theorem, the curve (λ̂(t), û(t)) can only
have isolated intersections. If we now use the usual trick of finding a minimal continuum in
{(λ̂(t), û(t)) : t ≥ 0} joining (0, 0) to “infinity”, we obtain a continuous curve (λ(t), u(t)) in
V with no self-intersections which is only piecewise analytic. Clearly, Id−λ(t)A(u(t)) is still
invertible on E except at isolated points. To obtain a minimal irreducible continuum, we
can use the arguments of [32] as follows. Let µk,λ(t)(u(t)) be the k−th eigenvalue counting
multiplicity of the operator

Lu(t),λ(t) = −∆ − 2λ(t)|x|α
(1 − u(t))3

(4.3.33)

on E. According to the above comments, µk,λ(t)(u(t)) is continuous, piecewise analytic and
have only isolated zeroes. We will show below that µk,λ(t)(u(t)) < 0 for large t. Namely,
for any M ∈ N (4.3.33) has at least M negative eigenvalues for t large. Hence, there exists
a sequence tn → ∞ as n → ∞ such that the number of negative eigenvalues of (4.3.33)
changes across tn (recall that µk,λ(0)(u(0)) = µk(−∆) > 0 for any k ∈ N). We claim that
(λ(tn), u(tn)) is a bifurcation point. Otherwise, near (λ(tn), u(tn)) the solution set is a curve
parameterized by λ and the critical groups- as defined in Chang [27]- of these solutions must
be locally independent of λ by homotopy invariance. The formula for the critical groups at
a non-degenerate point (see [27], page 33) implies that the Morse index has to be constant
in a deleted neighborhood of (λ(tn), u(tn)), in contradiction with the choice of tn. There
is a minor technical point here: we need to work in the completion Ē of E in ‖ · ‖H1

0
.

Since ‖u(tn)‖∞ < τ < 1, we can smoothly truncate the nonlinearity 1
(1−u)2 to be 1

(1−τ)2
for τ < u < 1. For the truncation, the argument above makes sense on Ē. Note that the
truncation does not affect the solution set close to (λ(tn), u(tn)) in R × Ē.
The bifurcation point (λ(tn), u(tn)) is either a turning point, i.e. the point where (λ(t), u(t))
changes direction (the branch locally “bends back”) or a point of secondary bifurcation. In
case (4.3.1a), the following Lemma

Lemma 4.3.8. Assume (4.3.1a). For any κ ∈ (0, 1), there is at most one (λ, u) ∈ V such
that u(0) = κ.
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implies that (λ(tn), u(tn)) is not a secondary bifurcation point and then, is necessarily a
turning point.

Since ‖u(t)‖∞ → 1 as t → +∞, by Theorem 4.2.1 we get that the Morse index of
m(u(t), λ(t)) → +∞ as t → +∞. In case (4.3.1b), our claim on µk,λ(t)(u(t)) < 0 for
large t easily follows. As far as (4.3.1a), we would like to show that, the radial Morse index
mr(u(t), λ(t)) → +∞ as t→ +∞.
We argue by contradiction. Suppose there is a sequence tn → +∞ so that mr(un, λn) ≤ C,
where λn = λ(tn) and un = u(tn). Up to a subsequence, assume that λn → λ ≥ 0 as
n → +∞. Since ‖un‖∞ → 1 as n → +∞, un is a non-minimal radial solutions of (P )λn

and by Theorem 4.3.1(1), we have that λ > 0. Set ǫn = 1 − ‖un‖∞ → 0 as n → +∞ and
introduce the rescaled function Un(y) according to (2.3.20):

Un(y) =
1 − un

(
ε

3
2+α
n λ

− 1
2+α

n y
)

εn
, y ∈ Bn := {y : ǫ

3
2+α
n λ

− 1
2+α

n y ∈ B}.

A limiting argument shows that, up to a subsequence, Un → U in C1
loc(R

N ) as n → ∞,

where U is a radial solution of (rN−1U̇)′ = rN−1+α

U2 on R
N such that U(r) ≥ U(0) = 1. By

Lemma 4.3.7, we have the validity of (4.3.14), (4.3.15) which rewrite in terms of Un as

1

C
r

2+α
3 ≤ Un(r) ≤ Cr

2+α
3 , 1 ≤ r ≤ Rn,

for some Rn → +∞ as n→ +∞. In the limit we get

1

C
r

2+α
3 ≤ U(r) ≤ Cr

2+α
3 , r ≥ 1, (4.3.34)

and hence

lim
r→∞

r−
2+α

3 U(r) =
(2 + α

3
(N − 2 +

2 + α

3
)
)− 1

3
. (4.3.35)

The proof of (4.3.35) is a little variant of the proof of Theorem 1.1 of [60]. See also Theorem
1.2 of [66]. First, by (4.3.35) we see that

2rαU−3(r) ∼ 2(2 + α)

3

(
N − 2 +

2 + α

3

)
r−2 as r → ∞.

By explicitly solving the Euler equation

−k̈ − N − 1

r
k̇ − µ

r2
k = 0,

one finds that any non-trivial solution is in the form

k(r) = r−
N−2

2

[
A1 cos

(√
µ− (N − 2)2

4
ln y

)
+A2 sin

(√
µ− (N − 2)2

4
ln y

)]
, A1, A2 ∈ R,
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and has infinitely many (and unbounded) positive zeroes whenever µ > (N−2)2

4 . A simple
calculation implies that

2(2 + α)

3

(
N − 2 +

2 + α

3

)
>

(N − 2)2

4

provided either 2 ≤ N ≤ 7 or N ≥ 8, α > αN = 3N−14−4
√

6
4+2

√
6

. We now have that the unique

solution h of

−ḧ(r) − N − 1

r
ḣ(r) =

2rα

U3(r)
h(r), h(0) = 1, ḣ(0) = 0 (4.3.36)

has infinitely many positive zeroes. Given M > 0, by continuous dependence we get that
the unique solution q of

−q̈(r) − N − 1

r
q̇(r) =

2rα

U3(r)
q(r) + σq(r), h(0) = 1, ḣ(0) = 0, (4.3.37)

has at least M positive, large zeroes, for a sufficiently small negative number σ. Let qi(y)
be the function defined to be q(|y|) for |y| between the i−th and (i + 1)−th zero of q and
to be zero otherwise, i = 1, . . . ,M − 1. Then, qi ∈ H1(RN ) are orthogonal both in L2(RN )
and H1(RN ). Multiplying (4.3.37) by qi and integrating between these zeroes it yields to

Q(qi) =

∫

RN

[
|∇qi|2 −

2|y|α
U3

q2i

]
dy < 0.

Since qi has compact support, it easily follows that

qi ∈ H1
0 (Bn) ,

∫

Bn

|∇qi|2(y)dy −
2|y|αǫ3n

(1 − un)3(τny)
q2i (y)dy < 0

for any i = 1, . . . ,M − 1, where τn = ǫ
3

2+α
n λ

− 1
2+α

n . Hence, returning to the original scaling,
we see that, for any i = 1, . . . ,M − 1,

∫

B
|∇q̃i|2 −

2λn|x|α
(1 − un)3

q̃2i < 0

for n large, where q̃i(x) = qi(τ
−1
n x) ∈ H1

0 (B). Since q̃i are radial functions which are
orthogonal both in L2(B) and H1

0 (B), i = 1, . . . ,M − 1, by the variational characterization
of the eigenvalues mr(un, λn) ≥ M − 1 for n large. Since M is arbitrary, we get that
mr(un, λn) → +∞ as n → +∞. A contradiction. The proof of Theorem 4.3.1(2) is
complete. �

Finally, we give the proof of Lemma 4.3.8.
Proof (of Lemma 4.3.8): Let (λ1, u1), (λ2, u2) ∈ V such that u1(0) = u2(0) = κ. Recall
that u1, u2 are radial solutions under the assumtpion (4.3.1a). The function

Ui(r) =

1 − ui

(
(1 − κ)

3
2+αλ

− 1
2+α

i r

)

1 − κ
, r ∈ Ii =

[
0, (1 − κ)−

3
2+αλ

1
2+α

i

]
,
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for i = 1, 2, satisfies

Ü(r) +
N − 1

r
U̇(r) = rαU−2(r), U(0) = 1, U̇(0) = 0 (4.3.38)

on the associated interval Ii. Standard ODE theory implies that (4.3.38) has a unique
solution U(r) and then, Ui coincides with U on Ii, i = 1, 2. On the other hand, since

U1

(
(1 − κ)−

3
2+αλ

1
2+α

1

)
= U2

(
(1 − κ)−

3
2+αλ

1
2+α

2

)
=

1

1 − κ
,

we get that

U

(
(1 − κ)−

3
2+αλ

1
2+α

1

)
= U

(
(1 − κ)−

3
2+αλ

1
2+α

2

)
. (4.3.39)

The solution U of (4.3.38) is easily seen to be increasing: U̇(r) > 0 for r > 0. Then (4.3.39)
implies that λ1 = λ2. Then, U1 = U2 = U on I1 = I2 and then, u1 = u2. The proof of
Lemma 4.3.8 is complete. �

4.4 The one dimensional problem

In this section, we discuss the compactness of solutions for (S)λ in one dimensional case.

Theorem 4.4.1. Let I be a bounded interval in R and f ∈ C1(Ī) be such that f ≥ C > 0
in I. Let (un)n be a solution sequence for (S)λn on I, where λn → λ ∈ (0, λ∗]. Assume for
any n ∈ N and k large enough,

µk,n := µk,λn(un) ≥ 0. (4.4.1)

Then, sup
n∈N

‖ un ‖∞< 1.

Proof: Let I = (a, b) be a bounded interval in R. Assume f ∈ C1(Ī) so that f ≥ C > 0 in
I. We study solutions un of (S)λn in the form





−ün =
λnf(x)

(1 − un)2
in I ,

0 < un < 1 in I ,
un(a) = un(b) = 0.

(4.4.2)

Assume that un satisfy (4.4.1) and λn → λ ∈ (0, λ∗]. Let xn ∈ I be a maximum point:
un(xn) = max

I
un. If (un)n is not compact, then up to a subsequence, we may assume that

un(xn) → 1 with xn → x0 ∈ Ī as n → +∞. Away from x0, un is uniformly far away from
1. Otherwise, by the maximum principle we would have un → 1 on an interval of positive
measure, and then µk,λn(un) < 0 for any k and n large, a contradiction.
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Assume, for example, that a ≤ x0 < b. By elliptic regularity theory, u̇n(x) is uniformly
bounded for x far away from x0. Letting ε > 0, we multiply (4.4.2) by u̇n and integrate on
(xn, x0 + ε):

u̇2
n(xn) − u̇2

n(x0 + ε) =

∫ x0+ε

xn

2λnf(s)u̇n(s)

(1 − un(s))2
ds

=
2λnf(x0 + ε)

1 − un(x0 + ε)
− 2λnf(xn)

1 − un(xn)
−
∫ x0+ε

xn

2λnḟ(s)

1 − un(s)
ds.

Then, for n large:

u̇2
n(xn) +

Cλ

1 − un(xn)
≤ u̇2

n(x0 + ε) + 2λn
f(x0 + ε)

1 − un(x0 + ε)
− 2λn

∫ x0+ε

xn

ḟ(s)

1 − un(s)
ds

≤ Cε + 4λ ‖ ḟ ‖∞
x0 + ε− xn
1 − un(xn)

since un(xn) is the maximum value of un in I. Choosing ε > 0 sufficiently small, we get
that for any n large: 1

1−un(xn) ≤ Cε, contradicting un(xn) → 1 as n→ +∞. �

Even in one dimensional case, we can still define the second turning point λ∗2 as in §3.3.
We don’t know whether λ∗2 = 0 (this is indeed the case when f(x) = 1, see [93]) or λ∗2 > 0.
In the latter situation, there would exist a solution V ∗ for (S)λ∗2 which could be –in some
cases– the second turning point. Let us remark that for N = 1, the multiplicity result of
Theorem 3.3.1 holds also for any λ ∈ (λ∗2, λ

∗).

4.5 Some comments

Main results of this Chapter are from [36, 67, 68]. The equivalence between compactness
and finite Morse index of solutions for elliptic problems can be traced back to A. Bahri and
P.-L. Lions’ work [7, 8], where the authors dealt with superlinear elliptic equations with
regular nonlinearities (see also [33, 40]). It is interesting to look insights into spectral and
related properties of solutions for (S)λ, such as whether the Morse index does not change
within each branch, and whether the Morse index must be increasing one by one once the
solution passes through each turning point along the bifurcation diagram of (S)λ. Note that
in this text such an analysis already exists for the first two branches on general domains
and for any radial branch on the unit ball. Essentially, we have proved in Chapters 3 & 4
that, the Morse index of solutions for (S)λ along the first two branches is equal to 0 and 1,
respectively.

One of the main results of this Chapter is Theorem 4.2.1, where we have introduced the
equivalence between compactness, energy bounds and Morse index of solutions for (S)λ.
Theorem 4.2.3 has proved the existence of singular solutions for (S)λ with 2 ≤ N ≤ 7. Note

that a typical singular solution of (S)λ with 2 ≤ N ≤ 7 is u(x) = 1 − |x| 2+α
3 provided that

f(x) = |x|α, λ = (2+α)(3N+α−4)
9 and Ω is a unit ball in R

N .
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The uniqueness and infinite multiplicity of Theorem 4.3.1 hold for the following more
general elliptic problem

−∆u =
λ

(1 − u)p
in Ω, 0 < u < 1 in Ω, u = 0 on ∂Ω, (Sλ,p)

where 1 ≤ p ≤ 2, and Ω ⊂ R
2 is a “rather” symmetric domain: balls, ellipses, rectangles,

and etc. The critical observation for studying (Sλ,p) is that we need to use the Sobolev
inequality (4.3.2), and we leave the details to interested readers. Note that (Sλ,1) arises
in the study of singular minimal hypersurfaces with symmetry, see [81] and the references
therein. However, (Sλ,p) for general p > 0 also arises from chemical catalyst kinetics, see
[17, 34]. It is interesting to address whether such uniqueness and infinite multiplicity of
(Sλ,p) hold for any p ≥ 1.

It is also interesting to look insights into whether such uniqueness and infinite multiplic-
ity of (Sλ,2) hold for any middle dimension 2 ≤ N ≤ 7. For that, it seems quite necessary
to discuss the higher dimensional version of the Sobolev inequality (4.3.2), and to classify
the solutions of the following supercritical problem with N ≥ 2:

∆U =
1

U2
in R

2, U(y) ≥ U(0) = 1.
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Chapter 5

A limiting equation

In this section, we will focus on qualitative properties of solutions for the limiting equation





∆U =
|y|α
U2

in R
N ,

U(y) ≥ C > 0 in R
N .

In literature, an extensive analysis of such limiting problems with smooth polinomial and
exponential nonlinearities, where −U−2 is replaced by Up, p > 1, and eU respectively.
Liouville-type and classification results are available. For α = 0, Gidas and Spruck in [54]
consider the subcritical case (p > 1 when N = 2 and 1 < p < N+2

N−2 when N ≥ 3) and the

celebrated papers [24], [53] (see also [29]) gives a full description in the critical case p = N+2
N−2 ,

N ≥ 3. For N = 2, a similar classification is available for the exponential nonlinearity eU

in [29] for α = 0 and in [89] for α > 0.
A study of stability properties can be also pursued. For α = 0 and Up, p > 1, we refer
to [8] for changing-sign solutions with finite Morse index in the subcritical case and to [40]
for possibly unbounded solutions semi-stable outside a compact set. For eU , let us quote
[37, 41] for stable solutions when 2 ≤ N ≤ 9 and [33] for finite Morse index solutions when
N = 3. Cabré and Capella in [21] deals with general smooth nonlinearities (convex and
increasing) in the radial setting when α = 0.

In §5.1 we will focus on stability properties. §5.2 will be devoted to a symmetry result for
a solution U arising from a limiting procedure in case (4.3.1b).

5.1 Linear instability in low dimensions

The following Theorem characterizes the stability for solutions of our limiting problem:

Theorem 5.1.1. Assume either 1 ≤ N ≤ 7 or N ≥ 8 and α > αN = 3N−14−4
√

6
4+2

√
6

. Let U be

111
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a solution of 



∆U =
|y|α
U2

in R
N ,

U(y) ≥ C > 0 in R
N .

(5.1.1)

Then, there holds

µ1(U) = inf

{∫

RN

(
|∇φ|2 − 2|y|α

U3
φ2
)
; φ ∈ C∞

0 (RN ) and

∫

RN

φ2 = 1

}
< 0 . (5.1.2)

Moreover, if N ≥ 8 and 0 ≤ α ≤ αN , then there exists at least one solution U of (5.1.1)
satisfying µ1(U) ≥ 0.

Let us quote the extension of Theorem 5.1.1 given by the first author in [37]: the nonlinearity
−U−2 can be replaced by eU , Up with p > 1 and −Up for p < 0 and corresponding sharp
critical dimension & critical αN are found.

Proof: By contradiction, assume that

µ1(U) = inf

{∫

RN

(
|∇φ|2 − 2|y|α

U3
φ2
)
; φ ∈ C∞

0 (RN ) and

∫

RN

φ2 dx = 1

}
≥ 0.

By the density of C∞
0 (RN ) in D1,2(RN ), we have

∫
|∇φ|2 ≥ 2

∫ |y|α
U3

φ2 , ∀ φ ∈ D1,2(RN ) . (5.1.3)

In particular, the test function φ = 1

(1+|y|2)
N−2

4 + δ
2

∈ D1,2(RN ) applied in (5.1.3) gives that

∫ |y|α

(1 + |y|2)N−2
2

+δU3
≤ C

∫
1

(1 + |y|2)N
2

+δ
< +∞

for any δ > 0. Therefore, we have

∫
1

(1 + |y|2)N−2−α
2

+δU3
=

∫

B1

(1 + |y|2)α
2

(1 + |y|2)N−2
2

+δU3
+

∫

Bc
1

(1 + |y|2)α
2

(1 + |y|2)N−2
2

+δU3

≤ C

∫

B1

1

U3
+ C

∫

Bc
1

|y|α

(1 + |y|2)N−2
2

+δU3

≤ C + C

∫ |y|α

(1 + |y|2)N−2
2

+δU3
,

(5.1.4)

which gives ∫
1

(1 + |y|2)N−2−α
2

+δU3
≤ C + C

∫
1

(1 + |y|2)N
2

+δ
< +∞ . (5.1.5)
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Step 1. We want to show that (5.1.3) allows us to perform the following Moser-type
iteration scheme: for any 0 < q < 4 + 2

√
6 and β there holds

∫
1

(1 + |y|2)β−1−α
2 U q+3

≤ Cq
(
1 +

∫
1

(1 + |y|2)βU q
)

(5.1.6)

(provided the second integral is finite).

Indeed, let R > 0 and consider a smooth radial cut-off function η so that: 0 ≤ η ≤ 1, η = 1

in BR(0), η = 0 in R
N \ B2R(0). Multiplying (5.1.1) by

η2

(1 + |y|2)β−1U q+1
, q > 0, and

integrating by parts we get:
∫ |y|αη2

(1 + |y|2)β−1U q+3

=
4(q + 1)

q2

∫ ∣∣∣∇
( η

(1 + |y|2)β−1
2 U

q
2

)∣∣∣
2
− 4(q + 1)

q2

∫
1

U q

∣∣∣∇
( η

(1 + |y|2)β−1
2

)∣∣∣
2

−q + 2

q2

∫
∇(

1

U q
)∇
( η2

(1 + |y|2)β−1

)

=
4(q + 1)

q2

∫ ∣∣∣∇
( η

(1 + |y|2)β−1
2 U

q
2

)∣∣∣
2
− 2

q

∫
1

U q

∣∣∣∇
( η

(1 + |y|2)β−1
2

)∣∣∣
2

+
2(q + 2)

q2

∫
1

U q
η

(1 + |y|2)β−1
2

∆
( η

(1 + |y|2)β−1
2

)
,

where the relation ∆(ψ)2 = 2|∇ψ|2 +2ψ∆ψ is used in the second equality. Then, by (5.1.3)
we deduce that

(8q + 8 − q2)

∫ |y|αη2

(1 + |y|2)β−1U q+3

≤ C ′
q

∫
1

U q

(∣∣∇
( η

(1 + |y|2)β−1
2

)∣∣2 +
η

(1 + |y|2)β−1
2

∣∣∆
( η

(1 + |y|2)β−1
2

)∣∣
)
.

Assuming |∇η| ≤ C
R and |∆η| ≤ C

R2 , it is straightforward to see that:

∣∣∇
( η

(1 + |y|2)β−1
2

)∣∣2 +
η

(1 + |y|2)β−1
2

∣∣∆
( η

(1 + |y|2)β−1
2

)∣∣

≤ C
( 1

(1 + |y|2)β +
1

R2(1 + |y|2)β−1
χB2R(0)\BR(0)

]

for some constant C independent of R. Then,

(8q + 8 − q2)

∫ |y|αη2

(1 + |y|2)β−1U q+3
≤ C ′′

q

∫
1

(1 + |y|2)βU q .

Let q+ = 4 + 2
√

6. For any 0 < q < q+, we have 8q + 8 − q2 > 0 and therefore:
∫ |y|αη2

(1 + |y|2)β−1U q+3
≤ Cq

∫
1

(1 + |y|2)βU q ,
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where Cq does not depend on R > 0. Taking the limit as R→ +∞, we get that:

∫ |y|α
(1 + |y|2)β−1U q+3

≤ Cq

∫
1

(1 + |y|2)βU q ,

and then, the validity of (5.1.6) easily follows from the same argument of (5.1.4).

Step 2. Let either 1 ≤ N ≤ 7 or N ≥ 8 and α > αN . We want to show that

∫
1

(1 + |y|2)U q < +∞ (5.1.7)

for some 0 < q < q+ = 4 + 2
√

6.

Indeed, set β0 = N−2−α
2 + δ, δ > 0, and q0 = 3. By (5.1.5) we get that

∫
1

(1 + |y|2)β0U q0
< +∞.

Let βi = β0 − i(1 + α
2 ) and qi = q0 + 3i, i ∈ N. Since q0 < q1 < q+ = 4 + 2

√
6 < q2, we can

iterate (5.1.6) exactly two times to get that:

∫
1

(1 + |y|2)β2U q2
< +∞ (5.1.8)

where β2 = N−6−3α
2 + δ, q2 = 9.

Let 0 < q < q+ = 4 + 2
√

6 < 9. By (5.1.8) and Hölder inequality we get that:

∫
1

(1 + |y|2)U q

=

∫
(1 + |y|2) q

9
( 6−N

2
−δ+ 3

2
α)

U q
· 1

(1 + |y|2) q
9
( 6−N

2
−δ+ 3

2
α)+1

≤
(∫ 1

(1 + |y|2)β2U q2

) q
9
(∫ 1

(1 + |y|2)
q

9−q
( 6−N

2
−δ+ 3

2
α)+ 9

9−q

) 9−q
9
< +∞

provided − 2q
9−qβ2 + 18

9−q > N or equivalently

q >
9N − 18

6 − 2δ + 3α
. (5.1.9)

To ensure (5.1.9) for some δ > 0 small and q < q+ at the same time, it requires 3N−6
2+α < q+

or equivalently

1 ≤ N ≤ 7 or N ≥ 8 , α > αN =
3N − 14 − 4

√
6

4 + 2
√

6
.
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Our assumptions then provide the existence of some 0 < q < q+ = 4+2
√

6 such that (5.1.7)
holds.

Step 3. We are ready to obtain a contradiction. Let 0 < q < 4 + 2
√

6 be such that (5.1.7)
holds, and suppose η is the cut-off function of Step 1. Using equation (5.1.1) we compute:

∫ ∣∣∇
( η
U

q
2

)∣∣2 −
∫

2|y|α
U3

( η
U

q
2

)

=
q2

4

∫
η2|∇U |2
U q+2

+

∫ |∇η|2
U q

+
1

2

∫
∇(η2)∇

( 1

U q
)
−
∫

2|y|αη2

U q+3

= − q2

4(q + 1)

∫
∇U · ∇

( η2

U q+1

)
+

∫ |∇η|2
U q

+ q+2
4(q+1)

∫
∇(η2)∇

( 1

U q
)
−
∫

2|y|αη2

U q+3

= −8q + 8 − q2

4(q + 1)

∫ |y|αη2

U q+3
+

∫ |∇η|2
U q

− q + 2

4(q + 1)

∫
∆η2

U q
.

Since 0 < q < 4 + 2
√

6, we have 8q + 8 − q2 > 0 and

∫ ∣∣∇
( η
U

q
2

)∣∣2 −
∫

2|y|α
U3

( η
U

q
2

)2

≤ −8q + 8 − q2

4(q + 1)

∫

B1(0)

|y|αη2

U q+3
+O

( 1

R2

∫

B2R(0)\BR(0)

1

U q

)

≤ −8q + 8 − q2

4(q + 1)

∫

B1(0)

|y|αη2

U q+3
+O

(∫

|y|≥R

1

(1 + |y|2)U q
)
.

Since (5.1.7) implies: lim
R→+∞

∫

|y|≥R

1

(1 + |y|2)U q = 0, we get that for R large

∫ ∣∣∇
( η

U q/2
)∣∣2 −

∫
2|y|α
U3

( η

U q/2
)2

≤ −8q + 8 − q2

4(q + 1)

∫

B1(0)

|y|α
U q+3

+O
(∫

|y|≥R

1

(1 + |y|2)U q
)
< 0.

A contradiction to (5.1.3). Hence, (5.1.2) holds and the proof of the first part of Theorem
5.1.1 is complete.

We now deal with the second part of Theorem 5.1.1. Consider a sequence λn → λ∗ and
corresponding minimal solution un of (S)λn on the unit ball B with f(x) = |x|α. For N ≥ 8
and 0 ≤ α ≤ αN , Theorem 2.4.3(3) provides that the extremal solution u∗ = lim

n→+∞
un is

singular and then, ‖un‖∞ → +∞ as n→ +∞. Theorem 2.4.3(1) ensures that

∫

B

(
|∇φn|2 −

2λn|x|α
(1 − un)3

φ2
n

)
dx ≥ 0 ∀φn ∈ C∞

0 (B) .
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Let εn = 1 − ‖un‖∞ → 0 as n→ +∞ and Un(y) be the rescaled function given in (2.3.20),
defined on Bn = B

ε
− 3

2+α
n λ

1
2+α
n

(0) → R
N as n → +∞. Then, by Proposition 2.3.8 Un → U

in C1
loc(R

N ) (up to a subsequence), where U solves (5.1.1). Define

φn(x) =
(
ε

3
2+α
n λ

− 1
2+α

n

)−N−2
2 φ

(
ε
− 3

2+α
n λ

1
2+α
n x

)
,

for any given φ ∈ C∞
0 (RN ). Then we have

∫ (
|∇φ|2 − 2|y|α

U3
φ2
)
dy = lim

n→∞

∫ (
|∇φ|2 − 2|y|α

U3
n

φ2
)
dy

= lim
n→∞

∫

B

(
|∇φn|2 −

2λn|x|α
(1 − un)3

φ2
n

)
dx ≥ 0 ,

since φ has compact support and Un → U in C1
loc(R

N ). Then, the function U is a semi-
stable solution of (5.1.1) and the proof of Theorem 5.1.1 is complete. �

5.2 A radial symmetry result in R
2

We continue the analysis of power-law equations on symmetric domains of §4.3. We deal
with problem (P )λ in case (4.3.1b):

−∆u =
λ

(1 − u)2
in Ω, 0 < u < 1 in Ω, u = 0 on ∂Ω, (P )λ

where the parameter λ > 0, and Ω ⊂ R
2 is a well-behaved domain. Let us recall that Ω

denotes a well-behaved domain in R
2 if 0 ∈ Ω, Ω is invariant under the 2 reflections in the

coordinate planes and, for any 0 < t < s < max
Ω

xi, (I − Pi)Di,s ⊆ (I − Pi)Di,t, where Pi is

the orthogonal projection onto Span {ei}, Di,s = {x ∈ Ω : xi = s} and {e1, e2} is the usual
basis in R

2.

Let now λn → λ ≥ 0 as n → +∞. Let un be an associated non-compact sequence of
solutions: ‖un‖∞ → 1 as n → +∞. Since the minimal branch of (P )λ is compact for
λ → 0, Theorem 4.3.1 provides that λ > 0. In the situation (4.3.1b), let us recall that, by
the moving planes method of [53], un is even in xi, i = 1, 2, and ∇un · x ≤ 0 in Ω.
Set ǫn = 1 − ‖un‖∞ → 0 as n → +∞ and introduce the rescaled function Un(y) according
to (2.3.20):

Un(y) =
1 − un

(
ε

3
2
nλ

− 1
2

n y
)

εn
, y ∈ Ωn := {y : ǫ

3
2
nλ

− 1
2

n y ∈ Ω}. (5.2.1)

Then, Un satisfies ∆Un = 1
U2

n
in Ωn and by Proposition 2.3.8, Un → U in C1

loc(R
2) as

n→ ∞ (up to a subsequence). Clearly, U(y) is an even function and satisfies

∆U =
1

U2
in R

2 , U(y) ≥ U(0) = 1. (5.2.2)

Based on the following classification result in [66]:
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Theorem 5.2.1. A solution U of (5.2.2) is radially symmetric if and only if

lim
|y|→+∞

(
U(y) − (

4

9
)−

1
3 |y| 23

)
= 0. (5.2.3)

we provide the following radial symmetry result in R
2:

Theorem 5.2.2. Let U be a solution of (5.2.2) obtained as the limit of Un in (5.2.1) as
n→ +∞. Then, U is radially symmetric.

We need first two preliminary results.

Lemma 5.2.3. Let un be a solution of (P )λn, where λn → λ > 0 as n→ +∞. Assume the
validity of (4.3.14) and (4.3.15) in the situation (4.3.1b). Then, there exists C > 0 such
that

1 − un(rθ) ≥ Cr
2
3 ∀ ǫ

3
2
nλ

− 1
2

n ≤ r ≤ r0, θ ∈ S1. (5.2.4)

Proof: We adopt the same notations in the proof of Lemma 4.3.7. Let us have in mind
that we are considering situation (4.3.1b) for which in particular N = 2 and α = 0. Let us
recall that (4.3.14) and (4.3.15) can be re-formulated in terms of vn as (4.3.19). We want
to prove the estimate

vn(s, θ) ≥ C ∀ 0 ≤ s ≤ Tn, θ ∈ S1, (5.2.5)

which is simply equivalent to (5.2.4). We omit the subscript n of vn.
Let (sn, θn) be a point of minimum of v(s, θ) in [0, Tn] × S1. Set vmin := min

[0,Tn]×S1
v =

v(sn, θn). If either 0 ≤ sn ≤ 1 or Tn − 1 ≤ sn ≤ Tn, by (4.3.16) and (4.3.17) we see that
vmin ≥ C > 0. We consider now the case 1 < sn < Tn − 1. Set m(s, θ) = 1

v3(s,θ)
. Let

∇̂ = (∂s, ∂θ), ∆̂ = ∂ss + ∂θθ be the gradient, laplacian in (s, θ)−coordinates, respectively.
By (2.4.18), the function m satisfies the equation

∆̂m =
12

v5
|∇̂v|2 + 4

vs
v4

+
4

3

1

v3
− 3

v6
≥ −4

3
ms − 3m2 +

4

3
m.

Therefore, m satisfies

∆̂m+
4

3
ms + 3m2 ≥ 0 in [sn − 1, sn + 1] × S1,

and
mmax := max

[0,Tn]×S1
m = m(sn, θn).

Define m̂(s, θ) = e
2
3
(s−sn)m(s, θ). An easy calculation implies that m̂ satisfies

∆̂m̂+ 3e−
2
3
(s−sn)m̂2 ≥ 0.

Given C0 = 3e
2
3 , we have that

∆m̂+ C0m̂
2 ≥ 0 in [sn − 1, sn + 1] × S1, (5.2.6)
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where [sn − 1, sn + 1] ⊂ [0, Tn]. The function m̃(s, θ) = C0m̂(s, θ) satisfies now

∆m̃+ m̃2 ≥ 0 in [sn − 1, sn + 1] × S1.

Given B̂r = {(s, θ) : (s − sn)
2 + (θ − θn)

2 < r2} for r < 1, Lemma 4.3.5 now implies that
there exist C, η0 > 0, independent of n, such that

m̃(s, θ) ≤ C

r2

∫

B̂r

m̃(t, θ)dtdθ for (s, θ) ∈ B̂ r
2

provided
∫
B̂r
m̃(t, θ)dtdθ ≤ η0. Given D > 0 so that

∫
S1 v

−2(s, θ)dθ ≤ D in view of (4.3.19),

we can choose 0 < r = (2C0D)−1e−
2
3 η0vmin. Since r ≥ 1 implies vmin ≥ C > 0, let us

assume r < 1 and then, B̂r ⊂ (sn − 1, sn + 1) × S1. We obtain that

∫

B̂r

m̃(t, θ)dtdθ =

∫

B̂r

C0e
2
3
(t−sn)

v3(t, θ)
dtdθ ≤

∫ sn+r

sn−r

∫

S1

C0e
2
3
(t−sn)

v3(t, θ)
dtdθ

≤ v−1
min

∫ sn+r

sn−r
C0e

2
3
(t−sn)dt

∫

S1

dθ

v2(t, θ)

≤ 2C0De
2
3 v−1
minr = η0,

which concludes that

C0v
−3
min = m̃(sn, θn) ≤

C

r2

∫

B̂r

m̃(s, θ)dsdθ = Cv−2
min.

This implies that vmin ≥ C > 0, and we are done. �

Lemma 5.2.4. Let un be a solution of (P )λn, where λn → λ > 0 as n→ +∞. Assume the
validity of (4.3.14) and (4.3.15) in the situation (4.3.1b). Then, there exists C > 0 such
that

1 − un(rθ) ≤ Cr
2
3 ∀ ǫ

3
2
nλ

− 1
2

n ≤ r ≤ r0, θ ∈ S1 (5.2.7)

and

|∂run(rθ)| ≤ Cr−
1
3 ∀ ǫ

3
2
nλ

− 1
2

n ≤ r ≤ r0, θ ∈ S1. (5.2.8)

Proof: We adopt the same notations in the proof of Lemma 4.3.7 and observe that N = 2,
α = 0 in the situation (4.3.1b). Let us recall that (4.3.14) and (4.3.15) can be re-formulated
in terms of vn as (4.3.19). Estimate (5.2.7) rewrites as

vn(s, θ) ≤ C ∀ 0 ≤ s ≤ Tn, θ ∈ S1. (5.2.9)

In view of (2.4.21): (vn)s(s, θ) + 2
3vn(s, θ) = |y| 13 (Un)r(y) for |y| = es, (5.2.8) is equivalent

to

|(vn)s(s, θ)| ≤ C ∀ 0 ≤ s ≤ Tn, θ ∈ S1 (5.2.10)
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provided |vn| ≤ C for 0 ≤ s ≤ Tn. In view of (5.2.5) given by Lemma 5.2.3, estimates
(5.2.7), (5.2.8) are equivalent to establish the validity of (5.2.9), (5.2.10). We omit the
subscript n of vn, vn and wn, where vn(s) =

∫
S1 vn(s, θ)dθ and wn(s) =

∫
S1 v

2
n(s, θ)dθ.

We first claim that
max
[0,Tn]

w(s) ≤ C. (5.2.11)

Indeed, from (4.3.21) we deduce:
∫

S1

v2
θ(s, θ)dθ −

4

9

∫

S1

v2(s, θ)dθ =
1

2

[
wss(s) +

4

3
ws(s)

]
−
∫

S1

v2
s(s, θ)dθ −

∫

S1

dθ

v(s, θ)
,

which yields to

∫

S1

v2
θ(s, θ)dθ −

4

9

∫

S1

(
v(s, θ) − 1

2π
v(s)

)2

dθ =
1

2

[
wss(s) +

4

3
ws(s)

]

−
∫

S1

v2
s(s, θ)dθ −

∫

S1

dθ

v(s, θ)
+

4

9π

∫

S1

(
v(s, θ) − 1

2π
v(s)

)
vdθ +

2

9π
v2(s).

(5.2.12)

Multiplying (2.4.18) by vs and integrating on [0, s] × S1, we obtain
∫

S1

v2
θ(s, θ)dθ =

∫

S1

v2
s(s, θ)dθ +

4

9

∫

S1

v2(s, θ)dθ + 2

∫

S1

dθ

v(s, θ)
+ f(s), (5.2.13)

where

f(s) = −2

∫

S1

dθ

v(0, θ)
+

∫

S1

v2
θ(0, θ)dθ −

4

9

∫

S1

v2(0, θ)dθ

−
∫

S1

v2
s(0, θ)dθ +

8

3

∫ s

0

∫

S1

v2
s(t, θ)dtdθ.

Thus, we deduce from (4.3.21) and (5.2.13) that

wss +
4

3
ws = 4

∫

S1

v2
s(s, θ)dθ + 6

∫

S1

dθ

v(s, θ)
+ 2f(s). (5.2.14)

For any ǫ > 0, by (5.2.12) and (5.2.14) we get that

∫

S1

v2
θ(s, θ)dθ−(

4

9
+ǫ)

∫

S1

(
v(s, θ) − 1

2π
v(s)

)2

dθ =

∫

S1

v2
s(s, θ)dθ+2

∫

S1

dθ

v(s, θ)
+f(s)+Cǫv

2(s),

in view of ab ≤ ǫa2 + 1
4ǫb

2. Using the Poincaré inequality:

∫

S1

(
v(s, θ) − 1

2π
v(s)

)2

dθ ≤
∫

S1

v2
θ(s, θ)dθ,

for ǫ < 5
9 it leads to

∫

S1

v2
θ(s, θ)dθ ≤ C

(
1 +

∫

S1

v2
s(s, θ)dθ +

∫

S1

dθ

v(s, θ)
+ v2(s)

)
,



120 CHAPTER 5. A LIMITING EQUATION

in view of |f(s)| ≤ C on [0, Tn] by (4.3.16), (4.3.22). By the Sobolev embedding theorem
and the Poincaré inequality, we have that

v2(s, θ) ≤ C

(∫

S1

v2
θ(s, θ)dθ +

∫

S1

v2(s, θ)dθ

)

≤ C
(
1 + v2(s) +

∫

S1

dθ

v(s, θ)
+

∫

S1

v2
s(s, θ)dθ

)
.

(5.2.15)

Integrating (5.2.15) on S1 and using (4.3.19) in Lemma 4.3.7, we get that

w(s) ≤ C
(
1 +

∫

S1

v2
s(s, θ)dθ

)
.

Since |f(s)| ≤ C, by (4.3.19) and (5.2.14) we deduce that

w(s) ≤ C
(
1 + wss(s) +

4

3
ws(s)

)
. (5.2.16)

Let sn be the maximum point of w on [0, Tn]: w(sn) = max
[0,Tn]

w(s). If sn = 0, Tn, by

(4.3.16) and (4.3.17) we see that w(sn) ≤ C. If sn ∈ (0, Tn), we get that ws(sn) = 0 and
wss(sn) ≤ 0 and then, (5.2.16) leads to w(sn) ≤ C also in this case. Hence, the claim
(5.2.11) is established.

We are now ready to prove (5.2.9). Given ∆̂ = ∂ss + ∂θθ, recall that

∆̂v +
4

3
vs +

(4

9
− 1

v3

)
v = 0

by means of (2.4.18) and the function v−3 is uniformly bounded in [0, Tn] × S1 by (5.2.5)
in Lemma 5.2.3. Let now (tn, θn) be the maximum point of v on [0, Tn] × S1: v(tn, θn) =

max
[0,Tn]×S1

v(s, θ). When either 0 ≤ tn ≤ 1 or Tn − 1 ≤ tn ≤ Tn, (4.3.16) and (4.3.17) yield to

v(tn, θn) ≤ C. For 1 < tn < Tn − 1, we have that

B̂1(tn, θn) := {(s, θ) : (s− tn)
2 + (θ − θn)

2 < 1} ⊂ (0, Tn) × S1.

Theorem 8.17 of [59] implies that

v(sn, θn) ≤ C
(∫

B̂1(tn,θn)
v2(s, θ)dsdθ + 1

)
≤ C (5.2.17)

in view of (5.2.11). This completes the proof of (5.2.9).

By similar arguments, we can argue to obtain

max
[0,Tn]×S1

|vs(s, θ)| ≤ C.
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Indeed, we note that vs satisfies the equation

∆̂vs +
4

3
vss +

(4

9
+

2

v3

)
vs = 0. (5.2.18)

Assume first that max
[0,Tn]×S1

|vs(s, θ)| = max
[0,Tn]×S1

vs(s, θ) is attained at the point (t̂n, θ̂n). If

either 0 ≤ t̂n ≤ 1 or Tn − 1 ≤ t̂n ≤ Tn, (4.3.16) and (4.3.17) provide that vs(t̂n, θ̂n) ≤ C.
Arguing as for (5.2.7), Theorem 8.17 of [59] and (4.3.22) imply that

vs(t̂n, θ̂n) ≤ C.

When max
[0,Tn]×S1

|vs(s, θ)| = − max
[0,Tn]×S1

vs(s, θ), we can use the same arguments for the solution

−vs of (5.2.18) and obtain
max

[0,Tn]×S1
|vs(s, θ)| ≤ C

also in this case. The proof of Lemma 5.2.4 is complete. �

We are now in position to establish Theorem 5.2.2.
Proof (of Theorem 5.2.2): In view of Theorem 5.2.1, we just need to verify (5.2.3)
on U(y). Following the same notations as in the proof of Lemma 4.3.7, for 0 < r0 <
1
2dist (0, ∂Ω) set Rn = eTn = ǫ

− 3
2

n λ
1
2
nr0 and let vn(s, θ) = |y|− 2

3Un(y), |y| = es, be the
Emden-Fowler transformation of Un. According to (2.4.18), the function vn solves in
(−∞, Tn) × S1:

vss +
4

3
vs + vθθ +

4

9
v = v−2.

Lemma 4.3.7 implies that (4.3.14), (4.3.15) hold true in the case (4.3.1b). We are in position
to apply Lemmata 5.2.3 and 5.2.4: by (5.2.5) and (5.2.9), (5.2.10) respectively we get that

1

C
≤ vn(s, θ) ≤ C , |(vn)s(s, θ)| ≤ C ∀ 0 ≤ s ≤ Tn, θ ∈ S1 (5.2.19)

for n large. Since (5.2.19) implies that Un(y) ≥ C|y| 23 in 1 ≤ |y| ≤ Rn, we get that U

satisfies U(y) ≥ C|y| 23 in R
2 in view of Un → U in C1

loc(R
2) as n → ∞. Theorem 1.3 of

[66] now gives

lim
|y|→∞

|y|− 2
3U(y) =

(4

9

)− 1
3
. (5.2.20)

Setting V (s, θ) = |y|− 2
3U(y), |y| = es, clearly we have that vn → V in C1

loc([0,∞) × S1) as
n→ ∞, where V satisfies the equation

Vss +
4

3
Vs + Vθθ +

4

9
V =

1

V 2
in [0,∞) × S1.

Property (5.2.3) is equivalent in terms of V (s, θ) to establish

lim
s→∞

e
2
3
s
(
V (s, θ) − (

4

9
)−

1
3

)
= 0. (5.2.21)
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Since U(y) is an even function, for any s V (s, ·) is a π-periodic function. Setting W (s, θ) =

V (s, θ) − V∞ and V∞ = (4
9)−

1
3 , then W (s, θ) satisfies

Wss +
4

3
Ws +Wθθ +

4

3
W = ℓ(W ), (5.2.22)

where ℓ(t) = (t + V∞)−2 − V −2
∞ + 8

9 t. Note that ℓ is real analytic at t = 0 and satisfies
ℓ(0) = ℓ′(0) = 0, ℓ′′(0) = 6V −4

∞ . We now introduce the function Z(s, θ) = W (s, θ) −W (s),
where f(s) = 1

2π

∫
S1 f(s, θ)dθ. Then Z satisfies the equation

Zss +
4

3
Zs + Zθθ +

4

3
Z = j(W ), (5.2.23)

where

j(W ) = ℓ(W ) − ℓ(W ) = ℓ(W ) − ℓ(W ) + ℓ(W ) − ℓ(W ) = o(Z) for s→ ∞

in view of lim
s→∞

W (s, θ) = lim
s→∞

W (s) = 0 uniformly in θ. In particular, it holds lim
s→∞

Z(s, θ) =

0 uniformly in θ.
Define Y (s) =

∫
S1 Z

2(s, θ)dθ. Multiplying (5.2.23) by 2Z and integrating on S1, we see
that

Yss(s) +
4

3
Ys(s) +

8

3
Y (s) − 2

∫

S1

Z2
s (s, θ)dθ − 2

∫

S1

Z2
θ (s, θ)dθ = o(Y (s)).

On the other hand, for each fixed s Z(s, ·) is a π-periodic function with Z(s) = 0. By the
Poincaré inequality on π−periodic functions, we get that

4

∫

S1

Z2(s, θ)dθ ≤
∫

S1

Z2
θ (s, θ)dθ.

Hence, we get that Yss(s) + 4
3Ys(s) − 16

3 Y (s) + o(1)Y (s) ≥ 0, which implies

Yss(s) +
4

3
Ys(s) − 4Y (s) ≥ 0.

We claim that there is C0 > 1 such that

Y (s) ≤ C0e
−τs for s large, (5.2.24)

where τ = 2
3(1 +

√
10). Since X(s) = C0e

−τs is a solution of Xss(s) + 4
3Xs(s)− 4X(s) = 0,

then

(X − Y )ss +
4

3
(X − Y )s − 4(X − Y ) ≤ 0,

X(0) − Y (0) > 0, lim
s→∞

(X(s) − Y (s)) = 0
(5.2.25)

provided C0 > Y (0). If min
(0,∞)

(X(s)− Y (s)) = X(s0)− Y (s0) < 0 for some s0 ∈ (0,∞), then

(X − Y )s(s0) = 0 and (X − Y )ss(s0) ≥ 0, in contradiction with (5.2.25). Estimate (5.2.24)
now easily follows.
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Setting Ỹ (t) =
√
Y (s), t = e−s, there exists t0 > 0 such that

Ỹ (t) ≤ C̃0t
1+

√
10

3 for t ≥ t0.

Decompose W (s, θ) as W (s, θ) = W (s) + e−
1+

√
10

3
sW̃ (s, θ). Arguing as in the proof of

Theorem 5.4 in [66], similar arguments now yield to W (s) = O(e−
1+

√
10

3
s) and, for any

integer n ≥ 0,
W̃ (s, θ) → Φ(θ) as s→ ∞

uniformly in Cn(S1), where Φ is in the first eigenspace of the operator − d2

dθ2
acting on the

π−periodic functions on S1. Namely

Φθθ + 4Φ = 0,

∫

S1

Φ(θ)dθ = 0.

It now implies that

lim
s→∞

e
2
3
sW (s, θ) = 0,

since 1
3(1 +

√
10) > 2

3 . This completes the proof of Theorem 5.2.2. �
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Chapter 6

Dynamic Deflection

The second part of this text is devoted to the dynamic deflection of the elastic membrane
satisfying (1.2.17). Throughout this Chapter and unless mentioned otherwise, for conve-
nience we study dynamic solutions of (1.2.17) in the form

∂u

∂t
− ∆u =

λf(x)

(1 − u)2
for x ∈ Ω , (6.0.1a)

u(x, t) = 0 for x ∈ ∂Ω; u(x, 0) = 0 for x ∈ Ω , (6.0.1b)

where nonnegative f ∈ Cα(Ω̄) for some α ∈ (0, 1] describes the permittivity profile of the
elastic membrane shown in Figure 1.1, while λ > 0 characterizes the applied voltage, see
§1.3.2. In this Chapter we deal with issues of global convergence, finite and infinite time
“touchdown”, and touchdown profiles as well as pull-in distance. Recall that a point x0 ∈ Ω̄
is said to be a touchdown point for a solution u(x, t) of (1.1), if for some T ∈ (0,+∞], we
have lim

tn→T
u(x0, tn) = 1. T is then said to be a –finite or infinite– touchdown time. For each

such solution, we define its corresponding –possibly infinite– “first touchdown time”:

Tλ(Ω, f, u) = inf
{
t ∈ (0,+∞]; sup

x∈Ω
u(x, t) = 1

}
.

In §6.1, we analyze the relationship between the applied voltage λ, the permittivity
profile f , and the dynamic deflection u of the elastic membrane. More precisely, for λ∗

defined as in Theorem 2.2.4, we show in §§6.1.1 & 6.1.3 that if λ ≤ λ∗, then the unique
dynamic solution of (6.0.1) must globally converge to its unique minimal steady-state, while
if λ > λ∗, then the unique dynamic solution of (6.0.1) must touchdown at finite time, see
§6.1.2. The latter occurrence referred to sometimes as quenching. Note that in the case
where the unique minimal steady-state of (6.0.1) at λ = λ∗ is non-regular – which can
happen if N ≥ 8 – Theorem 2.2.4 and §6.1.2 surprisingly show that the corresponding
dynamic solution may touchdown at infinite time.

In §6.2 we first compute some global convergence or touchdown behavior of (6.2.1)
for different applied voltage λ, and we then prove rigorously the following surprising fact
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exhibited by the numerical simulations: for λ > λ∗, finite-time touchdown cannot occur at
the zero points of the permittivity profile f .

§6.3 is focussed on the analysis and estimate of finite touchdown time, which often
translates into useful information concerning the speed of the operation for many MEMS
devices such as RF switches or micro-valves. In §6.4 we discuss touchdown profiles by the
method of asymptotic analysis, and our purpose is to provide some information on the
refined touchdown rate discussed in next Chapter.

§6.5 is devoted to the pull-in distance of MEMS devices, referred to as the maximum
stable deflection of the elastic membrane before touchdown occurs. We provide numerical
results for pull-in distance with some explicit examples, from which one can observe that
both larger pull-in distance and pull-in voltage can be achieved by properly tailoring the
permittivity profile. Some other unproved phenomena are also observed there, which may
be interesting to some readers.

6.1 Global convergence or touchdown

In this section, we analyze the relationship between the applied voltage λ, the permittivity
profile f , and the dynamic deflection u of (6.0.1). The main result of this section can be
stated in the following theorem.

Theorem 6.1.1. Suppose λ∗ := λ∗(Ω, f) is the pull-in voltage defined in Theorem 2.2.4,
then the following hold:

1. If λ ≤ λ∗, then there exists a unique solution u(x, t) for (6.0.1) which globally converges
as t→ +∞, monotonically and pointwise to its unique minimal steady-state.

2. If λ > λ∗, then the unique solution u(x, t) of (6.0.1) must touchdown at a finite time.

First, we note the following uniqueness result.

Lemma 6.1.2. Suppose u1 and u2 are solutions of (6.0.1) on the interval [0, T ] such that
‖ui‖L∞(Ω̄×[0,T ]) < 1 for i = 1, 2, then u1 ≡ u2.

Proof: Indeed, the difference U = u1 − u2 then satisfies

Ut − ∆U = αU in Ω (6.1.1)

with initial data U(x, 0) = 0 and zero boundary condition. Here

α(x, t) =
λ(2 − u1 − u2)f(x)

(1 − u1)2(1 − u2)2
.

The assumption on u1, u2 implies that α(x, t) ∈ L∞(Ω̄× [0, T ]). We now fix T1 ∈ [0, T ] and
consider the solution φ of the problem





φt + ∆φ+ αφ = 0 x ∈ Ω, 0 < t < T1,
φ(x, T1) = θ(x) ∈ C0(Ω),
φ(x, t) = 0 x ∈ ∂Ω,

(6.1.2)
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The standard linear theory (cf. Theorem 8.1 of [80]) gives that the solution of (6.1.2) is
unique and bounded. Now multiplying (6.1.1) by φ, and integrating it on Ω × [0, T1],
together with (6.1.2), yield that

∫

Ω
U(x, T1)θ(x)dx = 0

for arbitrary T1 and θ(x), which implies that U ≡ 0, and we are done. �

6.1.1 Global convergence when λ < λ∗

Theorem 6.1.3. Suppose λ∗ := λ∗(Ω, f) is the pull-in voltage defined in Theorem 2.2.4,
then for λ < λ∗ there exists a unique global solution u(x, t) for (6.0.1) which monotonically
converges as t→ +∞ to the unique minimal solution u

λ
(x) of (S)λ.

Proof:: This is standard and follows from the maximum principle combined with the
existence of regular minimal steady-state solutions at this range of λ. Indeed, fix 0 < λ < λ∗,
and use Theorem 2.4.3 to obtain the existence of a unique minimal solution u

λ
(x) of (S)λ. It

is clear that the pair ũ ≡ 0 and û = u
λ
(x) are sub- and super-solutions of (6.0.1) for all t > 0.

This implies that the unique global solution u(x, t) of (6.0.1) satisfies 1 > u
λ
(x) ≥ u(x, t) ≥ 0

in Ω × (0,∞).
By differentiating in time and setting v = ut, we get for any fixed t0 > 0

vt = ∆v +
2λf(x)

(1 − u)3
v x ∈ Ω , 0 < t < t0 , (6.1.3a)

v(x, t) = 0 x ∈ ∂Ω , v(x, 0) ≥ 0 x ∈ Ω . (6.1.3b)

Here 2λf(x)
(1−u)3 is a locally bounded non-negative function, and by the strong maximum prin-

ciple, we get that ut = v > 0 for (x, t) ∈ Ω × (0, t0) or ut ≡ 0. The second case is
impossible because otherwise u(x, t) ≡ uλ(x) for any t > 0. It follows that ut > 0 holds
for all (x, t) ∈ Ω × (0,∞), and since u(x, t) is bounded, this monotonicity property implies
that the unique global solution u(x, t) converges to some function us(x) as t→ ∞. Hence,
1 > uλ(x) ≥ us(x) > 0 in Ω.

Next we claim that the limit us(x) is a solution of (S)λ. Indeed, consider a solution u1

of the linear stationary boundary problem

−∆u1 =
λf(x)

(1 − us)2
x ∈ Ω , u1 = 0 x ∈ ∂Ω . (6.1.4)

Let w(x, t) = u(x, t) − u1(x), then w satisfies

wt − ∆w = λf(x)
[ 1

(1 − u)2
− 1

(1 − us)2
]
, (x, t) ∈ Ω × (0, T ) ; (6.1.5a)

w(x, t) = 0 x ∈ ∂Ω × (0, T ) ; w(x, 0) = −u1(x) x ∈ Ω . (6.1.5b)
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Since the right side of (6.1.5a) converges to zero in L2(Ω) as t→ ∞, a standard eigenfunction
expansion implies that the solution w of (6.1.5) also converges to zero in L2(Ω) as t → ∞.
This shows that u(x, t) → u1(x) in L2(Ω) as t → ∞. But since u(x, t) → us(x) pointwise
in Ω as t → ∞, we deduce that u1(x) ≡ us(x) in L2(Ω), which implies that us(x) is also
a solution for (S)λ. The minimal property of u

λ
(x) then yields that u

λ
(x) ≡ us(x) on Ω,

which follows that for every x ∈ Ω, we have u(x, t) ↑ u
λ
(x) as t→ ∞. �

6.1.2 Touchdown at finite time when λ > λ∗

Recall from Theorem 2.2.4 that there is no solution for (S)λ as soon as λ > λ∗. Since the
solution u(x, t) of (6.0.1) –whenever it exists– is strictly increasing in time t ((see preceding
theorem)), then there must be T ≤ ∞ such that u(x, t) reaches 1 at some point of Ω̄
as t → T−. Otherwise, a proof similar to Theorem 6.1.3 would imply that u(x, t) would
converge to its steady-state which is then the unique minimal solution uλ of (S)λ, contrary
to the hypothesis that λ > λ∗. Therefore for this case, it only remains to know whether the
touchdown time is finite or infinite. This is exactly what we prove in the following.

Theorem 6.1.4. Suppose λ∗ := λ∗(Ω, f) is the pull-in voltage defined in Theorem 2.2.4,
then for λ > λ∗, there exists a finite time Tλ(Ω, f) at which the unique solution u(x, t) of
(6.0.1) must touchdown. Moreover, if infx∈Ω f(x) > 0, then we have the bound

Tλ(Ω, f) ≤ T0,λ :=
8(λ+ λ∗)2

3 infx∈Ω f(x)(λ− λ∗)2(λ+ 3λ∗)

[
1 +

( λ+ 3λ∗

2λ+ 2λ∗

)1/2]
. (6.1.6)

We start by transforming the problem from a touchdown situation (i.e. quenching) into
a blow-up problem where a concavity method can be used. For that, we set V = 1/(1 − u)
which reduces (6.0.1) to the following parabolic problem

Vt − ∆V = −2|∇V |2
V

+ λf(x)V 4 for x ∈ Ω , (6.1.7a)

V (x, t) = 1 for x ∈ ∂Ω , (6.1.7b)

V (x, 0) = 1 for x ∈ Ω . (6.1.7c)

This transformation implies that when λ > λ∗, the solution of (6.1.7) must blow up (in finite
or infinite time) and that there is no solution for the corresponding stationary equation:

∆V − 2|∇V |2
V

+ λf(x)V 4 = 0 , x ∈ Ω ; V = 1 , x ∈ ∂Ω . (6.1.8)

Therefore, proving finite touchdown time of u for (6.0.1) is equivalent to showing finite
blow-up time of the solution V for (6.1.7).

In the case where infx∈Ω f(x) = 0, we will also need to consider the stationary problem
on a subset Ωǫ := {x ∈ Ω : f(x) > ǫ} of Ω, where ǫ > 0 is small enough. We recall from
§2.1.2 the following properties for the corresponding pull-in voltage λ∗(Ωǫ, f):

λ∗(Ωǫ, f) ≥ λ∗ = λ∗(Ω, f) and limǫ→0 λ
∗(Ωǫ, f) = λ∗.
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For the proof, we shall first analyze the following auxiliary parabolic equation

vt − ∆v = −2|∇v|2
v

+ λa2t2f(x)v4 for x ∈ Ω , (6.1.9a)

v = 1 for x ∈ ∂Ω , (6.1.9b)

v(x, 0) = 1 for x ∈ Ω , (6.1.9c)

where a > 0 is a given constant.

Lemma 6.1.5. Suppose v is a solution of (6.1.9) up to a finite time T̄ , then
(
vt
v4

)
t
≥ 0 for

all t < T̄ .

Proof: Dividing (6.1.9a) by v4, we obtain

vt
v4

=
∆v

v4
− 2|∇v|2

v5
+ λa2t2f(x) .

Setting w = v−3, then direct calculations show that

wt − ∆w +
2|∇w|2

3w
+ 3λa2t2f(x) = 0 . (6.1.10)

Differentiate (6.1.10) twice with respect to t, we obtain

( |∇w|2
w

)
tt

=
(2∇w∇wt

w
− |∇w|2wt

w2

)
t

=
2∇w∇wtt

w
+

2|∇wt|2
w

− 4∇w∇wtwt
w2

− |∇w|2wtt
w2

+
2|∇w|2w2

t

w3
,

which means that the function

z = wtt = −3
( vt
v4

)
t

(6.1.11)

satisfies

L(z) : = zt − ∆z +
4∇w
3w

∇z − 2|∇w|2
3w2

z

= −6λa2f(x) − 2

3

[2|∇wt|2
w

+
2|∇w|2w2

t

w3
− 4∇w∇wtwt

w2

]

≤ −6λa2f(x) ,

after an application of Cauchy-Schwarz inequality. Hence we have

L(z) ≤ −6λa2f(x) ≤ 0 . (6.1.12)

Now from (6.1.9) and the definition of z, we have z(x, 0) = 0 and z = 0 on ∂Ω. Since the
coefficients of L remain bounded as long as v is bounded, we conclude from the maximum
principle that z(x, t) ≤ 0 holds for all t < T̄ . This completes the proof of Lemma 6.1.5. �
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Proof of Theorem 6.1.4: Let λ > λ∗ and let ǫ > 0 be small enough so that λ >
λ∗(Ωǫ, f) ≥ λ∗. Let λ′ = λ− λ∗ > 0, and set

aǫ =
3ǫλ′(4λ∗ + λ′)
4(2λ∗ + λ′)

[
1 −

( 4λ∗ + λ′

2(2λ∗ + λ′)

)1/2]
, (6.1.13a)

and

T ǫ0,λ =
1

aǫ
=

8(λ+ λ∗)2

3ǫ(λ− λ∗)2(λ+ 3λ∗)

[
1 +

( λ+ 3λ∗

2λ+ 2λ∗

)1/2]
< +∞ . (6.1.13b)

Consider now a solution v of (6.1.9) corresponding to λ = λ∗ + λ′ and aǫ as defined in
(6.1.13a). We first establish the following

Claim: There exists xǫ ∈ Ω with f(xǫ) > ǫ such that v(xǫ, t) → ∞ as tր T ǫ0,λ.

Indeed, let tǫ = 1
aǫ

[
4λ∗+λ′

2(2λ∗+λ′)

]1/2
in such a way that

tǫ < T ǫ0,λ and a2
ǫ t

2
ǫ (λ

∗ +
λ′

2
) = λ∗ +

λ′

4
.

We claim that there exists xǫ ∈ Ωǫ such that

∆v(xǫ, tǫ) −
2|∇v(xǫ, tǫ)|2
v(xǫ, tǫ)

+ (λ∗ +
λ′

4
)f(xǫ)|v(xǫ, tǫ)|4 > 0 . (6.1.14)

Indeed, otherwise we get that for all x ∈ Ωǫ

∆v(x, tǫ) −
2|∇v(x, tǫ)|2
v(x, tǫ)

+ (λ∗ +
λ′

4
)f(xǫ)|v(x, tǫ)|4 ≤ 0 . (6.1.15)

Since v(x, tǫ) ≥ 1 on Ω and hence on Ωǫ, this means that the function v̄(x) = v(x, tǫ) is a
supersolution for the equation

∆V − 2|∇V |2
V

+ λf(x)V 4 = 0 , x ∈ Ωǫ ; V = 1 , x ∈ ∂Ωǫ . (6.1.16)

Since v ≡ 1 is obviously a subsolution of (6.1.16), it follows that the latter has a solution
which contradicts the fact that λ = λ∗ + λ′

4 > λ∗(f,Ωǫ) ≥ λ∗. Hence assertion (6.1.14) is
verified.

On the other hand, we do get from (6.1.9) that for t = tǫ and every x ∈ Ω,

vt = ∆v − 2|∇v|2
v

+ (λ∗ +
λ′

4
)f(x)v4 +

λ′

2
a2
ǫ t

2
ǫf(x)v4 . (6.1.17)

We then deduce from (6.1.17) and (6.1.14) that at the point (xǫ, tǫ), we have

vt
v4

≥ λ′

2
a2
ǫ t

2
ǫf(xǫ) > 0.
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Applying Lemma 6.1.5, we then get for all (xǫ, t), tǫ ≤ t < T ǫ0,λ that:

vt
v4

≥ λ′

2
a2
ǫ t

2
ǫf(xǫ) > 0. (6.1.18)

Integrating (6.1.18) with respect to t in (tǫ, T
ǫ
0,λ), we obtain since f(xǫ) ≥ ǫ that:

1

3

(
1 − v−3(xǫ, T

ǫ
0,λ)
)
≥ λ′

2
a2
ǫ t

2
ǫf(xǫ)(T

ǫ
0,λ − tǫ) ≥

λ′

2
a2
ǫ t

2
ǫǫ(T

ǫ
0,λ − t0) =

1

3
.

It follows that v(xǫ, t) → ∞ as tր T ǫ0,λ, and the claim is proved.

To complete the proof of Theorem 6.1.4, we note that since a2
ǫ t

2 ≤ 1 for all t ≤ T ǫ0,λ, we
obtain from (6.1.9) that

vt ≤ ∆v − 2|∇v|2
v

+ λf(x)v4 , (x, t) ∈ Ω × (0, T ǫ0,λ).

Setting w = V − v, where V is the solution of (6.1.7), then w satisfies

wt−∆w− 2∇(V + v)

V
∇w+

[
λ(V 2 +v2)(V +v)f(x)+

2|∇v|2
V v

]
w ≥ 0 , (x, t) ∈ Ω×(0, T ǫ0,λ).

Here the coefficients of ∇w and w are bounded functions as long as V and v are both
bounded. It is also clear that w = 0 on ∂Ω and w(x, 0) = 0. Applying the maximum
principle, we reduce that w ≥ 0 and thus V ≥ v. Consequently, V must also blow up at
some finite time T ≤ T ǫ0,λ, which means that u must touchdown at some finite time prior
to T ǫ0,λ.

Note that we have really proved that for any ǫ > 0, there exists λ∗ǫ ≥ λ∗ such that for
any λ > λ∗ǫ , the solution of (6.0.1) touches down at a time prior to

T ǫ0,λ =
1

3 max{ǫ, infΩ f}
8(λ+ λ∗)2

(λ− λ∗)2(λ+ 3λ∗)

[
1 +

( λ+ 3λ∗

2λ+ 2λ∗

)1/2]
< +∞ . (6.1.19)

Moreover λ∗ǫ → λ∗ as ǫ→ 0. In the case where infx∈Ω f(x) > 0, formula (6.1.19) reduces to
our second claim in Theorem 6.1.4. �

6.1.3 Global convergence or touchdown in infinite time for λ = λ∗

In order to complete the proof of Theorem 6.1.1, the rest is to discuss the dynamic behavior
of (6.0.1) at λ = λ∗. For this critical case, there exists a unique steady-state w∗ of (6.0.1)
obtained as a pointwise limit of the minimal solution uλ as λ ↑ λ∗. If w∗ is regular (i.e, if it
is a classical solution such as in the case when N ≤ 7) a similar proof as in the case where
λ < λ∗, yields the existence of a unique solution u∗(x, t) which globally converges to the
unique steady-state w∗ as t → ∞. On the other hand, if w∗ is a non-regular steady-state,
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i.e. if ‖w∗‖∞ = 1, the situation is complicated as we shall still prove global convergence to
the extremal solution, which then amounts to a touchdown in infinite time.

Throughout this subsection, we shall consider the unique solution 0 ≤ u∗ = u∗(x, t) < 1
for the problem

u∗t − ∆u∗ =
λ∗f(x)

(1 − u∗)2
for (x, t) ∈ Ω × [0, t∗) , (6.1.20a)

u∗(x, t) = 0 for x ∈ ∂Ω × [0, t∗) , (6.1.20b)

u∗(x, 0) = 0 for x ∈ Ω , (6.1.20c)

where t∗ is the maximal time for existence. We shall use techniques developed in [13] to
establish the following

Theorem 6.1.6. If w∗ is a non-regular minimal steady-state of (6.1.20), then there exists
a unique global solution u∗ of (6.1.20) such that u∗(x, t) ≤ w∗(x) for all t < ∞, while
u∗(x, t) → w∗(x) as t→ ∞. In particular, lim

t→+∞
‖u∗(x, t)‖∞ = 1.

The proof of Theorem 6.1.6 needs to use the following lemma.

Lemma 6.1.7. Consider the function δ(x) := dist(x, ∂Ω), then for any 0 < T < ∞, there
exists ε1 = ε1(T ) such that for 0 < ε ≤ ε1 the solution Zε of the problem

Zt − ∆Z = −εf(x) in Ω × (0,∞) ,
Z(x, t) = 0 on ∂Ω × (0,∞) ,
Z(x, 0) = δ(x) in Ω

satisfies Zε ≥ 0 on [0, T ] × Ω̄.

Proof: Let
(
T (t)

)
t≥0

be the heat semigroup with Dirichlet boundary condition, and con-
sider the solution ξ0 of

−∆ξ0 = 1 in Ω ; ξ0 = 0 on ∂Ω .

then we have

ξ0 = T (t)ξ0 +

∫ t

0
T (s)1Ωds

for all t ≥ 0. Since T (t)ξ0 ≥ 0, it follows that

∫ t

0
T (s)1Ωds ≤ ξ0 ≤ Cδ for all t ≥ 0 . (6.1.21)

On the other hand, we have

Zε(t) = T (t)δ − εf

∫ t

0
T (s)1Ωds ,
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and so we have Zε(t) ≥ T (t)δ − εCδ. Consider now c0, c1 > 0 such that c0φ1 ≤ δ ≤ c1φ1,
where φ1 is the first eigenfunction of −∆ in H1

0 (Ω), associated to the eigenvalue µ1. We
have

T (t)δ ≥ c0T (t)φ1 = c0e
−µ1tφ1 ≥ c0

c1
e−µ1tδ .

Therefore, we have Zε(t) ≥
(
c0
c1
e−µ1t − Cε

)
δ. And hence it follows that Zε(t) ≥ 0 on [0, T ]

provided ε ≤ c0
c1C

e−µ1T . �

Proof of Theorem 6.1.6: We proceed in four steps.

Claim 1. We have that u∗(x, t) ≤ w∗(x) for all (x, t) ∈ Ω × [0, t∗). Indeed, fix any T < t∗

and let ξ be the solution of the backward heat equation:

ξt − ∆ξ = h(x, t) in Ω × (0, T ) ,
ξ|∂Ω = 0 , ξ(T ) = 0 ,

where h(x, t) ≥ 0 is in Ω × (0, T ). Multiplying (6.1.20) by ξ and integrating on Ω × (0, T )
we find that ∫ T

0

∫

Ω
u∗h dxdt =

∫ T

0

∫

Ω

λ∗ξf(x)

(1 − u∗)2
dxdt .

On the other hand,

−
∫ T

0

∫

Ω
w∗ξt dxdt =

∫

Ω
w∗ξ(0)dx and −

∫ T

0

∫

Ω
w∗∆ξ dxdt =

∫ T

0

∫

Ω

λ∗ξf(x)

(1 − w∗)2
dxdt.

Therefore, we have

∫ T

0

∫

Ω
(u∗ − w∗)h dxdt ≤

∫

Ω
w∗ξ(0)dx+

∫ T

0

∫

Ω
(u∗ − w∗)h dxdt

=

∫ T

0

∫

Ω

( 1

(1 − u∗)2
− 1

(1 − w∗)2

)
λ∗ξf(x) dxdt

≤ C

∫ T

0

∫

{u∗≥w∗}

( 1

(1 − u∗)2
− 1

(1 − w∗)2

)
ξ dxdt

≤ C

∫ T

0

∫

Ω
(u∗ − w∗)+ξ dxdt,

since ‖u∗‖∞ < 1 for t ∈ [0, T ). Therefore, we have

∫ T

0

∫

Ω
(u∗ − w∗)h dxdt ≤ C

(∫ T

0

∫

Ω
[(u∗ − w∗)+]2 dxdt

)1/2(∫ T

0

∫

Ω
ξ2 dxdt

)1/2
.

On the other hand, ξ(x, t) =
∫ T
t T (s − t)h(x, s)ds , where T (t) is the heat semigroup with

Dirichlet boundary condition, and hence

‖ξ(x, t)‖2
L2 ≤

(∫ T

t
‖h(x, s)‖L2ds

)2
≤ (T − t)

∫ T

0

∫

Ω
h2 dxdt .
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Therefore, ∫ T

0

∫

Ω
ξ2 dxdt ≤ T 2

2

∫ T

0

∫

Ω
h2 dxdt,

and so,

∫ T

0

∫

Ω
(u∗ − w∗)h dxdt ≤ CT√

2

(∫ T

0

∫

Ω
[(u∗ − w∗)+]2 dxdt

)1/2(∫ T

0

∫

Ω
h2 dxdt

)1/2
.

Letting h converge to (u∗ − w∗)+ in L2, and since u∗ − w∗ ∈ L1(Ω) we have

∫ T

0

∫

Ω
[(u∗ − w∗)+]2 dxdt ≤ CT√

2

∫ T

0

∫

Ω
[(u∗ − w∗)+]2 dxdt ,

which gives that u∗ ≤ w∗ provided C2T 2 < 2, and our first claim follows.

Claim 2. There exist 0 < τ1 < t∗, and C0, c0 > 0 such that for all x ∈ Ω

u∗(x, τ1) ≤ min{C0δ(x); w
∗(x) − c0δ(x)} . (6.1.22)

Fix 0 < τ < t∗ sufficiently small, and let v be the solution of

vt − ∆v =
λ∗f(x)

(1 − v)2
for (x, t) ∈ Ω × [0, T̄ ) , (6.1.23a)

v(x, t) = 0 for x ∈ ∂Ω × [0, T̄ ) , (6.1.23b)

v(x, 0) = v0 = u∗(x, τ) for x ∈ Ω , (6.1.23c)

where [0, T̄ ) is the maximal interval of existence for v. Similarly to Claim 1, we can show
that 0 ≤ v ≤ w∗. Choose now K > 1 sufficiently large such that the path z(x, t) :=
u∗(x, t) + 1

KT (t)v0 satisfies ‖z(x, t)‖∞ ≤ 1 for 0 ≤ t < T̄ . We then have

zt − ∆z =
λ∗f(x)

(1 − u∗)2
≤ λ∗f(x)

(1 − z)2
in Ω × (0, T̄ ) ,

z(x, t) = 0 on ∂Ω × (0, T̄ ) ,

z(x, 0) =
v0(x)

K
in Ω ,

and the maximum principle gives that z ≤ v. Consider now a function γ : [0,∞) → R such
that γ(t) > 0 and

T (t)v0 ≥ Kγ(t)δ on Ω. (6.1.24)

We then get

u∗ ≤ v − 1

K
T (t)v0 ≤ w∗ − 1

K
T (t)v0 ≤ w∗ − γ(t)δ for 0 ≤ t < T̄ . (6.1.25)
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On the other hand, for any 0 ≤ t ≤ T < t∗, u∗ is bounded by some constant M < 1 on
Ω̄ × [0, T ] such that

u∗ ≤MT (t)1Ω +
C

(1 −M)2

∫ t

0
T (s)1Ωds .

Consider now a function C : [0,∞) → R such that T (t)1Ω ≤ C(t)δ for t ≥ 0, which means
that

u∗ ≤MC(t)δ + C(M)Cδ

for any 0 ≤ t ≤ T , where (6.1.21) is applied. This combined with (6.1.25) conclude the
proof of Claim (6.1.22).

Claim 3. For 0 < ε < 1 there exists wε satisfying ‖wε‖∞ < 1 and
∫

Ω
∇wε∇ϕ ≥

∫

Ω

( 1

(1 − wε)2
− ε
)
λ∗ϕf(x) (6.1.26)

for all ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 on Ω. Moreover, there exists 0 < ε1 ≤ 1 such that for

0 < ε < ε1, we also have

0 ≤ wε(x) −
c0
2
δ(x) for x ∈ Ω (6.1.27)

c0 being as in (6.1.22).
To prove (6.1.26), we set

g(w∗) =
1

(1 − w∗)2
, h(w∗) =

∫ w∗

0

ds

g(s)
, 0 ≤ w∗ < 1 . (6.1.28)

For any ε ∈ (0, 1) we also set

g̃(w∗) =
1

(1 − w∗)2
− ε , h̃(w∗) =

∫ w∗

0

ds

g̃(s)
, 0 ≤ w∗ < 1 , (6.1.29)

and φε(w
∗) := h̃−1

(
h(w∗)

)
. It is easy to check that φε(0) = 0 and 0 ≤ φε(s) < s for s ≥ 0,

and φε is increasing and concave with

φ′ε(s) =
g(φε(s)) − ε

g(s)
> 0 .

Setting wε = φε(w
∗), we have for any ϕ ∈ H1

0 (Ω) with ϕ ≥ 0 on Ω,

∫

Ω
∇wε∇ϕ =

∫

Ω
φ′ε(w

∗)∇w∗∇ϕ =

∫

Ω
∇w∗∇

(
φ′ε(w

∗)ϕ
)
−
∫

Ω
φ′′ε(w

∗)ϕ|∇w∗|2

≥
∫

Ω

λ∗f(x)

(1 − w∗)2
φ′ε(w

∗)ϕ =

∫

Ω

( 1

(1 − wε)2
− ε
)
λ∗ϕf(x) ,

which gives (6.1.26) for any ε ∈ (0, ε0).
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In order to prove (6.1.27), we set

η(x) = min{w∗(x), (C0 + c0)δ(x)} and ηε = φε ◦ η ,
where φε(·) is defined above, and C0 and c0 are as in (6.1.22). Since η ≤ w∗ and φε is
increasing, we have ηε ≤ φε(w

∗) = wε. Applying (6.1.22) we get that

0 ≤ η(x) − c0δ(x) on Ω . (6.1.30)

We also note that ηε = φε(η) ≤ η ≤ M with M = (C0 + c0)δ(x), and φ′ε(s) → 1 as ε → 0
uniformly in [0, 1]. Therefore, for some θ ∈ (0, 1) we have

η − ηε = η −
(
φε(η) − φε(0)

)
= η

(
1 − φ′ε(θη)

)
≤ η sup

{0≤s≤1}
(1 − φ′ε(s))

≤ (C0 + c0)δ sup
{0≤s≤1}

(1 − φ′ε(s)) ≤
c0
2
δ

provided ε small enough, which gives

η ≤ ηε +
c0
2
δ . (6.1.31)

We now conclude from (6.1.30) and (6.1.31) that

0 ≤ η − c0δ ≤ ηε −
c0
2
δ ≤ wε −

c0
2
δ

for small ε > 0, and (6.1.27) is therefore proved.

To complete the proof of Theorem 6.1.6, we assume that t∗ < ∞ and we shall work
towards a contradiction. In view of Claim 3), we let ε > 0 be small enough so that
0 ≤ wε − c0

2 δ. Use Lemma 6.1.7 and choose K > 2 large enough such that the solution Z
of the problem

Zt − ∆Z = −ελ∗f(x) in Ω × (0, t∗) ,

Z(x, t) = 0 on ∂Ω × (0, t∗) ,

Z(x, 0) =
c0
K
δ in Ω

satisfies 0 ≤ Z < 1 − u∗ on Ω̄ × (0, t∗). Let v be the solution of

vt − ∆v =
( 1

(1 − |v|)2 − ε
)
λ∗f(x) in Ω × (0, s∗) ,

v(x, t) = 0 on ∂Ω × (0, s∗) ,
v(x, 0) = wε in Ω ,

where [0, s∗) is the maximal interval of existence for v. Setting z(x, t) = Z(x, t) + u∗(x, t)
for 0 ≤ t < t∗, we then have 0 ≤ u∗ ≤ z < 1 and

zt − ∆z =
( 1

(1 − u∗)2
− ε
)
λ∗f(x) ≤

( 1

(1 − z)2
− ε
)
λ∗f(x) in Ω × (0, t∗) ,

z(x, t) = 0 on ∂Ω × (0, t∗) ,

z(x, 0) =
c0
K
δ(x) ≤ wε(x) in Ω .
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Now the maximum principle gives that z ≤ v on Ω × (0,min{s∗, t∗}), and in particular
we have 0 ≤ v on Ω × (0,min{s∗, t∗}). Furthermore, the maximum principle and (6.1.26)
also yield that v ≤ wε. Since ‖wε‖∞ < 1 we necessarily have t∗ < s∗ = ∞. Therefore,
u∗ ≤ z ≤ v ≤ wε on [0, t∗), which implies that ‖u∗‖∞ < 1 at t = t∗, which contradicts to
our initial assumption that u∗ is not a regular solution. �

6.2 Location of touchdown points

In this section, we first present a couple of numerical simulations for different domains,
different permittivity profiles, and various values of λ, by applying an implicit Crank-
Nicholson scheme (see [64] for details), on the problem

∂u

∂t
− ∆u = − λf(x)

(1 + u)2
for x ∈ Ω , (6.2.1a)

u(x, t) = 0 for x ∈ ∂Ω ; u(x, 0) = 0 for x ∈ Ω , (6.2.1b)

in the following two choices for the domain Ω

Ω : [−1/2, 1/2] (slab) ; Ω : x2 + y2 ≤ 1 (unit disk) . (6.2.2)
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(a). f(x) = |2x| and λ = 4.38
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converge to the maximal negative steady−state 
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Figure 6.1: Left Figure: u versus x for λ = 4.38. Right Figure: u versus x for λ = 4.50.
Here we consider (6.2.1) with f(x) = |2x| in the slab domain.

Simulation 1: We consider f(x) = |2x| for a permittivity profile in the slab domain
−1/2 ≤ x ≤ 1/2. Here the number of the meshpoints is chosen as N = 2000 for the plots
u versus x at different times. Figure 6.1(a) shows, for λ = 4.38, a typical sequence of
solutions u for (6.2.1) approaching to the maximal negative steady-state. In Figure 6.1(b)
we take λ = 4.50 and plot u versus x at different times t = 0, 0.1880, 0.3760, 0.5639, 0.7519,
0.9399, 1.1279, 1.3159, 1.5039, 1.6918, 1.879818, and a touchdown behavior is observed at
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(a). f(r) = r and λ = 1.70
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Figure 6.2: Left Figure: u versus r for λ = 1.70. Right Figure: u versus r for λ = 1.80.
Here we consider (6.2.1) with f(r) = r in the unit disk domain.

two different nonzero points x = ±0.14132. These numerical results and Theorem 6.1.1
point to a pull-in voltage 4.38 ≤ λ∗ < 4.50.

Simulation 2: Here we consider f(r) = r for a permittivity profile in the unit disk
domain. The number of meshpoints is again chosen to be N = 2000 for the plots u versus
r at different times. Figure 6.2(a) shows how for λ = 1.70, a typical sequence of solu-
tions u for (6.2.1) approach to the maximal negative steady-state. In Figure 6.2(b) we
take λ = 1.80 and plot u versus r at different times t = 0, 0.4475, 0.8950, 1.3426, 1.7901,
2.2376, 2.6851, 3.1326, 3.5802, 4.0277, 4.4751942, and a touchdown behavior is observed at
the nonzero points r = 0.21361. Again these numerical results point to a pull-in voltage
1.70 ≤ λ∗ < 1.80.

One can observe from above that touchdown points at finite time are not the zero points
of the varying permittivity profile f , a fact firstly observed and conjectured in [64]. The
main purpose of this section is to analyze this phenomena. Here is the main result without
any additional assumption on the domain.

Theorem 6.2.1. Suppose u(x, t) is a touchdown solution of (6.0.1) at a finite time T , then
we have

1. The permittivity profile f cannot vanish on an isolated set of touchdown points in Ω.

2. On the other hand, zeroes of the permittivity profile can be locations of touchdown in
infinite time.

Note that Theorem 6.2.1 holds for any bounded domain. The proof of Theorem 6.2.1 is
based on the following Harnack-type estimate.

Lemma 6.2.2. For any compact subset K of Ω and any m > 0, there exists a constant
C = C(K,m) > 0 such that supx∈K |u(x)| ≤ C < 1 whenever u satisfies

∆u ≥ m

(1 − u)2
x ∈ Ω ; 0 ≤ u < 1 x ∈ Ω . (6.2.3)
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Proof: Setting v = 1/(1 − u), then (6.2.3) gives that v satisfies

∆v

v2
− 2|∇v|2

v3
≥ mv2 in Ω ,

which means that v is a subsolution of the “linear” equation ∆v = 0 in Ω. In order to
apply the Harnack inequality on v, we need to show that for balls Br ⊂ Ω, we have that
v ∈ L3(Br) with an L3-norm that only depends on m and the radius r.

Without loss of generality, we may assume 0 ∈ K ⊂ Ω. Let Br = Br(0) ⊂ K be the
ball centered at x = 0 and radius r. For 0 < r1 < r2 ≤ 4r1, let η(x) ∈ C∞

0 (Br2
) be such

that η ≡ 1 in Br1
, 0 ≤ η ≤ 1 in Br2

\ Br1
and |∇η| ≤ 2/(r2 − r1). Multiplying (6.2.3) by

φ2/(1− u), where φ = ηα and α ≥ 1 is to be determined later, and integrating by parts we
have

∫

Br2

mφ2

(1 − u)3
≤
∫

Br2

φ2∆u

1 − u
= −

∫

Br2

φ2|∇u|2
(1 − u)2

−
∫

Br2

2φ∇φ · ∇u
1 − u

. (6.2.4)

From the fact,

∫

Br2

2φ∇φ · ∇u
1 − u

≤
∫

Br2

φ2|∇u|2 + 4

∫

Br2

|∇φ|2
(1 − u)2

≤
∫

Br2

φ2|∇u|2
(1 − u)2

+ 4

∫

Br2

|∇φ|2
(1 − u)2

,

(6.2.4) gives that ∫

Br2

mφ2

(1 − u)3
≤ 4

∫

Br2

|∇φ|2
(1 − u)2

.

Now choose φ = η2β with β = 3
2 . Then Hölder’s inequality implies that

m

∫

Br2

η4β

(1 − u)3
≤ 16β2

[ ∫

Br2

|∇η|4β
] 1

2β
[ ∫

Br2

η4β

(1 − u)3

] 2β−1
2β

.

This shows that ∫

Br1

1

(1 − u)3
≤
∫

Br2

η4β

(1 − u)3
< C(m, r1). (6.2.5)

By virtue of the one-sided Harnack inequality, we have

‖ 1

1 − u
‖L∞(B r1

2
)=‖ v ‖L∞(B r1

2
)≤ C(r1) ‖ v ‖L3(Br1 )< C(r1,m) .

The rest follows from a standard compactness argument. �

Proof of Theorem 6.2.1: Set v = ut, then we have for any t1 < T that

vt = ∆v +
2λf(x)

(1 − u)3
v (x, t) ∈ Ω × (0, t1) ; (6.2.6a)

v(x, t) = 0 (x, t) ∈ ∂Ω × (0, t1) ; v(x, 0) ≥ 0 x ∈ Ω. (6.2.6b)
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Note that the term 2λf
(1−u)3 is locally bounded in Ω× (0, t1), so that by the strong maximum

principle, we may conclude

ut = v > 0 for (x, t) ∈ Ω × (0, t1) (6.2.7)

and therefore, ut > 0 holds for all (x, t) ∈ Ω×(0, T ). Since K is an isolated set of touchdown
points, there exists an open set U such that K ⊂ U ⊂ Ū ⊂ Ω with no touchdown points in
Ū \K. Consider now 0 < t0 < T such that infx∈Ū ut(x, t0) = C1 > 0. We claim that there
exists ε > 0 such that

J ǫ(x, t) = ut −
ε

(1 − u)2
≥ 0 for all (x, t) ∈ U × (t0, T ) , (6.2.8)

Indeed, there exists C2 > 0 such that ut(x, T ) ≥ C2 > 0 on U , and since ∂U has no
touchdown points, there exists ε > 0 such that J ǫ ≥ 0 on the parabolic boundary of
U × (t0, T ). Also, direct calculations imply that

J ǫt − ∆J ǫ =
2λf

(1 − u)3
J ǫ +

6ε|∇u|2
(1 − u)4

≥ 2λf

(1 − u)3
J ǫ .

Since ε
(1−u)2

is locally bounded on U × (t0, T ), we can apply the maximum principle to

obtaining (6.2.8).
If now infx∈K f(x) = 0, then we may combine (6.2.8) and (6.0.1), to deduce that for a

small neighborhood B ⊂ U of some point x0 ∈ K where f(x) ≤ ε/2, we have

∆u ≥ ε

2

1

(1 − u)2
for (x, t) ∈ B × (t0, T ) .

In view of Lemma 6.2.2, this contradicts the assumption that x0 is a touchdown point.
For the second part, recall from Theorem 2.4.3 that the unique extremal solution for the

stationary problem on the ball in the case N ≥ 8 and for a permittivity profile f(x) = |x|α,

is u∗(x) = 1 − |x| 2+α
3 as long as α is small enough. Theorem 6.1.1 then implies that the

origin 0 is a touchdown point of the solution even though it is also a root for the permittivity
profile (i.e., f(0) = 0). This complements the statement of Theorem 6.2.1 above. In other
words, zero points of f in Ω cannot be on the isolated set of touchdown points in finite
time (which occur when λ > λ∗) but can very well be touchdown points in infinite time
of (6.0.1), which can only happen when λ = λ∗. The proof of Theorem 6.2.1 fails for
touchdowns in infinite time, simply because the maximum principle cannot be applied in
the infinite cylinder Ω × (0,∞). �

6.3 Estimates for finite touchdown times

In this section we give comparison results and explicit estimates on finite touchdown times
of dynamic deflections u = u(x, t) whenever λ > λ∗. This often translates into useful
information concerning the speed of the operation for many MEMS devices such as RF
switches or micro-valves.
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6.3.1 Comparison results for finite touchdown time

We start by comparing the effect on finite touchdown time of two different but comparable
permittivity profiles f(x), at a given voltage λ.

Theorem 6.3.1. Suppose u1 = u1(x, t) (resp., u2 = u2(x, t)) is a touchdown solution
for (6.0.1) associated to a fixed voltage λ and permittivity profiles f1 (resp., f2) with a
corresponding finite touchdown time Tλ(Ω, f1) (resp., Tλ(Ω, f2)). If f1(x) ≥ f2(x) on Ω and
if f1(x) > f2(x) on a set of positive measure, then necessarily Tλ(Ω, f1) < Tλ(Ω, f2).

Proof: By making a change of variable v = 1 − u, we can assume to be working with
solutions of the following equation:

∂v

∂t
− ∆v = −λf(x)

v2
for x ∈ Ω , (6.3.1a)

v(x, t) = 1 for x ∈ ∂Ω , (6.3.1b)

v(x, 0) = 1 for x ∈ Ω , (6.3.1c)

where f is either f1 or f2. Suppose now that Tλ(Ω, f1) > Tλ(Ω, f2) and let Ω0 ⊂ Ω be the
set of touchdown points of u2 at finite time Tλ(Ω, f2). Setting w = u2 − u1, we get that

wt − ∆w − λ(f2u1 + f1u2)

u2
1u

2
2

w =
λ(f1 − f2)

u1u2
≥ 0 (x, t) ∈ Ω × (0, Tλ(Ω, f2)) . (6.3.2)

Since w = 0 at t = 0 as well as on ∂Ω × (0, Tλ(Ω, f2)), we get from the maximum principle
that w cannot attain a negative minimum in Ω × (0, Tλ(Ω, f2)), and therefore w ≥ 0 in
Ω × (0, Tλ(Ω, f2)). Since u2 → 0 in Ω0 as t → Tλ(Ω, f2), and since our assumption is that
Tλ(Ω, f1) > Tλ(Ω, f2), we then have u1 > 0 in Ω0 as t→ Tλ(Ω, f2). Therefore, w < 0 in Ω0

as t→ Tλ(Ω, f2), which is a contradiction and therefore Tλ(Ω, f1) ≤ Tλ(Ω, f2).

To prove the strict inequality, we note that the above proof shows that w ≥ 0 in
Ω × (0, Tλ(Ω, f2)), which once combined with (6.3.2) gives that

wt − ∆w ≥ 0 , in Ω × (t1, Tλ(Ω, f2)) ,

where t1 > 0 is chosen so that w(x, t1) 6≡ 0 in Ω. Now we compare w with the solution z of

zt − ∆z = 0 in Ω × (t1, Tλ(Ω, f2))

subject to z(x, t1) = w(x, t1) and z(x, t) = 0 on ∂Ω × (t1, Tλ(Ω, f2)). Clearly, w ≥ z in
Ω× (t1, Tλ(Ω, f2)). On the other hand, for any t0 > t1 we have z > 0 in Ω× (t0, Tλ(Ω, f2)).
Consequently, w > 0 which means that u2 > u1 in Ω × (t0, Tλ(Ω, f2)) and therefore
Tλ(Ω, f1) < Tλ(Ω, f2). �

The second comparison result deals with different applied voltages but identical permit-
tivity profiles.
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Theorem 6.3.2. Suppose u1 = u1(x, t) (resp., u2 = u2(x, t)) is a solution for (6.0.1)
associated to a voltage λ1 (resp., λ2) and which has a finite touchdown time Tλ1(Ω, f)
(resp., Tλ2(Ω, f)). If λ1 > λ2 then necessarily Tλ1(Ω, f) < Tλ2(Ω, f).

Proof: It is similar to the proof of Theorem 6.3.1, except that for w = u2 − u1, (6.3.2) is
replaced by

wt − ∆w − λ1(u1 + u2)f

u2
1u

2
2

w =
(λ1 − λ2)f

u2
2

≥ 0 (x, t) ∈ Ω × (0, T ) .

The details are left for the interested reader. �

Remark 6.3.1. A reasoning similar to the one found in Proposition 2.5 of [51], gives some
information on the dependence on the shape of the domain. Indeed, for any bounded domain
Γ in R

N and any non-negative continuous function f on Γ, we have

λ∗(Γ, f) ≥ λ∗(BR, f∗) and Tλ(Γ, f) ≥ Tλ(BR, f
∗),

where BR = BR(0) is the Euclidean ball in R
N with radius R > 0 and with volume

|BR| = |Γ|, where f∗ is the Schwarz symmetrization of f .

We now present numerical results comparing finite touchdown times in a slab domain.
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Figure 6.3: Left Figure: plots of u versus x for different f(x) at λ = 8 and t = 0.185736.
Right Figure: plots of u versus x for different λ with f(x) = |2x| and t = 0.1254864.

Figure 6.3(a): Dependence on the dielectric permittivity profiles f
We consider (6.2.1) for the cases where

f1(x) = |2x| and f2(x) =

{
|2x| if |x| ≤ 1

8 ,

1/4 + 2 sin(|x| − 1/8) otherwise.
(6.3.3)

Using N = 1000 meshpoints, we plot u versus x with λ = 8 at the time t = 0.185736 in
Figure 6.3(a). The numerical results show that the finite touchdown time Tλ(Ω, f1) for the
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case f1(x) and Tλ(Ω, f2) for the case f2(x) are 0.185736 and 0.186688, respectively.

Figure 6.3(b): Dependence on the applied voltage λ
Using N = 1000 meshpoints and the profile f(x) = |2x|, we plot u of (6.2.1) versus x with
different values of λ at the time t = 0.1254864. The numerical results show that finite
touchdown time Tλ1(Ω, f) for applied voltage λ1 = 10 and Tλ2(Ω, f) for applied voltage
λ2 = 8 are 0.1254864 and 0.185736, respectively.

6.3.2 Explicit bounds on touchdown times

For the analytic bounds of touchdown times, we have the following results. Note that here
λ̄1 ≥ λ∗ and λ̄2 ≥ λ∗ are as in Theorem 2.2.4.

Proposition 6.3.3. Suppose f is a non-negative continuous function on a bounded domain
Ω, and let u be a solution of (6.0.1) corresponding to a voltage λ. Then,

1. For any λ > 0, we have Tλ(Ω, f) ≥ T∗ := 1
3λ supx∈Ω f(x) .

2. If infΩ f > 0, and if λ > λ̄1 :=
4µ

Ω
27 infx∈Ω f(x) , then

Tλ(Ω, f) ≤ T1,λ :=

∫ 1

0

[λ infx∈Ω f(x)

(1 − s)2
− µΩs

]−1
ds. (6.3.4)

3. If infx∈Ω f(x) > 0, then the following upper estimate holds for any λ > λ∗:

Tλ(Ω, f) ≤ T0,λ(Ω, f) :=
8(λ+ λ∗)2

3 infx∈Ω f(x)(λ− λ∗)2(λ+ 3λ∗)

[
1 +

( λ+ 3λ∗

2λ+ 2λ∗

)1/2]
.

(6.3.5)

4. If f > 0 on a set of positive measure, and if λ > λ̄2 :=
µ

Ω

3
R
Ω fφΩ

dx
, then

Tλ(Ω, f) ≤ T2,λ := − 1

µΩ

log
[
1 − µΩ

3λ

( ∫

Ω
fφΩ dx

)−1
. (6.3.6)

Here µΩ and φΩ are the first eigenpair of −∆ on H1
0 (Ω) with normalized

∫
Ω φΩdx = 1.

Proof: 1) Consider the initial value problem:

dη(t)

dt
=

λM

(1 − η(t))2
,

η(0) = 0 ,

(6.3.7)
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where M = supx∈Ω f(x). From (6.3.7) one has 1
λM

∫ η(t)
0 (1 − s)2ds = t . If T∗ is the time

where limt→T∗ η(t) = 1, then we have T∗ = 1
λM

∫ 1
0 (1 − s)2ds = 1

3λM . Obviously, η(t) is now
a super-function of u(x, t) near touchdown, and thus we have

T ≥ T∗ =
1

3λM
=

1

3λ supx∈Ω f(x)
,

which completes the proof of 1).

2) is proved in Theorem 6.1.4. The following analytic upper bounds of finite touchdown
time T were established in Theorem 3.1 and 3.2 of [64].

3) Without loss of generality we assume that φΩ > 0 in Ω. Multiplying (6.0.1a) by φΩ ,
and integrating over the domain, we obtain

d

dt

∫

Ω
φΩu dx =

∫

Ω
φΩ∆u dx+

∫

Ω

λφΩf(x)

(1 − u)2
dx . (6.3.8)

Using Green’s theorem, together with the lower bound C0 of f , we get

d

dt

∫

Ω
φΩu dx ≥ −µΩ

∫

Ω
φΩu dx+ λC0

∫

Ω

φΩ

(1 − u)2
dx . (6.3.9)

Next, we define an energy-like variable E(t) by E(t) =
∫
Ω φΩu dx so that

E(t) =

∫

Ω
φΩu dx ≤ sup

Ω
u

∫

Ω
φΩ dx = sup

Ω
u . (6.3.10)

Moreover, E(0) = 0 since u = 0 at t = 0. Then, using Jensen’s inequality on the second
term on the right-hand side of (6.3.9), we obtain

dE

dt
+ µΩE ≥ λC0

(1 −E)2
, E(0) = 0 . (6.3.11)

We then compare E(t) with the solution F (t) of

dF

dt
+ µΩF =

λC0

(1 − F )2
, F (0) = 0 . (6.3.12)

Standard comparison principles yield thatE(t) ≥ F (t) on their domains of existence. There-
fore,

sup
Ω
u ≥ E(t) ≥ F (t) . (6.3.13)

Next, we separate variables in (6.3.12) to determine t in terms of F . The touchdown time
T̄1 for F is obtained by setting F = 1 in the resulting formula. In this way, we get

T̄1 ≡
∫ 1

0

[ λC0

(1 − s)2
− µΩs

]−1
ds . (6.3.14)
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The touchdown time T̄1 is finite when the integral in (6.3.14) converges. A simple calculation

shows that this occurs when λ > λ̄1 ≡ 4µ
Ω

27C0
. Hence if T̄1 is finite, then (6.3.13) implies that

the touchdown time T of (6.0.1) must also be finite. Therefore, when λ > λ̄1 =
4µ

Ω
27C0

, we
have that T satisfies

T ≤ T̄1 ≡
∫ 1

0

[ λC0

(1 − s)2
− µΩs

]−1
ds . (6.3.15)

4) Multiply now (6.0.1a) by φΩ(1 − u)2, and integrate the resulting equation over Ω to
get

d

dt

∫

Ω

φΩ

3
(1 − u)3 dx = −

∫

Ω
φΩ(1 − u)2∆u dx−

∫

Ω
λfφΩ dx . (6.3.16)

We calculate the first term on the right-hand side of (6.3.16) to get

d

dt

∫

Ω

φΩ

3
(1 − u)3 dx (6.3.17a)

=

∫

Ω
∇u · ∇

[
φΩ(1 − u)2

]
dx+

∫

∂Ω
(1 − u)2φΩ∇u · n̂ dS −

∫

Ω
λfφΩ dx (6.3.17b)

= −
∫

Ω
2(1 − u)φΩ |∇u|2 dx−

∫

Ω

1

3
∇φΩ · ∇

[
(1 − u)3

]
dx−

∫

Ω
λfφΩ dx (6.3.17c)

≤ −1

3

∫

∂Ω
∇φΩ · ν dS − µΩ

3

∫

Ω
(1 − u)3φΩ dx−

∫

Ω
λfφΩ dx , (6.3.17d)

where ν is the unit outward normal to ∂Ω. Since
∫
∂Ω ∇φΩ ·ν dS = −µΩ , we further estimate

from (6.3.17d) that

dE

dt
+ µΩE ≤ R , R ≡ µΩ

3
− λ

∫

Ω
fφΩ dx , (6.3.18)

where E(t) is defined by

E(t) ≡ 1

3

∫

Ω
φΩ(1 − u)3 dx , E(0) =

1

3
. (6.3.19)

Next, we compare E(t) with the solution F (t) of

dF

dt
+ µΩF = R , F (0) =

1

3
. (6.3.20)

Again, comparison principles and the definition of E yield

1

3
inf
Ω

(1 − u)3 ≤ E(t) ≤ F (t) . (6.3.21)

For λ > λ̄2 we have that R < 0 in (6.3.18) and (6.3.20). For R < 0, we have that F = 0 at
some finite time t = T̄2. From (6.3.21), this implies that E = 0 at finite time. Thus, u has
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touchdown at some finite-time T < T̄2. By calculating T̄2 explicitly, and by using (6.3.21),
the touchdown time T for (6.0.1) is found to satisfy

T ≤ T̄2 ≡ − 1

µΩ

log
[
1 − µΩ

3λ

( ∫

Ω
fφΩ dx

)−1]
. (6.3.22)

�

Remark 6.3.2. It follows from the above that if λ > max
{
λ̄1 , λ̄2

}
, then

T ≤ min
{
T0,λ, T1,λ, T2,λ

}
. (6.3.23)

where T0,λ is given by Theorem 6.1.4. We note that the three estimates on the touchdown
times are not comparable. Indeed, it is clear that T0,λ is the better estimate when λ∗ <
λ < min

{
λ̄1 , λ̄2

}
since T1,λ and T2,λ are not finite. On the other hand, our numerical

simulations show that T0,λ can be much worse than the others, for λ > max
{
λ̄1 , λ̄2

}
.

Here are now some numerical estimates of touchdown times for several choices of the
domain Ω given by (6.2.2) and the exponential profile f(x) satisfying

(slab) : f(x) = eα(x2−1/4) (exponential) , (6.3.24a)

(unit disk) : f(x) = eα(|x|2−1) (exponential) , (6.3.24b)

where α ≥ 0.

[htb]
Ω α λ λ∗ λ̄1 λ̄2

(Slab) 0 1.185 1.401 1.462 3.290
(Slab) 1.0 1.185 1.733 1.878 4.023
(Slab) 3.0 1.185 2.637 3.095 5.965
(Slab) 6.0 1.185 4.848 6.553 10.50

(unit disk) 0 0.593 0.789 0.857 1.928
(unit disk) 0.5 0.593 1.153 1.413 2.706
(unit disk) 1.0 0.593 1.661 2.329 3.746
(unit disk) 3.0 0.593 6.091 17.21 11.86

Table 6.1: Numerical values for pull-in voltage λ∗ with the bounds λ, λ̄1 and λ̄2 given in
Theorem 2.2.4. Here the exponential permittivity profile is chosen as (6.3.24).

In Table 2.1 of §2.2 we give numerical results for the saddle-node value λ∗ with the
bounds λ, λ̄1 and λ̄2 given in Theorem 2.2.4, for the exponential permittivity profile chosen
as (6.3.24). Following the numerical results of Table 2.1 of §2.2, here we can compute in
Table 6.1 the values of finite touchdown time T at λ = 20, with the bounds T∗, T0,λ, T1,λ

and T2,λ given in Theorem 6.1.4 and Proposition 6.3.3. Using the meshpoints N = 800 we
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[htb]
Ω α T∗ T T0,λ T1,λ T2,λ

slab 0 1/60 0.01668 0.2555 0.0175 0.01825
slab 1.0 1/60 0.02096 ≤ 0.3383 0.0229 0.02275
slab 3.0 1/60 0.03239 ≤ 0.6121 0.0395 0.03588
slab 6.0 1/60 0.06312 ≤ 1.7033 0.0973 0.07544

unit disk 0 1/60 0.01667 0.2420 0.0172 0.01745
unit disk 0.5 1/60 0.02241 ≤ 0.4103 0.0289 0.02507
unit disk 1.0 1/60 0.02927 ≤ 0.7123 0.0492 0.03579
unit disk 3.0 1/60 0.09563 ≤ 8.9847 1.1614 0.15544

Table 6.2: Computations for finite touchdown time T with the bounds T∗, T0,λ, T1,λ and
T2,λ given in Proposition 6.3.3. Here the applied voltage λ = 20 and the profile is chosen
as (6.3.24).

[htb]
Ω T (λ = 5) T (λ = 10) T (λ = 15) (λ = 20)

slab 0.07495 0.03403 0.02239 0.01668
unit disk 0.06699 0.03342 0.02235 0.01667

Table 6.3: Numerical values for finite touchdown time T at different applied voltages λ = 5,
10, 15 and 20, respectively. Here the constant permittivity profile f(x) ≡ 1 is chosen.

compute finite touchdown time T with error less than 0.00001. The numerical results in
Table 6.1 show that the bounds T1,λ and T2,λ for T are much better than T0,λ. Further the
bound T1,λ is better than T2,λ for smaller values of α, and however the bound T2,λ is better
than T1,λ for larger values of α. In fact, for α≫ 1 and λ large enough we can deduce from
(2.2.20) that

T1,λ ∼ 1

3λ
ed1α , T2,λ ∼ d2

λ
α2 .

Here d1 = 1/4, d2 = 1/3π2 for the slab domain, and d1 = 1, d2 = 4/3z2
0 for the unit

disk, where z0 is the first zero of J0(z) = 0. Therefore, for α ≫ 1 and fixed λ large
enough, the bound T2,λ is better than T1,λ. Table 6.1 also shows that for fixed applied
voltage λ, the touchdown time is seen to increase once α is increased or equivalently the
spatial extent where f(x) ≪ 1 is increased. However, Theorem 6.3.2 tells us that for
fixed permittivity profile f , by increasing the applied voltage λ within the available power
supply, the touchdown time can be decreased and consequently the operating speed of
MEMS devices can be improved. In Table 6.2 we give numerical values for finite touchdown
time T with error less than 0.00001, at different applied voltages λ = 5, 10, 15 and 20,
respectively. Here the constant permittivity profile f(x) ≡ 1 is chosen and the meshpoints
N = 800 again.
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6.4 Asymptotic analysis of touchdown profiles

In this section, we discuss touchdown profiles by the method of asymptotic analysis, which
provide some information on the refined touchdown rate studied in next Chapter.

6.4.1 Touchdown profile: f(x) ≡ 1

We first construct a local expansion of the solution near the touchdown time and touchdown
location by adapting the method of [77] used for blow-up behavior. In the analysis of this
subsection we assume that f(x) ≡ 1 and touchdown occurs at x = 0 and t = T . In the
absence of diffusion, the time-dependent behavior of (6.0.1) is given by ut = λ(1 − u)−2.
Integrating this differential equation and setting u(T ) = 1, we get (1 − u)3 = −3λ(t − T ).
This solution motivates the introduction of a new variable v(x, t) defined in terms of u(x, t)
by

v =
1

3λ
(1 − u)3 . (6.4.1)

A simple calculation shows that (6.0.1) transforms exactly to the following problem for v:

vt = ∆v − 2

3v
|∇v|2 − 1 , x ∈ Ω , (6.4.2a)

v =
1

3λ
, x ∈ ∂Ω ; v =

1

3λ
, t = 0 . (6.4.2b)

Notice that u = 1 maps to v = 0. We will find a formal power series solution to (6.4.2a)
near v = 0.

As in [77] we look for a locally radially symmetric solution to (6.4.2) in the form

v(x, t) = v0(t) +
r2

2!
v2(t) +

r4

4!
v4(t) + · · · , (6.4.3)

where r = |x|. We then substitute (6.4.3) into (6.4.2a) and collect coefficients in r. In this
way, we obtain the following coupled ordinary differential equations for v0 and v2:

v
′
0 = −1 +Nv2 , v

′
2 = − 4

3v0
v2
2 +

(N + 2)

3
v4 . (6.4.4)

We are interested in the solution to this system for which v0(T ) = 0, with v
′
0 < 0 and

v2 > 0 for T − t > 0 with T − t ≪ 1. The system (6.4.4) has a closure problem in that v2
depends on v4. However, we will assume that v4 ≪ v2

2/v0 near the singularity. With this
assumption, (6.4.4) reduces to

v
′
0 = −1 +Nv2 , v

′
2 = − 4

3v0
v2
2 . (6.4.5)

We now solve the system (6.4.5) asymptotically as t → T− in a similar manner as was
done in [77]. We first assume that Nv2 ≪ 1 near t = T . This leads to v0 ∼ T − t, and the
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following differential equation for v2:

v
′
2 ∼ −4

3(T − t)
v2
2 , as t→ T− . (6.4.6)

By integrating (6.4.6), we obtain that

v2 ∼ − 3

4
[
log(T − t)

] +
B0[

log(T − t)
]2 + · · · , as t→ T− , (6.4.7)

for some unknown constant B0. From (6.4.7), we observe that the consistency condition
that Nv2 ≪ 1 as t → T− is indeed satisfied. Substituting (6.4.7) into the equation (6.4.5)
for v0, we obtain for t→ T− that

v
′
0 = −1 +N

(
− 3

4
[
log(T − t)

] +
B0[

log(T − t)
]2 + · · ·

)
. (6.4.8)

Using the method of dominant balance, we look for a solution to (6.4.8) as t → T− in the
form

v0 ∼
(
T − t

)
+
(
T − t

)[ C0[
log(T − t)

] +
C1[

log(T − t)
]2 + · · ·

]
, (6.4.9)

for some C0 and C1 to be found. A simple calculation yields that

v0 ∼
(
T − t

)
+

−3N(T − t)

4| log(T − t)| +
−N

(
B0 − 3/4

)
(T − t)

| log(T − t)|2 + · · · , as t→ T− . (6.4.10)

The local form for v near touchdown is v ∼ v0 + r2v0/2. Using the leading term in v2 from
(6.4.7) and the first two terms in v0 from (6.4.10), we obtain the local form

v ∼
(
T − t

)[
1 − 3N

4| log(T − t)| +
3r2

8(T − t)| log(T − t)| + · · ·
]
, (6.4.11)

for r ≪ 1 and t− T ≪ 1. Finally, using the nonlinear mapping (6.4.1) relating u and v, we
conclude that

u ∼ 1 −
[
3λ(T − t)

]1/3(
1 − 3N

4| log(T − t)| +
3r2

8(T − t)| log(T − t)| + · · ·
)1/3

. (6.4.12)

We note, as in [77], that if we use the local behavior v ∼ (T − t) + 3r2/[8| log(T − t)|],
we get that

|∇v|2
v

∼
[2
3
| log(T − t)| + 16(T − t)| log(T − t)|2

9r2

]−1
. (6.4.13)

Hence, the term |∇v|2/v in (6.4.2a) is bounded for any r, even as t → T−. This allows
us to use a simple finite-difference scheme to compute numerical solutions to (6.4.2). With
this observation, we now perform a few numerical experiments on the transformed problem
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(6.4.2). For the slab domain, we define vmj for j = 1, . . . , N+2 to be the discrete approxima-
tion to v(m∆t,−1/2+(j− 1)h), where h = 1/(N + 1) and ∆t are the spatial and temporal
mesh sizes, respectively. A second order accurate in space, and first order accurate in time,
discretization of (6.4.2) is

vm+1
j = vmj + ∆t

((vmj+1 − 2vmj + vmj−1

)

h2
− 1 −

(
vmj+1 − vmj−1

)2

6vmj h
2

)
, j = 2, . . . , N + 1 ,

(6.4.14)

with vm1 = vmN+2 =
(
3λ
)−1

for m ≥ 0. The initial condition is v0
j =

(
3λ
)−1

for j =

1, . . . , N+2. The time-step ∆t is chosen to satisfy ∆t < h2/4 for the stability of the discrete
scheme. Using this argument, one can compute numerical results of dynamic deflection u,
see Figures 6.1-6.3 of this Chapter.

6.4.2 Touchdown profile: variable permittivity

In this subsection we obtain some formal asymptotic results for touchdown behavior as-
sociated with a spatially variable permittivity profile in a slab domain. Suppose u is a
touchdown solution of (6.0.1) at finite time T , and let x = x0 be a touchdown point of u.
With the transformation

v =
1

3λ
(1 − u)3 , (6.4.15)

the problem (6.0.1) for u in the slab domain transforms exactly to

vt = vxx −
2

3v
v2
x − f(x) , −1/2 < x < 1/2 , (6.4.16a)

v =
1

3λ
, x = ±1/2 ; v =

1

3λ
, t = 0 , (6.4.16b)

where f(x) is the permittivity profile.
In order to discuss the touchdown profile of u near (x0, T ), we use the formal power series

method of §6.4.1 to locally construct a power series solution to (6.4.16) near touchdown point
x0 and touchdown time T . For this purpose, we look for a touchdown profile for (6.4.16),
near x = x0, in the form

v(x, t) = v0(t) +
(x− x0)

2

2!
v2(t) +

(x− x0)
3

3!
v3(t) +

(x− x0)
4

4!
v4(t) + · · · . (6.4.17)

In order for v to be a touchdown profile, it is clear that we must require that

lim
t→T−

v0 = 0 , v0 > 0 , for t < T ; v2 > 0 , for t− T ≪ 1 . (6.4.18)

We first discuss the case where f(x) is analytic at x = x0 with f(x0) > 0. Therefore,
for x− x0 ≪ 1, f(x) has the convergent power series expansion

f(x) = f0 + f
′
0(x− x0) +

f
′′
0 (x− x0)

2

2
+ · · · , (6.4.19)
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where f0 ≡ f(x0), f
′
0 ≡ f

′
(x0), and f

′′
0 ≡ f

′′
(x0). Substituting (6.4.17) and (6.4.19) into

(6.4.16), we equate powers of x− x0 to obtain

v
′
0 = −f0 + v2 , (6.4.20a)

v
′
2 = −4v2

2

3v0
+ v4 − f

′′
0 , (6.4.20b)

v3 = f
′
0 . (6.4.20c)

We now assume that v2 ≪ 1 and v4 ≪ 1 as t→ T−. This yields that v0 ∼ f0(T − t), and

v
′
2 ∼ − 4v2

2

3f0(T − t)
− f

′′
0 . (6.4.21)

For t→ T−, we obtain from a simple dominant balance argument that

v2 ∼ − 3f0

4
[
log(T − t)

] + · · · , as t→ T− . (6.4.22)

Substituting (6.4.22) into (6.4.20a), and integrating, we obtain that

v0 ∼ f0

(
T − t

)
+

−3f0(T − t)

4| log(T − t)| + · · · , as t→ T− . (6.4.23)

Next, we substitute (6.4.22), (6.4.23) and (6.4.20c) into (6.4.17), to obtain the local touch-
down behavior

v ∼ f0

(
T − t

)[
1 − 3

4| log(T − t)| +
3(x− x0)

2

8(T − t)| log(T − t)| +
f

′
0(x− x0)

3

6f0(T − t)
+ · · ·

]
, (6.4.24)

for (x − x0) ≪ 1 and t − T ≪ 1. Finally, using the nonlinear mapping (6.4.15) relating u
and v, we conclude that

u ∼ 1−
[
3f0λ(T − t)

]1/3(
1− 3

4| log(T − t)| +
3(x− x0)

2

8(T − t)| log(T − t)| +
f

′
0(x− x0)

3

6f0(T − t)
+ · · ·

)1/3
.

(6.4.25)
Here f0 ≡ f(x0) and f

′
0 ≡ f

′
(x0).

In the following, we exclude the possibility of f(x0) = 0 by using a formal power series
analysis. We discuss the case where f(x) is analytic at x = x0, with f(x0) = 0 and
f

′
(x0) = 0, so that f(x) = f0(x − x0)

2 + O
(
(x − x0)

3
)

as x → x0 with f0 > 0. We then
look for a power series solution to (6.4.16) as in (6.4.17). In place of (6.4.20) for v3, we get
v3 = 0, and

v
′
0 = v2 , v

′
2 = −4v2

2

3v0
+ v4 − 2f0 . (6.4.26)

Assuming that v4 ≪ 1 as before, we can combine the equations in (6.4.26) to get

v
′′
0 = −

4
(
v
′
0

)2

3v0
− 2f0 . (6.4.27)
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By solving (6.4.27) with v0(T ) = 0, we obtain the exact solution

v0 = −3f0

11
(T − t)2 < 0 , v2 =

6f0

11
(T − t) . (6.4.28)

Since the criteria (6.4.18) are not satisfied, the form (6.4.28) does not represent a touchdown
profile centered at x = x0. Therefore, the above asymptotical analysis also shows that the
point x = x0 satisfying f(x0) = 0 is not a touchdown point of u.

6.5 Pull-in distance

One of the primary goals in the design of MEMS devices is to maximize the pull-in distance
over a certain allowable voltage range that is set by the power supply. Here pull-in distance
refers to as the maximum stable deflection of the elastic membrane before touchdown occurs.
In this section, we provide numerical results of pull-in distance with some explicit examples,
from which one can observe that both larger pull-in distance and pull-in voltage can be
achieved by properly tailoring the permittivity profile.

Following from [64], we focus on the dynamic solution u satisfying

∂u

∂t
− ∆u = − λf(x)

(1 + u)2
for x ∈ Ω , (6.5.1a)

u(x, t) = 0 for x ∈ ∂Ω ; u(x, 0) = 0 for x ∈ Ω , (6.5.1b)

One can apply Theorem 6.1.1 that for λ ≤ λ∗, the dynamic solution u(x, t) of (6.5.1) globally
converges to its unique maximal negative steady-state uλ(x). On the other hand, Theorem
2.4.3 implies that the unique maximal negative steady-state uλ(x) is strictly increasing in
λ. Therefore, we can deduce that pull-in distance of (6.5.1) is achieved exactly at λ = λ∗.
Since the space dimension N of MEMS devices is 1 or 2, Theorems 2.4.3 & 6.1.1 give that
the pull-in distance D of MEMS devices exactly satisfies

D := lim
t→∞

‖ u∗(x, t) ‖L∞(Ω)=‖ u∗(x) ‖L∞(Ω)≤ C(N) < 1 , N = 1, 2, (6.5.2)

where u∗(x, t) is the unique global solution of (6.5.1) at λ = λ∗, and while u∗(x) is the
unique extremal steady-state of (6.5.1).

In order to understand the relationship between pull-in distance D and permittivity
profile f(x), we first consider the steady-state of (6.5.1) satisfying





∆u =
λf(x)

(1 + u)2
in Ω,

−1 < u < 0 in Ω,
u = 0 on ∂Ω ,

(6.5.3)

where the domain Ω is considered to be a slab or an unit disk defined by (6.2.2). Here we
still choose the following permittivity profile f(x) as before:

(Slab) : f(x) = |2x|α (power-law) ; f(x) = eα(x2−1/4) (exponential) , (6.5.4a)

(Unit Disk) : f(x) = |x|α (power-law) ; f(x) = eα(|x|2−1) (exponential) , (6.5.4b)
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with α ≥ 0. For above choices of domain Ω and profile f(x), since the extremal solution u∗(x)
of (6.5.3) is unique, Lemma 2.3.6 shows that u∗(x) must be radially symmetric. Therefore,
the pull-in distance D of (6.5.3) satisfies D = |u∗(0)|.

(a). Exponential Profiles: (b). Power-Law Profiles:
Ω α λ∗

slab 0 1.401
slab 3 2.637
slab 6 4.848
slab 10 10.40

unit disk 0 0.789
unit disk 3 6.096
unit disk 4.8 15.114
unit disk 5.6 20.942

Ω α λ∗

slab 0 1.401
slab 1 4.388
slab 3 15.189
slab 6 43.087

unit disk 0 0.789
unit disk 1 1.775
unit disk 5 9.676
unit disk 20 95.66

Table 6.4: Numerical values for pull-in voltage λ∗: Table (a) corresponds to exponential
profiles, while Table (b) corresponds to power-law profiles.
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Figure 6.4: Plots of the pull-in distance |u(0)| = |u∗(0)| versus α for the power-law profile
(heavy solid curve) and the exponential profile (solid curve). Left figure: the slab domain.
Right figure: the unit disk.

As in §2.2, using Newton’s method and COLSYS [6] to solve the boundary value problem
(6.5.3), we first numerically calculate λ∗ of (6.5.3) as the saddle-node point. We give
numerical values of λ∗ in Table 6.3(a) for exponential profiles and in Table 6.3(b) for power-
law profiles, respectively. For the slab domain, in Figure 6.4(a) we plot D = |u(0)| = |u∗(0)|
versus α for both the power-law and the exponential conductivity profile f(x) in the slab
domain, which show that the pull-in distance D can be increased by increasing the value of
α (and hence by increasing the range of f(x) ≪ 1). A similar plot of D = |u(0)| = |u∗(0)|
versus α is shown in Figure 6.4(b) for the unit disk. For the power-law profile in the unit
disk we observe that |u(0)| ≈ 0.444 for any α > 0. Therefore, rather curiously, the power-
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law profile does not increase the pull-in distance for the unit disk. For the exponential
profile we observe from Figure 6.4(b) that the pull-in distance is not a monotonic function
of α. The maximum value occurs at α ≈ 4.8 where λ∗ ≈ 15.11 (see Figure 2.1(b)) and
D = |u(0)| = 0.485. For α = 0, we have λ∗ ≈ 0.789 and |u(0)| = 0.444. Therefore, since λ∗

is proportional to V 2 (cf. §1.1.2) we conclude that the exponential permittivity profile for
the unit disk can increase the pull-in distance by roughly 9% if the voltage is increased by
roughly a factor of four.
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Figure 6.5: Left figure: plots of u versus |x| at λ = λ∗ for α = 0, α = 1, α = 3, and α = 10,
in the unit disk for the power-law profile. Right figure: plots of u versus |x| at λ = λ∗ for
α = 0, α = 2, α = 4, and α = 10, in the unit disk for the exponential profile. In both figures
the solution develops a boundary-layer structure near |x| = 1 as α is increased.

For the unit disk, in Figure 6.5(a) we plot u versus |x| at λ = λ∗ with four values of α for
the power-law profile. Notice that u(0) is the same for each of these values of α. A similar
plot is shown in Figure 6.5(b) for the exponential permittivity profile. From these figures,
we observe that u has a boundary-layer structure when α ≫ 1. In this limit, f(x) ≪ 1
except in a narrow zone near the boundary of the domain. For α ≫ 1 the pull-in distance
D = |u(0)| also reaches some limiting value (see Figures 6.4 & 6.5). For the slab domain
with an exponential permittivity profile, we remark that the limiting asymptotic behavior
of |u(0)| for α≫ 1 is beyond the range shown in Figure 6.4(a).

For α ≫ 1, we now use a boundary-layer analysis to determine a scaling law of λ∗

for both types of permittivity profiles and for either a slab domain or the unit disk. We
illustrate the analysis for a power-law permittivity profile in the unit disk. For α≫ 1, there
is an outer region defined by 0 ≤ r ≪ 1−O(α−1), and an inner region where r−1 = O(1/α).
In the outer region, where λrα ≪ 1, (6.5.3) reduces asymptotically to ∆u = 0. Therefore,
the leading-order outer solution is a constant u = A. In the inner region, we introduce new
variables w and ρ by

w(ρ) = u (1 − ρ/α) , ρ = α(1 − r) . (6.5.5)

Substituting (6.5.5) into (6.5.3) with f(r) = rα, using the limiting behavior (1−ρ/α)α → e−ρ
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Figure 6.6: Bifurcation diagram of w

′
(0) = −γ versus λ0 from the numerical solution of

(6.5.6).

as α→ ∞, and defining λ = α2λ0, we obtain the leading-order boundary-layer problem

w
′′

=
λ0e

−ρ

(1 + w)2
, 0 ≤ ρ <∞ ; w(0) = 0 , w

′
(∞) = 0 , λ = α2λ0 . (6.5.6)

In terms of the solution to (6.5.6), the leading-order outer solution is u = A = w(∞).
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�
Figure 6.7: Comparison of numerically computed λ∗ (heavy solid curve) with the asymptotic
result (dotted curve) from (6.5.7) for the unit disk. Left figure: the exponential profile. Right
figure: the power-law profile.

We define γ by w
′
(0) = −γ for γ > 0, and we solve (6.5.6) numerically using COLSYS

[6] to determine λ0 = λ0(γ). In Figure 6.6 we plot λ0(γ) and show that this curve has a
saddle-node point at λ0 = λ∗0 ≡ 0.1973. At this value, we compute w(∞) ≈ 0.445, which
sets the limiting membrane deflection for α ≫ 1. Therefore, (6.5.6) shows that for α ≫ 1,
the saddle-node value has the scaling law behavior λ∗ ∼ 0.1973α2 for a power-law profile in



158 CHAPTER 6. DYNAMIC DEFLECTION

the unit disk. A similar boundary-layer analysis can be done to determine the scaling law
of λ∗ when α≫ 1 for other cases. In each case we can relate λ∗ to the saddle-node value of
the boundary-layer problem (6.5.6). In this way, for α≫ 1, we obtain

λ∗ ∼ 4(0.1973)α2 , λ̄2 ∼ 4α2

3
, (power-law, slab), (exponential, unit disk) , (6.5.7a)

λ∗ ∼ (0.1973)α2 , λ̄2 ∼ α2

3
, (power-law, unit disk), (exponential, slab) , (6.5.7b)

Notice that λ̄2 = O(α2), with a factor that is about 5/3 times as large as the multiplier
of α2 in the asymptotic formula for λ∗. In Figure 6.7, we compare the computed λ∗ as a
saddle-node point with the asymptotic result of λ∗ from (6.5.7).

Next we present a few of numerical results for pull-in distance of dynamic problem
(6.2.1) by applying the implicit Crank-Nicholson scheme again. Here we always consider
the domain and the profile defined by (6.2.2) and (6.5.4), respectively. We choose the mesh-
points N = 4000 and the applied voltage λ = λ∗ given in Table 6.3:

Figure 6.8: Case of exponential profiles
We consider pull-in distance of (6.2.1) for exponential profiles in the slab or unit disk do-
main. In Figure 6.8(a) we plot u versus x at the time t = 80 in the slab domain, with
α = 0 (solid line), α = 3 (dashed line), α = 6 (dotted line) and α = 10 (dash-dot line),
respectively. This figure and Figure 6.4(a) show that pull-in distance is increasing in α.
In Figure 6.8(b) we plot u versus |x| at the time t = 80 in the unit disk domain, with
α = 0 (dash-dot line), α = 3 (dashed line), α = 4.8 (dotted line) and α = 5.6 (solid line),
respectively. In this figure we observe that the solution develops a boundary-layer structure
near the boundary of the domain as α is increased, and pull-in distance is not a monotonic
function of α. Actually from Figure 6.4(b) we know that pull-in distance is first increasing
and then decreasing in α. The maximum value of pull-in distance occurs at α ≈ 4.8 and
λ∗ ≈ 15.114.

Figure 6.9: Case of power-law profiles
We consider pull-in distance of the membrane for power-law profiles in the slab or unit
disk domain. In Figure 6.9(a) we plot u versus x at the time t = 80 in the slab domain,
with α = 0 (solid line), α = 1 (dashed line), α = 3 (dash-dot line) and α = 6 (dotted
line), respectively. This figure and Figure 6.4(a) show that pull-in distance is increasing in
α. In Figure 6.9(b) we plot u versus |x| at the time t = 80 in the unit disk domain, with
α = 0 (dotted line), α = 1 (dash-dot line), α = 5 (dashed line) and α = 20 (solid line),
respectively. For the power-law profiles in the unit disk domain, we observe that pull-in
distance is a constant for any α ≥ 0. Therefore, with Figure 6.4(b), it is rather curious that
power-law profile does not change pull-in distance in the unit disk domain. In both figures,
the solution develops a boundary-layer structure near the boundary of the domain as α in
increased.

Since one of the primary goals of MEMS design is to maximize the pull-in distance over
a certain allowable voltage range that is set by the power supply, it would be interesting
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Figure 6.8: Left figure: plots of u versus x at λ = λ∗ in the slab domain. Right figure: plots
of u versus |x| at λ = λ∗ in the unit disk domain.
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Figure 6.9: Left figure: plots of u versus x at λ = λ∗ in the slab domain. Right figure: plots
of u versus |x| at λ = λ∗ in the unit disk domain.
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to formulate an optimization problem that computes a dielectric permittivity f(x) that
maximizes the pull-in distance for a prescribed range of the saddle-node threshold λ∗.

6.6 Some comments

Main results of this Chapter are available in [52, 64]. The discussion of dynamic solutions
for (6.0.1) at λ = λ∗ is due to H. Brezis and etc. in [13], where they dealt with parabolic
problems with regular nonlinearities. The analysis result has shown that for dimension
N ≥ 8, the unique solution of (6.0.1) can touchdown at infinite time at the zero point of
f(x). Our proof of finite-time touchdown for solutions of (6.0.1) at λ > λ∗ is motivated by
H. Bellout’s work [11], where the concavity method was used to discuss finite-time blow-up
behavior with regular nonlinearities. However, in our situation we have developed a delicate
trick to deal with the assumption that the profile f(x) can vanish at somewhere. There are
many open problems for arbitrary nonzero initial data.

Due to Guo, Pan and Ward [64], the upper bounds of finite touchdown time were
established only for sufficiently large λ, i.e,

λ > λ̄ := min
{ 4µΩ

27 infx∈Ω f(x)
,

µΩ

3
∫
Ω fφΩdx

}
,

see Proposition 6.3.3 for more details. Since numerical results were shown that λ̄ > λ∗, it is
desirable to fill this gap by establishing upper bounds of finite touchdown time in the case
λ∗ < λ ≤ λ̄. The finite touchdown time is expected to go to infinity as λ decreases to λ∗.

The asymptotic analysis of blow-up profiles can be traced back to [77]. And it was first
applied in [64] to our singular nonlinearity case, where the following interesting phenomenon
was first observed and discussed: zero point of profile f(x) can not be a touchdown point.
As far as we know, such a phenomenon has not been completely proved, which we shall
further discuss in next Chapter.

The pull-in distance discussed in §6.5 follows from [64], where some interesting phenom-
ena have been first observed too. For example, for the case where f(x) = |x|α ≥ 0 and Ω
is a unit disk in R

2, Figure 6.4 shows that pull-in distance of (6.0.1) is independent of the
value α; While Figure 6.8 & 6.9 show that the solution of (6.0.1) develops a boundary-layer
structure near the boundary of the domain as α is increased.



Chapter 7

Refined Touchdown Behavior

In this Chapter, we continue the study of dynamic solutions of (1.2.17) in the form

ut − ∆u = −λf(x)

u2
for x ∈ Ω , (7.0.1a)

u(x, t) = 1 for x ∈ ∂Ω , (7.0.1b)

u(x, 0) = 1 for x ∈ Ω . (7.0.1c)

where the permittivity profile f(x) is allowed to vanish somewhere, and will be assumed to
satisfy

f ∈ Cα(Ω̄) for some α ∈ (0, 1], 0 ≤ f ≤ 1 and
f > 0 on a subset of Ω of positive measure.

(7.0.2)

We consider the case λ > λ∗ such that a unique solution u of (7.0.1) must touchdown at
finite time T = T (λ,Ω, f) in the sense

Definition 7.0.1. A solution u(x, t) of (7.0.1) is said to touchdown at finite time T =
T (λ,Ω, f) if the minimum value of u reaches 0 at the time T <∞.

We shall give a refined description of finite-time touchdown behavior for u satisfying (7.0.1),
including some touchdown estimates, touchdown rates, as well as some information on the
properties of touchdown set –such as compactness, location and shape.

This Chapter is organized as follows: the purpose of §7.1 is mainly to derive some a
priori estimates of touchdown profiles under the assumption that touchdown set of u is a
compact subset of Ω. Note that whether the compactness of touchdown set holds for any
f(x) satisfying (7.0.2) is a quite challenging problem. In §7.1 we first prove in Proposition
7.1.1 that the compactness of touchdown set holds for the case where the domain Ω is
convex and f(x) satisfies the additional condition

∂f
∂ν ≤ 0 on Ωc

δ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} for some δ > 0. (7.0.3)

Here ν is the outward unit norm vector to ∂Ω.

161
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Under the compactness assumption of touchdown set, in §7.1.1 we establish the lower
bound estimate of touchdown profiles and we also prove an interesting phenomenon: finite-
time touchdown point of u is not the zero point of f(x), see Theorem 7.1.3. In §7.1.2 we
estimate the derivatives of touchdown solution u, see Lemma 7.1.5; and as a byproduct, an
integral estimate is also given in Theorem 7.1.6 of §7.1.2.

Motivated by Theorem 7.1.3, the key point of studying touchdown profiles is a similarity
variable transformation of (7.0.1). For the touchdown solution u = u(x, t) of (7.0.1) at finite
time T , we use the associated similarity variables

y =
x− a√
T − t

, s = −log(T − t) , u(x, t) = (T − t)
1
3wa(y, s) , (7.0.4)

where a is any interior point of Ω. Then wa(y, s) is defined in Wa := {(y, s) : a+ ye−s/2 ∈
Ω, s > s′ = −logT}, and it solves

ρ(wa)s −∇ · (ρ∇wa) −
1

3
ρwa +

λρf(a+ ye−
s
2 )

w2
a

= 0 ,

where ρ(y) = e−|y|2/4. Here wa(y, s) is always strictly positive in Wa. The slice of Wa at a
given time s1 is denoted by Ωa(s

1) := Wa ∩ {s = s1} = es
1/2(Ω − a). Then for any interior

point a of Ω, there exists s0 = s0(a) > 0 such that Bs := {y : |y| < s} ⊂ Ωa(s) for s ≥ s0.
We introduce the frozen energy functional

Es[wa](s) =
1

2

∫

Bs

ρ|∇wa|2dy −
1

6

∫

Bs

ρw2
ady −

∫

Bs

λρf(a)

wa
dy . (7.0.5)

By estimating the energy Es[wa](s) in Bs, in §7.1.3 we shall prove the upper bound estimate
of wa, see Theorem 7.1.11.

In order to study touchdown behavior of solutions for (7.0.1), it is quite necessary to
study the asymptotic behavior of positive entire solutions for the semilinear elliptic problem

∆w − 1

2
y · ∇w +

w

3
− 1

w2
= 0 in R

N , N ≥ 1 . (7.0.6)

This is the main goal of §7.2, where for generality we shall discuss whether every non-
constant positive entire solution of (7.2.2) must be strictly increasing for all |y| sufficiently
large.

Applying the results of §§7.1 & 7.2, we shall establish refined touchdown profiles in
§7.3, where self-similar method and center manifold analysis will be applied. Note that
the uniqueness of solutions for (7.0.1) gives the radial symmetry of u in Theorem 7.3.5. It
should remark from Theorem 7.3.5 that for N ≥ 2, we are only able to discuss the refined
touchdown profiles for special touchdown point x = 0 in the radial situation, and it seems
unknown for the general case.

Adapting various analytical and numerical techniques, §7.4 will be focused on the set
of touchdown points. This may provide useful information on the design of MEMS devices.
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In §7.4.1 we discuss the radially symmetric case of (7.0.1), and we prove there that suppose
f(r) = f(|x|) satisfies (7.0.2) and f ′(r) ≤ 0 in a bounded ball BR(0) ⊂ R

N with N ≥ 1,
then r = 0 is the unique touchdown point of u, which is the maximum value point of
f(r) = f(|x|), see Theorem 7.4.2 and Remark 7.4.1.

For one dimensional case, Theorem 7.4.2 already implies that touchdown points must
be unique when permittivity profile f(x) is uniform. In §7.4.2 we further discuss one
dimensional case of (7.0.1) for varying profile f(x), where numerical simulations show that
touchdown points may be composed of finite points or finite compact subsets of the domain.

7.1 A priori estimates of touchdown behavior

Under the assumption that touchdown set of u is a compact subset of Ω, in this section we
study some a priori estimates of touchdown behavior, and establish the claims in Theorems
7.1.3 and 7.1.11. In §7.1.1 we establish a lower bound estimate, from which we complete the
proof of Theorem 7.1.3. Using the lower bound estimate, in subsection §7.1.2 we shall prove
some estimates for the derivatives of touchdown solution u, and an integration estimate
will be also obtained as a byproduct. In subsection §7.1.3 we shall study the upper bound
estimate by energy methods, which gives Theorem 7.1.11.

We first prove the following compactness result for a large class of profiles f(x) satisfying
(7.0.2) and

∂f
∂ν ≤ 0 on Ωc

δ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} for some δ > 0. (7.1.1)

Proposition 7.1.1. Assume f satisfies (7.0.2) and (7.1.1) on a bounded convex domain
Ω, and suppose u is a touchdown solution of (7.0.1) at finite time T . Then, the set of
touchdown points for u is a compact subset of Ω.

Proof: We prove Proposition 7.1.1 by adapting moving plane method from Theorem 3.3
in [48], where it is used to deal with blow-up problems. Take any point y0 ∈ ∂Ω, and
assume for simplicity that y0 = 0 and that the half space {x1 > 0} (x = (x1, x

′)) is
tangent to Ω at y0. Let Ω+

α = Ω ∩ {x1 > α} where α < 0 and |α| is small, and also define
Ω−
α = {(x1, x

′) : (2α−x1, x
′) ∈ Ω+

α }, the reflection of Ω+
α with respect to the plane {x1 = α},

where x′ = (x2, · · · , xN ).
Consider the function

w(x, t) = u(2α− x1, x
′, t) − u(x1, x

′, t)

for x ∈ Ω−
α , then w satisfies

wt − ∆w =
λ(u(x1, x

′, t) + u(2α− x1, x
′, t))f(x)

u2(x1, x′, t)u2(2α− x1, x′, t)
w .

It is clear that w = 0 on {x1 = α}. Since u(x, t) = 1 along ∂Ω and since the maximum
principle gives ut < 0 for 0 < t < T , we may choose a small t0 > 0 such that

∂u(x, t0)

∂ν
> 0 along ∂Ω , (7.1.2)
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where ν is the outward unit norm vector to ∂Ω. Then for sufficiently small |α|, (7.1.2) implies
that w(x, t0) ≥ 0 in Ω−

α and also w = 1 − u(x1, x
′, t) > 0 on (∂Ω−

α ∩ {x1 < α}) × (t0, T ).
Applying the maximal principle we now conclude that w > 0 in Ω−

α × (t0, T ) and ∂w
∂x1

=

−2 ∂u
∂x1

< 0 on {x1 = α} . Since α is arbitrary, it follows by varying α that

∂u

∂x1
> 0 , (x, t) ∈ Ω+

α0
× (t0, T ) (7.1.3)

provided |α0| = |α0(t0)| > 0 is sufficiently small.
Fix 0 < |α0| ≤ δ, where δ is as in (7.1.1), we now consider the function

J = ux1 − ε1(x1 − α0) in Ω+
α0

× (t0, T ) ,

where ε1 = ε1(α0, t0) > 0 is a constant to be determined later. The direct calculations show
that

Jt − ∆J =
2λf

u3
ux1 −

λfx1

u2
=

2λf

u3
ux1 −

λ

u2

∂f

∂ν

∂ν

∂x1
≥ 0 in Ω+

α0
× (t0, T ) (7.1.4)

due to (7.1.1). Therefore, J can not attain negative minimum in Ω+
α0

× (t0, T ). Next, J > 0

on {x1 = α0} by (7.1.3). Since (7.1.2) gives ∂u(x,t0)
∂x1

≥ C > 0 along (∂Ω+
α0

∩ ∂Ω) for some
C > 0, we have J > 0 on {t = t0} provided ε1 = ε1(α0, t0) > 0 is sufficiently small. We now
claim that for small ε1 > 0,

J > 0 on (∂Ω+
α0

∩ ∂Ω) × (t0, T ) . (7.1.5)

To prove (7.1.5), we compare the solution U := 1 − u satisfying

Ut − ∆U =
λf(x)

(1 − U)2
(x, t) ∈ Ω × (t0, T ),

U(x, t0) = 1 − u(x, t0) ; U(x, t) = 0 x ∈ ∂Ω

with the solution v of the heat equation

vt = ∆v , (x, t) ∈ Ω × (t0, T ) ,

where 0 ≤ v(x, t0) = U(x, t0) < 1 and v = 0 on ∂Ω. Then we have U ≥ v in Ω × (t0, T ).
Consequently,

∂U

∂ν
≤ ∂v

∂ν
≤ −C0 < 0 on (∂Ω+

α0
∩ ∂Ω) × (t0, T ) ,

and hence ∂u
∂ν ≥ C0 > 0 on (∂Ω+

α0
∩ ∂Ω)× (t0, T ). It then follows that J ≥ C0

∂ν
∂x1

− ε1(x1 −
α0) > 0 provided ε1 = ε1(α0, t0) is small enough, which gives (7.1.5).

The maximum principle now yields that there exists ε1 = ε1(α0, t0) > 0 so small that
J ≥ 0 in Ω+

α0
× (t0, T ), i.e.,

ux1 ≥ ε1(x1 − α0) , (7.1.6)
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if x′ = 0 and α0 ≤ x1 < 0. Integrating (7.1.6) with respect to x1 on [α0, y1], where
α0 < y1 < 0, yields that

u(y1, 0, t) − u(α0, 0, t) ≥
ε1
2
|y1 − α0|2.

It follows that

limt→T−u(0, t) = limt→T− lim
y1→0−

u(y1, 0, t) ≥ ε1α
2
0/2 > 0,

which shows that y0 = 0 can not be a touchdown point of u(x, t).

The proof of (7.1.3) can be slightly modified to show that ∂u
∂ν > 0 in Ω+

α0
× (t0, T ) for

any direction ν close enough to the x1-direction. Together with (7.1.1), this enables us to
deduce that any point in {x′ = 0, α0 < x1 < 0} can not be a touchdown point. Since above
proof shows that α0 can be chosen independently of initial point y0 on ∂Ω, by varying y0

along ∂Ω we deduce that there is an Ω−Neighborhood Ω′ of ∂Ω such that each point x ∈ Ω′

can not be a touchdown point. This completes the proof of Proposition 7.1.1. �

Remark 7.1.1. When f(x) does not satisfy (7.1.1), the compactness of touchdown set is
numerically observed, see numerical simulations in Chapter 5 or in §6.4 of the present
paper. Therefore, it is our conjecture that under the convexity of Ω, the compactness of
touchdown set may hold for any f(x) satisfying (7.0.2).

7.1.1 Lower bound estimate

Define for η > 0,

Ωη := {x ∈ Ω : dist(x, ∂Ω) > η} , Ωc
η := {x ∈ Ω : dist(x, ∂Ω) ≤ η} . (7.1.7)

Since touchdown set of u is assumed to be a compact subset of Ω, in the rest of this section
we may choose a small η > 0 such that any touchdown point of u must lie in Ωη. Our first
aim of this subsection is to prove that any point x0 ∈ Ω̄η satisfying f(x0) = 0 can not be a
touchdown point of u at finite time T , which then leads to the following proposition.

Proposition 7.1.2. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u(x, t)
is a touchdown solution of (7.0.1) at finite time T . If touchdown set of u is a compact subset
of Ω, then any point x0 ∈ Ω̄ satisfying f(x0) = 0 cannot be a touchdown point of u(x, t).

Proof: Since touchdown set of u is assumed to be a compact subset of Ω, it now suffices to
discuss the point x0 lying in the interior domain Ωη for some small η > 0, such that there
is no touchdown point on Ωcη.

For any t1 < T , we first recall that the maximum principle gives ut < 0 for all (x, t) ∈
Ω × (0, t1). Further, the boundary point lemma shows that the outward normal derivative
of v = ut on ∂Ω is positive for t > 0. This implies that for taking small 0 < t0 < T , there
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exists a positive constant C = C(t0, η) such that ut(x, t0) ≤ −C < 0 for all x ∈ Ω̄η. For
any 0 < t0 < t1 < T , we next claim that there exists ε = ε(t0, t1, η) > 0 such that

J ǫ(x, t) = ut +
ε

u2
≤ 0 for all (x, t) ∈ Ωη × (t0, t1) . (7.1.8)

Indeed, it is now clear that there exists Cη = Cη(t0, t1, η) > 0 such that ut(x, t) ≤ −Cη on
the parabolic boundary of Ωη × (t0, t1). And further, we can choose ε = ε(t0, t1, η) > 0 so
small that J ǫ ≤ 0 on the parabolic boundary of Ωη × (t0, t1), due to the local boundedness
of 1

u2 on ∂Ωη × (t0, t1). Also, direct calculations imply that

J ǫt − ∆J ǫ =
2λf

u3
J ǫ − 6ε|∇u|2

u4
≤ 2λf

u3
J ǫ .

Now (7.1.8) follows again from the maximum principle.
Combining (7.1.8) and (7.0.1) we deduce that for a small neighborhood B of x0 where

λf(x) ≤ ε/2 is in B ⊂ Ω̄η, we have for v := 1 − u,

∆v ≥ ε

2

1

(1 − v)2
, (x, t) ∈ B × (t0, t1) .

Now Proposition 7.1.2 is a direct result of Lemma 6.2.2, since t1 < T is arbitrary. �

Essentially, the claim (7.1.8) is ready to give a lower bound estimate, from which we
obtain the following theorem.

Theorem 7.1.3. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . If touchdown set of u is a compact subset of
Ω, then

1. any point a ∈ Ω̄ satisfying f(a) = 0 is not a touchdown point for u(x, t);

2. there exists a bounded positive constant M such that

M(T − t)
1
3 ≤ u(x, t) in Ω × (0, T ) . (7.1.9)

Proof: In view of Proposition 7.1.2, it now needs only to prove the lower bound estimate
(7.1.9).

Given any small η > 0, applying the same argument used for (7.1.8) yields that for any
0 < t0 < t1 < T , there exists ε = ε(t0, t1, η) > 0 such that

ut ≤ − ε

u2
in Ωη × (t0, t1).

This inequality shows that ut → −∞ as u touchdown, and there exists M > 0 such that

M1(T − t)
1
3 ≤ u(x, t) in Ωη × (0, T ) (7.1.10)

due to the arbitrary of t0 and t1, where M1 depends only on λ, f and η. Furthermore, one
can obtain (7.1.9) because of the boundedness of u on Ωc

η., and the theorem is proved. �
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7.1.2 Gradient estimates

As a preliminary of next section, it is now important to know a priori estimates for the
derivatives of touchdown solution u, which are the contents of this subsection. Following
the analysis in [48], our first lemma is about the derivatives of first order without the
compactness assumption of touchdown set.

Lemma 7.1.4. Assume f satisfies (7.0.2) on a bounded convex domain Ω, and suppose u
is a touchdown solution of (7.0.1) at finite time T . Then for any 0 < t0 < T , there exists a
bounded constant C > 0 such that

1

2
|∇u|2 ≤ C

u
− C

u
in Ω × (0, t0) , (7.1.11)

where u = u(t0) = minx∈Ω u(x, t0), and C depends only on λ, f and Ω.

Proof: Fix any 0 < t0 < T and treat u(t0) as a fixed constant. Let w = u − u, then w
satisfies

wt − ∆w = − λf(x)

(w + u)2
in Ω × (0, t0) ,

w = 1 − u in ∂Ω × (0, t0) ,
w(x, 0) = 1 − u in Ω .

We introduce the function

P =
1

2
|∇w|2 +

C

w + u
− C

u
, (7.1.12)

where the bounded constant C ≥ 2λ supx∈Ω̄ f will be determined later. Then we have

Pt − ∆P =
Cλf(x)

(w + u)4
− λ∇f(x)∇w

(w + u)2
+

2(λf(x) − C)|∇w|2
(w + u)3

−
N∑

i,j=1

w2
ij

≤ λC supx∈Ω̄ f

(w + u)4
+

−2λ|∇w|2 supx∈Ω̄ f + λ|∇w| supx∈Ω̄ |∇f |
(w + u)3

−
N∑

i,j=1

w2
ij

≤ λ(C supx∈Ω̄ f + C1)

(w + u)4
−

N∑

i,j=1

w2
ij ,

(7.1.13)

where C1 :=
(supx∈Ω̄ |∇f |)2

8 supx∈Ω̄ f
≥ 0 is bounded. Since (7.1.12) gives

N∑

i=1

(
Pi +

C

(w + u)2
wi
)2

=
N∑

i,j=1

(wjwij)
2 ≤ |∇w|2

N∑

i,j=1

w2
ij , (7.1.14)

we now take

C := max
{

2λ sup
x∈Ω̄

f,
λ supx∈Ω̄ f + λ

√
(supx∈Ω̄ f)2 + 4C1

2

}
≥ 2λ sup

x∈Ω̄

f
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so that C2 ≥ λ(C supx∈Ω̄ f + C1), where C clearly depends only on λ, f and Ω. From the
choice of C, a combination of (7.1.13) and (7.1.14) gives that

Pt − ∆P ≤ −→
b · ∇P ,

where
−→
b = −|∇w|−2(∇P + 2C∇w

(w+u)2
) is a locally bounded when ∇w 6≡ 0. Therefore, P

can only attain positive maximum either at the point where ∇w = 0, or on the parabolic
boundary of Ω × (0, t0). But when ∇w = 0, we have P ≤ 0.

On the initial boundary, P = C
1+u − C

u < 0 . Let (y, s) be any point on ∂Ω × (0, t0), if
we can prove that

∂P

∂ν
≤ 0 at (y, s) , (7.1.15)

it then follows from the maximum principle that P ≤ 0 in Ω × (0, t0). And therefore, the
assertion (7.1.11) is reduced from (7.1.12) together with w = u− u.

To prove (7.1.15), we recall the fact that since w = const. on ∂Ω (for t = s), we have

∆w = wνν + (N − 1)κwν at (y, s) ,

where κ is the non-negative mean curvature of ∂Ω at y. It then follows that

∂P

∂ν
= wνwνν −

Cwν
(w + u)2

≤ wν

[
∆w − (N − 1)κwν −

λf(x)

(w + u)2

]

= wν [wt − (N − 1)κwν ] = −(N − 1)κw2
ν ≤ 0

at (y, s), and we are done. �

The following lemma is dealt with the derivatives of higher order, and the idea of its
proof is similar to Proposition 1 of [56].

Lemma 7.1.5. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, and x = a is any point of Ωη for some small η > 0. Then there exists a positive
constant M ′ such that

|∇mu(x, t)|(T − t)−
1
3
+m

2 ≤M ′ , m = 1, 2 (7.1.16)

holds for |x− a| ≤ R.

Proof: It suffices to consider the case a = 0 by translation, and we may focus on 1
2R

2 <
r2 < R2 and denote Qr = Br × (T [1 − ( rR)2], T ).

Our first task is to show that |∇u| and |∇2u| are uniformly bounded on compact subsets
of QR. Indeed, since f(x)/u2 is bounded on any compact subset D of QR, standard Lp

estimates for heat equations (cf. [80]) gives

∫ ∫

D
(|∇2u|p + |ut|p)dxdt < C , 1 < p <∞ .
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Choosing p to be large enough, we then conclude from Sobolev’s inequality that f(x)/u2 is
Hölder continuous on D. Therefore, Schauder’s estimates for heat equations (cf. [80]) show
that |∇u| and |∇2u| are uniformly bounded on compact subsets of D. In particular, there
exists M1 such that

|∇u| + |∇2u| ≤M1 for (x, t) ∈ Br ×
(
T [1 − (

r

R
)2], T [1 − 1

2
(1 − r

R
)2]
)
, (7.1.17)

where M1 depends only on R, N and M given in (7.1.9).

We next prove (7.1.16) for |x| < r and T [1− 1
2(1− r

R)2] ≤ t < T . Fix such a point (x, t),

let µ = [ 2
T (T − t)]

1
2 and consider

v(z, τ) = µ−
2
3u(x+ µz, T − µ2(T − τ)) . (7.1.18)

For above given point (x, t), we now define O := {z : (x+µz) ∈ Ω} and g(z) := f(x+µz) ≥ 0
on O. One can verify that v(z, τ) is a solution of

vτ − ∆zv = −λg(z)
v2

z ∈ O,

v(z, 0) = v0(z) > 0 ; v(z, τ) = µ−
2
3 z ∈ ∂O ,

(7.1.19)

where ∆z denotes the Laplacian operator with respect to z, and v0(z) = µ−
2
3u(x+ µz, T −

µ2T ) > 0 satisfies ∆zv0 − λg(z)
v20

≤ 0 on O. The formula (7.1.18) implies that T is also the

finite touchdown time of v, and the domain of v includes Qr0 for some r0 = r0(R) > 0.
Since touchdown set of u is assumed to be a compact subset of Ω, one can observe that
touchdown set of v is also a compact subset of O. Therefore, the argument of Theorem
7.1.3(2) can be applied to (7.1.19), yielding that there exists a constant M2 > 0 such that

v(z, τ) ≥M2(T − τ)
1
3

where M2 depends only on R, λ, f and Ω again. The argument used for (7.1.17) then yields
that there exists M ′

1 > 0, depending on R, N and M2, such that

|∇zv| + |∇2
zv| ≤M ′

1 for (z, τ) ∈ Br ×
(
T [1 − (

r

r0
)2], T [1 − 1

2
(1 − r

r0
)2]
)
, (7.1.20)

where we assume 1
2r

2
0 < r2 < r20. Applying (7.1.18) and taking (z, τ) = (0, T2 ), this estimate

reduces to

µ−
2
3
+1|∇u| + µ−

2
3
+2|∇2u| ≤M ′

1 .

Therefore, (7.1.16) follows since µ = [ 2
T (T − t)]

1
2 . �

Before concluding this subsection, we now apply gradient estimates to establishing in-
tegral estimates.
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Theorem 7.1.6. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, then for γ > 3

2N we have

limt→T−

∫

Ω
f(x)u−γ(x, t)dx = +∞ .

Proof: For any given t0 ∈ (0, T ) close to T , Lemma 7.1.4 implies that

1

2
|∇u|2 ≤ C

u2
(u− u) in Ω × (0, t0) (7.1.21)

for some bounded constant C > 0, where u = u(x0, t0) = minx∈Ωu(x, t0). Considering any
t sufficiently close to t0, we now introduce polar coordinates (r, θ) about the point x0. Then
in any direction θ, there is a smallest value of r0 = r0(θ, t) such that u(r0, t) = 2u. Note that
r0 is very small as t < t0 sufficiently approach to T . Furthermore, since x0 approaches to
one of touchdown points of u as t→ T−, Proposition 7.1.2 shows that as t < t0 sufficiently
approach to T , we have f(x) ≥ C0 > 0 in {r < r0} for some C0 > 0. Since (7.1.21) and the

definition of u imply that ur√
u−u ≤

√
2C
u , which is 2

√
u− u ≤

√
2C
u r, we attain

√
2
Cu

3/2 ≤ r0

by taking r = r0. Therefore, for γ > 3
2N we have

∫

Ω
u−γdx ≥ C

∫

Ω
f(x)u−γdx ≥ CC0

∫

{r≤r0}
u−γdx ≥ C

∫

θ
dSθ

∫

{r≤r0}
u−γrN−1dr

≥ C

∫

θ
dSθ

∫

{r≤r0}
(2u)−γrN−1dr

≥ C

∫

θ
dSθu

−γrN0 ≥ C

∫

θ
dSθu

−γ+ 3
2
N = +∞

as t→ T−, which completes the proof of Theorem 7.1.6. �

7.1.3 Upper bound estimate

In this subsection, we discuss the upper bound estimate of touchdown solution u by applying
energy methods, see Theorem 7.1.11.

First, we note the following local upper bound estimate.

Proposition 7.1.7. Suppose u is a touchdown solution of (7.0.1) at finite time T . Then,
there exists a bounded constant C = C(λ, f,Ω) > 0 such that

min
x∈Ω

u(x, t) ≤ C(T − t)
1
3 for 0 < t < T . (7.1.22)

Proof: Set

U(t) = min
x∈Ω

u(x, t), 0 < t < T ,
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and let U(ti) = u(xi, ti) (i = 1, 2) with h = t2 − t1 > 0. Then,

U(t2) − U(t1) ≤ u(x1, t2) − u(x1, t1) = hut(x1, t1) + o(h),

U(t2) − U(t1) ≥ u(x2, t2) − u(x2, t1) = hut(x2, t2) + o(h).

It follows that U(t) is lipschitz continuous. Hence, for t2 > t1 we have

U(t2) − U(t1)

t2 − t1
≥ ut(x2, t2) + o(1).

On the other hand, since ∆u(x2, t2) ≥ 0 we obtain,

ut(x2, t2) ≥ − λf(x2)

u2(x2, t2)
= −λf(x2)

U2(t2)
≥ − C

U2(t2)
for 0 < t2 < T .

Consequently, at any point of differentiability of U(t), it deduces from above inequalities
that

U2Ut ≥ −C a.e. t ∈ (0, T ) . (7.1.23)

Integrating (7.1.23) from t to T we obtain (7.1.22). �

For the touchdown solution u = u(x, t) of (7.0.1) at finite time T , we now introduce the
associated similarity variables

y =
x− a√
T − t

, s = −log(T − t) , u(x, t) = (T − t)
1
3wa(y, s) , (7.1.24)

where a is any point of Ωη for some small η > 0. Then wa(y, s) is defined in

Wa := {(y, s) : a+ ye−s/2 ∈ Ω, s > s′ = −logT} ,

and it solves
∂

∂s
wa − ∆wa +

1

2
y · ∇wa −

1

3
wa +

λf(a+ ye−
s
2 )

w2
a

= 0 . (7.1.25)

Here wa(y, s) is always strictly positive in Wa. Note that the form of wa defined by (7.1.24)
is motivated by Theorem 7.1.3 and Proposition 7.1.7. The slice of Wa at a given time s1

will be denoted by Ωa(s
1):

Ωa(s
1) := Wa ∩ {s = s1} = es

1/2(Ω − a) .

Then for any a ∈ Ωη, there exists s0 = s0(η, a) > 0 such that

Bs := {y : |y| < s} ⊂ Ωa(s) for s ≥ s0 . (7.1.26)

From now on, we often suppress the subscript a, writing w for wa, etc.
In view of (7.1.24), one can combine Theorem 7.1.3 and Lemma 7.1.5 to reaching the

following estimates on w = wa:



172 CHAPTER 7. REFINED TOUCHDOWN BEHAVIOR

Corollary 7.1.8. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, then the rescaled solution w = wa satisfies

M ≤ w ≤ e
s
3 , |∇w| + |∆w| ≤M ′ in W,

where M is a constant as in Theorem 7.1.3 and while M ′ is a constant as in Lemma 7.1.5.
Moreover, it satisfies

M ≤ w(y1, s) ≤ w(y2, s) +M ′|y2 − y1|

for any (yi, s) ∈W , i = 1, 2.

We now rewrite (7.1.25) in divergence form:

ρws −∇ · (ρ∇w) − 1

3
ρw +

λρf(a+ ye−
s
2 )

w2
= 0 , (7.1.27)

where ρ(y) = e−|y|2/4. We also introduce the frozen energy functional

Es[w](s) =
1

2

∫

Bs

ρ|∇w|2dy − 1

6

∫

Bs

ρw2dy −
∫

Bs

λρf(a)

w
dy , (7.1.28)

which is defined in the compact set Bs of Ωa(s) for s ≥ s0.

Lemma 7.1.9. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, then the rescaled solution w = wa satisfies

1

2

∫

Bs

ρ|ws|2dy ≤ − d

ds
Es[w](s) + gη(s) for s ≥ s0 , (7.1.29)

where gη(s) is positive and satisfies
∫∞
s0
gη(s)ds <∞.
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Proof: Multiply (7.1.27) by ws and use integration by parts to get

∫

Bs

ρ|ws|2dy =

∫

Bs

ws∇(ρ∇w)dy +
1

3

∫

Bs

ρwwsdy −
∫

Bs

λρwsf(a+ ye−
s
2 )

w2
dy

= −1

2

∫

Bs

d

ds
|∇w|2ρdy +

∫

Bs

d

ds

(1

6
w2 +

λf(a)

w

)
ρdy

+

∫

∂Bs

ρws
∂w

∂ν
dS +

∫

Bs

λρws[f(a) − f(a+ ye−
s
2 )]

w2
dy

= − d

ds
Es[w](s) +

∫

∂Bs

ρws
∂w

∂ν
dS +

1

2s

∫

∂Bs

ρ|∇w|2(y · ν)dS

−1

s

∫

∂Bs

ρ
(1

6
w2 +

λf(a)

w

)
(y · ν)dS +

∫

Bs

λρws[f(a) − f(a+ ye−
s
2 )]

w2
dy

≤ − d

ds
Es[w](s) +

∫

∂Bs

ρws
∂w

∂ν
dS +

1

2s

∫

∂Bs

ρ|∇w|2(y · ν)dS

+

∫

Bs

λρws[f(a) − f(a+ ye−
s
2 )]

w2
dy

:= − d

ds
Es[w](s) + I1 + I2 + I3 ,

(7.1.30)
where ν is the exterior unit norm vector to ∂Ω and dS is the surface area element. The
following formula is applied in the third equality of (7.1.30): if g(y, s) : W 7→ R is a smooth
function, then

d

ds

∫

Bs

g(y, s)dy =
d

ds

∫

B1

g(sz, s)sNdz

= N

∫

B1

g(sz, s)sN−1dz +

∫

B1

gs(sz, s)s
Ndz +

∫

B1

(
∇yg · z

)
sNdz

=

∫

Bs

gs(y, s)dy +N

∫

Bs

g(y, s)
dy

s
+

∫

Bs

(
∇g · y

s

)
dy

=

∫

Bs

gs(y, s)dy +
1

s

∫

∂Bs

g(y, s)(y · ν)dS .

For s ≥ s0, we next estimate integration terms I1, I2 and I3 as follows:
Considering |y| ≤ S in Bs, Corollary 7.1.8 gives

|ws| = |∆w − 1

2
y · ∇w +

1

3
w − λf(a+ ye−

s
2 )

w2
| ≤ C(1 + |y|) +

1

3
w ≤ C1s+

1

3
e

s
3 ,

which implies

I1 ≤ CsN−1e−
s2

4
(
C1s+

1

3
e

s
3
)
≤ C2s

Ne−
s2

4
+ s

3 . (7.1.31)

It is easy to observe that

I2 ≤ C3s
N−1e−

s2

4 . (7.1.32)
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As for I3, since w has a lower bound and since f(x) ∈ Cα(Ω̄) for some α ∈ (0, 1], we apply
Young’s inequality to deduce

I3 ≤ Ce−
α
2
s

∫

Bs

ρ|y|αwsdy ≤ Ce−
α
2
s
[
ε

∫

Bs

ρw2
sdy + C(ε)

∫

Bs

ρ|y|2αdy
]
,

where the constant ε > 0 is arbitrary. Because e−
α
2
s <∞, one can take sufficiently small ε

such that

I3 ≤ 1

2

∫

Bs

ρw2
sdy + C4e

−α
2
s . (7.1.33)

Combining (7.1.30) − (7.1.33) then yields

1

2

∫

Bs

ρ|ws|2dy ≤ − d

ds
Es[w](s) + C̄1s

Ne−
s2

4
+ s

3 + C̄2e
−α

2
s

:= − d

ds
Es[w](s) + gη(s) ,

where gη(s) is positive and satisfies
∫∞
s0
gη(s)ds <∞, and we are done. �

Remark 7.1.2. Supposing the convexity of Ω, one can establish an energy estimate in the
whole domain Ωa(s):

∫

Ωa(s)
ρ|ws|2dy ≤ − d

ds
EΩa(s)[w](s) +Kη(s) for s ≥ s0 , (7.1.34)

where Kη(s) is positive and satisfies
∫∞
s0
Kη(s)ds <∞, and EΩa(s)[w](s) is defined by

EΩa(s)[w](s) =
1

2

∫

Ωa(s)
ρ|∇w|2dy − 1

6

∫

Ωa(s)
ρw2dy −

∫

Ωa(s)

λρf(a)

w
dy . (7.1.35)

However, by estimating the energy functional Es[w](s) in Bs, instead of Ωa(s), it is sufficient
to obtain the desirable upper bound estimate of w, see Theorem 7.1.11 below.

The following lemma is also necessary for establishing the desirable upper bound esti-
mate.

Lemma 7.1.10. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, and a is any point of Ωη for some η > 0. Then there exists a constant ε > 0,
depending only on λ, f and Ω, such that if

u(x, t)(T − t)−
1
3 ≥ ε (7.1.36)

for all (x, t) ∈ Qδ := {(x, t) : |x− a| < δ, T − δ < t < T}, then a is not a touchdown point
for u. Here δ > 0 is an arbitrary constant.
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Proof: Setting v(x, t) = 1
u(x,t) , then v(x, t) blows up at finite time T , and v satisfies

vt − ∆v = −2|∇v|2
v

+ λf(x)v4 ≤ K(1 + v4) in Qδ , (7.1.37)

where K := λ supx∈Ω̄ f(x) > 0. We now apply Theorem 2.1 of [58] to (7.1.37), which gives
that there exists a constant 1

ε > 0, depending only on λ, f and Ω, such that if

v(x, t) ≤ 1

ε
(T − t)−

1
3 in Qδ ,

then a is not a blow-up point for v, and hence (7.1.36) follows. �

Theorem 7.1.11. Assume f satisfies (7.0.2) on a bounded domain Ω, and suppose u is a
touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, and a is any point of Ωη for some η > 0. If wa(y, s) → ∞ as s→ ∞ uniformly
for |y| ≤ C, where C is any positive constant, then a is not a touchdown point for u.

Proof: We first claim that if wa(y, s) → ∞ as s→ ∞ uniformly for |y| ≤ C, then

Es[wa](s) → −∞ as s→ ∞ . (7.1.38)

Indeed, it is obvious from Corollary 7.1.8 that the first term and the third term in Es[wa](s)
are uniformly bounded. As for the second term, we can write

∫

Bs

ρw2dy =

∫

BC

ρw2dy +

∫

Bs\BC

ρw2dy ≥
∫

BC

ρw2dy .

Since wa → ∞ as s → ∞ uniformly on BC , we have
∫
BC

ρw2dy → ∞ as s → ∞, which

gives −1
6

∫
BC

ρw2dy → −∞ as s→ ∞, and hence (7.1.38) follows.
Let K be a large positive constant to be determined later. Then (7.1.38) implies that

there exists an s̄ such that Es̄[wa](s̄) ≤ −4K. Using the same argument as in [57], it is easy
to show that for any fixed s, Es[wa](s) varies smoothly with a ∈ Ω. Therefore, there exists
an r0 > 0 such that

Es̄[wb](s̄) ≤ −3K for |b− a| < r0 .

Since touchdown set of u is assumed to be a compact subset of Ω, we have dist(a, ∂Ω) > η
for some η > 0. Therefore, it now follows from Lemma 7.1.9 that

Es[wb](s) ≤ −2K for |b− a| < r0 , s ≥ s̄

provided K ≥ M1 :=
∫∞
s0
gη(s)ds, where gη(s) is as in Lemma 7.1.9. Since the first term

and the third term in Es[wb](s) are uniformly bounded, we have

∫

Bs

ρw2
bdy ≥ 6K for |b− a| < r0 , s ≥ s̄ . (7.1.39)



176 CHAPTER 7. REFINED TOUCHDOWN BEHAVIOR

Recalling from Corollary 7.1.8,

w2
b (y, s) ≤ 2

(
w2
b (0, s) +M ′2|y|2

)
,

we obtain from (7.1.39) that

3K ≤ w2
b (0, s)

∫

Bs

ρdy +M ′2
∫

Bs

ρ|y|2dy ≤ C1w
2
b (0, s) + C2 .

We now choose K ≥ max{M1,
2
3C2} so large that

wb(0, s) ≥
√

3K

2C1
:= ε . (7.1.40)

Setting t̄ := T − e−s̄, it reduces from (7.1.40) that

u(b, t)(T − t)−
1
3 ≥ ε for |b− a| < r0 , t̄ < t < T .

Applying Lemma 7.1.10 with a small r0, we finally conclude that a is not a touchdown point
for u, and the theorem is proved. �

7.2 Entire solutions of a semilinear elliptic problem

As another preliminary of next section, it is quite necessary to study the asymptotic behavior
of positive entire solutions for a semilinear elliptic problem

∆w − 1

2
y · ∇w +

w

3
− 1

w2
= 0 in R

N , N ≥ 1 . (7.2.1)

For generality, we focus on positive entire solutions of the following problem

∆w − 1

2
y · ∇w = F (w) :=

1

wβ
− w

1 + β
in R

N , (7.2.2)

where N ≥ 1 and β ≥ 1 is a parameter. We are interested in the asymptotic behavior
whether every non-constant solution w of (7.2.2) must be strictly increasing for all |y|
sufficiently large.

7.2.1 Asymptotic behavior for N = 1

In this subsection, we consider positive entire solutions of (7.2.2) with N = 1 satisfying

w′′(y) − yw′(y)
2

= F
(
w(y)

)
:=

1

wβ(y)
− w(y)

1 + β
in (−∞,+∞), (7.2.3)

where β ≥ 1 is a parameter. For this case, Fila & Hulshof in [43] established the following
theorem.
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Theorem 7.2.1. Suppose β ≥ 1, then as y ց −∞ and/or y ր +∞, every nonconstant
solution of (7.2.3) is eventually strictly convex and tends to +∞.

As proved in [43], Theorem 7.2.1 is a consequence of several lemmas.

Lemma 7.2.2. A solution of (7.2.3) cannot be nonincreasing near y = +∞ unless it is
identically equal to

k = k(β) := (1 + β)
1

1+β , (7.2.4)

which is the unique positive root of F .

Proof: By contradiction, we suppose that there exists a nonconstant solution w which is
decreasing for large positive values of y. It is easily seen from (7.2.3) that w then has to
drop below the value k defined by (7.2.4). Using the variation of constant formula, we
obtain

w′(y) = e
1
4
y2
(
w′(p) +

∫ y

p
e−

1
4
η2
g(η)dη

)
, (7.2.5)

where g(y) := F
(
w(y)

)
and p ≥ 0 is arbitrary. Since w(y) decreases to a nonnegative limit

as y ր +∞, we have w′(+∞) = 0 and therefore, (7.2.5) can be rewritten as

w′(y) = −e 1
4
y2
∫ +∞

y
e−

1
4
η2
g(η)dη . (7.2.6)

However, since the function g(y) is positive and bounded away from zero for sufficiently
large y, it gives that the integral

∫ +∞

0
e

1
4
y2
∫ +∞

y
e−

1
4
η2
g(η)dηdy

diverges to +∞. Together with (7.2.6), this implies that w(y) cannot remain positive as
y ր +∞, a contradiction. �

For the solution w(y) of (7.2.3), inspired by [47] we define a function J(y)

J(y) = e−
1
4
y2
(
w′(y)w′′(y) +

w(y)w′′′(y)
β

)
.

Then one can deduce that

J ′(y) =
1

2β
e−

1
4
y2
(
(1 + β)yw′(y)w′′(y) + (β − 1)w′(y)2

)
. (7.2.7)

Indeed, as in [47] one can differentiate (7.2.3) twice and then multiply by w/β to get that

ww(4)

β
− ww′′

β
− yww′′

2β
= − ww′′

β(1 + β)
− w′′

wβ
+ (β + 1)

(w′)2

wβ+1
. (7.2.8)
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Multiply (7.2.3) by w′′ to obtain

(w′′)2 − yw′w′′

2
=
w′′

wβ
− ww′′

β + 1
. (7.2.9)

Combining (7.2.8) and (7.2.9) now yields that

(w′′)2 − yw′w′′

2
+
ww(4)

β
− yww′′

2β
= (β + 1)

(w′)2

wβ+1
. (7.2.10)

On the other hand, using the first derivative of (7.2.3), we have

w′′′ =
w′

2
+
yw′′

2
− β

w′

wβ+1
− w′

β + 1
,

which gives

w′w′′′

β
+ w′w′′′ =

β + 1

β
w′w′′′ =

(β + 1)w′

β

[w′

2
+
yw′′

2
− β

w′

wβ+1
− w′

β + 1

]
. (7.2.11)

By adding (7.2.10) to (7.2.11), the identity (7.2.7) is then obtained after multiplication by

e−
y2

4 .

Lemma 7.2.3. Let w(y) be a solution of (7.2.3) with w′(0) = 0 and 0 < w(0) < k. Then
w is a strictly convex function.

Proof: First, we observe from (7.2.3) that w′′(y) > 0 for small values of y. We also note
from (7.2.3) that

w′′′ =
yw′′

2
+
w′

2
− βw′

wβ+1
− w′

β + 1
. (7.2.12)

Since w′(0) = 0, we get from (7.2.12) that w′′′(0) = 0 and hence J(0) = 0. By (7.2.7), if
w′′(y) > 0 then we have J ′(y) > 0 and w′(y) > 0 since w′(0) = 0. Now suppose that there
is some y0 > 0 such that w′′(y0) = 0. We may assume that y0 is the first value at which
this happens. But then w′′′(y0) ≤ 0 and hence J(y0) ≤ 0, which contradicts the facts that
J(0) = 0 and J ′(y) > 0 for all 0 < y < y0. This completes the proof of Lemma 7.2.3. �

Lemma 7.2.4. Let w(y) be a nonconstant solution of (7.2.3) which is decreasing on some
subinterval of the positive reals. Then, w(y) attains a positive minimum in a unique positive
y1 and it is strictly convex for y ≥ y1.

Proof: By Lemma 7.2.2 there has to be a minimal positive value y1 such that w′(y1) = 0
and w′′(y1) ≥ 0. Since w(y) is not a constant, it follows that w′′(y1) > 0. We see from
(7.2.12) that consequently w′′′(y1) > 0, and therefore, J(y1) > 0. The remainder of the
proof is identical to the proof of Lemma 7.2.3 and it is therefore left to the interested
reader. �
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Proof of Theorem 7.2.1: Suppose that w(y) is a nonconstant solution of (7.2.3) for which
the statement is false. By Lemma 7.2.4, it has to be nondecreasing on the positive reals,
and by symmetry, it has to be nonincreasing on the negative reals. Therefore w′(0) = 0,
and obviously 0 < w(0) < k. But then we can reach a contradiction by applying Lemma
7.2.3. �

7.2.2 Asymptotic behavior for N ≥ 2

It seems difficult to study the asymptotic behavior of positive entire solutions for (7.2.2)
with N ≥ 2. To our knowledgement, the available results is due to J. S. Guo [62], where
the author discussed positive radially symmetric solution w(r) of (7.2.2) with N ≥ 2, in the
sense that there exists an η > 0 such that w(0) = η, w′(0) = 0, and that w satisfies the
equation

w′′ +
(N − 1

r
− r

2

)
w′ + f1(w) = 0 r > 0 (7.2.13)

with f1(w) = w
1+β − 1

wβ , where β > 1 is a parameter again. For convenience, we define

k = k(β) := (1 + β)
1

1+β , F1(w) =

∫ w

k
f1(t)dt ;

ρ(r) = e−
r2

4 , σ(r) = rN−1ρ(r) ,

and therefore, we have

F1 ≥ 0 , F1(w) ∼ w2 as w → ∞ and F1(w) ∼ w1−β as w → 0 ;

ρ′(r) = −r
2
ρ(r) , σ′(r) = (

N − 1

r
− r

2
)σ(r) .

J. S. Guo in [62] established the following asymptotic behavior of positive radially symmetric
solution w(r) for (7.2.13).

Theorem 7.2.5. Every nonconstant radial solution w of (7.2.13) must be strictly increasing
for all r sufficiently large, and w(r) → ∞ as r → ∞.

In order to prove Theorem 7.2.5, we need to establish some lemmas. The first one is
motivated by [55].

Lemma 7.2.6. For any η > 0, there is a unique positive entire solution w(r) = w(r; η) of
(7.2.13) such that w(0) = η and w′(0) = 0.

Proof: Since r = 0 is a regular singular point and f1(w) is real analytic at w = η, the
local existence and uniqueness follow. Let [0, a) be the maximal interval on which w is
well-defined. Multiplying (7.2.13) by ρ2w′, we obtain

(ρ2w′2

2

)′
+
N − 1

r
ρ2w′2 + ρ2F ′

1(w) = 0 . (7.2.14)
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Integrating (7.2.14) over [0, r] with any r < a, we have

ρ2(r)w′2(r)
2

+

∫ r

0

N − 1

s
ρ2(s)w′2(s)ds+

∫ r

0
ρ2(s)F ′

1

(
w(s)

)
ds = 0 . (7.2.15)

Using integration by parts for the last integral of (7.2.15), we have

ρ2(r)w′2(r)
2

+

∫ r

0

N − 1

s
ρ2(s)w′2(s)ds+

∫ r

0
sρ2(s)F1

(
w(s)

)
ds+ρ2(r)F1

(
w(r)

)
−F1(η) = 0 .

Therefore, we get that

1

2
ρ2(r)w′2(r) + ρ2(r)F1

(
w(r)

)
≤ F1(η) . (7.2.16)

Therefore, (7.2.16) and the standard continuation theorem give that a = ∞. Moreover,
(7.2.16) implies w > 0 for any r ≥ 0. �

Lemma 7.2.7. Any critical point r0 of a radial solution w for (7.2.13) is a local maximal
point if w(r0) > k, and a local minimal point if w(r0) < k. Moreover, there cannot exist a
point r with w(r) = k and w′(r) = 0 except when w ≡ k.

Proof: From the uniqueness of initial value problems for ordinary differential equations, it
follows that there cannot exist a point r with w(r) = k and w′(r) = 0 except when w ≡ k.
Let r0 be any critical point of w, then we have w′′(r0) = −f1

(
w(r0)

)
. This shows that r0 is

a local maximal point if w(r0) > k, and while r0 is a local minimal point if w(r0) < k. �

Lemma 7.2.8. Any nonconstant radial solution w of (7.2.13) which takes the value k only
finite times must be strictly increasing for all r sufficiently large. Moreover, w(r) → ∞ as
r → ∞.

Proof: If w is a nonconstant radial solution of (7.2.13) which takes the value k only finite
times, then there exists a number r̄ such that either w(r) > k or w(r) < k for all r ≥ r̄.
Consider the case where w(r) > k for all r ≥ r̄. We claim that w is monotone for all r
sufficiently large. Indeed, otherwise then there exist a local maximum and a local minimum
which are both greater than k, a contradiction to Lemma 7.2.7. Therefore, w must be
monotone for all r sufficiently large. The other case can be dealt similarly. This shows that
there is r0 > r̄ such that either w′(r) > 0 or w′(r) < 0 for all r ≥ r0. We claim that the
second case cannot happen.

Suppose w′(r) < 0 for all r ≥ r0, then the limit limr→∞w(r) = l exists. We shall show
that l < k. Indeed, if l ≥ k then w(r) ≥ k for all r ≥ r0. Then

(σw′)′ = −σf1(w) ≤ 0 for all r ≥ r0 . (7.2.17)

It then follows that the limit limr→∞(σw′)(r) = l1 exists and l1 ≤ 0. If l1 < 0 then w′ is
unbounded and hence w is also unbounded which is a contradiction. It now follows that
l1 = 0. Therefore, we deduce from (7.2.17) that

∫ ∞

r0

σf1(w)dr = σ(r0)w
′(r0) < 0 ,
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which contradicts the fact that σf1(w) ≥ 0 for all r ≥ r0. Therefore, we conclude that
l < k.

We now rewrite (7.2.13) as

w′′

r
+
(N − 1

r2
− 1

2

)
w′ = −1

r
f1(w) . (7.2.18)

Since
∫∞
r0
w′(r)dr = l−w(r0) <∞, then there exists a sequence rj → ∞ such that w′(rj) →

0 as j → ∞. Integrating (7.2.18) from r0 to rj , we get that
∫ rj

r0

w′′

r
dr +

∫ rj

r0

(N − 1

r2
− 1

2

)
w′dr = −

∫ rj

r0

1

r
f1(w)dr . (7.2.19)

Note that ∫ rj

r0

w′′

r
dr =

∫ rj

r0

w′

r2
dr +

w′(rj)
rj

− w′(r0)
r0

<∞ as j → ∞ .

The second integral in (7.2.19) is also finite. On the other hand, since l < k then there is a
positive number R such that w(r) ≤ w(R) < k for all r ≥ R. Thus we get

∫ rj

R

1

r
f1(w)dr ≤ f1

(
w(R)

) ∫ rj

R

dr

r
→ −∞ as j → ∞ ,

a contradiction, and the claim is proved.
It now concludes that w′(r) > 0 for all r ≥ r0, and moreover, w(r) → ∞ as r → ∞.

This completes the proof of Lemma 7.2.8. �

Consider now the phase plane of the system

w′ = v , v′ =
(r

2
− N − 1

r

)
v − f1(w) . (7.2.20)

Then we have the following positive invariant lemma.

Lemma 7.2.9. For any α > 0, there exists a number R = R(α, β) such that if r1 ≥ R and(
w(r1), v(r1)

)
∈ Aα := {(w, v);w ≥ k, v ≥ αw}, then

(
w(r), v(r)

)
∈ Aα for all r ≥ r1.

Proof: For any given α > 0, choose R = R(α, β) so that R
2 − N−1

R = α + 1
α(β+1) . In the

phase plane of (7.2.20), we have w′ > 0 and

v′ =
(r
2
− N − 1

r

)
v ≥

(
α+

1

α(β + 1)

)
v > 0 ;

v′

w′ =
(r
2
− N − 1

r

)
≥ α+

1

α(β + 1)
> α

(7.2.21)

on the line {w = k, v ≥ αw} for r ≥ R. Similarly, we have w′ > 0 and

v′ =
(r
2
− N − 1

r

)
αw − f1(w) ≥ α2w > 0 ;

v′

w′ =
(r
2
− N − 1

r

)
− 1

α(β + 1)
+

1

vwβ
> α

(7.2.22)
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on the line {w > k, v = αw} for r ≥ R. Therefore, Lemma 7.2.9 follows from (7.2.21) and
(7.2.22). �

We say that a nonconstant radial solution w of (7.2.13) is oscillatory about k if w takes
the value k infinite times.

Lemma 7.2.10. Let w be a nonconstant radial solution of (7.2.13), then it is impossible
that w is oscillatory about k.

Proof: Let w be a nonconstant radial solution of (7.2.13). We first note that (7.2.13) can
be rewritten as

(w′2

2
+ F1(w)

)′
=
(r
2
− N − 1

r

)
w′2 . (7.2.23)

If r ≥ R0 :=
√

2(N − 1), then the right hand side of (7.2.23) is nonnegative, and hence the
limit

lim
r→∞

(w′2

2
+ F1(w)

)
= l ≥ 0

exists. We now claim that l = ∞.
If l = 0, then w′(r) → 0 and w(r) → k as r → ∞. Integrating (7.2.23) from r to ∞, we

obtain for r ≥ R0 that

−w
′2

2
− F1(w) =

∫ ∞

r

(s
2
− N − 1

s

)
w′2(s)ds . (7.2.24)

Since the right hand side of (7.2.24) is nonnegative, the left hand side of (7.2.24) is nonpos-
itive, and r is arbitrary, we conclude that w′ ≡ 0 and w ≡ k, a contradiction.

Suppose now l ∈ (0,∞). Then w must be oscillatory about k in view of Lemma 7.2.8.
For any sequence of extremal points rm → ∞, we have F1

(
w(rm)

)
→ l as m → ∞. In

particular, for any sequence of maximal points rm → ∞, we have

w(rm) → F−1(l) ∩ {w > k} as m→ ∞ ,

and hence w is bounded from above. Similarly, we can prove that w is bounded from below
and away from zero. Therefore, there exist positive constants C1 and C2 such that

0 < C1 ≤ w ≤ C2 <∞ for all r > 0 . (7.2.25)

Setting v = w′, then v satisfies

v′′ +
(N − 1

r
− r

2

)
v′ +

( 1

1 + β
− 1

2
− N − 1

r2
+ βw−β−1

)
v = 0 .

Define u(τ) = v(r), where τ = τ(r) =
∫ r
1

ds
σ(s) for r ≥ 1. Notice that τ strictly increases to

∞ as r increases to ∞. Then u satisfies the equation

d2u

dτ2
+ σ2(r)

( 1

1 + β
− 1

2
− N − 1

r2
+ βw−β−1

)
u = 0 , τ > 0 .
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Applying L’ Hôpital’s rule, we get

lim
r→∞

[τ2σ2(r)] = lim
r→∞

[( ∫ r
1

ds
σ(s)

)2

σ−2(r)

]
= 0 .

Since (7.2.25) gives

| 1

1 + β
− 1

2
− N − 1

r2
+ βw−β−1| <∞ ,

we conclude that

lim
r→∞

τ2σ2(r)
[ 1

1 + β
− 1

2
− N − 1

r2
+ βw−β−1

]
= 0 .

Applying a non-oscillatory criterion of Hartman (cf. [73], p. 362), we obtain that v can
only have finitely many zeros. This contradicts the fact that w is oscillatory about k. This
proves the claim

lim
r→∞

(w′2

2
+ F1(w)

)
= l = ∞ . (7.2.26)

Suppose now w is oscillatory about k. Then we can choose Rm → ∞ so that w(Rm) = k
and w′(Rm) > 0. Thus (7.2.26 ) gives w′(Rm) → ∞ as m→ ∞. Given α > 0 and choose m0

so large that Rm0 ≥ R(α, β) and w′(Rm0) > αk. Then we obtain
(
w(Rm0), v(Rm0)

)
∈ Aα.

Now Lemma 7.2.9 shows that
(
w(r), v(r)

)
∈ Aα for all r ≥ Rm0 . In particular, we have

w′(r) > 0 for all r ≥ Rm0 , a contradiction. This completes the proof of Lemma 7.2.10. �

We now conclude Theorem 7.2.5 by directly applying Lemmas 7.2.8 and 7.2.10.

7.3 Refined touchdown profiles

In this section we first establish touchdown rates by applying self-similar method [56]. Then
the refined touchdown profiles for N = 1 and N = 2 will be separately derived by using
center manifold analysis of a PDE [45], which will be discussed for N = 1 in §7.3.1 and for
N ≥ 2 in §7.3.2, respectively. It should be pointed out that for N = 1 we may establish the
refined touchdown profiles for any touchdown point, see Theorem 7.3.3; while for N ≥ 2,
we are only able to deal with the refined touchdown profiles in the radial situation for the
special touchdown point r = 0, see Theorem 7.3.5. Throughout this section and unless
mentioned otherwise, touchdown set for u is assumed to be a compact subset of Ω, and a
is always assumed to be any touchdown point of u. Therefore, all a priori estimates of last
section can be adapted here.

Our starting point of studying touchdown profiles is a similarity variable transformation
of (7.0.1). For the touchdown solution u = u(x, t) of (7.0.1) at finite time T , as before we
use the associated similarity variables

y =
x− a√
T − t

, s = −log(T − t) , u(x, t) = (T − t)
1
3w(y, s) , (7.3.1)
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where a is any touchdown point of u. Then w(y, s) is defined in W = {(y, s) : |y| <
Res/2, s > s′ = −logT}, where R = max{|x− a| : x ∈ Ω}, and it solves

ws −
1

ρ
∇(ρ∇w) − 1

3
w +

λf(a+ ye−
s
2 )

w2
= 0 (7.3.2)

with ρ(y) = e−|y|2/4, where f(a) > 0 since a is assumed to be a touchdown point. Therefore,
studying touchdown behavior of u is equivalent to studying large time behavior of w.

Lemma 7.3.1. Suppose w is a solution of (7.3.2). Then, w(y, s) → w∞(y) as s → ∞
uniformly on |y| ≤ C, where C > 0 is any bounded constant, and w∞(y) is a bounded
positive solution of

∆w − 1

2
y · ∇w +

1

3
w − λf(a)

w2
= 0 in R

N , (7.3.3)

where f(a) > 0.

Proof: We adapt the arguments from the proofs of Propositions 6 and 7 in [56]: let {sj}
be a sequence such that sj → ∞ and sj+1 − sj → ∞ as j → ∞. We define wj(y, s) =
w(y, s+ sj). According to Theorem 7.1.3, Corollary 7.1.8 and Arzela-Ascoli theorem, there
is a subsequence of {wj}, still denoted by wj , such that

wj(y, s) → w∞(y, s)

uniformly on compact subsets of W , and

∇wj(y,m) → ∇w∞(y,m)

for almost all y and for each integer m. We obtain from Corollary 7.1.8 that either w∞ ≡ ∞
or w∞ <∞ in R

N+1. Since a is a touchdown point for u, the case w∞ ≡ ∞ is ruled out by
Theorem 7.1.11, and hence w∞ <∞ in R

N+1. Therefore, we conclude again from Corollary
7.1.8 that

w ≤ C1(1 + |y|) (7.3.4)

for some constant C1 > 0.

Define the associated energy of w at time s,

ER[w](s) =
1

2

∫

BR

ρ|∇w|2dy − 1

6

∫

BR

ρw2dy −
∫

BR

λρf(a)

w
dy . (7.3.5)

Taking R(s) = s, the same calculations as in (7.1.30) give

− d

ds
Es[w](s) =

∫

Bs

ρ(y)|ws|2dy −K(s) (7.3.6)
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with

K(s) =

∫

∂Bs

ρws
∂w

∂ν
dS +

1

2s

∫

∂Bs

ρ|∇w|2(y · ν)dS − 1

s

∫

∂Bs

ρ
(1

6
w2 +

λf(a)

w

)
(y · ν)dS

+λ

∫

Bs

ρws
[
f(a) − f(a+ ye−s/2)

]

w2
dy .

We note that the expression K(s) can be estimated as s ≫ 1. Essentially, since f(x) ∈
Cα(Ω̄) for some α ∈ (0, 1], using (7.3.4) and applying the same estimates as in Lemma 7.1.9
one can deduce that

K(s) − 1

2

∫

Bs

ρw2
sdy ≤ G(s) := C1s

Ne−
s2

4 + C2e
−α

2
s for s≫ 1. (7.3.7)

Together with (7.3.7), integrating (7.3.6) in time yields an energy inequality

1

2

∫ b

a

∫

Bs

ρ|ws|2dyds ≤ Ea[w](a) − Eb[w](b) +

∫ b

a
G(s)ds , (7.3.8)

whenever a < b.
We now use (7.3.8) to prove that w∞ is independent of s. We set a = sj + m and

b = sj+1 +m in (7.3.8) to obtain

1

2

∫ m+sj+1−sj

m

∫

Bsj+s

ρ|wjs|2dyds ≤ Esj+m[wj ](m) − Esj+1+m[wj+1](m) +

∫ sj+1+m

sj+m
G(s)ds

(7.3.9)
for any integer m, where we use wj(y, s) = w(y, s + sj). Since ∇wj(y,m) is bounded and
independent of j, and since we have assumed that ∇wj(y,m) → ∇w∞(y,m) a.e. as j → ∞,
the dominated convergence theorem shows that

∫
ρ(y)|∇wj(y,m)|2dy →

∫
ρ(y)|∇w∞(y,m)|2dy as j → ∞ .

Arguing similarly for the other terms we can deduce that

lim
j→∞

Esj+m[wj ](m) = lim
j→∞

Esj+1+m[wj+1](m) := E[w∞] . (7.3.10)

On the other hand, because m+ sj → ∞ as j → ∞, (7.3.7) assures that the term involving
G in (7.3.9) tends to zero as j → ∞. Therefore, the right side of (7.3.9) tends to zero as
j → ∞. It now follows from sj+1 − sj → ∞ that

lim
j→∞

∫ M

m

∫

Bsj+s

ρ|wjs|2dyds = 0 (7.3.11)

for each pair of integers m < M . Further, since (7.3.4) implies |wjs(y, s)| ≤ C(1 + |y|)
with C independently of j, one can deduce that wjs converges weakly to w∞s. Because ρ



186 CHAPTER 7. REFINED TOUCHDOWN BEHAVIOR

decreases exponentially as |y| → ∞, the integral of (7.3.11) is lower semi-continuous, and
hence ∫ M

m

∫

RN

ρ|w∞s|2dyds = 0 ,

where m and M are arbitrary, which shows that w∞ is independent of the choice of s.

We now notice from (7.3.5) that (7.3.10) defines E[w∞] by

E[v] =
1

2

∫

RN

ρ|∇yv|2dy −
1

6

∫

RN

ρ|v|2dy −
∫

RN

λρf(a)

v
dy .

We claim that E[w∞] is independent of the choice of the sequence {sj}. If this is not the
case, then there is another {s̄j} such that E[w∞] 6= E[w̄∞], where w̄∞ = limj→∞ w̄j with
w̄j(y, s) = w(y, s+ s̄j). Relabeling and passing to a sequence if necessary, we may suppose
that E[w∞] < E[w̄∞] with sj < s̄j . Now the energy inequality (7.3.8), with a = sj and
b = s̄j , gives that

1

2

∫ s̄j

sj

∫

Bs

ρ|ws|2dyds ≤ Esj [wj ](0) −Es̄j [w̄j ](0) +

∫ s̄j

sj

G(s)ds . (7.3.12)

Since Esj [wj ](0) − Es̄j [w̄j ](0) → E[w∞] − Ew̄∞ [w̄∞] < 0 and
∫ s̄j

sj
G(s)ds → 0 as j → ∞,

the right side of (7.3.12) is negative for sufficiently large j. This leads to a contradiction,
because the left side of (7.3.12) is non-negative. Hence E[w∞] = E[w̄∞], which implies that
E[w∞] is independent of the choice of the sequence {sj}.

Therefore, we conclude that w(y, s) → w∞(y) as s→ ∞ uniformly on |y| ≤ C, where C
is any bounded constant, and w∞(y) is a bounded positive solution of (7.3.3). �

7.3.1 Refined touchdown profiles for N = 1

In this subsection, we establish refined touchdown profiles for the deflection u = u(x, t)
in one dimensional case. We begin with the discussions on the solution w∞(y) of (7.3.3).
For one dimensional case, due to Fila and Hulshof [43], Theorem 7.2.1 shows that every
non-constant solution w(y) of

wyy −
1

2
ywy +

1

3
w − 1

w2
= 0 in (−∞,∞)

must be strictly increasing for all |y| sufficiently large, and w(y) tends to ∞ as |y| → ∞.
So it reduces from Lemma 7.3.1 that it must have w∞(y) ≡ const.. Therefore, by scaling
we conclude that

lim
s→∞

w(y, s) ≡
(
3λf(a)

) 1
3

uniformly on |y| ≤ C for any bounded constant C. This gives the following touchdown rate.
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Lemma 7.3.2. Assume f satisfies (7.0.2) on a bounded domain Ω ⊂ R
1, and suppose u is

a unique touchdown solution of (7.0.1) at finite time T . Assume touchdown set for u is a
compact subset of Ω. If x = a is a touchdown point of u, then we have

lim
t→T−

u(x, t)(T − t)−
1
3 ≡

(
3λf(a)

) 1
3

uniformly on |x− a| ≤ C
√
T − t for any bounded constant C.

We next determine the refined touchdown profiles for one dimensional case. Our method
is based on the center manifold analysis of a PDE that results from a similarity group
transformation of (7.0.1). Such an approach was used in [64] for the uniform permittivity
profile f(x) ≡ 1. A closely related approach was used in [45] to determine the refined
blow-up profile for a semilinear heat equation. We now briefly outline this method and the
results that can be extended to the varying permittivity profile f(x):

Continuing from (7.3.2) with touchdown point x = a, for s ≫ 1 and |y| bounded we

have w ∼ w∞ + v, where v ≪ 1 and w∞ ≡ (3λf(a))1/3 > 0. Keeping the quadratic terms
in v, we obtain for N = 1 that

vs − vyy +
y

2
vy − v =

w∞
3

[
1 − f(a+ ye−s/2)

f(a)

]
+

2
[
f(a+ ye−s/2) − f(a)

]

3f(a)
v

−3λf(a+ ye−s/2)
w4∞

v2 +O(v3)

≈ −
(
3λf(a)

)− 1
3 v2 +O

(
v3 + e−

α
2
s
)
,

(7.3.13)

for s ≫ 1 and bounded |y|, due to the assumption (7.0.2) that f(x) ∈ Cα(Ω̄) for some
0 < α ≤ 1. As shown in [45] (see also [64]), the linearized operator in (7.3.13) has a one-
dimensional nullspace when N = 1. By projecting the nonlinear term in (7.3.13) against
the nullspace of the linearized operator, the following far-field behavior of v for s → +∞
and |y| bounded is obtained (see (1.7) of [45]):

v ∼ −
(
3λf(a)

) 1
3

4s

(
1 − |y|2

2

)
, N = 1 . (7.3.14)

The refined touchdown profile is then obtained from w ∼ w∞ + v, (7.3.1) and (7.3.14),
which is for t→ T−,

u ∼ [3λf(a)(T − t)]1/3
(

1 − 1

4| log(T − t)| +
|x− a|2

8(T − t)| log(T − t)| + · · ·
)
, N = 1 .

(7.3.15)

Combining Lemma 7.3.2 and (7.3.15) directly gives the following refined touchdown
profile.
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Theorem 7.3.3. Assume f satisfies (7.0.2) on a bounded domain Ω in R
N , and suppose u

is a touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, and suppose N = 1 and x = a is a touchdown point of u. Then we have

lim
t→T−

u(x, t)(T − t)−
1
3 ≡

(
3λf(a)

) 1
3 (7.3.16)

uniformly on |x− a| ≤ C
√
T − t for any bounded constant C. Moveover, when t→ T−,

u ∼ [3λf(a)(T − t)]1/3
(

1 − 1

4| log(T − t)| +
|x− a|2

8(T − t)| log(T − t)| + · · ·
)
, N = 1 .

(7.3.17)

We finally remark that applying formal asymptotic methods, when N = 1 the refined
touchdown profile of (7.0.1) was also established in (6.4.12). By making a binomial approx-
imation, it is easy to compare that (7.3.15) agrees asymptotically with (6.4.12).

7.3.2 Refined touchdown profiles for N ≥ 2

For obtaining refined touchdown profiles in higher dimension, in this subsection we assume
that f(r) = f(|x|) is radially symmetric and Ω = BR(0) is a bounded ball in R

N with N ≥ 2.
Then the uniqueness of solutions for (7.0.1) implies that the solution u of (7.0.1) must be
radially symmetric. We study the refined touchdown profile for the special touchdown point
r = 0 of u at finite time T . In this situation, the fact that the solution u of (7.0.1) is radially
symmetric implies the radial symmetry of w(y, s) in y, and hence the radial symmetry of
w∞(y) (cf. [53]). Note that w∞(y) is a radially symmetric solution of

wyy +
(N − 1

y
− y

2

)
wy +

1

3
w − λf(0)

w2
= 0 for y > 0 , (7.3.18)

where wy(0) = 0 and f(0) > 0. For this case, due to [62], Theorem 7.2.5 yields that every
non-constant radial solution w(y) of (7.3.18) must be strictly increasing for all y sufficiently
large, and w(y) tends to ∞ as y → ∞. It now reduces again from Lemma 7.3.1 that

lim
s→∞

w(y, s) ≡
(
3λf(0)

) 1
3

uniformly on |y| ≤ C for any bounded constant C. This gives the following touchdown rate.

Lemma 7.3.4. Assume f(r) = f(|x|) satisfies (7.0.2) on a bounded ball BR(0) ⊂ R
N with

N ≥ 2, and suppose u is a unique touchdown solution of (7.0.1) at finite time T . Assume
touchdown set for u is a compact subset of Ω. If r = 0 is a touchdown point of u, then we
have

lim
t→T−

u(r, t)(T − t)−
1
3 ≡

(
3λf(0)

) 1
3

uniformly for r ≤ C
√
T − t for any bounded constant C.
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We next derive a refined touchdown profile (7.3.20). Similar to one dimensional case,
indeed we can establish the refined touchdown profiles for varying permittivity profile f(|x|)
defined in higher dimension N ≥ 2. Specially, applying a result from [45], the refined
touchdown profile for N = 2 is given by

u ∼ [3λf(0)(T − t)]1/3
(

1 − 1

2| log(T − t)| +
|x− a|2

4(T − t)| log(T − t)| + · · ·
)
, N = 2 .

This leads to the following refined touchdown profile for higher dimensional case.

Theorem 7.3.5. Assume f satisfies (7.0.2) on a bounded domain Ω in R
N , and suppose u

is a touchdown solution of (7.0.1) at finite time T . Assume touchdown set of u is a compact
subset of Ω, and suppose Ω = BR(0) ⊂ R

N is a bounded ball with N ≥ 2 and f(r) = f(|x|)
is radially symmetric. If r = 0 is a touchdown point of u, then we have

lim
t→T−

u(r, t)(T − t)−
1
3 ≡

(
3λf(0)

) 1
3 (7.3.19)

uniformly on r ≤ C
√
T − t for any bounded constant C. Moveover, when t→ T−,

u ∼ [3λf(0)(T − t)]1/3
(

1 − 1

2| log(T − t)| +
r2

4(T − t)| log(T − t)| + · · ·
)
, N = 2 .

(7.3.20)

Remark 7.3.1. Applying analytical and numerical techniques, next section we shall show
that Theorem 7.3.5 does hold for a larger class of profiles f(r) = f(|x|).

Before concluding this section, it is interesting to compare the solution of (7.0.1) with
that of the ordinary differential equation obtained by omitting ∆u. For that we focus on
one dimensional case, and we compare the solutions of

ut − uxx = −λf(x)

u2
in (−a, a) , (7.3.21a)

u(±a, t) = 1 ; u(x, 0) = 1 , (7.3.21b)

and

vt = −λf(x)

v2
in (−a, a) , (7.3.22a)

v(±a, t) = 1 ; v(x, 0) = 1 , (7.3.22b)

where f is assumed to satisfy (7.0.2) and (7.1.1). The ordinary differential equation (7.3.22)
is explicitly solvable, and the solution touches down at finite time

v(x, t) =
(
1 − 3λf(x)t

) 1
3 , (7.3.23)
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which shows that touchdown point of v is the maximum value point of f(x). In the partial
differential equation (7.3.21), there is a contest between the dissipating effect of the Lapla-
cian uxx and the singularizing effect of the nonlinearity f(x)/u2; when u touches down at
x = x0 in finite time T , then the nonlinear term dominates (essentially, for some special
cases, touchdown point x0 of u is also the maximum value point of f(x), see Theorem 7.4.2
for details).

However, we claim that a smoothing effect of the Laplacian can be still observed in the
different character of touchdown. Indeed, letting f(y0) = max{f(x) : x ∈ (−a, a)}, then
f ′(y0) = 0 and f ′′(y0) ≤ 0. And (7.3.23) gives the finite touchdown time T0 for v satisfying
T0 = 1/[3λf(y0)]. Furthermore, we can get from (7.3.23), together with the Taylor series of
f(x),

lim
t→T−

0

(T0−t)−
1
3 v
(
y0+(T0−t)

1
2 y, t

)
=
(
3λf(y0)

) 1
3
[
1− f ′′(y0)

2f2(y0)
|y|2
] 1

3 ≥
(
3λf(x0)

) 1
3 . (7.3.24)

And our Theorem 7.3.3 says that for such u we have

lim
t→T−

(T − t)−
1
3u
(
x0 + (T − t)

1
2 y, t

)
=
(
3λf(x0)

) 1
3 . (7.3.25)

Comparing (7.3.24) with (7.3.25), we see that the touchdown of the partial differential
equation (7.3.21) is “flatter” than that of the ordinary differential equation (7.3.22).

7.4 Set of touchdown points

This section is focussed on the set of touchdown points for (7.0.1), which may provide
useful information on the design of MEMS devices. In subsection §7.4.1, we consider the
radially symmetric case where f(r) = f(|x|) with r = |x| is a radial function and Ω is a ball
BR = {|x| ≤ R} ⊂ R

N with N ≥ 1. In subsection §7.4.2, numerically we compute some
simulations for one dimensional case, from which we discuss the compose of touchdown
points for some explicit permittivity profiles f(x).

7.4.1 Radially symmetric case

In this subsection, f(r) = f(|x|) is assumed to be a radial function and Ω is assumed to
be a ball BR = {|x| ≤ R} ⊂ R

N with any N ≥ 1. For this radially symmetric case, the
uniqueness of solutions for (7.0.1) implies that the solution u = u(x, t) of (7.0.1) must be
radially symmetric. We begin with the following lemma for proving Theorem 7.4.2:

Lemma 7.4.1. Suppose f(r) satisfies (7.0.2) and f ′(r) ≤ 0 in BR, and let u = u(r, t) be a
touchdown solution of (7.0.1) at finite time T . Then ur > 0 in {0 < r < R} × (t0, T ) for
some 0 < t0 < T .



7.4. SET OF TOUCHDOWN POINTS 191

Proof: Setting w = rN−1ur, then (7.0.1) gives

ut −
1

rN−1
wr = −λf(r)

u2
, 0 < t < T . (7.4.1)

Differentiating (7.4.1) with respect to r, we obtain

wt − wrr +
N − 1

r
wr −

2λf

u3
w = −λf

′rN−1

u2
≥ 0 , 0 < t < T , (7.4.2)

since f ′(r) ≤ 0 in BR. Therefore, w can not attain negative minimum in {0 < r <
R}×(0, T ). Since w(0, t) = w(r, 0) = 0 and ut < 0 for all t ∈ (0, T ), we have w = rN−1ur > 0
on ∂BR × (0, T ). So the maximum principle shows that w ≥ 0 in {0 < r < R} × (0, T ).
This gives

wt − wrr +
N − 1

r
wr ≥ 0 in {0 < r < R} × (t1, T ) ,

where t1 > 0 is chosen so that w(r, t1) 6≡ 0 in {0 < r < R}.
Now compare w with the solution z of

zt − zrr +
N − 1

r
zr = 0 in {0 < r < R} × (t1, T )

subject to z(r, t1) = w(r, t1) for 0 ≤ r ≤ R, z(R, t) = w(R, t) > 0 and z(0, t) = 0 for
t1 ≤ t < T . The comparison principle yields w ≥ z in {0 < r < R} × (t1, T ). On the other
hand, for any t0 > t1 we have z > 0 in {0 < r < R} × (t0, T ). Consequently we conclude
that w > 0, i.e ur > 0 in {0 < r < R} × (t0, T ). �

Theorem 7.4.2. Assume f(r) = f(|x|) satisfies (7.0.2) and f ′(r) ≤ 0 in a bounded ball
BR(0) ⊂ R

N with N ≥ 1, and suppose u is a touchdown solution of (7.0.1) at finite time
T . Then, r = 0 is the unique touchdown point of u.

Proof: For w = rN−1ur, we set J(r, t) = w − ε
∫ rθ

0 f(s)ds, where θ ≥ N and ε = ε(θ) > 0
are constants to be determined. We calculate from (7.4.1) and (7.4.2) that

Jt − Jrr +
N − 1

r
Jr = b1J +

2λεf
∫ rθ

0 f(s)ds

u3
− λf ′rN−1

u2
+ θεrθ−1f ′

≥ b1J − rN−1
(
λ− θεrθ−N

)
f ′ ≥ b1J ,

provided ε is sufficiently small, where b1 is a locally bounded function. Here we have applied

the assumption f ′(r) ≤ 0 and the relations ur = w/rN−1 and w = J + ε
∫ rθ

0 f(s)ds. Note
that J(0, t) = 0, and hence it follows that J can not obtain negative minimum in BR×(0, T ).

We next observe that J can not obtain negative minimum on {r = R} provided ε is
sufficiently small, which comes from the fact

Jr(R, t) = wr − θεRθ−1f(R) =
λRN−1f(R)

u2
− θεRθ−1f(R) ≥ RN−1f(R)

[
λ− θεRθ−N

]
≥ 0
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for sufficiently small ε > 0, where (7.4.1) is applied. We now choose some 0 < t0 < T
such that w(r, t0) > 0 for 0 < r ≤ R in view of Lemma 7.4.1. This gives ur(r, t0) > 0 for
0 < r ≤ R. Since ur(0, t0) = 0, there exists some α > 0 such that

urr(0, t0) = lim
r→0

ur(r, t0)

rα
= lim

r→0

w(r, t0)

rN+α−1
> 0 .

We now choose θ = max{N,N+α−1}, from which one can further deduce that J(r, t0) ≥ 0
for 0 ≤ r < R provided ε = ε(t0, θ) > 0 is sufficiently small.
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Figure 7.1: Left figure: plots of u versus x at different times with f(x) = 1− x2 in the slab
domain, where the unique touchdown point is x = 0. Right figure: plots of u versus r = |x|
at different times with f(r) = 1 − r2 in the unit disk domain, where the unique touchdown
point is r = 0 too.

It now concludes from the maximum principle that J ≥ 0 in BR × (t0, T ) provided
ε = ε(t0) > 0 is sufficiently small. This leads to

u(r, t) ≥ u(r, t) − u(0, t) ≥ ε

∫ r

0

∫ sθ

0 f(µ)dµ

sN−1
ds. (7.4.3)

Given small C0 > 0, then the assumption of f(r) implies that there exists 0 < r0 = r0(C0) ≤
R such that f(r) ≥ C0 on [0, r0]. Denote rm = min{r0, r}, and then (7.4.3) gives

u(r, t) ≥ ε

∫ rm

0

∫ sθ

0 f(µ)dµ

sN−1
ds ≥ ε

∫ rm

0

C0s
θ

sN−1
ds =

1

θ −N + 2
εC0r

θ−N+2
m , where θ−N+2 ≥ 2 ,

which implies that r = 0 must be the unique touchdown point of u. �

Remark 7.4.1. Assume f(r) = f(|x|) satisfies (7.0.2) and f ′(r) ≤ 0 in a bounded ball
BR(0) ⊂ R

N with N ≥ 1. Together with Proposition 7.1.1 below, Theorems 7.1.3 and 7.4.2
show an interesting phenomenon: finite-time touchdown point is not the zero point of f(x),
but the maximum value point of f(x).
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Remark 7.4.2. Numerical simulations in subsection §4.1 show that the assumption f ′(r) ≤ 0
in Theorem 7.4.2 is sufficient, but not necessary. This gives that Theorem 7.3.5 does hold
for a larger class of profiles f(r) = f(|x|).
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Figure 7.2: Left figure: plots of u versus x at different times with f(x) = e−x
2

in the slab
domain, where the unique touchdown point is x = 0. Right figure: plots of u versus r = |x|
at different times with f(r) = e−r

2
in the unit disk domain, where the unique touchdown

point is r = 0 too.
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Figure 7.3: Left figure: plots of u versus x at different times with f(x) = ex
2−1 in the slab

domain, where the unique touchdown point is still at x = 0. Right figure: plots of u versus
r = |x| at different times with f(r) = er

2−1 in the unit disk domain, where the touchdown
points satisfy r = 0.51952.

Before ending this subsection, we now present a few numerical simulations on Theorem
7.4.2. Here we apply the implicit Crank-Nicholson scheme. In the following simulations
1 ∼ 3, we always take λ = 8 and the number of meshpoints N = 1000, and consider (7.0.1)
in the following symmetric slab or unit disk domains:

Ω : [−1/2, 1/2] (Slab) ; Ω : x2 + y2 ≤ 1 (Unit Disk) . (7.4.4)
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Simulation 1: f(|x|) = 1 − |x|2 is chosen as a permittivity profile. In Figure 7.1(a),
u versus x is plotted at different times for (7.0.1) in the symmetric slab domain. For this
touchdown behavior, touchdown time is T = 0.044727 and the unique touchdown point is
x = 0. In Figure 7.1(b), u versus r = |x| is plotted at different times for (7.0.1) in the
unit disk domain. For this touchdown behavior, touchdown time is T = 0.0455037 and the
unique touchdown point is r = 0.

Simulation 2: f(|x|) = e−|x|2 is chosen as a permittivity profile. In Figure 7.2(a), u
versus x is plotted at different times for (7.0.1) in the symmetric slab domain. For this
touchdown behavior, touchdown time is T = 0.044675 and the unique touchdown point is
x = 0. In Figure 7.2(b), u versus r = |x| is plotted at different times for (7.0.1) in the
unit disk domain. For this touchdown behavior, touchdown time is T = 0.0450226 and the
unique touchdown point is r = 0 too.

Simulation 3: f(|x|) = e|x|
2−1 is chosen as a permittivity profile. In Figure 7.3(a),

u versus x is plotted at different times for (7.0.1) in the symmetric slab domain. For this
touchdown behavior, touchdown time is T = 0.147223 and touchdown point is still uniquely
at x = 0. In Figure 7.3(b), u versus r = |x| is plotted at different times for (7.0.1) in the
unit disk domain. For this touchdown behavior, touchdown time is T = 0.09065363, but
touchdown points are at r0 = 0.51952, which compose into the surface of Br0(0). This
simulation shows that the assumption f ′(r) ≤ 0 in Theorem 7.4.2 is just sufficient, not
necessary.
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Figure 7.4: Left figure: plots of u versus x at different times with f(x) = 1/2 − x/2 in the
slab domain, where the unique touchdown point is x = −0.10761. Right figure: plots of u
versus r = |x| at different times with f(x) = x+ 1/2 in the slab domain, where the unique
touchdown point is x = 0.17467.

7.4.2 One dimensional case

For one dimensional case, Theorem 7.4.2 already gives that touchdown points must be
unique if the permittivity profile f(x) is uniform. In the following, we choose some explicit
varying permittivity profiles f(x) to perform two numerical simulations. Here we apply the
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implicit Crank-Nicholson scheme again.

Simulation 4: Monotone Function f(x):

We take λ = 8 and the number of meshpoints N = 1000, and we consider (7.0.1) in the
slab domain Ω defined in (7.4.4). In Figure 7.4(a), the monotonically decreasing profile
f(x) = 1/2 − x/2 is chosen, and u versus x is plotted for (7.0.1) at different times. For
this touchdown behavior, the touchdown time is T = 0.09491808 and the unique touchdown
point is x = −0.10761. In Figure 7.4(b), the monotonically increasing profile f(x) = x+1/2
is chosen, and u versus x is plotted for (7.0.1) at different times. For this touchdown
behavior, the touchdown time is T = 0.0838265 and the unique touchdown point is x =
0.17467. For the general case where f(x) is monotone in a slab domain, it is interesting to
look insights into whether the touchdown points must be unique.
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(c). α = 0.785 and λ = 8
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Figure 7.5: plots of u versus x at different times in the slab domain, for different permittivity
profiles f [α](x) given by (7.4.5). Top left (a): when α = 0.5, two touchdown points are at
x = ±0.12631. Top right (b): when α = 1, the unique touchdown point is at x = 0. Bottom
Left (c): when α = 0.785, touchdown points are observed to consist of a closed interval
[−0.0021255, 0.0021255]. Bottom right (d): local amplified plots of (c).

Simulation 5: “M”-Form Function f(x):

In this simulation, we consider (7.0.1) in the slab domain Ω defined in (7.4.4). Here we take
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λ = 8 and the number of the meshpoints N = 2000, and the varying dielectric permittivity
profiles satisfies

f [α](x) =





1 − 16(x+ 1/4)2 , if x < −1/4 ;
α+ (1 − α)|sin(2πx)| , if |x| ≤ 1/4 ;
1 − 16(x− 1/4)2 , if x > 1/4

(7.4.5)

with α ∈ [0, 1], which has “M”-form. In Figure 7.5, u versus x is plotted at different times
for (7.0.1) for different α, i.e for different permittivity profiles f [α](x). In Figure 7.5(a):
when α = 0.5, the touchdown time is T = 0.05627054 and two touchdown points are at
x = ±0.12631. In Figure 7.5(b): when α = 1, the touchdown time is T = 0.0443323 and the
unique touchdown point is at x = 0. In Figure 7.5(c): when α = 0.785, the touchdown time
is T = 0.04925421 and touchdown points are observed to compose into a closed interval
[−0.0021255, 0.0021255]. In Figure 7.5(d): local amplified plots of (c) at touchdown time
t = T . This simulation shows for dimension N = 1 that the set of touchdown points may
be composed of finite points or finite compact subsets of the domain, if the permittivity
profile is ununiform.

7.5 Some comments

Main results of this Chapter can be found in [63]. Under the additional assumption (7.1.1),
the compactness result of touchdown set is established in Proposition 7.1.1 by adapting
the method of moving plane, which is due to A. Friedman and B. Mcleod’s [48]. Such
compactness turns out to be crucial for understanding the refined touchdown behavior,
such as touchdown rate, other properties of touchdown set and etc. We strongly expect that
the assumption (7.1.1) in Proposition 7.1.1 can be removed. However, it seems difficult to
address this interesting problem.

The asymptotic behavior of positive entire solutions for (7.2.1) was studied by M. Fila
and J. Hulshof [43] for N = 1, and while for N ≥ 2 it was only addressed for positive radial
solutions by J. S. Guo in [62]. Whether any bounded solution of (7.2.1) with N ≥ 2 must
be trivial still remains open, which directly results in that Theorem 7.3.5 is true only for
special touchdown point x = 0 in radially symmetric case.

In §7.4 we have proved the uniqueness of touchdown points for the case where f(x) =
f(|x|) is non-increasing in |x| and Ω = BR is a ball in R

N . On the contrary, for the case
where f(x) = f(|x|) is increasing in |x| and Ω = BR is a ball in R

N , it is still open that
whether touchdown points of (7.0.1) must compose into the surface of a ball Br0 for some
0 < r0 < R. This phenomenon was first observed in [64] for power-law profile f(x) = |x|α.
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