
Mathematical Analysis
of Super-Resolution
Methodology

62 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003
1053-5888/03/$17.00©2003IEEE

n image acquisition system com-
posed of an array of sensors,

where each sensor has a
subarray of sensing ele-

ments of suitable size, has recently been
popular for increasing the spatial resolu-
tion with high signal-to-noise ratio be-
yond the performance bound of technologies that
constrain the manufacture of imaging devices. The attain-
ment of super resolution (SR) from a sequence of de-
graded undersampled images could be viewed as
reconstruction of the high-resolution (HR) image from a
finite set of its projections on a sampling lattice. This can
then be formulated as an optimization problem whose so-
lution is obtained by minimizing a cost function. The ap-
proaches adopted and their analysis to solve the
formulated optimization problem are crucial, and the
subsequent documentation will trace the issues leading to
cutting-edge research in the subject.

The image acquisition scheme is important in the
modeling of the degradation process. The need for model
accuracy is undeniable in the attainment of SR along with
the design of the algorithm whose robust implementa-
tion will produce the desired quality in the presence of
model parameter uncertainty. To keep the presentation
focused and of reasonable size, data acquisition with
multisensors instead of, say, a video camera is considered.
Multiple undersampled images of a scene are often ob-

tained by using multiple identical image sensors which
are shifted relative to each other by subpixel displace-
ments [8], [21], [22]. The resulting HR image recon-
struction problem using a set of low-resolution (LR)
images captured by the image sensors is interesting be-
cause it is closely related to the design of high-definition
television (HDTV) and very high-definition (VHD) im-
age sensors. Charge-coupled device (CCD) image sensor
arrays, where each sensor consists of a rectangular
subarray of sensing elements, produce discrete images
whose sampling rate and resolution are determined by the
physical size of the sensing elements. If multiple CCD im-
age sensor arrays are shifted relative to each other by exact
subpixel values, the reconstruction of HR images is
sometimes modeled [8] by

g f g g= = +H and η, (1)

where f is the desired HR image, H is the blur matrix, and
g is the observed HR image by interlacing the LR images
from sensors. η is the additive, possibly Gaussian, noise.
Figure 1 shows the method of forming a 4 4× image gwith
a 2 2× sensor array where each g ij has a 2 2× sensing ele-
ments, i.e., four 2 2× LR images. Here the blur matrix is
constructed from the averaging of the pixel values. As an
example, Figure 2(a) illustrates that the point spread func-
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tion of the sensor applies to the image by averaging of the
four pixel values. Since the system described in (1) is
ill-conditioned, a solution for f is constructed by applying
a regularization technique that involves a functional �( )f ,
which captures the regularity in f , and a tuning (regulariza-
tion) parameter α that controls the degree of regularity of
the solution to the minimization problem:

{ }min ( )
f

f g fH − +2
2 α� . (2)

The maximum a posteriori (MAP) reg-
ularization technique [8], [39], the
L2 -norm regularization functional
�( )f f= 2

2 , and the H1 -norm regular-
ization functional �( )f f= L 2

2 [36],
where L is the discretization matrix of
the first order differential operator, have
been considered and used in HR image
reconstruction.

The main task is to recover the HR
image f given the blurring matrix H
and a blurred and noisy image g using
regularization models. There are several
problems that must be handled and
solved to efficiently obtain a high qual-
ity HR image.
� Owing to the blurring (convolution)
process, the boundary values of g are not
completely determined by the original HR image f in-
side the scene. They are also affected by the values of f
outside the scene. How can we handle boundary condi-
tions?
� Iterative methods can be applied to solve the
minimization problem (2). However, due to the ill-con-
ditioning of the blurring matrix, the convergence of itera-
tive methods can be very slow. How can we speed up the
convergence of iterative methods?
� Usually, we assume that subpixel displacements are
known. However, this assumption may not hold in prac-
tice. How can we estimate subpixel displacements?
� In some situations, we do not have enough LR images
to resolve the HR image. How can we modify the regu-
larization model to deal with this situation?
� The H1 -norm regularization tends to attenuate the
high frequency information of the HR image. If we con-
sider edge-preserving regularization models, can we de-
sign an efficient iterative method for solving the
corresponding minimization problem?

In the following sections, we will study the
above-mentioned problems and provide effective and ef-
ficient methodologies to solve these problems.

Image Boundary
The boundary values of the observed image g, because of
the blurring process, are affected by the values of original
image f outside the scene. Figure 2(b) illustrates that the
application of the point spread function of the sensor to

the image involves the pixel values outside the scene.
When solving for f from (2), some assumptions on the
values of f outside the scene are needed. These assump-
tions are linked to boundary conditions [1], [16].

The traditional choice was the imposition of zero
boundary condition outside the scene [8], i.e., a dark
background was assumed outside the scene. The blur ma-
trix, in this case, is a block-Toeplitz with Toeplitz-block
(BTTB) matrix [35], which occurs naturally in many
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applications. When the blur is of the linear shift-invariant
type, the image restoration problem is often modeled as a
system of linear equations, where the characterizing ma-
trix has a structure that can be very ill-conditioned. An ef-
fective way to combat this problem is to approximate the
BTTB matrix by means of a block-circulant with
circulant-block (BCCB) matrix. The sequences of BTTB
and BCCB matrices of increasing size are asymptotically
equivalent in a certain sense and the BCCB matrix is a
very natural and well-used preconditioner [6].

For practical applications, one often resorts to periodic
boundary conditions [1], [16]. The blur matrix, in this
case, is a BCCB matrix which can be diagonalized and in-
verted by the efficiently implementable two-dimensional
(2-D) discrete Fourier transform (DFT) matrix. When
the assumptions of either zero or periodic boundary con-
ditions are not satisfied by the captured images, however,
ringing effects may occur at the boundary of the recon-
structed image. Figure 3 shows the boundary artifacts of
the reconstructed images by using the zero and periodic
boundary conditions. The problem tends to be more se-
vere if the image is reconstructed from data acquired by a
large sensor array since the number of pixel values of the
image affected by the sensor array increases.

The Neumann boundary condition on the image (the
scene immediately outside is a reflection of the original
scene at the boundary) is then assumed [3], [24], [28]. In
this case, the blur matrix is a block-Toeplitz-plus-Hankel
with Toeplitz-plus-Hankel-block (BTHTHB) matrix
[35]. A symmetric BTHTHB matrix can be diagonalized
by the DCT matrix, and because of this a BTTB matrix
encountered in image reconstruction problems is often
approximated by a symmetric BTHTHB matrix for com-
putational efficiency in implementation. Very recently,
the error caused by the approximation is analyzed and a
simple modification of the observed image that can re-
duce the approximation error is proposed in [23]. Experi-
mental results in [10] and [35] have shown that the
Neumann image model gives better reconstructed HR
images than those using the zero or periodic boundary

conditions. In Figure 3, we see that the boundary artifacts
of the reconstructed image using the Neumann boundary
condition is very small. In [39], it has been shown that the
use of the Neumann boundary condition leads to smaller
expected errors in the reconstructed image when the orig-
inal image is statistically stationary near the boundary.

Here we visualize the structures of blurring matrices
based on these three different boundary conditions.
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� 3. Reconstructed images using (a) the zero boundary condition, (b) the periodic boundary condition, and (c) the Neumann boundary
condition.



Fast Iterative Methods
In the case of Tikhonov regularization in
(2), the linear system of equations to be
solved is

( )H H R HT T+ =α f g (3)

where R is the matrix associated with
the regularization functional �( )f in
(2). When the MAP regularization
technique is used, R I S I ST= − −( ) ( ),
where S comes from a symmetric
noncausal statistical model of the image
[8], [39], [5]. With the Neumann
boundary condition, this matrix S, re-
sulting from a symmetric blurring func-
tion, is a symmetric BTHTHB matrix
and, therefore, can be diagonalized by
2-D DCT [35], [39]. When �( )f f=

2

2

or �( )f f= L
2

2 , the matrix R is either
equal to the identity matrix or the dis-
crete Laplacian matrix. Note that in all
cases the matrix R can be diagonalized
by the 2-D DCT matrix. Hence, inver-
sion in (3) can be done using three
two-dimensional (2-D) fast cosine
transforms (one for finding the
eigenvalues of the coefficient matrix
and the remaining two for transform-
ing the right-hand side and the solution vector). Thus
the total cost of reconstruction of an n-by-n HR image
requires O n n( log )2 operations akin to what is required
for the periodic boundary condition (characterized by
BCCB matrix diagonalizable by 2-D DFT).

Perfect subpixel displacements e are practically impossi-
ble to realize. Therefore, blur operators in multisensor HR
image reconstruction are space variant. The blur matrix for
the whole L-by-L sensor array is made up of blur matrices
from each sensor:

H D Hl l
L

l

L

l

l l( ) ( )e e=
−−

==

∑∑ 1 2

2 01 0

1 2
11

,
(4)

were Dl l1 2
is a diagonal matrix with diagonal element

equal to 1 if the corresponding component of g comes
from the ( , )l l1 2 th sensor and zero otherwise. With the
Tikhonov regularization, the linear system is

( )A H H R HT Tf e e f e g b≡ + = ≡( ) ( ) ( )α . (5)

The blurring matrix H( )e has the same banded struc-
ture as that of H, but with some entries perturbed. It is a
near BTHTHB matrix but it can no longer be
diagonalized by the DCT. Therefore, the corresponding
linear system may be solved by the preconditioned conju-
gate gradient method [32], [39].

Convergence Rate
The conjugate gradient (CG) method was invented in the
1950s [18] as a direct method for solving symmetric posi-
tive definite systems. It has come into wide use over the
last 20 years as an iterative method. Let us consider (5)
where the coefficient matrix Ais a symmetric positive def-
inite matrix and the right-hand side vector b. Given an
initial guess f 0 and the corresponding initial residual
r b f0 0= − A , the kth iterate f k of CG minimizes the func-
tional Ψ( ) ( / )f f f f b≡ −1 2 T TA , over f 0 + � k where � k
is the kth Krylov subspace

( )� k
kA A k≡ =−span r r r0 0

1
0 1 2, , , , , , .K K

Note that if f * minimizes Ψ( )f , then ∇ = − =Ψ( )*f f bA 0
and hence f * is the solution.

Denote f * the true solution of the system and define
the norm

f f f
A

T A≡ .

One can show that minimizing Ψ( )f over f 0 + K k is the
same as minimizing f f− *

A
over f 0 + K k . Since any

y f∈ +0 K k can be written as

y f r= +
=

−

∑0
0

1

0β i
i

k
iA
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for some coefficients { }β i i
k
=
−
0
1 , we can express f y* − as

f y f f r* *− = − −
=

−

∑0
0

1

0β i
i

k
iA .

As r b f f f0 0 0= − = −A A( )* , we have

f y f f f f f f* * * *( ) ( )( )− = − − − = −
=

−
+∑0

0

1
1

0 0β i
i

k
iA p A ,

where the polynomial

p z zi
i

k
i( )= −

=

−
+∑1

0

1
1β

has degree k and satisfies p( )0 1= . Hence

f f f f*

, ( )

*min ( )( )− = −
∈ =k A p p Ak

p A
� 0 1 0 , (6)

where �k is the set of polynomials of degree k. Since
symmetric positive definite matrices asserts that
A U U= Λ * , where U is a unitary matrix whose columns
are the eigenvectors of A and Λ is the diagonal matrix
with the positive eigenvalues of Aon the diagonal. Since
UU U U I* *= = , we have A U Uk k= Λ * . Hence p A( )=
Up U( ) *Λ . Define A U U

1
2

1
2= Λ * , we have

p A A p A p A
A A

( ) ( ) ( )f f f= ≤
1
2

2 2
.

Together with (6), this implies that

f f f f* *

, ( ) ( )
min max ( )− ≤ −

∈ = ∈k A A p P p Ak

p0 0 1 λ σ
λ (7)

where σ( )A is the set of eigenvalues of A.
The convergence rate of the conjugate gradient

method has been well studied (see, for example, Golub
and Van Loan [15]). It depends on the condition number
κ( )A of the matrix Aand on how clustered the spectrum
of A is. If the spectrum is not clustered, as is usually the
case for blur matrices, a good estimate of the convergence
rate is given in terms of the condition number

κ( )A
A

=
the largest eigenvalue of
thesmallest eigenvalue of A

.

The convergence rate of the method can be expressed as

f f

f f
k A

A

k
A

A

−

−
<

−

+











*

*

( )

( )
.

0

2
1

1

κ

κ

This indicates that the rate of convergence can be very
slow if κ( )A is large. Thus, the method will converge in a
large number of iterations and hence the complexity of

solving the system (5) is very large.
Figure 4 shows the slow convergence
of the conjugate gradient method
when applied to solving the system
(5) for different values of L and α.

One way to speed up the conver-
gence rate of the method is to precon-
dition the system. Thus, instead of
solving (5), one solves the precondi-
tioned system

( )P H H R

P H .

T

T

−

−

+

=

1

1

(e e f

(e g

) ( )

)

α

(8)

The symmetric positive definite ma-
trix P, called the preconditioner,
should be chosen according to the
following criteria:
� P should be constructed very effi-
ciently.
� Px y= should be solved for x very
efficiently.
� The spectrum of P H e HT−1 ( ( )
( ) )e R+ α should be clustered or its con-
dition number should be reduced.

The first two criteria occur from
the operation count per iteration as
that is the count for the non-precondi-
tioned system. The third criterion
comes from the fact that the more
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clustered the eigenvalues are (or the less the condition
number is), the faster the convergence of the method will
be (see, for instance, [27]).

Since H H RT + α can be diagonalized by the DCT ma-
trix, therefore H H RT + α can be employed as the
preconditioner for H H RT (e e) ( )+ α (the first two crite-
ria). In [39], it was shown that when either the MAP regu-
larization or the L2 -norm or the H1 -norm regularization
functional is used, the eigenvalues of the preconditioned
matrix ( ) ( ) ( ) )H H R H H RT T+ +−α α1 (e e are clustered
around the fixed point at 1 for sufficiently small subpixel
displacement errors [32]. The conjugate gradient method,
when applied to solving the preconditioned system (8),
converges superlinearly [36]. Figure 4 shows the fast con-
vergence of the conjugate gradient method when applied
to solving the preconditioned system for different values of
Landα. In Figure 5, we also show the reconstructed image
can be obtained within a few PCG iterations. More pre-
cisely, for any given ε >0, there exists a constant c( )ε >0
such that the error vector f fk − * of the preconditioned
conjugate gradient method at the kth iteration satisfies

f f

f f
k A

A

kc
−

−
≤

*

*
( )

0

ε ε .
(9)

In [32], it was further shown that the
convergence rate of the conjugate
gradient method for (8) depends lin-
early on the displacement errors aris-
ing from imperfect subpixel
locations. Thus the cost per each iter-
ation is O n n( log )2 operations and
hence the total cost for finding the
HR image vector from (8) using the
MAP, L2 -norm or H1 -norm regular-
ization is still O n n( log )2 operations.

We remark that the use of cosine
transform-based matr ices as
preconditioners for HR image re-
construction problems allows the
use of fast cosine transform through-
out the computations. Notice that
fast cosine transform is highly
parallelizable and has been imple-
mented on multiprocessors effi-
ciently. Since the PCG method is
easily parallelizable, too, the cosine
transform-based preconditioned
conjugate gradient method is well
adapted for parallel computing [30].

Regularized Constrained
Total Least Squares
The spatial resolution of an image is
often determined by imaging sen-
sors. In a CCD camera, the image res-

olution is determined by the size of its photo-detector. An
ensemble of several shifted images could be collected by a
prefabricated planar array of CCD sensors and one may
reconstruct with higher resolution. This is equivalent to
an effective increase of the sampling rate by interpolation.
Fabrication limitations are known to cause subpixel dis-
placement errors, which, coupled with observation noise,
limit the deployment of least squares techniques in this
scenario. However, the displacement errors may not be
known exactly. Total least squares (TLS) [43] is an effec-
tive technique for solving a set of such error-contami-
nated equations and, therefore, is an appropriate method
for consideration in our HR image reconstruction appli-
cations. The TLS HR image reconstruction problem can
be formulated as follows:

[ ]min ( ( ) ) ( )
,f

e f g f
arbitrary V

H V+ − +
2

2
α� .

(10)

The solution of the minimization problem (10) can be
determined by solving an eigenvalue problem [43].

A possible drawback of using such a conventional TLS
approach is that the matrix V is arbitrary in the
minimization process and the formulation in (10) is not
constrained to handle special structure of the blur matrix
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� 6. (a) Original image of size 256 256× . (b) Observed blurred and noisy image
256 256× ; PSNR = 24.20 dB. (c) Reconstructed image by RLS; PSNR = 25.64 dB. (d)
Reconstructed image by RCTLS; PSNR = 25.88 dB.



from multisensors. We note that the spatial invariance of
the blurring matrix for each sensor translates into the spa-
tial invariance of the displacement error in the blur ma-
trix. In [32], an image processing technique that leads to
the deployment of constrained total least squares (CTLS)
theory is described. The regularized constrained total
least squares (RCTLS) solution to the problem given re-
quires the minimization of a nonconvex and nonlinear
cost functional:

J HTLS H
( , ) min [ ( ) ]

( )
f e e f g

f,e e
≡ − +

such that is BTHBTH 2

2 α�( )f .

(11)
The solution of the minimization problem (11) cannot be
determined by solving an eigenvalue problem. In [31], an

iterative algorithm that takes advantage, computationally,
of the fast solvers for image reconstruction problems with
known displacement errors is developed. Before solving
for f in the RCTLS formulation, it is first noted that for a
given f , the function J TLS ( ,)f ⋅ is convex with respect to e
(up to negligible terms), and for a given e, the function
J TLS ( , )⋅ e is also convex with respect to f . Therefore, with
an initial guess e 0 , one can minimize (11) by first solving

J J TLSTLS ( , ) min ( , )f e e
f1 0 0= ⋅

and then

J J TLSTLS ( ) min ( ,),f e f
e1 1 1

1

= ⋅ .

We note that the first subproblem can be solved by using
the preconditioned conjugate gradient method, and the
second subproblem requires solving a small least squares
problem. Therefore, both subproblems can be solved
very efficiently. An alternating minimization algorithm is
developed in which the function value J n nTLS ( , )f e al-
ways decreases as n increases. In most cases, the algorithm
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converges to a local minimizer. It is interesting to note
that the convergence analysis of this algorithm is still un-
der investigation. The reconstructed image by regular-
ized least squares (RLS) and the reconstructed image by
RCTLS are shown in Figure 6(c) and (d), respectively.
The reconstructed HR image using RCTLS shows im-
provement both in image quality and PSNR.

In the proposed RCTLS algorithm, we find that the
choice of “proper” regularization parameterα is very im-
portant. In Figure 7, we plot the norm of the error be-
tween the real subpixel displacements and the estimated
subpixel displacements by the algorithm for different val-
ues of α. The speed of convergence decreases as α in-
creases. In the case when α = −10 4 [Figure 7(a)] and α =1
[Figure 7(b)], the norm of error after convergence is
greater than that in the first iteration. The “inappropri-
ate” value of α makes the RCTLS solution fall into a local
minimum. The L-curve method [17] may be used to get
the optimum value of the regularization parameter. The
L-curve method to estimate the “proper” α for RCTLS is
used here. The L-curve plot is shown in Figure 7(d). With
α opt retrieved by L-curve, we see in Figure 7(c) that the
RCTLS converges to a better minimum point (the norm
of error is significantly smaller than those obtained by
choosing α = −10 4 and α =1).

Color Images
Multispectral restoration of a single image is a three-di-
mensional (3-D) reconstruction problem where the third
axis incorporates different wavelengths. We are interested
in color images because there are many applications.
Color image can be regarded as a set of three images in
their primary color channels (red, green, and blue).
Monochrome processing algorithms applied to each
channel independently are not optimal because they fail
to incorporate the spectral correlation between the chan-
nels. Under the assumption that the spatial intrachannel
and spectral interchannel correlation
functions are product separable,
Hunt and Kubler [20] showed that a
multispectral (e.g., color) image can
be decorrelated by the Karhunen-
Loeve transform (KLT). After
decorrelating multispectral images,
the Wiener filter can be applied inde-
pendently to each channel, and the
inverse KLT gives the restored color
image. It has recently been shown
[33] that single color image restora-
tion with multisensors can be formu-
lated as a regularized least squares
problem that can be solved efficiently
using the fact that the DCT can
diagonalize the linear system of equa-
tions (resulting from the use of
Neumann boundary conditions),
characterized by a BTHTHB matrix.

There is considerable scope for incorporating
regularization methods like the L-curve [7] in this ap-
proach for further improvement in quality of restoration
both in the case of a single image as well as multispectral
video sequences. In [34], Ng et al. also extended the HR
image reconstruction method to multiple undersampled
color images. The key issue is to employ the cross-channel
regularization matrix to capture the changes of reflectivity
across the channels.

Insufficient LR Images
Previously, it was assumed that enough LR images are
available to resolve the HR image. Here, the situation
where some LR images are missing is considered. For ex-
ample, in a 2 2× sensor array, we should have the refer-
ence, the horizontally displaced, the vertically displaced,
and the diagonally displaced LR image to resolve the HR
image. In Figure 8, we consider the situation that we only
have the reference and the diagonally displaced LR im-
age. The other two displaced LR images are missing.

We note that the optimization problem in (2) can be
used to reconstruct HR images. However, since the blur
matrix is no longer BTHTHB, therefore DCT-based
preconditioners do not work well [38]. Figure 9 shows
the slow convergence of the preconditioned conjugate
gradient method. We find that the preconditioner is not
effective. In [37], Ng et al. considered the following joint
minimization problem:
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� 8. Missing LR images.

The tradeoff between the size
of the scene and its resolution
has to be addressed.
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where u corresponds to the missing observed image pix-
els because of the missing or faulty sensors in the sensor
array and u v+ and H are the full observed HR image and
degradation matrix, respectively, by combining all the
sensors in the sensor array. Here � is the regularization
functional that was discussed earlier, and ~

� is the regular-
ization functional for u, α1 and α 2 are positive parame-
ters which measure the tradeoff between a good fit and
the regularity of the solutions f and u. Due to the local av-
eraging of the pixel values in the image formation, the ob-
served image pixel values are close to the neighbor image
pixel values. Our idea is to estimate u est , the missing ob-
served image pixel u by using its neighbor image pixel val-
ues v by, for instance, splines interpolation method [19].
The regularization functional ~( )� u is defined to be

~( )� u u u≡ −1
2 2

2
est .

Similarly, an alternating minimization algorithm is devel-
oped for solving the joint minimization model (12).

Given u 0 : iterating k =1 2, ,K, until convergence

� Step i) Determine f f u
fk IL kJ= −arg min ( , )1 by solving

the corresponding Euler-Lagrange equation:

( )H H R HT
k

T
k( ) ( ) ( )( )e e f e u v+ = +−α1 1 .

� Step ii) Solve u f u
uk kJ=arg min ( , ) by solving the cor-

responding Euler-Lagrange equation:
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H

missing sensor

− =α 2 0u est .

For Step i), the linear system can again be solved by the
preconditioned conjugate gradient method with the co-
sine transform preconditioner. Therefore the linear sys-
tem can be solved very efficiently. For Step ii), the vector
u k can be computed by using the matrix-vector
multiplication. Therefore the proposed algorithm for the
joint minimization model is more efficient than the direct
application of the cosine transform preconditioner for
model (2). Moreover, we see in Figures 10 and 11 that the
quality of reconstructed images using the joint
minimization model in (12) is better than those using the
model in (2).

The convergence of the above alternating
minimization algorithm can be analyzed by using the
framework of fixed point theory. We just combine the two
steps of the alternating minimizing algorithm and derive
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� 9. Convergence behavior of the original system (- - -) and the cosine transform preconditioned system (—) when SNRs are (a) 50 dB
and (b) 30 dB for missing two LR images.

Due to the ill-conditioning of
the blurring matrix, the
convergence of iterative methods
can be very slow. How can we
speed up the convergence?
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In [37], it has been shown that the spectral radius of the
matrix
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is less than one, and therefore the alternating
minimization algorithm converges globally to a mini-
mizer for any given initial guess.

Edge-Preserving Regularization
The H1 -norm regularization tends to attenuate the high
frequency information of the HR image. Therefore,

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 71

(a) (b) (c)

� 10. (a) Original and (b), (c) two LR images.

(a) (b) (c)

� 11. Reconstructed images using (a) the model in (2) [relative error = 0.0614], (b) the joint minimization model with the H 1-norm reg-
ularization [relative error = 0.0574],  and (c) the joint minimization model with the total variation regularization [relative error =
0.0931].

If we consider edge-preserving
regularization models,
can we design an efficient
iterative method for solving
the corresponding
minimization problem?



edge-preserving regularization is considered. In Figures
11 and 12, we see that the quality of reconstructed images
using the edge-preserving regularization is better than
those using the H1 -norm regularization.

In this section, we focus on the regularization term Φ
of the form

Φ( ) ( )f d f=
=
∑φ
i

r

i
T

1

,
(13)

where φ:� �→ is a potential function and d i
T , for

i r=1, ,K , are linear operators. Typically, the elements of
the sequence { }d fi

T are either first- or second-order dif-
ferences between neighboring pixels and r is the number
of these differences computed from the image. Assume
that φ is smooth, convex, and edge preserving, i.e., φ( )t t< 2

as| |t → ∞. Examples of such functions are [2], [4], [9],
[11]:
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However, the resulting minimizers of such objective
functions are nonlinear with respect to f and computation
intensive.

To cope with numerical slowness, half-quadratic
(HQ) reformulation has been used [12], [13]. The idea is
to construct an augmented cost function that involves an
auxiliary variable. In the HR image reconstruction, the
augmented cost-function is given by

J H L s
i

i( , ) ( ) ( )f s e f g f s= − + − + ∑2

2

2

2

2
α β ψ .

(14)

This formulation is considered under the condition that
the function

t t t→ −2 2/ ( )φ

is convex, continuous, and finite for every t ∈� and the
following expressions are equivalent:
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The augmented cost function is minimized using an alter-
nating minimization scheme. Let the solution obtained at
iteration ( )k −1 read ( , )( ) ( )f sk k− −1 1 . At the next iteration k
one calculates
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f

( ) ( ) ( ) ( )

( )

, , , ,k k k k r

k

J Jsuch that

such t

− −≤ ∀ ∈1 1
�

( ) ( )hat J Jk k k nf s f s f( ) ( ) ( ), , , .≤ ∀ ∈�
2
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where the minimizer functionσ reads
[11], [42]:

σ φ( ) '( )t t t= − .

The above linear system can be solved
efficiently by the cosine trans-
form-based conjugate gradient
method (see [41]). Although the in-
tuition that HQ regularization does
indeed increase the speed of the
minimization of regularized cost func-
tions of the form (14), the critical
question has not been considered in a
theoretical way. The convergence of
the edge-preserving regularization
will be further studied in depth.
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(a) (b)

� 12. (a) H1-norm regularization and (b) the edge-preserving regularization.

The key problem of
simultaneously estimating an
unknown blur from the observed
sequence and attaining SR of
a region of interest remains
to be fully tackled.



Future Research
It is usually not possible at the outset to achieve the de-
sired resolution because of technology and cost con-
straints. For example, the technology of a CCD is
limited by factors like physical dimension, shot noise,
and parasitic effects. In applications like astronomical
imaging, the reduced size and weight of cameras in a
spaceship or satellite affect its quality. The need for
tradeoff between size, weight, and quality of the CCD
array necessitates the design of SR algorithms to obtain
the desired HR image of a common region of interest in
the frames of a video sequence without modifying the
physical characteristics of the CCD array. Imperfect op-
tics, finite detector arrays, and finite individual detector
sizes all contribute to a variety of degradation processes
to which an image acquisition system is susceptible.
Dramatic progress has been documented during the last
decade in the area of HR image processing that encom-
passes the stages of image registration or camera motion
parameter estimation, deblurring, noise reduction (fil-
tering), and interpolation.

Considerable research activity is being witnessed in
areas pertaining to the construction of a panoramic mo-
saic followed by the attainment of spatial resolution in-
crease of regions of interest in the mosaic. In video, the
user gets the sequence of images containing both spatial
and temporal information. The number of pixels in each
frame is fixed to a known resolution. To generate one big
snapshot of the scene that covers all desired areas (pan-
oramic mosaic), one needs to adjust the camera in vari-
ous ways to capture the effects of zooming, panning,
tilting, etc., that may be required for capturing the entire
scene. Usually, the resulting picture will suffer from
undersampling or LR effect because the whole scene has
to be represented by the limited number of pixels. There-
fore, the bigger the scene, the lower will be the resolu-
tion. On the other hand, higher resolution of regions of
interest in the scene can be obtained if the camera is
zoomed to those specific regions. Therefore the tradeoff
between the size of the scene and its resolution has to be
addressed. In the future, more research is needed on how
to take advantage of the intraframe spatial information
along with interframe temporal information to create
the HR panoramic image and then attain SR of regions
of interest in the mosaic.

The key problem of simultaneously estimating an un-
known blur from the observed sequence and attaining
SR of a region of interest remains to be fully tackled.
Blind deconvolution refers to the problem of restoring
the original image from a degraded observation and in-
complete blur informat ion. Exis t ing bl ind
deconvolution techniques can be categorized into two
main classes. One approach treats blur identification and
image super resolution separately. The other approach
implements the two subtasks simultaneously. Both ap-
proaches are adaptable from the single image case to the
multiframe situation of interest here. Initial results in

this area of blind robust super resolution have been
reported recently [26]. Recently, Nguyen et al. [40] con-
sidered the blind deconvolution problem in the
multiframe case. Their algorithm can handle only the
PSF, which is modeled by one parameter. This restric-
tion is very limited in many applications.

Acknowledgments
This research was supported in part by RGC Grants
HKU 7132/00P and 7130/02P and by Army Research
Office Grant DAAD 19-00-1-0539.

Michael K. Ng received the B.Sc. and M.Phil. degrees in
mathematics from the University of Hong Kong in 1990
and 1993, respectively, and the Ph.D. degree in mathe-
matics from the Chinese University of Hong Kong, in
1995. From 1995 to 1997 he was a research fellow at the
Australian National University, Canberra. He is currently
an associate professor in the Department of Mathematics
at the University of Hong Kong. His research interests
are in the areas of data mining, operations research, and
scientific computing. He was one of the recipients of the
Outstanding Young Researcher Award of the University
of Hong Kong in 2001.

Nirmal K. Bose received the B. Tech (Hons.), M.S., and
Ph.D. degrees in electrical engineering from I.I.T.,
Kharagpur, India, Cornell University, and Syracuse Uni-
versity, respectively. He was a professor of electrical engi-
neering and of mathematics at the University of
Pittsburgh. He joined Pennsylvania State University,
University Park, in 1986 as Singer Professor and in 1992
was named the HRB-Systems Professor of electrical engi-
neering. He is the author of several recognized texts and
since is the founding editor-in-chief of the International
Journal on Multidimensional Systems and Signal Processing.
He has served as visiting faculty at several institutions, in-
cluding the American University of Beirut, Lebanon, and
Princeton University, New Jersey. He is a Fellow of the
IEEE. His most recent honors include the Invitational
Fellowship from the Japan Society for the Promotion of
Science in 1999, the Alexander von Humboldt Research
Award from Germany in 2000, and the Charles H. Fetter
University Endowed Fellowship in Electrical Engineer-
ing from 2001-2004.

References
[1] H. Andrew and B. Hunt, Digital Image Restoration. Englewood Cliffs, NJ:

Prentice-Hall, 1977.

[2] G. Aubert and L. Vese, “A variational method in image recovery,” SIAM J.
Numer. Anal., vol. 34, pp. 1948-1979, 1997.

[3] M. Banham and A. Katsaggelos, “Digital image restoration,” IEEE Signal
Processing Mag.,vol. 14, pp. 24-41, Mar. 1997.

[4] M. Black and A. Rangarajan, “On the unification of line processes, outlier
rejection, and robust statistics with applications to early vision,” Int. J.
Comput. Vision, vol. 19, pp. 57-91, 1996.

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 73



[5] K. Boo and N.K. Bose, “Two-dimensional model-based power spectrum
estimation for nonextendible correlation bisequences,” Circuits Syst. Signal
Process., vol. 16, no. 2, pp. 141-163, 1997.

[6] N.K. Bose and K. Boo, “Asymptotic eigenvalue distribution of
block-Toeplitz matrices,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp.
858-861, 1998.

[7] N.K. Bose, S. Lertrattanapanich, and J. Koo, “Advances in superresolution
using the L-curve,” in Proc. Int. Symp. Circuits and Systems, Sydney, Austra-
lia, May 2001, pp. 433-436.

[8] N.K. Bose and K. Boo, “High-resolution image reconstruction with
multisensors,” Int. J. Imaging Syst. Technol., vol. 9, pp. 294-304, 1998.

[9] C. Bouman and K. Sauer, “A generalized Gaussian image model for
edge-preserving MAP estimation,” IEEE Trans. Image Processing, vol. 2, pp.
296-310, July 1993.

[10] R. Chan, T. Chan, M. Ng, W. Tang, and C. Wong, “Preconditioned itera-
tive methods for high-resolution image reconstruction with multisensors,”
in Proc. SPIE Symp. Advanced Signal Processing: Algorithms, Architectures, and
Implementations, vol. 3461, San Diego, CA, July, 1998, pp. 348-357.

[11] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Determin-
istic edge-preserving regularization in computer imaging,” IEEE Trans. Im-
age Processing, vol. 6, pp. 298-311, Feb. 1997.

[12] D. Geman and G. Reynolds, “Constrained restoration and recovery of dis-
continuities,” IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp.
367-383, Mar. 1992.

[13] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Trans. Image Processing, vol. 4, pp. 932-946, July
1995.

[14] J. Gillete, T. Stadtmiller, and R. Hardie, “Aliasing reduction in staring in-
frared images using subpixel techniques,” Opt. Eng., vol. 34, pp.
3130-3137, Nov. 1995.

[15] G. Golub and C. Van Loan, Matrix Computations, 2nd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1989.

[16] R. Gonzalez and R. Woods, Digital Image Processing. New York: Addison
Wesley, 1992.

[17] P. Hansen and D. O’Leary, “The use of the L-curve in the regularzation
of discrete ill-posed problems,” SIAM J. Sci. Comput., vol. 14, pp.
1487-1503, 1993.

[18] M. Hestenes and E. Steifel, “Methods of conjugate gradient for solving
linear systems,” J. Res. Nat. Bureau Stand., vol. 49, pp. 409-436, 1952.

[19] H. Hou and H. Andrews, “Cubic splines for image interpolation and di-
agonal filtering,” IEEE Trans. Accoust Speech Signal Processing, vol. 26, pp.
508-517, Dec. 1978.

[20] B. Hunt and O. Kubler, “Karhunen-Loeve multispectral image restora-
tion, part I: Theory,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 32,
pp. 592-600, June 1984.

[21] G. Jacquemod, C. Odet, and R. Goutte, “Image resolution enhancement
using subpixel camera displacement,” Signal Processing, vol. 26, pp.
139-146, 1992.

[22] T. Komatsu, K. Aizawa, T. Igarashi, and T. Saito, “Signal-processing
based method for acquiring very high resolution images with multiple cam-
eras and its theoretical analysis,” Proc. Inst. Elec. Eng. vol. 140, no. 3, pt. I,
pp. 19-25, 1993.

[23] J. Koo and N.K. Bose, “Spatial restoration with reduced boundary error,”
in Proc. Mathematical Theory of Networks and Systems (MTNS), Univ. of No-
tre Dame, South Bend, IN., Aug. 12-16, 2002 [Online]. Available:
http://www.ndu.edu/~mtns/talksalph.html

[24] R. Lagendijk and J. Biemond, Iterative Identification and Restoration of Im-
ages. Norwell, MA: Kluwer, 1991.

[25] S. Lertrattanapanich and N.K. Bose, “Latest results on high-resolution re-
construction from video sequences,” Inst. Electronic, Information and
Communication Eng., Japan, Tech. Rep. IEICE, DSP99-140, Dec. 1999,
pp. 59-65.

[26] S. Lertrattanapanich and N.K. Bose, “High resolution image formation
from low resolution frames using Delaunay triangulation,” IEEE Trans. Im-
age Processing, vol. 11, no. 12, pp. 1427-1441, Dec. 2002.

[27] D. Luenberger, Linear and Nonlinear Programming, 2nd ed. Reading,
MA: Addison-Wesley,1984.

[28] F. Luk and D. Vandevoorde, “Reducing boundary distortion in image
restoration,” in Proc. SPIE 2296, Advanced Signal Processing Algorithms, Ar-
chitectures and Implementations VI, 1994, pp. 554-565.

[29] S. Mann and R. Picard, “Video Orbits of the projective group: A simple
approach to featureless estimation of parameters,” IEEE Trans. Image Pro-
cessing, vol. 6, pp. 1281-1295, Sept. 1997.

[30] M. Ng, “An efficient parallel algorithm for high-resolution color image re-
construction,” Proc. the Seventh Int. Conf. Parallel and Distributed Systems:
Workshops, Iwate, Japan, 4-7 July, 2000, pp. 547-552,

[31] M. Ng, N.K. Bose, and J. Koo, “Constrained total least squares computa-
tions for high resolution image reconstruction with multisensors,” Int. J.
Imaging Syst. Technol., vol. 12, pp. 35-42, 2000.

[32] M. Ng and N.K. Bose, “Analysis of displacement errors in high-resolution
image reconstruction with multisensors,” IEEE Trans. Circuits Syst. I, vol.
49, pp. 806-813, June 2002.

[33] M. Ng and N.K. Bose, “Fast color image restoration with multisensors,”
Int. J. Imaging Syst. Technol., to be published.

[34] M. Ng, N.K. Bose, and J. Koo, “Constrained total least squares for color
image reconstruction,” in Total Least Squares and Errors-in-Variables Model-
ling III: Analysis, Algorithms and Applications, S. Huffel and P. Lemmerling,
Eds. Norwell, MA: Kluwer, 2002, pp. 365-374.

[35] M. Ng, R. Chan, and W. Tang, “A fast algorithm for deblurring models
with Neumann boundary conditions,” SIAM J. Sci. Comput., vol. 21, pp.
851-866, 1999.

[36] M. Ng, R. Chan, T. Chan, and A. Yip, “Cosine transform preconditioners
for high resolution image reconstruction,” Linear Algebra Applicat., vol.
316, pp. 89-104, 2000.

[37] M. Ng, W. Ching, K. Sze, and A. Yau, “Super-resolution image recon-
struction using multisensors,” Numerical Linear Algebra with Applications, to
be published.

[38] M. Ng and K. Sze, “Preconditioned iterative methods for superresolution
image reconstruction with multisensors,” SPIE, Symp. Advanced Signal Pro-
cessing: Algorithms, Architectures and Implementations, vol. 4116, San Diego
CA, 2000, pp. 396-405.

[39] M. Ng and A. Yip, “A fast MAP algorithm for high-resolution image re-
construction with multisensors,” Multidimensional Syst. Signal Process., vol.
12, no. 2, pp. 143-164, 2001.

[40] N. Nguyen, P. Milanfar, and G. Golub, “Efficient generalized cross-valida-
tion with applications to parametric image restoratioin and resolution en-
hancement,” IEEE Trans. Image Processing, vol. 10, pp. 1299-1308, Sept.
2001.

[41] M. Nikolova and M. Ng, “Fast image reconstruction algorithms combin-
ing half-quadratic regularization and preconditioning,” in Proc. IEEE Int.
Conf. Image Processing, 2001, vol. I, pp. 277-280.

[42] M. Nikolova and M. Ng, “Comparison of the main forms of half-qua-
dratic regularization,” in Proc. IEEE Int. Conf. Image Processing, Rochester,
NY, Sept. 2002, vol. I, pp. 349-352.

[43] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Compu-
tational Aspects and Analysis. Philadelphia, PA: SIAM, 1991.

74 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003


