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Introduction

In many scientific applications, one would like to be able to efficiently
simulate molecular dynamics (MD).

Time scale problem:

The time scales reachable by direct MD simulation are often too small.

Example: Thermally activated reactions

The time step in MD simulation is on the order of femtoseconds, 10−14 s.

Thermally activated reactions typically occur in the time scale of
microseconds, 10−6 s.

Direct MD simulations are not fast enough to bridge this gap.

D. Aristoff (www.math.colostate.edu/∼aristoff) AIMS, Madrid, July 2014 2 / 26



Introduction

We consider the Langevin dynamics in Rd :

dQt = m−1Pt dt

dPt = −∇V (Qt) dt − γm−1Pt dt +
√

2γβ−1 dWt

These dynamics can be understood as Hamiltonian dynamics plus dissipation
and fluctuation. Here β = (kBT )−1, m = mass, and γ = damping, and
d = 6N, with N the number of particles.

We also consider the overdamped Langevin dynamics:

dXt = −∇V (Xt) dt +
√

2β−1 dWt

obtained by setting dPt = 0, Xt ≡ Qt , and rescaling time by t → γt.

These dynamics can be understood as gradient descent plus Brownian
motion.
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Introduction

We think of V as being smooth, with several basins of attraction.

Figure: A 2D potential energy with 3 basins of attraction.

The dynamics are metastable if they spend a long time each basin before
hopping to the next.

The time scale problem is often a consequence of metastability.
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Introduction

For metastable dynamics, the vibrations within basins are much less
interesting than the hopping between basins.
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Figure: Fine and coarse scale dynamics, with basins labelled 1,2,3.
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Introduction

From now on we assume overdamped dynamics

dXt = −∇V (Xt) dt +
√

2β−1 dWt ,

and we assume the basins of V are bounded Lipschitz domains.

Definition.

Let Π be a N-valued function which labels the basins of V . The coarse dynamics
is Π(Xt)t≥0.

Problem.

Efficiently generate approximations of the coarse dynamics.

The trick: The dynamics reaches local equilibrium in a basin much faster
than it hops out.

We must understand hopping events, starting at local equilibrium.
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The QSD

Definition.

A quasistationary distribution (QSD) in D is a probability measure ν with support
in D such that, if X0 ∼ ν then for all t > 0,

ν(·) = P(Xt ∈ · |Xs ∈ D for all s ∈ [0, t]).

If ν is a probability measure with support in D such that, for any initial
distribution of X0 in D,

ν(·) = lim
t→∞

P(Xt ∈ · |Xs ∈ D for all s ∈ [0, t]), (1)

then ν is the unique QSD in D. Intuitively, we reach the QSD in a basin
when the dynamics spend a sufficiently long time there without hopping out.

Definition.

Let (u,−λ) be the principal eigenfunction/eigenvalue pair for
L∗ := div(· ∇V ) + β−1∆ with absorbing bc’s on ∂D, and with

∫
D

u dx = 1.

Theorem. (Le Bris, Lelièvre, Luskin, Perez)

There is a unique QSD ν in D satisfying (1), and dν = u dx .
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TAD

TAD is an algorithm for generating the coarse dynamics at low temperature,
proposed by A.F. Voter and M. Sørensen in 2000.

TAD is a popular algorithm: the original article is cited 255 times, according
to Web of Science, and the algorithm is used by many independent research
groups.

Our analysis focuses on a modified version of TAD which we propose, which
we show should decrease error at a small cost to efficiency.

In TAD, temperature is increased to accelerate hopping events. When
temperature is increased, the relative rates of hopping via different pathways
will change. TAD accounts for the change in relative rates of hopping, so
that the hopping events at the original temperature can be extrapolated.

D. Aristoff (www.math.colostate.edu/∼aristoff) AIMS, Madrid, July 2014 8 / 26



TAD: the algorithm

Definition.

Let x1, . . . , xn be the saddle points of V on ∂D, and x0 the minimum of V in D.
Assume ∂D is partitioned into pathways 1, . . . , n containing x1, . . . , xn.
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x
2

pathway 1

pathway 2
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TAD: the algorithm

TAD Exit Algorithm: Generating an exit (hopping) event from D.

Fix a high and low temperature. Set N = 1, Tstop =∞ and iterate:

1. Starting at the QSD at high temperature and time 0, evolve the dynamics at
high temperature.

2. Stop when the dynamics leave D, say at time T (N) and through pathway i .

3. If this is the first time we leave through pathway i , use
τhi
i ≡ T (1) + . . .+ T (N) and xi to extrapolate a low temperature exit time,

call it τ lo
i .

4-6. Update the current smallest low temperature extrapolated exit time and
corresponding pathway. Update N = N + 1, and if a certain total simulation
time has not been reached∗, return to Step 1.

∗ To be described shortly.
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TAD: the algorithm
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TAD: the algorithm
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TAD: the algorithm
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TAD: the algorithm
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TAD: the algorithm

TAD Exit Algorithm: Generating an exit event from D.

Fix a high and low temperature. Set N = 1, Tstop =∞ and iterate:

1. Starting at the QSD at high temperature and time 0, evolve the dynamics at
high temperature.

2. Stop when the dynamics leave D, say at time T (N) and through pathway i .

3. If this is the first time we leave through pathway i , use
τhi
i ≡ T (1) + . . .+ T (N) and xi to extrapolate a low temperature exit time,

call it τ lo
i .

4. Update τ lo
min, the current smallest extrapolated low temperature exit time,

and I lo
min, the corresponding pathway.

5. Update the simulation stopping time, Tstop.

6. If T (1) + . . .+ T (N) < Tstop, update N = N + 1 and return to Step 1.
Otherwise, return (τ lo

min, I
lo
min), an approximation of the exit time and pathway

at low temperature.

How do we extrapolate τ lo
i ? How do we update Tstop?
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Mathematical Analysis

Fix an (inverse) temperature β.

Definition.

Let X0 ∼ ν. Define τ = inf{t > 0 : Xt /∈ D} and I = i ⇔ Xτ ∈ pathway i .

Starting at the QSD, τ is the first exit time and I is the exit pathway.

Theorem. (Le Bris, Lelièvre, Luskin, Perez)

τ and I are independent. Moreover,

P(τ ≤ t) = 1− e−λt and P(I = i) = − 1

βλ

∫
i

∂nu dσ∂D

where ∂n is the normal to ∂D and σ∂D is Lebesgue measure on ∂D.

Starting at the QSD, the first exit time is exponentially distributed and
independent of the exit position.
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Mathematical Analysis

Recall: Starting at the QSD, τ is the first exit time and I is the exit pathway.

Theorem.

The last theorem implies that λ−1 = E[τ ].

Definition.

Let pi ≡ P(I = i).

Starting at the QSD, λ−1 is the expected exit time and pi is the probability
to exit through pathway i .

We want to be able to sample (τ, I ). We will see that knowing λpi is
sufficient to do this...
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Mathematical Analysis

Theorem.

Let τ1, . . . , τn be independent r.v.’s with P(τi ≤ t) = 1− e−λpi t . Then(
min

1≤i≤n
τi , arg min

1≤i≤n
τi

)
∼ (τ, I ).

At low temperature λpi is estimated by:

The Arrhenius law

λpi ≈ ηie
−β(V (xi )−V (x0)) when β−1 � V (xi )− V (x0).

ηi is a known function of the eigenvalues of the Hessian of V at the saddle
point xi and minimum x0. ηi does not depend on β.

If the locations of the saddle points are known a priori, the theorem and
Arrhenius law can be used to sample exit events.
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Mathematical Analysis

TAD Exit Algorithm: Generating an exit event from D.

Fix a high and low (inverse) temperature βhi and βlo (so βhi < βlo). Set N = 1,
Tstop =∞ and iterate:

1. Starting at the QSD at high temperature and time 0, evolve the dynamics at
high temperature. Stop when the dynamics leave D, say at time T (N) and
through pathway i . Define τhi

i = T (1) + . . .+ T (N).

3. If this is the first time we leave through pathway i , extrapolate a low
temperature exit time τ lo

i by:

τ lo
i = τhi

i e−(βhi−βlo)(V (xi )−V (x0)).

4. Update τ lo
min, the current smallest extrapolated low temperature exit time,

and I lo
min, the corresponding pathway.

5. Update the simulation stopping time, Tstop, by: Tstop = τ lo
min/C , where

C ≤ min1≤i≤n e−(βhi−βlo)(V (xi )−V (x0)).

6. If T (1) + . . .+ T (N) < Tstop, update N = N + 1 and return to Step 1.
Otherwise, return (τ lo

min, I
lo
min).
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Mathematical Analysis

Remarks:

At relatively low temperatures the QSD in D can be efficiently sampled.

Some a priori knowledge about minimum energy barriers is needed to define
Tstop.

If the simulation continues after time Tstop, the value of τ lo
min will no longer

change (which is why we stop at Tstop).

The algorithm does not require that all the saddle points be found. Also, the
prefactors ηi are not needed.

The Exit Algorithm is expected to be accurate when the Arrhenius law is valid:

min
1≤i≤n

βhi (V (xi )− V (x0))� 1.

The Exit Algorithm will be efficient when also βhi � βlo .

To see that latter, from the formula defining Tstop we have:

Tstop ≤ τ lo
min/ min

1≤i≤n
e−(βhi−βlo)(V (xi )−V (x0)), (2)

and notice (V (xi )− V (x0))−1 � βhi � βlo implies that Tstop � τ lo
min.
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Mathematical Analysis

Idealization.

In the Exit Algorithm, the QSD at high temperature is sampled exactly, and

e−(βhi−βlo)(V (xi )−V (x0)) is everywhere replaced with
λhiphi

i

λloplo
i

.

Under the above assumption, the Exit Algorithm exactly replicates the low
temperature exit event:

Theorem.

Under the above idealization,

(τ lo
min, I

lo
min) ∼ (τ lo , I lo),

where (τ lo
min, I

lo
min) is computed via the Exit Algorithm, and (τ lo , I lo) is the true

exit time/pathway at temperature βlo , starting at the QSD.
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Mathematical Analysis

Idea of proof: Consider the Exit Algorithm with no stopping criterion. Recall

τhi
i = T (1) + . . .+ T (Ni )

where Ni is the first loop of the algorithm in which we exit through pathway i .
One can show that the r.v.’s τhi

i are independent with

P(τhi
i ≤ t) = 1− e−λ

hiphi
i t .

So since

τ lo
i := τhi

i

λhiphi
i

λloplo
i

,

the r.v.’s τ lo
i are independent with

P(τ lo
i ≤ t) = 1− e−λ

loplo
i t .

By construction, after Tstop the value of the smallest τ lo
i will not change.

Appealing to our earlier theorem, we are done.
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Mathematical Analysis

Theorem.

Let D = [x1, x2] be a basin of attraction for a Morse potential V . For i = 1, 2:

λhiphi
i

λloplo
i

=

(
1 + O

(
1

βhi
− 1

βlo

))
e−(βhi−βlo)(V (xi )−V (x0))

as βhi →∞, βhi/βlo → positive const.

This shows that the Arrhenius law extrapolation becomes exact in the small
temperature limit, at least in 1D.

Open Problem.

Prove a version of the above theorem in dimension ≥ 2.

Remark: Recall that (u,−λ) is the principal eigenvector/value pair of
L∗ ≡ div(· ∇V ) + β−1∆ with absorbing boundary conditions on ∂D:{

L∗u = −λu in D

u = 0 on ∂D

A PDE-based attack on the open problem would require an asymptotic analysis of
λ and ∂nu as β →∞.

D. Aristoff (www.math.colostate.edu/∼aristoff) AIMS, Madrid, July 2014 23 / 26



Mathematical Analysis

So far we have discussed how to use the TAD Exit Algorithm to efficiently
generate a hopping event out of a basin.

Now we will show how to use this repeatedly to obtain metastable dynamics.

Our analysis shows that to accurately simulate a hopping event in the Exit
Algorithm, we should begin at the QSD at low temperature.

Thus we need the following definition:

Decorrelation parameter.

Assume that at temperature βlo , the dynamics approximately reaches the QSD in
a given basin after spending time Tcorr there without leaving.

In applications, the practitioner will choose Tcorr . It is problem-specific, but
in metastable situations, Tcorr is much smaller than the time to leave a basin.

In general Tcorr is basin-dependent.
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TAD

TAD: Main Algorithm.

Fix a low temperature, choose parameters Tcorr , and iterate:

1. Evolve the dynamics at low temperature.

2. Stop when the dynamics spends Tcorr time in some basin without leaving.

3. Use the Exit Algorithm to simulate an exit event from this basin. Then,
return to Step 1.

Since Tcorr and the simulation time of the Exit Algorithm will be on average
much smaller than the time to exit a basin at low temperature, the Main
Algorithm will be efficient compared to direct sampling.

There is an additional error in the Main Algorithm, associated with not
exactly reaching the QSD in Step 2 above. A larger Tcorr leads to less error,
but decreased efficiency.
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Conclusion
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