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Abstract. The biggest public health problem facing the whole world today is the 

COVID-19 pandemic. From the time COVID-19 came into the limelight, people 

have been losing their loved ones and relatives as a direct result of this disease. 

Here, we present a six-compartment epidemiological model that is deterministic 

in nature for the emergence and spread of two strains of the COVID-19 disease in 

a given community, with quarantine and recovery due to treatment. Employing the 

stability theory of differential equations, the model was qualitatively analyzed. We 

derived the basic reproduction number 𝑅0 for both strains and investigated the 

sensitivity index of the parameters. In addition to this, we probed the global 

stability of the disease-free equilibrium. The disease-free equilibrium was revealed 

to be globally stable, provided 𝑅0 < 1 and the model exhibited forward 

bifurcation. A numerical simulation was performed, and pertinent results are 

displayed graphically and discussed. 

Keywords: Covid-19 Dynamics; Mathematical Analysis; Reproduction Number; 

Stability Theory; Two Strains. 

1 Introduction 

Coronavirus 2019 (COVID-19) is a highly infectious disease caused by a virus. 

It has been circulating globally and has caused many people to lose their loved 

ones and relatives. The pandemic started in December 2019 in Wuhan, China and 

the disease was spread by people travelling for new year inside China [1]. The 

virus circulates during singing, coughing, sneezing, speaking, or breathing and 

the particles range from larger respiratory droplets to smaller aerosols [2]. 

Epidemiology modeling plays a critical role in early warning systems and the 

avoidance of outbreaks. Nonlinear differential equations are an important tool to 

illustrate the dynamics of infectious diseases and to evaluate control schemes to 

stop them. Different mathematical models have been formulated to investigate 

COVID-19 in various ways. Wickramaarachchi et al. [3] adopted an SEIR 

(susceptible, exposed, infected, and recovered) type mathematical model to 
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outline the dynamics of COVID-19 in Sri Lanka. They focused on examining the 

monitoring measures against the disease’s transmission and the time of 

implementation in the community during the epidemic’s initial months. Their 

analysis concluded that if policymakers put up strict control measures, peaks can 

be delayed, and the curve can be flattened. Moshen [4] probed the global stability 

of a COVID-19 model with a quarantine approach together with the effect of 

media coverage. This may have been as a result of fear the media was spreading 

about the disease’s reproduction number. From their analysis, they surmised that 

the reproduction number clearly conformed to the disease’s transmission rate. 

Seidu [5] developed and analyzed a deterministic ordinary differential equation 

model for SARS-CoV-2 in view of the function of exposed, mildly symptomatic, 

and severe symptomatic cases in terms of the disease’s transmission. Their 

analysis revealed that reduction of contact via the use of nasal masks and physical 

distancing reduces SARS-CoV-2 transmission. Alshammari [6] considered the 

impact of asymptomatic COVID-19 cases on the disease’s spread using an altered 

version of a SEIR dynamical model. Analytical and numerical estimation 

expressions of the basic reproduction number of COVID-19 in Saudi Arabia were 

obtained. He et al. [7] built an SEIR epidemic model for COVID-19 based on 

some universal methods of regulating. They used the Particle Swarm 

Optimization (PSO) algorithm to get an estimate of the system’s parameters and 

employed the developed model to show the evolution of the pandemic. Dmitry et 

al. [8] used simple epidemic models to forecast the spread of COVID-19 in 

Russia and carried out a numerical forecast according to a public data set. They 

also presented a comparison between SIR and SEIR models. Their models 

predicted the highest number of contaminated people while sustaining quarantine 

measures. Cooper et al. [9] investigated the effectiveness of the spread of 

COVID-19 within some communities using an SIR model. They investigated the 

time evolution of various populations and monitored varied significant 

parameters for the spread of the disease. They concluded that the spread could be 

controlled if proper measures were adhered to. Munoz-Fernandez et al. [10] 

showed that the official data released by several authorities concerning COVID-

19 were consistent with a non-autonomous SIR model. They constructed a model 

whose outcome fit available real data on COVID-19. They also predicted the 

development of the COVID-19 pandemic in some countries. Alenezi et al. [11] 

carried out an analysis of COVID-19 in Kuwait using an SIR model. They 

investigated the impact of preventive measures taken by Kuwait’s local 

authorities to prevent the spread of COVID-19. Their investigation indicated the 

peak infection rate and anticipated dates for Kuwait. Liu [12] considered latent-

infectious-recovery periods and carried out an analytical solution of an SIR-like 

model in Excel. He concluded that the simulated epidemic curve of the model fit 

perfectly with daily reported cases in the region mentioned in the paper. Zhu & 

Shen [13] proposed a modified SIR model to investigate the spread of COVID-

19 for a specified period. Their investigation revealed that the cure rate was 
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approximately 0.05, while the reproduction number for the specified time was 

0.4490. 

Subrata et al. [14] proposed and analyzed an SEIR model. They studied the 

dynamical behavior and the stability of the model and compared the analysis of 

scenarios in two countries. Wintachai & Prathom [15] formulated an SEIR model 

that takes into account the efficiency of vaccination by forecasting the COVID-

19 situation by the time vaccines were out. 

Hospitalization, death, and testing data stability approximations were used by 

Albani et al. [25] to estimate underreported infections. Additionally, they 

evaluated how underreporting affected the development of vaccination plans. 

Daily COVID-19 reports from Chicago and New York City were used by 

Vinicius et al. [26] to estimate the parameters of an SEIR model that accounts for 

varying intensities. Impressively, their model was able to reproduce the observed 

data. Some other works also dealt with optimal control analysis, including [27-

29]. 

In this paper, we offer a mathematical model of two COVID-19 strains. A 

mathematical analysis was carried out in conjunction with the epidemic indicator 

for the proposed models, the basic reproduction number for the model was 

derived, and finally the model’s numerical simulation was analyzed. The rest of 

this paper is structured as follows. The mathematical formulation of the problem 

is offered in Section 2. The model analysis is presented in Section 3, including 

the positivity solution, the boundedness of the solution, the invariant region of 

the model, the basic reproduction number, and equilibria. Section 4 deals with 

the numerical simulation, and Section 5 contains the conclusion. 

2 Model Problem 

It is assumed in our models that once each strain is contracted, it gives persistent 

immunity to itself and other strains. We use a compartmental model with six 

compartments. These compartments are: Susceptible 𝑆(𝑡), Exposed 𝐸(𝑡), 
Infectious strain 1 𝐼1(𝑡), Infectious strain 2 𝐼2(𝑡), Quarantine 𝑄(𝑡), Recovered 

𝑅(𝑡). A susceptible individual, with a constant recruited rate Λ, can be infected 

by Strain 1 or by Strain 2 with transmission rate 𝛽1 and 𝛽2 respectively and move 

to the Exposed compartment. Individuals in the Exposed compartment show no 

symptoms and are unable to transmit the disease. After an incubation period of 5 

to 14 days, individuals in the Exposed compartment become infectious at rate 𝜎. 
A fraction 𝜆 of exposed individuals are fully infected by Strain 1, while the 

fraction of exposed individuals (1 − 𝜆) are fully infected by Strain 2 after the 

incubation period. The recovery rates for the two strains are 𝛾1 and 

𝛾2 respectively, while 𝛼1 and 𝛼2  are the detection rates for Strains 1 and 2. 𝜃 is 
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the recovery rate from the Quarantine compartment. We assume natural mortality 

rate 𝜇 for individuals in all six compartments, while compartments 

𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡) and 𝑄(𝑡) have extra disease-induced death rate 𝛿. The whole 

population 𝑁(𝑡) for the dynamic transmission at any time 𝑡 is given by: 

 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) 

 

Figure 1 Compartmental diagram of disease transmission. 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Λ −

𝛽1𝐼1(𝑡)𝑆(𝑡)

𝑁
−
𝛽2𝐼2(𝑡)𝑆(𝑡)

𝑁
− 𝜇𝑆(𝑡)

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽1𝐼1(𝑡)𝑆(𝑡)

𝑁
+
𝛽2𝐼2(𝑡)𝑆(𝑡)

𝑁
− (𝜎 + 𝜇 + 𝛿)𝐸(𝑡)

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝜆𝜎𝐸(𝑡) − (𝛾1 + 𝛼1 + 𝜇 + 𝛿)𝐼1(𝑡)

𝑑𝐼2(𝑡)

𝑑𝑡
= (1 − 𝜆)𝜎𝐸(𝑡) − (𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝐼2(𝑡)

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼1𝐼1(𝑡) + 𝛼2𝐼2(𝑡) − (𝜃 + 𝜇 + 𝛿)𝑄(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾1𝐼1(𝑡) + 𝛾2𝐼2(𝑡) + 𝜃𝑄(𝑡) − 𝜇𝑅𝑅(𝑡) }

 
 
 
 

 
 
 
 

  (1) 

with initial conditions 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼1(0) = 𝐼01, 𝐼2(0) = 𝐼02, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0.  

The first four equations of (1) are independent of 𝑅(𝑡). We consider the sub-

system and carry out an analysis on it. 
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𝑑𝑆(𝑡)

𝑑𝑡
= Λ −

𝛽1𝐼1(𝑡)𝑆(𝑡)

𝑁
−
𝛽2𝐼2(𝑡)𝑆(𝑡)

𝑁
− 𝜇𝑆(𝑡)

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽1𝐼1(𝑡)𝑆(𝑡)

𝑁
+
𝛽2𝐼2(𝑡)𝑆(𝑡)

𝑁
− (𝜎 + 𝜇 + 𝛿)𝐸(𝑡)

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝜆𝜎𝐸(𝑡) − (𝛾1 + 𝛼1 + 𝜇 + 𝛿)𝐼1(𝑡)

𝑑𝐼2(𝑡)

𝑑𝑡
= (1 − 𝜆)𝜎𝐸(𝑡) − (𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝐼2(𝑡)

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼1𝐼1(𝑡) + 𝛼2𝐼2(𝑡) − (𝜃 + 𝜇 + 𝛿)𝑄(𝑡) }

 
 
 

 
 
 

    (2) 

with initial conditions 

 𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼1(0) = 𝐼01, 𝐼2(0) = 𝐼02, 𝑄(0) = 𝑄0. 

3 Model Analysis 

In this section, we carry out a quantitative study of the two-strain model, 

including the positivity of the solution, the boundedness of the solution, the 

invariant region of the model, the basic reproduction number, equilibria, and the 

global stability of the model. 

3.1 Positivity Solution 

Theorem 1: The solutions 𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑄(𝑡) of Equation (2) with 

positive initial condition are non-negative for all 𝑡 > 0. 

Proof: We will use the first equation in Equation (2) to show the positivity of the 

solutions. 

Let 

𝑇 = 𝑆𝑢𝑝{𝑡 > 0: 𝑆(𝑡) > 0, 𝐸(𝑡) > 0, 𝐼1(𝑡) > 0, 𝐼2(𝑡) > 0, 𝑄(𝑡) > 0}
∈ [0, 𝑡]. 

For 𝑡 > 0, then 

 
𝑑𝑆(𝑡)

𝑑𝑡
= Λ − (

𝛽1𝐼1(𝑡)+𝛽2𝐼2(𝑡)

𝑁
+ 𝜇) 𝑆(𝑡) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= Λ − (𝑘(𝑡) + 𝜇)𝑆(𝑡) 

where 𝑘(𝑡) =
𝛽1𝐼1(𝑡)+𝛽2𝐼2(𝑡)

𝑁
 

 
𝑑𝑆(𝑡)

𝑑𝑡
+ (𝑘(𝑡) + 𝜇)𝑆(𝑡) = Λ 

with integrating factor, we have: 
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𝑑

𝑑𝑡
(𝑆(𝑡)𝑒𝑥𝑝 {𝜇𝑡 + ∫ 𝑘(𝑝)𝑑𝑝

𝑡

0
}) = Λe𝑥𝑝 {𝜇𝑡 + ∫ 𝑘(𝑝)𝑑𝑝

𝑡

0
} 

Solving and integrating both sides from 0 to T, we have: 

𝑆(𝑇) = 𝑆(0) ∗ 𝑒𝑥𝑝 {−(𝜇𝑡 + ∫ 𝑘(𝑝)𝑑𝑝
𝑇

0
)}   + 𝑒𝑥𝑝 {− (𝜇𝑡 +

∫ 𝑘(𝑝)𝑑𝑝
𝑇

0
)} ∗ [∫ Λ ∗ 𝑒𝑥𝑝 {𝜇𝑡 + ∫ 𝑘(𝑝)𝑑𝑝

𝑡

0
}

𝑇

0
𝑑𝑡] > 0.                         (3) 

From the result, we can see that 𝑆(𝑡) is strictly greater than zero. With the same 

argument, we can also prove that 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡) 𝑎𝑛𝑑 𝑄(𝑡) are all strictly 

greater than zero. 

3.2 Boundedness of the Solution 

Theorem 2: All solutions of Model (1) are bounded if lim
𝑡→∞

𝑆𝑢𝑝 𝑁(𝑡) ≤
Λ

𝜇
, then: 

 𝑁(𝑡) = 𝐸(𝑡) + 𝑆(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡). 
 

Proof: Let 

              𝟎 < 𝐸(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) ≤ 𝑁(𝑡)          (4) 

Add up all the equations in Model (1), we have: 

 
𝑑𝑁(𝑡)

𝑑𝑡
= Λ − 𝜇𝑁(𝑡) − 𝛿(E(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡))           (5) 

Using Eq. (4) in Eq. (5), we obtain: 

 Λ − 𝛿𝑁(𝑡) − 𝜇𝑁(𝑡) ≤
𝑑𝑁(𝑡)

𝑑𝑡
≤ −𝜇𝑁(𝑡) + Λ 

It follows from this that the solutions of the proposed Model (1) are bounded 

and can be written as: 

 
Λ

𝜇+𝛿
≤ lim

𝑡⟶∞
Inf𝑁(𝑡) ≤ lim

𝑡→∞
𝑆𝑢𝑝 𝑁(𝑡) ≤

Λ

𝜇
.              (6) 

3.3 Invariant Region of the Model 

The parameters of the models are positive for all 𝑡 > 0, for a biological region. 

The analysis of Model (1) will be in a meaningful biological region. 

 

Lemma 1: The closed set Ω, defined by: 
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Ω = {(𝐸(𝑡) + 𝑆(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡)) ∈ ℝ+ 
6 :𝑁(𝑡) ≤

∧

𝜇+𝛿
}, is 

positive invariant for Model (1). 

 

Proof: Let 

 

 𝑁(𝑡) = 𝐸(𝑡) + 𝑆(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) 

 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐸(𝑡) + 𝑆(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡)) 

𝑑𝑁(𝑡)

𝑑𝑡
= Λ − 𝜇𝑁(𝑡) − 𝛿(𝐸(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡)) 

 
𝑑𝑁(𝑡)

𝑑𝑡
= Λ − (𝛿 + 𝜇)𝑁(𝑡) 

 

After solving, we have: 

 

 𝑁(𝑡) =
Λ

𝛿+𝜇
+𝑁0𝑒

−(𝛿+𝜇), 𝑤ℎ𝑒𝑟𝑒 𝑁(0) = 𝑁0 > 0 

 lim
𝑡→∞

𝑁(𝑡) =
Λ

𝛿+𝜇
< 𝑁(𝑡). 

 

Hence, we conclude that Ω is the positivity invariant for Model (1). Because of 

this, we can conclude that the solutions (𝐸(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐼1(𝑡), 𝐼2(𝑡)) tend 

to Ω. 

3.4 The Basic Reproduction Number and its Associated Equilibria 

3.4.1 The Basic Reproduction Number 

Adopting the approach of Van den Driessche and Watmought [20-21], and 

utilizing the matrix of the next generation, we calculate the basic reproduction 

number in the following order. From the right-hand side of 

𝐸(𝑡), 𝐼1(𝑡) and 𝐼2(𝑡) of Model (1), there is an ℱ − 𝒱 where ℱ represents the 

newly acquired infections in the population that is taken into consideration and 𝒱 

corresponds to all the other terms in the compartments that are considered. 

 

 ℱ = [

𝛽1𝐼1(𝑡)𝑆(𝑡)+𝛽2𝐼2(𝑡)𝑆(𝑡)

𝑁

0
0

], 

 

 𝒱 = [

(𝜎 + 𝜇 + 𝛿)𝐸(𝑡)

−𝜆𝜎𝐸(𝑡) + (𝛾1 + 𝛼1 + 𝜇 + 𝛿)𝐼1(𝑡)

−(1 − 𝜆)𝜎𝐸(𝑡) + (𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝐼2(𝑡)

] 
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The Jacobian of ℱ and 𝒱 are evaluated and we obtain F and V as follows: 

 

𝐹 = [

(𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡))𝑆(𝑡)

𝑁2

𝛽1𝑆(𝑡)

𝑁
−
(𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡))𝑆(𝑡)

𝑁2

𝛽2𝑆(𝑡)

𝑁
−
(𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡))𝑆(𝑡)

𝑁2

0 0 0
0 0 0

] 

 𝑉 = [

𝜎 + 𝜇 + 𝛿 0 0
−𝜆𝜎 𝛾1 + 𝛼1 + 𝜇 + 𝛿 0

−(1 − 𝜆)𝜎 0 𝛾2 + 𝛼2 + 𝜇 + 𝛿
] 

 

The Jacobian at the disease-free equilibrium, gives: 

 

𝐹 = [
0 𝛽1 𝛽2
0 0 0
0 0 0

] , 𝑉 = [

𝜎 + 𝜇 + 𝛿 0 0
−𝜆𝜎 𝛾1 + 𝛼1 + 𝜇 + 𝛿 0

−(1 − 𝜆)𝜎 0 𝛾2 + 𝛼2 + 𝜇 + 𝛿
] 

𝑉−1 =

[
 
 
 
 
 
 

1

𝜎 + 𝛿 + 𝜇
0 0

𝜆𝜎

(𝜎 + 𝛿 + 𝜇)(𝛾1 + 𝛼1 + 𝜇 + 𝛿)

1

𝛾1 + 𝜇 + 𝛼1 + 𝛿
0

(1 − 𝜆)𝜎

(𝜎 + 𝛿 + 𝜇)(𝛾2 + 𝛼2 + 𝜇 + 𝛿)
0

1

𝛾2 + 𝛼2 + 𝜇 + 𝛿]
 
 
 
 
 
 

 

 
𝐹𝑉−1

= [

𝛽1𝜆𝜎

(𝜎 + 𝛿 + 𝜇)(𝛾1 + 𝛼1 + 𝜇 + 𝛿)
+

𝛽2(1 − 𝜆)𝜎

(𝜎 + 𝛿 + 𝜇)(𝛾2 + 𝛼2 + 𝜇 + 𝛿)

𝛽1
𝛾1 + 𝛼1 + 𝜇 + 𝛿

𝛽2
𝛾2 + 𝛼2 + 𝜇 + 𝛿

0 0 0
0 0 0

] 

The next-generation matrix of Equation (2) is 𝐹𝑉−1. The basic reproduction 

number 𝑅0 of the combined strains is the spectral radius 𝜌(𝐹𝑉−1), which is the 

non-negative matrix 𝐹𝑉−1. 

𝑅0 = 𝜌(𝐹𝑉
−1) =

𝛽1𝜆𝜎

(𝜎+𝛿+𝜇)(𝛾1+𝛼1+𝜇+𝛿)
+

𝛽2(1−𝜆)𝜎

(𝜎+𝛿+𝜇)(𝛾2+𝛼2+𝜇+𝛿)
  

 

 𝑅0 = 𝜌(𝐹𝑉
−1) = 𝑅0

1 + 𝑅0
2 

where, 

 

 𝑅0
1 =

𝛽1𝜆𝜎

(𝜎+𝛿+𝜇)(𝛾1+𝛼1+𝜇+𝛿)
 and  𝑅0

2 =
𝛽2(1−𝜆)𝜎

(𝜎+𝛿+𝜇)(𝛾2+𝛼2+𝜇+𝛿)
  

and the basic reproduction number is denoted by 𝑅0
1 for Strain 1, and by 𝑅0

2 for 

Strain 2. 
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3.4.2 Equilibrium State of the Proposed Model 

The proposed Model (1) has two equilibrium states. The first one, the disease-

free equilibrium, is the first, and the endemic equilibriums is the second. They 

are stated as follows: 

1. 𝜉0 = (
Λ

𝜇
, 0,0,0,0,0) is the disease-free equilibrium  

2. Endemic equilibrium 𝜉1 = (𝑆
∗, 𝐸∗, 𝐼1

∗, 𝐼2
∗, 𝑄∗, 𝑅∗), where 

 𝑆∗ =
(𝜎+𝛿+𝜇)(𝛾2+𝛼2+𝜇+𝛿)(𝛾1+𝛼1+𝜇+𝛿)𝑁

𝛽2(1−𝜆)𝜎(𝛾1+𝛼1+𝜇+𝛿)+𝛽1𝜆𝜎(𝛾2+𝛼2+𝜇+𝛿)
=

Λ

𝜇𝑅0
 

 

 

𝐸∗ =
Λ𝛽1(𝑅0 − 1)((𝜎 + 𝛿 + 𝜇)(𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝑅0 − 𝜎𝛽2)

(𝜎 + 𝛿 + 𝜇)2(𝑅0)
2(𝛽1(𝛾2 + 𝛼2) − 𝛽2(𝛾1 + 𝛼1) + (𝛽1 − 𝛽2)𝛿 + (𝛽1 − 𝛽2)𝜇)

+

Λ𝛽2(𝑅0 − 1)(
𝜎𝛽1
𝑅0

− (𝛾1 + 𝛼1 + 𝜇 + 𝛿)(𝜎 + 𝛿 + 𝜇))

𝑅0(𝜎 + 𝛿 + 𝜇)
2((𝛿 + 𝜇)(𝛽1 − 𝛽2) − 𝛽2(𝛾1 + 𝛼1) + 𝛽1(𝛾2 + 𝛼2))

, 

 

𝐼1
∗ =

Λ(𝑅0 − 1)((𝜎 + 𝛿 + 𝜇)(𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝑅0 − 𝜎𝛽2)

(𝜎 + 𝛿 + 𝜇)𝑅0(𝛽1(𝛾2 + 𝛼2) − 𝛽2(𝛾1 + 𝛼1) + (𝛽1 − 𝛽2)𝛿 + (𝛽1 − 𝛽2)𝜇)
 

𝐼2
∗ =

Λ(𝑅0 − 1)(
𝜎𝛽1
𝑅0

− (𝛾1 + 𝛼1 + 𝜇 + 𝛿)(𝜎 + 𝛿 + 𝜇))

(𝜎 + 𝛿 + 𝜇)2((𝛿 + 𝜇)(𝛽1 − 𝛽2) − 𝛽2(𝛾1 + 𝛼1) + 𝛽1(𝛾2 + 𝛼2))
 

𝑄∗ =
Λ𝛼1(𝑅0 − 1)((𝜎 + 𝛿 + 𝜇)(𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝑅0 − 𝜎𝛽2)

(𝜃 + 𝛿 + 𝜇)(𝜎 + 𝛿 + 𝜇)𝑅0(𝛽1(𝛾2 + 𝛼2) − 𝛽2(𝛾1 + 𝛼1) + (𝛽1 − 𝛽2)𝛿 + (𝛽1 − 𝛽2)𝜇)

+

Λ𝛼2(𝑅0 − 1)(
𝜎𝛽1
𝑅0

− (𝛾1 + 𝛼1 + 𝜇 + 𝛿)(𝜎 + 𝛿 + 𝜇))

(𝜎 + 𝛿 + 𝜇)((𝛿 + 𝜇)(𝛽1 − 𝛽2) − 𝛽2(𝛾1 + 𝛼1) + 𝛽1(𝛾2 + 𝛼2))
, 

𝑅∗ =
Λ(𝑅0 − 1)𝐴 − 𝐵

(𝜎 + 𝛿 + 𝜇)𝑅0(𝛽1(𝛾2 + 𝛼2) − 𝛽2(𝛾1 + 𝛼1) + (𝛽1 − 𝛽2)𝛿 + (𝛽1 − 𝛽2)𝜇)
 

where 

𝐴 = ((𝛾2 − 𝛾1)𝜇 + (𝛾1 − 𝛾2)𝛿 + (𝛾1 − 𝛾2 + 𝛼1 − 𝛼2)𝜃 + 𝛾1𝛼2 − 𝛾2𝛼1)(𝜎 + 𝛿 + 𝜇)(𝛿 + 𝜇)𝑅0 

and  

𝐵 = ((𝛽2𝛾1 − 𝛽1𝛾2)𝜇 + (𝛽2𝛾1 − 𝛽1𝛾2)𝛿 + 𝜃(𝛼1𝛽2 − 𝛼2𝛽1 − 𝛽1𝛾2 + 𝛽2𝛾1))𝜎 

 

For the endemic equilibrium 𝜉1, we deduce that endemicity exist if 𝑅0 > 1. 

3.5 Local Stability 

Theorem 3: The disease-free equilibrium point 𝜉0 is locally asymptotically stable 

if 𝑅0 < 1. 
Proof: Examining the eigenvalues of the Jacobian matrix of Model (2) at  
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𝜉0 allows one to analyze the stability of the disease-free equilibrium. At 

equilibrium, the Jacobian matrix of Model (2) is given as: 

 

 

 

The eigenvalues are: 

 

 𝜆1 = −𝜇,  𝜆2 = −(𝜃 + 𝜇 + 𝛿), 𝜆3 = (𝛾1 + 𝛼1 + 𝜇 + 𝛿)(𝑅0
1 − 1), 

𝜆4 =
(𝛾1 + 𝛼1 + 𝜇 + 𝛿)(𝑅0 − 1)

𝑅0
1 − 1

, 𝜆5 = −𝜇. 

Since all the eigenvalues are negative, i.e., 𝜆𝐼 = negative: 𝑖 = 1. .5. Hence,  

𝑅0 < 1, which means that the equilibrium without disease is asymptotically 

stable in the neighborhood. 

3.6 Global Stability 

Theorem 4: Point 𝜉0 represents the disease-free equilibrium if 𝑅0
1 < 1 and 𝑅0

2 <
1 hold. This equilibrium is globally asymptotically stable. 

Proof: By analogy with the non-linear Lyapunov function of the Goh-Volterra 

type used in [22-24], we consider the Lyapunov function in ℝ+
4 , where 𝑆𝑞 is 

defined at the disease-free equilibrium point 𝜉0, then: 

 

 𝐿(𝑆, 𝐸, 𝐼1, 𝐼2) = (𝑆 − 𝑆
𝑞 − 𝑆𝑞𝑙𝑛 (

𝑆

𝑆𝑞
)) +

𝐸

𝜎+𝜇+𝛿
+

𝐼1

𝜆𝜎
+

𝐼2
(1−𝜆)𝜎

 

 

Differentiated with respect to time t, we have: 

𝐿′(𝑆, 𝐸, 𝐼1, 𝐼2) = (𝑆
′ − 𝑆′ (

𝑆

𝑆𝑞
)) +

𝐸′

𝜎 + 𝜇 + 𝛿
+
𝐼1
′

𝜆𝜎
+

𝐼2
′

(1 − 𝜆)𝜎
 

𝐿′(𝑆, 𝐸, 𝐼1, 𝐼2) = 𝑆
′ (1 − (

𝑆

𝑆𝑞
)) +

𝐸′

𝜎 + 𝜇 + 𝛿
+
𝐼1
′

𝜆𝜎
+

𝐼2
′

(1 − 𝜆)𝜎
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≤ 𝜇𝑆𝑞 (2 −
𝑆

𝑆𝑞
−
𝑆𝑞

𝑆
) + 𝐼1 (

𝛽1
𝜎 + 𝛿 + 𝜇

−
𝛾1 + 𝛼1 + 𝜇 + 𝛿

𝜎𝜆
)

+  𝐼2 (
𝛽2

𝜎 + 𝛿 + 𝜇
−
𝛾2 + 𝛼2 + 𝜇 + 𝛿

𝜎(1 − 𝜆)
) 

            ≤ 𝜇𝑆𝑞 (2 −
𝑆

𝑆𝑞
−
𝑆𝑞

𝑆
)

+ 𝐼1
𝛾1 + 𝛼1 + 𝜇 + 𝛿

𝜎𝜆
(

𝛽1𝜎𝜆

(𝜎 + 𝛿 + 𝜇)(𝛾1 + 𝛼1 + 𝜇 + 𝛿)
− 1)

+  𝐼2
𝛾2 + 𝛼2 + 𝜇 + 𝛿

𝜎(1 − 𝜆)
(

𝛽2𝜎(1 − 𝜆)

(𝜎 + 𝛿 + 𝜇)(𝛾2 + 𝛼2 + 𝜇 + 𝛿)
− 1) 

                  ≤ 𝜇𝑆𝑞 (2 −
𝑆

𝑆𝑞
−
𝑆𝑞

𝑆
) + 𝐼1

𝛾1 + 𝛼1 + 𝜇 + 𝛿

𝜎𝜆
(𝑅0

1 − 1)

+  𝐼2
𝛾2 + 𝛼2 + 𝜇 + 𝛿

𝜎(1 − 𝜆)
(𝑅0

2 − 1) 

Let 𝑦 =
𝑆𝑞

𝑆
, 

∴
𝑆

𝑆𝑞
=
1

𝑦
, 𝑡ℎ𝑒𝑛 2 −

𝑆

𝑆𝑞
−
𝑆𝑞

𝑆
⟹ 2 −

1

𝑦
− 𝑦 =

−(𝑦 − 1)2

𝑦
≤ 0 

This implies that the disease-free equilibrium 𝜉0 is globally asymptotic stable if 

and only if 𝑅0
1 < 0 and 𝑅0

2 < 0. Then, we have: 

 𝐿′(𝑆, 𝐸, 𝐼1, 𝐼2) ≤ 0. 

3.7 Sensitivity Analysis 

To establish the robustness of the model prediction to the parameter values, a 

sensitivity analysis is commonly used. As a result of this, studying the sensitivity 

is very important in a dynamic system. Here we estimate the sensitivity indices 

for basic reproduction number 𝑅0. 

Proposition 1: With 𝛽1 and 𝛽2, the basic reproduction number increases. 

Proof: This follows from the fact that when the basic reproduction number is 

varied, we have the following: 

 

 
𝜕𝑅0

𝜕𝛽1
=

𝜎𝜆

(𝜎+𝛿+𝜇)(𝜆1+𝜇+𝛼1+𝛿)
> 0,  

 
𝜕𝑅0

𝜕𝛽2
=

𝜎(1−𝜆)

(𝜎+𝛿+𝜇)(𝜆2+𝜇+𝛼2+𝛿)
 > 0. 

for any parameter values and 0 ≤ 𝜆 < 1. 
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Proposition 2: The basic reproduction number decreases with 

𝛿, 𝛾1, 𝛾2, 𝛼1, 𝛼2, 𝜇 and 𝜆. 

Proof: This follows from the fact that when the basic reproduction number is 

varied, we have the following: 

 
𝜕𝑅0

𝜕𝛾1
< 0,

𝜕𝑅0

𝜕𝛾2
< 0,

𝜕𝑅0

𝜕𝛼1
< 0,

𝜕𝑅0

𝜕𝛼2
< 0, 

 
𝜕𝑅0

𝜕𝛿
< 0,

𝜕𝑅0

𝜕𝜇
< 0 𝑎𝑛𝑑  

𝜕𝑅0

𝜕𝜆
< 0 

for any parameter values and 0 ≤ 𝜆 < 1. 

Definition 1: [18-19] The normalized forward sensitivity index of a variable 

ℍ that depends differentiably on a parameter 𝜁 is defined as: 

 𝜸𝜻
ℍ =

𝝏ℍ

𝝏𝜻
×

𝜻

|ℍ|
. 

The largest possible value for 𝜸𝜻
ℍ is 1. If the magnitude is 1, then an increase of 

𝑦% in 𝜻 would result in an increase of % in ℍ. For the same reason, if you reduce 

𝜻 by y%, ℍ will also go down by y%. However, 𝜸𝜻
ℍ must be at least -1. Therefore, 

if 𝜻 is increased by 𝑦%,ℍ is decreased by 𝑦%, and if 𝜻 is decreased by 𝑦%, ℍ is 

increased by 𝑦%. 

The following table displays the model’s parameter baseline evaluation of the 

𝑅0 sensitivity indices. 

Table 1 Sensitivity index. 

S/n Parameter Sensitivity index Comment 

1. 𝛽1 +0.44 Enhanced disease spread 

2. 𝛽2 +0.56 Enhanced disease spread 

3. 𝜎 +0.046 Enhanced disease spread 

4. 𝜇 -0.00011 Eradicate disease 

5. 𝛿 -0.069 Eradicate disease 

6. 𝛾1 -0.356 Eradicate disease 

7. 𝛾2 -0.454 Eradicate disease 

8. 𝛼1 -0.073 Eradicate disease 

9. 𝛼2 -0.094 Eradicate disease 

10. 𝜆 -0.120 Eradicate disease 

From the above table, the most sensitive parameter is 𝛽2. Since 𝜸𝜻
ℍ = 𝟎. 𝟓𝟔, if 

𝛽2 is decreased (or increases) by 10%, then 𝑅0 will be decreased (or increased) 

by 5.6%. 
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Figure 2 Sensitivity indices for parameters in R0. 

The normalized forward sensitivity indices of the basic reproduction number with 

respect to each of the baseline parameter values is displayed in Figure 2. 

3.8 Bifurcation analysis 

In this section, we adopt Castillo-Chavez & Song [16] to analyze the bifurcation 

analysis of Model (2.2). Introducing 

 𝑠 =
𝑆(𝑡)

𝑁
= 𝑥1, 𝑒 =

𝐸(𝑡)

𝑁
= 𝑥2, 𝑖1 =

𝐼1(𝑡)

𝑁
= 𝑥3, 𝑖2 =

𝐼2(𝑡)

𝑁
= 𝑥4, 

𝑞 =
𝑄(𝑡)

𝑁
= 𝑥5, the system (2) becomes: 

 
𝑑𝑥1

𝑑𝑡
= Λ− 𝛽1𝑥1𝑥3 − 𝛽2𝑥1𝑥4 − 𝜇𝑥1 ≔ 𝑓1 

 
𝑑𝑥2

𝑑𝑡
= 𝛽1𝑥1𝑥3 + 𝛽2𝑥1𝑥4 − (𝜎 + 𝜇 + 𝛿)𝑥2 ≔ 𝑓2 

 
𝑑𝑥3

𝑑𝑡
= 𝜆𝜎𝑥2 − (𝛾1 + 𝛼1 + 𝜇 + 𝛿)𝑥3 ≔ 𝑓3 (7) 

 
𝑑𝑥4

𝑑𝑡
= (1 − 𝜆)𝜎𝑥2 − (𝛾2 + 𝛼2 + 𝜇 + 𝛿)𝑥4 ≔ 𝑓4 

We assume that the bifurcation parameter is 𝜆. The condition that 𝑅0 = 1 implies 

𝜆 =
(𝛿2 + 2𝛿𝜇 + 𝛿𝜎 + 𝛿𝛼2 + 𝛿𝛾2 + 𝜇

2 + 𝜎𝜇 + 𝜇𝛼2 + 𝜇𝛾2 + 𝜎𝛼2 − 𝜎𝛽2 + 𝜎𝛾2)(𝛾1 + 𝛼1 + 𝜇 + 𝛿)

𝜎(𝛿𝛽1 − 𝛿𝛽2 + 𝜇𝛽1 − 𝜇𝛽2 − 𝛼1𝛽2 + 𝛼2𝛽1 + 𝛾2𝛽1 − 𝛾1𝛽2)
≔ 𝜆∗ 
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Describing the general system of ODEs such that 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝜆∗), 𝑓: ℝ𝑛 ×ℝ𝑛, 𝑓 ∈ 𝐶2(ℝ𝑛 × ℝ𝑛 ) 

For the above-described system and for all values of the parameters 𝜙, it is 

assumed that zero represents a state of equilibrium, i.e., 𝑓(0, 𝜆∗) ≡ 0, ∀𝜆∗ = 0. 

The eigenvalues of the matrix, 𝐽(𝜉0, 𝜆
∗) are given as: 

  𝑠1 = −𝜇, 𝑠2 = −(𝜃 + 𝜇 + 𝛿), 𝑠3 = −(𝛾1 + 𝛼1 + 𝛼2 + 2𝜇 + 2𝛿), 𝑠0 = 0. 

The right eigenvector of the matrix 𝐽(𝜉0, 𝜆
∗) at zero eigenvalues is: 

 

This implies: 

 −𝜇𝑤1 − 𝛽1𝑤3 − 𝛽2𝑤4 = 0 

 −(𝜎 + 𝜇 + 𝛿)𝑤2 + 𝛽1𝑤3 + 𝛽2𝑤4 = 0 

 𝜎𝜆∗𝑤2 − (𝛼1 + 𝛾1 + 𝜇 + 𝛿)𝑤3 = 0 

 𝜎(1 − 𝜆∗)𝑤2 − (𝛼2 + 𝛾2 + 𝜇 + 𝛿)𝑤4 = 0 

After solving, we have: 

 𝑤1 = −(
𝛽1𝜎𝜆

∗

𝜇
+

𝛽2(𝛼2+𝛾2+𝜇+𝛿)

𝜇𝜎(1−𝜆∗)(𝛼1+𝛾1+𝜇+𝛿)
),  

 𝑤2 = 𝛼2 + 𝛾1 + 𝜇 + 𝛿, 𝑤3 =  𝜎𝜆
∗ 

 𝑤4 =
𝛼2+𝛾2+𝜇+𝛿

𝜎(1−𝜆∗)(𝛼1+𝛾1+𝜇+𝛿)
. 

The right eigenvector is:   

  (8) 
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Moreover, the left eigenvector 𝒗 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) , accomplishing 𝒗 ∗ 𝑤 = 1, 

is given as: 

 −𝜇𝑣1 = 0 

 −(𝜎 + 𝜇 + 𝛿)𝑣2 + 𝜎𝜆
∗𝑣3 + 𝜎(1 − 𝜆

∗)𝑣4 = 0 

 −𝛽1𝑣1 + 𝛽1𝑣2 − (𝛼1 + 𝛾1 + 𝜇 + 𝛿)𝑣3 = 0 

 −𝛽2𝑣1 + 𝛽2𝑣2 − (𝛼2 + 𝛾2 + 𝜇 + 𝛿)𝑣4 = 0 

Then the left eigenvector is therefore: 

 𝑣1 = 0,  𝑣2 =
1

𝛼1+𝛾1+𝜇+𝛿
−
𝛼2+𝛾2+𝜇+𝛿

𝛼1+𝛾1+𝜇+𝛿
[𝛽1𝜎𝜆

∗ −
𝛽2

𝜎(1−𝜆∗)
], 

 𝑣3 = 𝛽1(𝛼2 + 𝛾2 + 𝜇 + 𝛿), 𝑣4 = 𝛽2(𝛼1 + 𝛾2 + 𝜇 + 𝛿) 

i.e., 

𝑣 = (0.
1

𝛼1+𝛾1+𝜇+𝛿
−
𝛼2+𝛾2+𝜇+𝛿

𝛼1+𝛾1+𝜇+𝛿
[𝛽1𝜎𝜆

∗ −
𝛽2

𝜎(1−𝜆∗)
] , 𝛽1(𝛼2 + 𝛾2 + 𝜇 +

𝛿), 𝛽2(𝛼1 + 𝛾2 + 𝜇 + 𝛿)) (9) 

In a disease-free equilibrium, we estimate the partial derivatives and obtain: 

 
𝜕2𝑓1

𝜕𝑥1𝜕𝑥3
=

𝜕2𝑓1

𝜕𝑥3𝜕𝑥1
= −𝛽1,

𝜕2𝑓1

𝜕𝑥1𝜕𝑥4
=

𝜕2𝑓1

𝜕𝑥4𝜕𝑥1
= −𝛽2,  

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥3
=

𝜕2𝑓2

𝜕𝑥3𝜕𝑥1
= 𝛽1,

𝜕2𝑓2

𝜕𝑥1𝜕𝑥4
=

𝜕2𝑓2

𝜕𝑥4𝜕𝑥1
= 𝛽2, 

 
𝜕2𝑓3

𝜕𝑥2𝜕𝜆
= 𝜎,

𝜕2𝑓4

𝜕𝑥2𝜕𝜆
= −𝜎,  

while the remaining second-order derivatives go to zero. 

 

Coefficients 𝒂 and 𝒃 are calculated using the definition given by Castillo-Chavez 

and Song [16], i.e., assuming that 𝑓𝑘 is the k-th component of 𝑓and 

 𝒂 = ∑ 𝑣𝑘  𝑤𝑖𝑤𝑗
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
(𝜉0, 𝜆

∗)4
𝑘,𝑖,𝑗=1  

 𝒃 = ∑ 𝑣𝑘  𝑤𝑖
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝜆
(𝜉0, 𝜆

∗)4
𝑘,𝑖,𝑗=1  

The local dynamics of Model 2 are entirely estimated by the coefficients a and b 

around 𝑥 = 0. Taking into consideration the system of equations (7) and 
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estimating the coefficients a and b, all derivative terms other than zero for 
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
(𝜉0, 𝜆

∗) and 
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝜆
(𝜉0, 𝜆

∗) are as follows: 

 𝒂 = 2𝑣1𝑤1𝑤3
𝜕2𝑓1

𝜕𝑥1𝜕𝑥3
(𝜉0, 𝜆

∗) + 2𝑣1𝑤1𝑤4
𝜕2𝑓1

𝜕𝑥1𝜕𝑥4
(𝜉0, 𝜆

∗) +

2𝑣2𝑤1𝑤3
𝜕2𝑓2

𝜕𝑥1𝜕𝑥3
(𝜉0, 𝜆

∗) + +2𝑣2𝑤1𝑤4
𝜕2𝑓2

𝜕𝑥1𝜕𝑥4
(𝜉0, 𝜆

∗) 

and 

 𝑏 = 𝑣4𝑤2
𝜕2𝑓4

𝜕𝑥1𝜕𝜆
(𝜉0, 𝜆

∗) 

Using Equations (8) and (9) with some partial second-order derivatives obtained 

from System (7), we get: 

 𝑎 =
2(𝜆∗𝜎2𝛽1(𝜆

∗−1)+𝛽2)𝑀𝑁

3𝜎𝜇(𝜆∗−1)3(𝛾1+𝛼1+𝜇+𝛿)2
> 0 

where 

  𝑀 = ((𝜆∗ − 1){𝜆∗𝜎2𝛽1(𝛾2 + 𝛼2 + 𝜇 + 𝛿) + 𝜎} + 𝛽2(𝛾2 + 𝛼2 + 𝜇 + 𝛿))   

and 

 N = ((λ∗ − 1)λ∗σ2β1(γ1 + α1 + μ + δ) − (γ2 + α2 + μ + δ))  

Also, 

 𝐛 = −𝜎β2(𝛾1 + 𝛼1 + 𝜇 + 𝛿)
2 < 0. 

It can be seen that a is a positive coefficient, while b is a negative coefficient. 

According to Castillo-Chevez & Song [16], if 𝑎 > 0, 𝑏 < 0 when λ∗ < 0, the 

system is unable to maintain its stability and there exists a negative and locally 

asymptotically stable negative equilibrium. 

Define: 

 𝑅0
∗∗ =

β1λ
∗𝜎

(σ+μ+δ)(𝛾1+𝛼1+𝜇+𝛿)
+

β1(1−λ
∗)𝜎

(σ+μ+δ)(𝛾2+𝛼2+𝜇+𝛿)
. 

 

If 𝑅0
∗∗ < 1, then 𝑎 < 0 and if 𝑅0

∗∗ > 1, then 𝑎 > 0. Therefore, the following 

follows: if 𝑅0
∗∗ > 1, the first four equations in System (2) exhibit backward 

bifurcation when 𝑅0 = 1. If 𝑅0
∗∗ < 1, the first four equations in System (2) exhibit 

forward bifurcation when 𝑅0 = 1. 
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4 Numerical Simulation 

We devote this section to performing a numerical simulation of the formulated 

two-strain Covid-19 model. The model is solved numerically in R using the 

deSolve package. The estimated and fitted parameters utilized in the simulation 

process are given in Table 1. Susceptible, Exposed, Infected by Strain 1, Infected 

by Strain 2, Quarantine and Recovery at initial time 𝑡 = 0 are given respectively 

as: 𝑆(0) = 3978, 𝐸(0) = 7000,  𝐼1(0) = 4000,  𝐼2(0) = 2500,𝑄(0) = 4000 

and R(0) = 0. We assume there are no recovered individuals at the initial level.  

Table 2 Parameter values for the Covid-19 model. 

Parameter Description Value Source 

𝜇 Natural death rate 0.000422536 Estimated 

𝜆 Fraction of individuals infected by Strain 1 0.5 Estimated 

𝛽1 Transmission rate to Strain 1 
1

14
 Estimated 

𝛽2 Transmission rate to Strain 2 
1

11
 Estimated 

𝛿 Death rate due to Strain 1 or 2 0.0276 Estimated 

𝜎 
Progression rate to the Infectious compartment 

from the Exposed compartment 

1

7
 Estimated 

𝛾1, 𝛾2 Recovery rates from the Infectious compartment 0.97 Estimated 

𝛼1, 𝛼1, 
Detention rates from the Infectious compartment to 

the Quarantine compartment 
0.2 [17] 

𝜃 Recovery rate from the Quarantine compartment 
1

12
 

Estimated 

 

The results obtained from the numerical simulation are depicted in the figures 

below. Figure 3 presents an overview of what happens in the five compartments. 

The figure shows that more people recovered from the two strains and the 

epidemic curve flattened after some time. The number of quarantine 

compartments increased from the starting day and reached its peak at the end of 

the fifth day. After the fifth day, the number of individuals in the Quarantine 

compartment decreased. It can also be seen that the Strain 1 and Strain 2 

compartments decreased until day 20, when the number of people in that 

compartment was reduced to zero. The number of people who were exposed to 

the disease also declined, as can be seen in the figure, whereby we experience 

more recovery. The number of susceptible individuals slightly decreased at the 

start and remained steady throughout. 

Figure 4 shows that the number of individuals in the Infected compartments of 

Strain 1 and Strain 2 rose for a period before they started declining, while the 

Exposed compartment decreased. 
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Figure 3 Dynamic of the six compartments. 

 

Figure 4 Behavior of Exposed, Strain 1 and Strain 2. 

Figures 5-7 shows the impacts of increasing 𝜎, 𝛽1 and 𝛽2 on recovery. It can be 

seen in Figure 5 that as the progression rate increased there existed an increase in 

the Recovery compartment at all times. This implies that more people recovered 

when they contracted the disease. The impact of the transmission rate of Strain 2 

is investigated in Figure 6. We notice that at first there is no difference, but as 

time goes on, an increase in the transmission rate of Strain 2 appears. We notice 
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that more people recovered. The same also applied to Strain 1, as shown in 

Figure 7. 

 

Figure 5 The effect of increasing 𝜎 on recovery. 

 

Figure 6 The effect of increasing 𝛽2 on recovery. 
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Figure 7 The effect of increasing 𝛽1 on recovery. 

5 Conclusions 

We considered a system of mathematical equations that reports the dynamics of 

two COVID-19 strains without control or treatment. The analysis of the system 

was well established. We presented a stability analysis of the disease-free 

equilibrium and the endemic equilibrium based on the estimated basic 

reproduction number. Whenever 𝑅0 < 1, the disease-free equilibrium is locally 

asymptotically stable and it is globally asymptotic stable if and only if 

𝐿′(𝑆, 𝐸, 𝐼1, 𝐼1) < 0. We presented a bifurcation analysis for the formulated 

problem and concluded that if 𝑅0
∗∗ > 1, the first four equations in System (2) 

exhibit backward bifurcation when 𝑅0 = 1. If 𝑅0
∗∗ < 1, the first four equations in 

System (2) exhibit forward bifurcation when 𝑅0 = 1. We also presented a 

numerical simulation to see the dynamics of the six compartments and the impact 

of some parameters on recovery. 
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