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ABSTRACT 

In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an 
applied constant transverse magnetic field is proposed. The model is subjected to heat source. Analytical expressions 
are obtained by choosing the axial velocity; temperature distribution and the normal velocity of the blood depend on y 
and t only to convert the system of partial differential equations into system of ordinary differential equations under the 
conditions defined in our model. The model has been analyzed to find the effects of various parameters such as, Hart-
mann number, heat source parameter and Prandtl number on the axial velocity, temperature distribution and the normal 
velocity. The numerical solutions of axial velocity, temperature distributions and normal velocity are shown graphically 
for better understanding of the problem. Hence, the present mathematical model gives a simple form of axial velocity, 
temperature distribution and normal velocity of the blood flow so that it will help not only people working in the field 
of Physiological fluid dynamics but also to the medical practitioners. 
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1. Introduction 

The study of blood flow has been carried out by several 
authors. During the last decades extensive research work 
has been done on the fluid dynamics of biological fluids 
in the presence of magnetic field. For multiple reasons, 
applications of magnetohydrodynamics in physiological 
flow problems are of growing interest. Many researchers 
have reported that the blood is an electrically conducting 
fluid [1-4]. The electromagnetic force (Lorentz force) 
acts on the blood and this force opposes the motion of 
blood and there by flow of blood is impeded, so that the 
external magnetic field can be used in the treatment of 
some kinds of diseases like cardiovascular diseases and 
in the diseases with accelerated blood circulation such as 
hemorrhages and hypertension. 

In general, biological systems are affected by an appli- 
cation of external magnetic field on blood flow through 
human arterial system. Many mathematical models have 
already been investigated by several research workers to 
explore the nature of blood flow under the influence of 
an external magnetic field. Tzirtzilakis [5] studied a ma- 
thematical model of biomagnetic fluid dynamics (BFD), 
suitable for the description of the Newtonian blood flow 
under the action of magnetic field. This model is consis- 
tent with the principles of ferrodynamics and magneto- 
hydrodynamics and takes into account both magnetiza- 
tion and electrical conductivity of blood. Ramamurthy  

and shanker [6] studied magnetohydrodynamic effects on 
blood flow through a porous channel. They considered 
the blood a Newtonian fluid and conducting fluid.  

Arterial MHD pulsatile flow of blood under periodic 
body acceleration has been studied by Das and Saha [7]. 
The blood flow in very narrow capillaries under the ef- 
fect of transverse magnetic field has been investigated by 
Madhu et al. [8]. In this investigation; it is assumed that 
there is a lubricating layer between red blood cells and 
tube wall. A pulsatile flow of blood which is considered 
as a couple stress fluid through a porous medium under 
the influence of periodic body acceleration in the pre- 
sence of magnetic field has been investigated by Rathod 
and Tanveer [9]. Singh and Rathee [10] gave an analyti- 
cal solution of two-dimensional model of blood flow 
with variable viscosity through an indented artery due to 
low density lipoprotein effect in the presence of magnetic 
field. The investigation shows that hypertensive patients 
are more adequate to have heart circulatory problems. 
The effect of uniform transverse magnetic field on its 
pulsatile motion through an axi-symmetric tube is ana- 
lyzed by Dulal and Ananda [11]. Zamir and Roach [12] 
studied Blood flow downstream of a two-dimensional 
bifurcation with a symmetrical steady flow.  

Heat transfer in biological systems is relevant in many 
diagnostic and therapeutic applications that involve 
changes in temperature. As we know, the cardiovascular 
system is sensitive to changes in the environment, and  
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flow characteristics of blood are modified to satisfy 
changing demands of the orgasm. In addition to trans- 
porting of oxygen, metabolites and other dissolved sub 
stances to and from the tissues, blood flow alters heat 
transfer within the body. Adhikary and Misra [13] pre 
sented an exact solution of the problem of oscillatory 
flow of a fluid and heat transfer along a porous oscillat- 
ing channel in presence of an external magnetic field. 
The influence of blood flow in large vessels on the tem- 
perature distribution in hyperthermia has been developed 
by Lagendijk [14]. The blood flow in a small tube was 
modeled by the two-fluid model by Wang [15]. The flow 
is fully developed, constant heat flux convective heat 
transfer.  

In the present investigation, a mathematical model for 
the unsteady blood flow through a very narrow parallel 
plate channel with heat source and external transverse 
magnetic field is presented. This work is an extensive 
study of Madhu et al. [8] with heat transfer under the 
conditions defined in our model. The main aim of this 
work is to obtain analytical expressions for axial velocity, 
temperature distribution and normal velocity using new 
boundary conditions and with converting the system of 
partial differential equations into system of ordinary dif- 
ferential equations. Also to study the effect of magnetic 
field (Hartmann number (Ha)), heat source parameter 
( ) and Prandtl number (Pr) on the axial velocity, tem-
perature distribution and normal velocity. Hence, the 
present mathematical model gives a simple form of axial 
velocity, temperature distribution and normal velocity of 
the blood flow so that it will help not only people work-
ing in the field of Physiological fluid dynamics but also 
to the medical practitioners. In fact, we studied the mathe- 
matical model in [2] with few modifications, also we 
checked the analytical solution and modified the results. 

2. Formulation of the Problem 

Consider flow between non-conducting two parallel plates 
as shown in Figure 1. 

Here blood is supposed to be Newtonian, incompressi- 
ble, homogenous and viscous fluid. Also, the viscosity of 
blood is considered to be constant. The effect of mag 
netic field is considered in this model which is applied in 
a direction perpendicular to the flow of blood. 

Considering u and v as velocity components in the di- 
rections of x and y respectively (axial and normal respec- 
tively) at time t in the flow field, we may write the two 
dimensional boundary layer equations in presence of 
transverse magnetic field as 
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Figure 1. Geometry of the model. 
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Introduce the following non-dimensional variables 
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Substituting from Equation (4) into the Equations (1)- 
(3) we may write these equations after dropping the stars 
as 
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From Equation (7) we can observe that the tempera- 
ture distribution   has 1st derivative with respect to 
time t. From this observation and with the help of solu- 
tion of partial differential equation by separation of vari 
ables technique we can get the following equation 

21
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It is observed that the solution of this equation will be 
on the form 

2

1
te   .  

Similarly, the axial velocity u has the same concept, 
and then the solution of the problem will take the form 
mentioned in Section 3 and the boundary conditions are 
taken as: 
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3. Solution of the Problem 

With the help of discussion in the previous section, let us 
choose the solutions of the Equations (5)-(7) respectively 
as 
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Substituting from Equations (9)-(11) into Equations 
(5)-(8) we obtain the following equations respectively 
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The boundary conditions become: 
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Solution of equation (14) is as follows 
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Using the boundary conditions Equation (15) we ob-
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Then the final form of H(y) is 
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From Equation (11) and (17) then the temperature dis-
tribution is given by 

21 1
cos( ) sin( )

2cos 2sin
ty y e   

      
 (18) 

Substituting from Equation (17) into Equation (12) we 
get 
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Solving the last equation to obtain F using the Equa-
tion (15) as follows 

The Homogenous solution: 

3 4cos( ) sin( )hF C y C y    

Substitute from Equation (15) to calculate the con-
stants  3 4andC C
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The particular solution is: 
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The general solution of F is 
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From Equation (9) and Equation (19) the axial velocity 
of blood is given by 
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Also, from Equations (10) and (13) the normal veloc-
ity is given by 

2tv C e                 (21) 

where C is an arbitrary constant (C = 1). 
Equations (18), (20) and (21) show the temperature 

distribution, the axial velocity and normal velocity re-
spectively. 

4. Numerical Results and Discussion 

The flow investigation has been carried out by studying 
the effect of individual factors like heat source and mag- 
netic field. The main objective of the study is to find the 
role of heat source parameter, magnetic field (Hartmann 
number), Prandtl number and decay parameter on tem 
perature distribution, axial velocity and normal velocity. 
To observe these effects, numerical codes are developed 
for the numerical evaluations of the analytic results ob 
tained. 

In Figure 2 we study the variation of temperature dis- 
tribution versus y at 1.0, 0.5, 0.5 and Pr 1.0t     

,1.75, 2.00



 
with different values of the heat source parameter 
( ). We observe that for the 
same value of y the temperature field increases with in-
creasing the value of heat source parameter . Also, the 
temperature field increases to reach at its maximum 
value at y = 0 then decreases. 

1.00,1.25,1.50

Figure 3 gives the temperature field distribution for dif-
ferent values of Prandtl number (Pr = 0.50, 1.00, 3.00, 
5.00, 7.00) at 1.00, 0.50, 0.50 and 1.00t     

1.00, 1.00, 0.50 and Pr 1.00

. 
It is observed that the temperature field increases with 
increasing the value of Prandtl number Pr. The effect of 
Prandtl number is the same as heat source parameter. The 
effect of decay parameter on the temperature field distri- 
bution at t      is 
shown in Figure 4. It is shown that the temperature field 
decreases with increasing the decay parameter. The ma- 
ximum effect of the decay parameter on the temperature 
field is at y = –1 and there is no effect approximately of 
the decay parameter on the temperature distribution at y 
= 1. 

Figure 5 gives the axial velocity distribution for dif-
ferent values of heat source parameter (  = 0.50, 0.75, 
1.00, 1.25, 1.50) at 


1.0, 0.5,t    0.5,   0.50,   

 h = 0.50  and . It is ob- 
served that the axial velocity increases with increasing 
the heat source parameter . 

9.81,g  1.00Ha 



P 1.00r 

The effect of magnetic field on the axial velocity for 
different values of Hartmann number (Ha = 1.00, 2.00, 
3.00, 4.00, 6.00) is shown in Figure 6 at 1.00,t   

0.50  ,  0.50,   0.50,    9.81,g  0.50,h   
 and P . It is shown that the magnetic 

field decreases the axial velocity. We can observe that 
the axial velocity at  increases from y = –1 

1.50 r 1.00

1.00Ha 

 

Figure 2. Temperature distribution for different values of 
heat source at t = 1.00, λ = 0.50, υ = 0.50 and Pr = 1.00.  
 

 

Figure 3. Temperature distribution for different values of 
Prandtl number at t = 1.00, λ = 0.50, υ = 0.50 and = 1.00. 
 

 

Figure 4. Temperature distribution for different values of de- 
cay parameter at t = 1.00, Pr = 1.00, υ = 0.50 and = 1.00. 
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and attains maximum at y = 0 then decreases until y = 1. 
While at  we observe that the axial velocity 
decreases along y. 

6.00Ha 

Figure 7 shows the effect of Prandtl number on the 
distribution of the axial velocity at  1.00,t  0.50,   

0.50,   0.50,   g = 9.81, h = 0.50,  and 
. It is shown that the axial velocity increases 

with increasing the prandtl number. The effect of decay 
parameter is indicated in Figure 8 at t = 1.00, 

1.00

Pr 1.00,


1.00Ha 

  
0.50,   0.50,   g = 9.81, h = 0.50,  and 

. The axial velocity decreases with increasing 
the decay parameter. The maximum effect of the decay 
parameter on the axial velocity is at y = –1 and the axial 
velocity approximately not affected by the decay pa- 
rameter at y = 1. 

1.00
3.00Ha 

Figure 9 indicates the effect of decay parameter on the 
normal velocity distribution. It is shown that the normal 
velocity decreases with increasing the decay parameter. 
The normal velocity is decreases slowly at low values of 
the decay parameter ( 0.50  ) while it is decreases very 
fast and tends to zero at high values of decay parameter 
( 2.50  ). 

5. Conclusions 

In the present investigation, a mathematical model for the 
unsteady blood flow through a very narrow parallel plate 
channel with heat source and external transverse mag- 
netic field is presented. This work is an extensive study of 
Madhu et al. [8] with heat transfer under the conditions 
defined in our model. The effect of magnetic field, heat 
source seems to be significant. 

The main conclusions of the present paper may be 
summarized as follows: 
 The present mathematical model gives a simple form 

of axial velocity, temperature distribution and normal 
velocity of the blood flow. Analytical expressions are  

 

 

Figure 5. Axial velocity distribution for different values of 
heat source at t = 1.00, Pr = 1.00, υ = 0.50, λ = 0.50, h = 0.50, 
β = 0.50, g = 9.81 and Ha = 1.00. 

 

Figure 6. Axial velocity distribution for different values of 
Hartmann number at t = 1.00, Pr = 1.00, υ = 0.50, λ = 0.50, h 
= 0.50, β = 0.50, g = 9.81 and = 1.50. 
 

 
Figure 7. Axial velocity distribution for different values of 
Prandtl number at t = 1.00, Ha = 1.00, υ = 0.50, λ = 0.50, h = 
0.50, β = 0.50, g = 9.81 and = 1.50. 
 

 
Figure 8. Axial velocity distribution for different values of 
decay parameter at t = 1.00, Ha = 3.00, υ = 0.50, Pr = 1.00, h 
= 0.50, β = 0.50, g = 9.81 and = 1.00.  
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Figure 9. Normal velocity distribution for different values 
of decay parameter. 
 

obtained by choosing the axial velocity; temperature 
distribution and the normal velocity of blood depend 
on y and t only along with corresponding boundary 
conditions to convert the system of partial differential 
equations into system of ordinary differential equa- 
tions.  

 The temperature field increases with increasing the 
heat source parameter and Prandtl number while de-
creases with increasing the decay parameter.  

 The axial velocity increases with increasing heat source 
parameter and Prandtl number while decreases with in- 
creasing the Hartmann number and decay parameter.  

 The normal velocity decreases with increasing the de- 
cay parameter and tending to zero very fast for higher 
values of the decay parameter.  

Hence, the present mathematical model gives a simple 
form of axial velocity, temperature distribution and nor-
mal velocity of the blood flow so that it will help not 
only people working in the field of Physiological fluid 
dynamics but also to the medical practitioners. 
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Nomenclature 

 : Density of blood 
 : Dynamic viscosity of the blood (constant) 
p : Pressure of blood 
 : Electrical conductivity of the blood 

oB : Intensity of the magnetic field 
g : Gravitational acceleration 
 : Coefficient of volume expansion due to temperature 
T : Temperature of blood 

oT : Temperature of the wall (fixed temperature) 
K  : Coefficient of the thermal conductivity 

pC
Q

: Specific heat at constant pressure 
: Quantity of heat 

 : Temperature distribution  OT T    

 : Decay parameter 

 : Kinematic viscosity 



 
 

 
 

rP : Prandtl number p
r

C
P

K

 
  

 

: Heat source parameter 
2Qb
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: Hartmann number 
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